WorldWideScience

Sample records for net energy loss

  1. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  2. Harvesting fertilized rye cover crop: simulated revenue, net energy, and drainage Nitrogen loss

    Science.gov (United States)

    Food and biofuel production along with global N use are expected to increase over the next few decades, which complicates the goal of reducing N loss to the environment. Including winter rye as a cover crop in corn-soybean rotations reduces N loss to drainage. A few studies suggest that harvesting r...

  3. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  4. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  5. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  6. 26 CFR 1.172-4 - Net operating loss carrybacks and net operating loss carryovers.

    Science.gov (United States)

    2010-04-01

    ... years. (iv) Loss attributable to foreign expropriation. If the provisions of section 172(b)(3)(A) and § 1.172-9 are satisfied, the portion of a net operating loss attributable to a foreign expropriation... attributable to a foreign expropriation loss (as defined in section 172(h)) and if an election under paragraph...

  7. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  8. 20 CFR 404.1085 - Net operating loss deduction.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Self-Employment Income § 404.1085 Net operating loss deduction. When determining your net earnings from self-employment...

  9. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  10. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  11. Army Net Zero Prove Out. Net Zero Energy Best Practices

    Science.gov (United States)

    2014-11-18

    recovery and cogeneration opportunities, offsetting the remaining demand with the production of renewable energy from onsite sources so that the Net...implementing energy recovery and cogeneration opportunities, and then offsetting the remaining demand with the production of renewable energy from on-site...they impact overall energy performance. The use of energy modeling in the design stage provides insights that can contribute to more effective design

  12. 26 CFR 1.1502-21 - Net operating losses.

    Science.gov (United States)

    2010-04-01

    ..., gain, deduction, and loss, including the member's losses and deductions actually absorbed by the group... income, gain, deduction, and loss. For this purpose— (A) Consolidated taxable income is computed without... the group has no Year 2 capital gain, it cannot absorb any capital losses in Year 2. T's Year 1 net...

  13. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  14. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  15. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  16. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  17. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  18. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  19. Calculation Tool for Determining the Net Energy Gain

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    is dependent on both the U-values and the g-values. Beyond this it is dependent on the orientation of the windows and the climate and the actual period. This makes it difficult to choose the glazings and windows that are optimal with regard to energy performance in a given case. These facts have aroused a need...... for simple and accurate methods to determine and compare the energy performance of different window products. When choosing windows for new buildings or retrofitting a calculation tool that in a simple way determines the net energy gain from the specific windows in the actual building will ease the selection...... of the best window solution. Such a tool combined with a database with window products can make calculations of the heat loss or energy demand corresponding to the requirements in the new building code easier and more correct. In the paper, methods to determine energy performance data and the net energy gain...

  20. The transition from No Net Loss to a Net Gain of biodiversity is far from trivial

    DEFF Research Database (Denmark)

    Bull, Joseph William; Brownlie, S.

    2017-01-01

    appropriate in evaluating the ecological outcomes, depending on the principle chosen; and (4) stakeholder expectations differ considerably under the two principles. In exploring these arguments we hope to support policy-makers in choosing the more appropriate of the two objectives. We suggest that financial......The objectives of No Net Loss and Net Gain have emerged as key principles in conservation policy. Both give rise to mechanisms by which certain unavoidable biodiversity losses associated with development are quantified, and compensated with comparable gains (e.g. habitat restoration). The former...... seeks a neutral outcome for biodiversity after losses and gains are accounted for, and the latter seeks an improved outcome. Policy-makers often assume that the transition from one to the other is straightforward and essentially a question of the amount of compensation provided. Consequently, companies...

  1. 26 CFR 1.172-10 - Net operating losses of real estate investment trusts.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Net operating losses of real estate investment... (continued) § 1.172-10 Net operating losses of real estate investment trusts. (a) Taxable years to which a loss may be carried. (1) A net operating loss sustained by a qualified real estate investment trust (as...

  2. Net-Zero Energy Technical Shelter

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    Technical shelters are the basic structures for storing electronic and technical equipment, and commonly used for telecommunication base station, windmill, gas station, etc. Due to their high internal heat load density and special operation schedule, they consume more energy than normal residential...... or commercial buildings. On the other hand, it is a big challenge to power the technical shelter in remote area where the grids are either not available or the expansion of grid is expensive. In order to minimize the energy consumption and obtain a reliable and cost-efficient power solution for technical...... shelter, this study will apply the net-zero energy concept into the technical shelter design. The energy conservation can be achieved by proper design of building envelop and optimization of the cooling strategies. Both experiments and numerical simulations are carried out to investigate the indoor...

  3. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  4. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  5. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  6. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  7. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  8. 26 CFR 1.172-9 - Election with respect to portion of net operating loss attributable to foreign expropriation loss.

    Science.gov (United States)

    2010-04-01

    ... operating loss attributable to foreign expropriation loss. 1.172-9 Section 1.172-9 Internal Revenue INTERNAL... operating loss attributable to foreign expropriation loss. (a) In general. If a taxpayer has a net operating loss for a taxable year ending after December 31, 1958, and if the foreign expropriation loss for such...

  9. Loss of energy business

    International Nuclear Information System (INIS)

    Beer, G.

    2010-01-01

    Russian PM Vladimir Putin, euphoric about the signing of the 25-year contract for the use of Ukrainian seaports by the Russian Navy, announced several new strategic bilateral projects. The new partnership between the two countries might be a disappointment for those who were hoping for new Slovak energy business development in cooperation with Moscow. Representatives of the Russian company TVEL frequently visited the Slovak Ministry of Economy last year, discussing the idea of a nuclear fuel production plant in Slovakia. The factory was supposed to make fuel for the growing number of Russian reactors throughout Europe and utilize the recently discovered uranium deposits near Kosice. However, since Mr. Putin unveiled the idea of creating a Russian-Ukrainian nuclear holding at the site of the Khmelnitskaya Nuclear Power Plant, Slovakia will probably not become the gate to the EU for Russia's atomic business. Owners of the Slovak uranium deposit site are losing business too. And not only does the Slovak-Russian nuclear cooperation seem to be completely lost, but the gas transfer business is unclear too. Last week, the Russian gas company Gazprom showed that its selling prices are a matter of political bargaining rather than fair market value. Similar to low prices for the extremely friendly Belarus, Ukraine earned a $100 discount and in exchange for the Black Sea deal it will be paying only $236 per thousand cubic meters of the commodity. Russia thus gave up roughly $3 billion this year. Slovakia has nothing to offer in exchange for such a deal. Not only price creation but also the construction of gas pipelines through Europe remains a political issue for Russians. With plans to bypass Ukraine and Slovakia, the only safe future for the local transit system can be the result of an idea to pool Gazprom and Ukrainian Naftohaz transit assets together with a stock swap. (author)

  10. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  11. Energy losses on tokamak startup

    International Nuclear Information System (INIS)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1983-01-01

    During the startup of a tokamak reactor using poloidal field (PF) coils to induce plasma currents, the conducting structures carry induced currents. The associated energy losses in the circuits must be provided by the startup coils and the PF system. This paper provides quantitative and comparitive values for the energies required as a function of the thickness or resistivity of the torus shells

  12. 26 CFR 1.857-5 - Net income and loss from prohibited transactions.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Net income and loss from prohibited transactions. 1.857-5 Section 1.857-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.857-5 Net income and loss...

  13. 26 CFR 1.1502-21T - Net operating losses (temporary).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Net operating losses (temporary). 1.1502-21T...) INCOME TAX (CONTINUED) INCOME TAXES Computation of Consolidated Items § 1.1502-21T Net operating losses...)(B). (C) Partial waiver of carryback period for 2001 and 2002 losses—(1) Application. The acquiring...

  14. 76 FR 65634 - Redetermination of the Consolidated Net Unrealized Built-In Gain and Loss

    Science.gov (United States)

    2011-10-24

    ... Redetermination of the Consolidated Net Unrealized Built-In Gain and Loss AGENCY: Internal Revenue Service (IRS... consolidated net unrealized built-in gain and loss in certain circumstances. This document also invites... gain (NUBIG) at the time of its ownership change, recognized built-in gains will increase the section...

  15. World offshore energy loss statistics

    International Nuclear Information System (INIS)

    Kaiser, Mark J.

    2007-01-01

    Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 1970-2004. The impact of the 2004-2005 hurricane season in the Gulf of Mexico is summarized

  16. Loss energy states of nonstationary quantum systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1978-01-01

    The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed

  17. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  18. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Candanedo, José A.; Geier, Sonja

    2010-01-01

    of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load......“Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  19. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  20. Criteria for Definition of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Sartori, Igor; Marszal, Anna Joanna; Napolitano, Assunta

    2010-01-01

    The idea of a Net Zero Energy Building (Net ZEB) is understood conceptually, as it is understood that the way a Net ZEB is defined affects significantly the way it is designed in order to achieve the goal. However, little agreement exists on a common definition; the term is used commercially...... without a clear understanding and countries are enacting policies and national targets based on the concept without a clear definition in place. This paper presents a harmonised framework for describing the relevant characteristics of Net ZEBs in a series of criteria. Evaluation of the criteria...... and selection of the related options becomes a methodology for elaborating sound Net ZEB definitions in a formal, systematic and comprehensive way, creating the basis for legislations and action plans to effectively achieve the political targets. The common denominator for the different possible Net ZEB...

  1. 78 FR 54156 - Limitations on Duplication of Net Built-in Losses

    Science.gov (United States)

    2013-09-03

    ... it is not a transfer of net built-in loss property under section 362(e)(1); that gain recognized by... transferor distributes the stock received in the transaction and, in the distribution, no gain or loss was... the transaction. 3. Securities Received Without the Recognition of Gain or Loss Section 362(e)(2) is...

  2. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  3. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  4. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  5. 26 CFR 1.1502-22A - Consolidated net capital gain or loss generally applicable for consolidated return years...

    Science.gov (United States)

    2010-04-01

    ... consolidated net capital loss for any taxable year attributable to a foreign expropriation capital loss is the amount of the foreign expropriation capital losses of all the members for such year (but not in excess of... that any portion of a net capital loss attributable to a foreign expropriation capital loss to which...

  6. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  7. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  8. Artisanal fishing net float loss and a proposal for a float design solution

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Chaves

    2016-03-01

    Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.

  9. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  10. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  11. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  12. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  13. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  14. The effect of the 'no net loss' of habitat guiding principle on Manitoba Hydro's Conawapa project

    International Nuclear Information System (INIS)

    Dick, C.J.

    1992-04-01

    The potential effect of the 'no net loss' principle on Manitoba Hydro's Conawapa hydroelectric project is assessed, including an examination of the process by which the no net loss principle will likely be implemented at the site, based on a review of past applications of the policy. The no net loss principle was developed by the federal Department of Fisheries of Oceans (DFO) as part of their 1986 Policy for the Management of Fish Habitats. The overall objective of the policy is to achieve a net gain of the productive capacity of fish habitats in Canada. Application of the policy to specific developments is based upon maintaining the productive capacity of fish habitats as well as the needs of users groups. The policy has not yet been applied to an inland hydroelectric project. Achieving no net losses may be difficult in regard to large projects such as a hydro dam, however a review of past applications of the policy reveal a number of concepts that have been employed by the DFO when applying the no net loss principle. These concepts were applied to the Conawapa project to make recommendations to achieve no net loss if the project is developed. Mitigation and compensation measures must be developed for both brook trout and lake sturgeon habitat, and should include a combination of habitat enhancement and increased protection and compliance. Measures should also be developed for other species such as lake cisco and lake whitefish, both of which may be a food source for beluga whales. The Conawapa forebay may be given consideration as compensation for lost habitat. 81 refs., 11 figs., 2 tabs

  15. Energy Use Consequences of Ventilating a Net-Zero Energy House

    Science.gov (United States)

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  16. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    Science.gov (United States)

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  17. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  18. Offsetting the impacts of mining to achieve no net loss of native vegetation.

    Science.gov (United States)

    Sonter, L J; Barrett, D J; Soares-Filho, B S

    2014-08-01

    Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land-use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like-for-like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like-for-like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. © 2014 Society for Conservation Biology.

  19. Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss

    Directory of Open Access Journals (Sweden)

    Sinuhe eHahn

    2012-11-01

    Full Text Available The intention of this review is to provide an overview of the potential role of neutrophil extracellular traps (NETs in mammalian reproduction. Neutrophil NETs appear to be involved in various stages of the reproductive cycle, starting with fertility and possibly ending with fetal loss. The first suggestion that NETs may play a role in pregnancy-related disorders was in preeclampsia, where vast numbers were detected in the intervillous space of affected placentae. The induction of NETosis involved an auto-inflammatory component, mediated by the increased release of placental micro-debris in preeclampsia. This report was the first indicating that NETs may be associated with a human pathology not involving infection.Subsequently, NETs have since then been implicated in bovine or equine infertility, in that semen may become entrapped in the female reproductive during their passage to the oocyte. In this instance interesting species-specific differences are apparent, in that equine sperm evade entrapment via expression of a DNAse-like molecule, whereas highly motile bovine sperm, once free from seminal plasma that promotes interaction with neutrophils, appear impervious to NETs entrapment.Although still in the realm of speculation it is plausible that NETs may be involved in recurrent fetal loss mediated by anti-phospholipid antibodies, or perhaps even in fetal abortion triggered by infections with microorganisms such as L. monocytogenes or B. abortus.

  20. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  1. Net energy levels on the lipid profile of pork

    Directory of Open Access Journals (Sweden)

    Stephan Alexander da Silva Alencar

    2017-09-01

    Full Text Available ABSTRACT: This study was conducted to evaluate the effects of net energy levels on the lipid profile of adipose tissue and muscle of swines. A total of 90 animals, with initial weight of 71.94±4.43kg, were used, and distributed in a randomized block design in five net energy levels (2,300, 2,425, 2,550, 2,675, and 2,800Kcal kg-1 feed, with nine replicates and two animals per experimental unit. Lipid profiles of adipose tissue and muscle were analyzed using gas chromatography. Increasing the levels of net energy using soybean oil, improved the lipid profile of adipose tissue and muscle, increased linearly (P<0.05 the concentrations of polyunsaturated fatty acids, especially linoleic and α-linolenic acid, reduced linearly (P<0.05 the monounsaturated and saturated fatty acids and omega 6: omega 3. In adipose tissue was observed linear reduction (P<0.05 of atherogenic and thrombogenic indexes. In conclusion, increasing the level of net energy of the diet using soybean oil improved the lipid profile of adipose tissue and muscle.

  2. Net energy analysis in a Ramsey–Hotelling growth model

    International Nuclear Information System (INIS)

    Macías, Arturo; Matilla-García, Mariano

    2015-01-01

    This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented. - Highlights: • A neoclassical growth model with EROI (“Energy Return on Energy Invested”) is shown • All concepts linking neoclassical economics and net energy analysis are discussed • Any EROI decline can be compensated increasing gross activity in the energy sector. • The economic impact of EROI depends on some non-energy cost in the energy sector. • Comparative steady-state statics for different EROI levels is performed and discussed. • Policy implications are suggested.

  3. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  4. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  5. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  6. Counterintuitive proposals for trans-boundary ecological compensation under "No Net Loss" biodiversity policy

    DEFF Research Database (Denmark)

    Bull, Joseph William; Abatayo, Anna Lou; Strange, Niels

    2017-01-01

    ‘No net loss’ (NNL) policies involve quantifying biodiversity impacts associated with economic development, and implementing commensurate conservation gains to balance losses. Local stakeholders are often affected by NNL biodiversity trades. But to what extent are NNL principles intuitive...... compensation should be: close to development impacts; greater than losses; smaller, given a background trend of biodiversity decline; and, smaller when gains have co-benefits for biodiversity. However, survey participant proposals violated all four principles. Participants proposed substantial forest...

  7. 26 CFR 1.860C-2 - Determination of REMIC taxable income or net loss.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Determination of REMIC taxable income or net loss. 1.860C-2 Section 1.860C-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.860C-2 Determination of...

  8. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias mountains, Alaska

    Digital Repository Service at National Institute of Oceanography (India)

    Gulick, S.P.S.; Jaeger, J.M.; Mix, A.C.; Asahi, H.; Bahlburg, H.; Belanger, C.L.; Berbel, G.B.B.; Childress, L.; Cowan, E.; Drab, L.; Forwick, M.; Fukumura, A.; Ge, S.; Gupta, S.M.; Kioka, A.; Konno, S.; LeVay, L.J.; Marz, C.; Matsuzaki, K.M.; McClymont, E.L.; Moy, C.; Muller, J.; Nakamura, A.; Ojima, T.; Ribeiro, F.R.; Ridgway, K.D.; Romero, O.E.; Slagle, A.L.; Stoner, J.S.; St-Onge, G.; Suto, I.; Walczak, M.D.; Worthington, L.L.; Bailey, I.; Enkelmann, E.; Reece, R.; Swartz, J.M.

    the onset of quasi-periodic (~100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent...

  9. 26 CFR 1.1502-21A - Consolidated net operating loss deduction generally applicable for consolidated return years...

    Science.gov (United States)

    2010-04-01

    ... operating loss attributable to such member. (iii) Foreign expropriation losses. An election under section... expropriation loss) may be made for a consolidated return year only if the sum of the foreign expropriation... expropriation losses, or (b) the consolidated net operating loss. (3) Absorption rules. For purposes of...

  10. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    Science.gov (United States)

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. International trade causes large net economic losses in tropical countries via the destruction of ecosystem services.

    Science.gov (United States)

    Chang, Junning; Symes, William S; Lim, Felix; Carrasco, L Roman

    2016-05-01

    Despite the large implications of the use of tropical land for exports ("land absorption") on ecosystem services (ES) and global biodiversity conservation, the magnitude of these externalities is not known. We quantify the net value of ES lost in tropical countries as a result of cropland, forestland and pastureland absorption for exports after deducting ES gains through imports ("land displacement"). We find that net ES gains occur only in 7 out of the 41 countries and regions considered. We estimate global annual net losses of over 1.7 x 10(12) international dollars (I$) (I$1.1 x 10(12) if carbon-related services are not considered). After deducting the benefits from agricultural, forest and livestock rents in land replacing tropical forests, the net annual losses are I$1.3 and I$0.7 x 10(12), respectively. The results highlight the large magnitude of tropical ES losses through international trade that are not compensated by the rents of land uses in absorbed land.

  12. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  13. 40 CFR 73.83 - Secretary of Energy's action on net income neutrality applications.

    Science.gov (United States)

    2010-07-01

    ... Renewable Energy Reserve § 73.83 Secretary of Energy's action on net income neutrality applications. (a) First come, first served. The Secretary of Energy will process and certify net income neutrality... of Energy determines that the net income neutrality certification application does not meet the...

  14. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  15. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  16. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  17. Seeking convergence on the key concepts in "no net loss" policy

    DEFF Research Database (Denmark)

    Bull, Joseph William; Gordon, Ascelin; Watson, James E.M.

    2016-01-01

    . The recommendations made in this article, on improving clarity and supporting convergence on key no net loss (NNL) concepts, should help eliminate ambiguity in policy documentation. This is crucial if policymakers are to design robust policies that are (i) transparent, (ii) translatable into practice in a consistent......Biodiversity conservation policies incorporating a no net loss (NNL) principle are being implemented in many countries. However, there are linguistic and conceptual inconsistencies in the use of terms underlying these NNL policies. We identify inconsistencies that emerge in the usage of eight key......, reduce ambiguity and improve clarity in communication and policy documentation. However, we also warn of the challenges in achieving convergence, especially given the linguistic inconsistencies in several of these key concepts among countries in which NNL policies are employed. Policy implications...

  18. Heavy quark energy loss in nuclear medium

    International Nuclear Information System (INIS)

    Zhang, Benr-Wei; Wang, Enke; Wang, Xin-Nian

    2003-01-01

    Multiple scattering, modified fragmentation functions and radiative energy loss of a heavy quark propagating in a nuclear medium are investigated in perturbative QCD. Because of the quark mass dependence of the gluon formation time, the medium size dependence of heavy quark energy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss is also significantly suppressed relative to a light quark due to the suppression of collinear gluon emission by a heavy quark

  19. Equilibration Influence on Jet Energy Loss

    International Nuclear Information System (INIS)

    Cheng Luan; Wang Enke

    2010-01-01

    With the initial conditions in the chemical non-equilibrated medium and Bjorken expanding medium at RHIC, we investigate the consequence for parton evolution. With considering the parton equilibration, we obtain the time dependence of the opacity when the jet propagates through the QGP medium. The parton equilibration affect the jet energy loss with detailed balance evidently. Both parton energy loss from stimulated emission in the chemical non-equilibrated expanding medium and in Bjorken expanding medium are linear dependent on the propagating distance rather than square dependent in the static medium. This will increase the energy and propagating distance dependence of the parton energy loss.

  20. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  1. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...

  2. The energy cost of quantum information losses

    Science.gov (United States)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  3. C-NET: the Centre for Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Roberts, J.W.

    2011-01-01

    The Centre for Nuclear Energy Technology was established as part of the Dalton Nuclear Institute at The University of Manchester in 2009 to focus the UK research on front-end nuclear technologies. This includes plant-life extension, new build, naval propulsion and next generation reactors. Building on £4M of government funding through the North West Development Agency (NWDA), C-NET will act as a hub for nuclear research in the North West of England collaborating with both universities and industry. (author)

  4. Uncertainty, loss aversion, and markets for energy efficiency

    International Nuclear Information System (INIS)

    Greene, David L.

    2011-01-01

    Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the 'efficiency gap' or 'energy paradox.' The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of context-dependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to loss-averse consumers.

  5. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  6. Zero Net Energy Myths and Modes of Thought

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  7. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....

  8. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  9. Fort Hills Oil Sands Project No Net Loss Lake earthfill structure

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, D.; Sawatsky, L. [Golder Associates Ltd., Calgary, AB (Canada); Wog, K.; Paz, S. [Alberta Environment, Edmonton, AB (Canada). Water Management Operations; Chernys, S. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    The Fort Hills Oil Sands Project (FHOSP) is located north of Fort McMurray, Alberta. The Fort Hills Energy Corporation (FHEC) must compensate for fish habitat lost as a result of mine development that would disturb natural streams and lakes. FHEC planned to construct a fisheries compensation lake on the north end of its leased property, contained in part by an earthfill structure. Unlike most dam structures, the FHOSP No Net Loss Lake (NNLL) earthfill structure was planned solely for the creation of fisheries compensation habitat. Therefore, the NNLL earthfill structure must be designed with robust features that can handle any foreseeable environmental condition without failure, so that it may be accepted as a sustainable feature of the mine closure landscape. This paper discussed the design features of the NNLL earthfill structure. The paper presented information on the background of the project including regulatory criteria for the fisheries compensation habitat; fisheries compensation habitat location; and design criteria for the NNLL. The features of the NNLL earthfill structure were also discussed. In addition, the paper outlined the dam safety classification for earthfill structure and anticipated system performance. The proposed monitoring program and permanent closure plans were also discussed. It was concluded that the earthfill structure was designed with several features that would allow it to become a part of the closure landscape. These included a high width to height ratio, significant erosion protection, and an aggressive reclamation plan. These features will provide a sound basis for FHEC to apply for a reclamation certificate at the end of mine life. 3 refs., 3 tabs., 8 figs.

  10. Deterministic models for energy-loss straggling

    International Nuclear Information System (INIS)

    Prinja, A.K.; Gleicher, F.; Dunham, G.; Morel, J.E.

    1999-01-01

    Inelastic ion interactions with target electrons are dominated by extremely small energy transfers that are difficult to resolve numerically. The continuous-slowing-down (CSD) approximation is then commonly employed, which, however, only preserves the mean energy loss per collision through the stopping power, S(E) = ∫ 0 ∞ dEprime (E minus Eprime) σ s (E → Eprime). To accommodate energy loss straggling, a Gaussian distribution with the correct mean-squared energy loss (akin to a Fokker-Planck approximation in energy) is commonly used in continuous-energy Monte Carlo codes. Although this model has the unphysical feature that ions can be upscattered, it nevertheless yields accurate results. A multigroup model for energy loss straggling was recently presented for use in multigroup Monte Carlo codes or in deterministic codes that use multigroup data. The method has the advantage that the mean and mean-squared energy loss are preserved without unphysical upscatter and hence is computationally efficient. Results for energy spectra compared extremely well with Gaussian distributions under the idealized conditions for which the Gaussian may be considered to be exact. Here, the authors present more consistent comparisons by extending the method to accommodate upscatter and, further, compare both methods with exact solutions obtained from an analog Monte Carlo simulation, for a straight-ahead transport problem

  11. A Cellular Approach to Net-Zero Energy Cities

    Directory of Open Access Journals (Sweden)

    Miguel Amado

    2017-11-01

    Full Text Available Recent growth in the use of photovoltaic technology and a rapid reduction in its cost confirms the potential of solar power on a large scale. In this context, planning for the deployment of smart grids is among the most important challenges to support the increased penetration of solar energy in urban areas and to ensure the resilience of the electricity system. As part this effort, the present paper describes a cellular approach to a Net-Zero energy concept, based on the balance between the potential solar energy supply and the existing consumption patterns at the urban unit scale. To do that, the Geographical Urban Units Delimitation model (GUUD has been developed and tested on a case study. By applying the GUUD model, which combines Geographic Information Systems (GIS, parametric modelling, and solar dynamic analysis, the whole area of the city was divided into urban cells, categorized as solar producers and energy consumers. The discussion around three theoretical scenarios permits us to explore how smart grids can be approached and promoted from an urban planning perspective. The paper provides insights into how urban planning can be a driver to optimize and manage energy balance across the city if the deployment of smart grids is correctly integrated in its operative process.

  12. Accounting for no net loss: A critical assessment of biodiversity offsetting metrics and methods.

    Science.gov (United States)

    Carreras Gamarra, Maria Jose; Lassoie, James Philip; Milder, Jeffrey

    2018-08-15

    Biodiversity offset strategies are based on the explicit calculation of both losses and gains necessary to establish ecological equivalence between impact and offset areas. Given the importance of quantifying biodiversity values, various accounting methods and metrics are continuously being developed and tested for this purpose. Considering the wide array of alternatives, selecting an appropriate one for a specific project can be not only challenging, but also crucial; accounting methods can strongly influence the biodiversity outcomes of an offsetting strategy, and if not well-suited to the context and values being offset, a no net loss outcome might not be delivered. To date there has been no systematic review or comparative classification of the available biodiversity accounting alternatives that aim at facilitating metric selection, and no tools that guide decision-makers throughout such a complex process. We fill this gap by developing a set of analyses to support (i) identifying the spectrum of available alternatives, (ii) understanding the characteristics of each and, ultimately (iii) making the most sensible and sound decision about which one to implement. The metric menu, scoring matrix, and decision tree developed can be used by biodiversity offsetting practitioners to help select an existing metric, and thus achieve successful outcomes that advance the goal of no net loss of biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  14. Applications of energy loss contrast STIM

    International Nuclear Information System (INIS)

    Bench, G.; Saint, A.; Legge, G.J.F.; Cholewa, M.

    1992-01-01

    Scanning Transmission Ion Microscopy (STIM) with energy loss contrast is a quantitative imaging technique. A focussed MeV ion microbeam is scanned over the sample and measured energy losses of residual ions at each beam location are used to provide the contrast in the image. The technique is highly efficient as almost every ion carries useful information from which quantitative data can be obtained. The high efficiency of data collection at present necessitates the use of small beam currents. Therefore small apertures can be used and fine spatial resolution can be achieved. High efficiency also makes it possible to collect large data sets for high definition imaging with a small radiation dose. Owing to the simple relationship between energy loss and areal density, STIM with energy loss contrast can provide a quantitative image that can be used to obtain areal density information on the sample. These areal density maps can be used not only to provide a high resolution image of the sample but also to normalise Particle Induced Xray Emission (PIXE) data. The small radiation dose required to form these areal density maps also allows one to use STIM with energy loss contrast to quantitatively monitor ion beam induced specimen changes caused by higher doses and dose rates used in other microanalytical techniques. STIM with energy loss contrast also provides the possibility of stereo imaging and ion microtomography. STIM has also been used in conjunction with channeling to explore transmission channeling in thin crystals. This paper will discuss these applications of STIM with energy loss contrast and look at further developments from them

  15. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  16. 26 CFR 1.996-8 - Effect of carryback of capital loss or net operating loss to prior DISC taxable year.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Effect of carryback of capital loss or net operating loss to prior DISC taxable year. 1.996-8 Section 1.996-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales...

  17. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  18. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  19. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  20. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  1. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  2. Estimation of fluctuation in restricted energy loss

    International Nuclear Information System (INIS)

    Doke, T.; Hayashi, T.; Nagata, K.

    1983-01-01

    Restricted Energy Loss (REL) is defined as an energy loss [(dE/dX)/sub E//sub delta/<ν/] that produced the delta-rays of energies less than some specified energy ν and is often used as a simple measure of track structure. For example, REL is a measure of track formation threshold in plastic track detector and the growth rate of track in chemical etching solution is considered to depend only on REL given along the track. Using a stack of elastic sheets, recently, it became possible to identify isotopes of incident particles. In that case, the limit of mass resolution is determined by fluctuation of REL in the length of etch pit produced along the path of particle. A computer program was developed to calculate the probability distribution for energy deposition in absorber allowing for electron escape. In this calculation, it is assumed that all electrons with energies greater than a certain value epsilon/sub d/ escape. This means that this calculation directly gives the fluctuation of REL. Therefore, we tried to use the computer program to estimate the ultimate mass resolution in plastic detector. In this paper, we show firstly the comparison of ASB's calculation with the experimental results obtained by a gas counter and next the results of estimation of ultimate mass resolution in plastic detectors

  3. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  4. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  5. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  6. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  7. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  8. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Energy Technology Data Exchange (ETDEWEB)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

  9. Heat Mismatch of future Net Zero Energy Buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    The long-term goal for Denmark is to develop an energy system solely based on renewable energy sources (RES) in 2050. To reach this goal energy savings in buildings are essential. Therefore, a focus on energy efficient measures in buildings and net zero energy buildings (NZEBs) have increased...... systems enables them to send or receive energy from these systems. This is beneficial for NZEBs because even though they have an annual net exchange of zero, there is a temporal mismatch in regard to the energy consumption of buildings and the production from the renewable energy units added to them...

  10. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  11. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  12. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    International Nuclear Information System (INIS)

    Barnes, C.D.; Colby, E.R.; Plettner, T.

    2005-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  13. LEAP Phase II, net energy gain from laser fields in vacuum

    International Nuclear Information System (INIS)

    Barnes, Christopher D.; Colby, Eric R.; Plettner, Tomas

    2002-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  14. Energy-loss return gate via liquid dielectric polarization.

    Science.gov (United States)

    Kim, Taehun; Yong, Hyungseok; Kim, Banseok; Kim, Dongseob; Choi, Dukhyun; Park, Yong Tae; Lee, Sangmin

    2018-04-12

    There has been much research on renewable energy-harvesting techniques. However, owing to increasing energy demands, significant energy-related issues remain to be solved. Efforts aimed at reducing the amount of energy loss in electric/electronic systems are essential for reducing energy consumption and protecting the environment. Here, we design an energy-loss return gate system that reduces energy loss from electric/electronic systems by utilizing the polarization of liquid dielectrics. The use of a liquid dielectric material in the energy-loss return gate generates electrostatic potential energy while reducing the dielectric loss of the electric/electronic system. Hence, an energy-loss return gate can make breakthrough impacts possible by amplifying energy-harvesting efficiency, lowering the power consumption of electronics, and storing the returned energy. Our study indicates the potential for enhancing energy-harvesting technologies for electric/electronics systems, while increasing the widespread development of these systems.

  15. Federal Campuses Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office Energy Efficiency and Renewable Energy (EERE) defined a zero energy campus as "an energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy campuses to federal sector campuses. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  16. New approach to energy loss measurements

    CERN Document Server

    Trzaska, W H; Alanko, T; Mutterer, M; Raeisaenen, J; Tjurin, G; Wojdyr, M

    2002-01-01

    A new approach to energy loss measurements is proposed. In the same experiment electronic stopping force (power) in gold, nickel, carbon, polycarbonate and Havar for sup 4 sup 0 Ar, sup 2 sup 8 Si, sup 1 sup 6 O, sup 4 He and sup 1 H ions in the energy range 0.12-11 MeV/u has been measured. In this paper we give the full results for gold, nickel, and carbon and for sup 4 sup 0 Ar, sup 1 sup 6 O, sup 4 He and sup 1 H ions. Good agreement of the measured stopping force values for light ions with literature data is interpreted as the positive test of the experimental technique. The same technique used with heavy ions yields agreement with the published data only for energies above 1 MeV/u. At lower energies we observe progressively increasing discrepancy. This discrepancy is removed completely as soon as we neglect pulse height defect compensation. This observation makes us believe that the majority of the published results as well as semi-empirical calculations based on them (like the popular SRIM) may be in er...

  17. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  18. Examples of Nearly Net Zero Energy Buildings Through One-Step and Stepwise Retrofits

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    2012-01-01

    This paper presents the review of eight single-family house retrofit projects. The main objective is to collect and classify several approaches to nearly net zero energy building retrofitting. The selection has been made on the capacity of reaching a nearly net zero energy level via a one......-step or stepwise retrofit process. The review work is part of a more global Ph.D. project and is used as one of the basement of the future research work. The considered approaches have been sorted in two categories. The first approach has a very high use of energy conservation measures and low use of renewable...... energy production measures. The second approach has a lower use of energy conservation measures (but still high compared to a traditional renovation) and a higher use of renewable energy production measures. A third approach to nearly net zero energy building renovation exists but has not been considered...

  19. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  20. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    Science.gov (United States)

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may

  1. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  2. Resistant starch and energy balance: impact on weight loss and maintenance.

    Science.gov (United States)

    Higgins, Janine A

    2014-01-01

    The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.

  3. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  4. Energy Loss of Coasting Gold Ions and Deuterons in RHIC

    CERN Document Server

    Abreu, N P; Brown, K; Burkhardt, H; Butler, J; Fischer, W; Harvey, M; Tepikian, S

    2008-01-01

    The total energy loss of coasting gold ion beams at two different energies and deuterons at one energy were measured at RHIC, corresponding to a gamma of 75.2, 107.4 and 108.7 respectively. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  5. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  6. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  7. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  8. Mining and biodiversity offsets: a transparent and science-based approach to measure "no-net-loss".

    Science.gov (United States)

    Virah-Sawmy, Malika; Ebeling, Johannes; Taplin, Roslyn

    2014-10-01

    Mining and associated infrastructure developments can present themselves as economic opportunities that are difficult to forego for developing and industrialised countries alike. Almost inevitably, however, they lead to biodiversity loss. This trade-off can be greatest in economically poor but highly biodiverse regions. Biodiversity offsets have, therefore, increasingly been promoted as a mechanism to help achieve both the aims of development and biodiversity conservation. Accordingly, this mechanism is emerging as a key tool for multinational mining companies to demonstrate good environmental stewardship. Relying on offsets to achieve "no-net-loss" of biodiversity, however, requires certainty in their ecological integrity where they are used to sanction habitat destruction. Here, we discuss real-world practices in biodiversity offsetting by assessing how well some leading initiatives internationally integrate critical aspects of biodiversity attributes, net loss accounting and project management. With the aim of improving, rather than merely critiquing the approach, we analyse different aspects of biodiversity offsetting. Further, we analyse the potential pitfalls of developing counterfactual scenarios of biodiversity loss or gains in a project's absence. In this, we draw on insights from experience with carbon offsetting. This informs our discussion of realistic projections of project effectiveness and permanence of benefits to ensure no net losses, and the risk of displacing, rather than avoiding biodiversity losses ("leakage"). We show that the most prominent existing biodiversity offset initiatives employ broad and somewhat arbitrary parameters to measure habitat value and do not sufficiently consider real-world challenges in compensating losses in an effective and lasting manner. We propose a more transparent and science-based approach, supported with a new formula, to help design biodiversity offsets to realise their potential in enabling more responsible

  9. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  10. Importance of Baseline Specification in Evaluating Conservation Interventions and Achieving No Net Loss of Biodiversity

    Science.gov (United States)

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-01-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may

  11. Implementing tactical plans to improve water-energy loss management

    OpenAIRE

    Loureiro, D.; Alegre, H.; Silva, M. S.; Ribeiro, R.; Mamade, A.; Poças, A.

    2015-01-01

    Water utilities are aware of the water-energy loss relevance in supply systems. However, they still mainly focus on daily water loss control (real and apparent losses), without considering the impact on embedded energy. Moreover, they are mostly concerned with the economic dimension and, in most cases, tend to disregard the impact that water-energy loss may have on the quality of service, communication with the customers, social awareness, water quality and environment. This paper focuses on ...

  12. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  13. EcoVillage: A Net Zero Energy Ready Community

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Faakye, O. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  14. Working Towards Net Zero Energy at Fort Irwin, CA

    Science.gov (United States)

    2010-09-01

    sub- metering of their energy use. • MERV 15 – 16 air filtration would be used to reduce the impact of very fine desert dust on the heat transfer coil...use and 1,420,414 KWh/yr electrical use. The electrical use can be offset further with waste to energy cogeneration , or the use of a trigeneration...Biogas cogeneration plant (25 kWth / 50 kWth): $70,000–$90,000 Fermentation plant (300 – 400 t/yr): $150,000 7.3.2 Usable energy 200 MWh electricity

  15. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  16. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  17. Energy-loss measurements with heavy ions at relativistic energies

    International Nuclear Information System (INIS)

    Blank, B.; Gaimard, J.J.; Geissel, H.; Muenzenberg, G.; Schmidt, K.H.; Stelzer, H.; Suemmerer; Clerc, H.G.; Hanelt, E.; Steiner, M.; Voss, B.

    1990-03-01

    Using the magnetic spectrometer SPES I at SATURNE, energy-loss measurements have been performed for projectiles of 40 Ar (401 MeV/u), 36 P (362 MeV/u), 15 N (149 MeV/u), 11 Li (131 MeV/u) and 8 Li, 9 Li (130 MeV/u) in carbon, aluminum and lead targets. The experimental results are compared to calculations based on a modified relativistic Bethe formula and to a semi-empirical formula using a Z 2 scaling law for the stopping power and an effective charge parametrization for the heavy ions. (orig.)

  18. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    CEDREN (Centre for Environmental Design of Renewable Energy) is founded by The Research Council of Norway and energy companies and is one of eight centres that were part of the scheme Centre for Environment-friendly Energy Research (FME) when the scheme was launched in 2009. The main objective of CEDREN is to develop and communicate design solutions for transforming renewable energy sources to the desired energy products, and at the same time address the environmental and societal challenges at local, regional, national and global levels. CEDREN's board initiated in 2011 a pilot project on the topics 'Energy Pay-back Ratio (EPR)', 'Ecosystem services' and 'multi-criteria analysis (MCA)' in order to investigate the possible use of these concepts/indices in the management of regulated river basins and as tools to benchmark strategies for the development of energy projects/resources. The energy indicator part (documented in this report) has aimed at reviewing the applicability of different energy efficiency indicators, as such, in the strategic management and development of energy resources, and to compare and benchmark technologies for production of electricity. The main findings from this pilot study is also reported in a policy memo (in Norwegian), that is available at www.cedren.no. The work carried out in this project will be continued in the succeeding research project EcoManage, which was granted by the Research Council of Norway's RENERGI programme in December 2011. Energy indicators: Several energy indicators for extraction and delivery of an energy product (e.g. transport fuel, heat, electricity etc.) exist today. The main objective of such indicators is to give information about the energy efficiency of the needed extraction and transforming processes throughout the value chain related to the delivered energy product. In this project the indicators Energy Payback Ratio (EPR), Net Energy Ration (NER) and Cumulative

  19. PNC Financial Services - Net-Zero Energy Bank Branch

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  20. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  1. Net energy balance of molasses based ethanol. The case of Nepal

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Silveira, Semida

    2009-01-01

    This paper evaluates life cycle energy analysis of molasses based ethanol (MOE) in Nepal. Net energy value (NEV), net renewable energy value (NREV) and energy yield ratio are used to evaluate the energy balance of MOE in Nepal. Total energy requirements in sugarcane farming, cane milling and ethanol conversion processes are estimated and energy allocation is made between co-products (molasses and sugar) as per their market prices. The result shows negative NEV (-13.05 MJ/L), positive NREV (18.36 MJ/L) and energy yield ratio (7.47). The higher positive value of NREV and energy yield ratio reveal that a low amount of fossil fuels are required to produce 1 L of MOE. However, negative NEV reveals that the total energy consumption (both fossil and renewables) to produce the ethanol is higher than its final energy content. Nevertheless, the renewable energy contribution amounts to 91.7% of total energy requirements. The effect of the increased price of molasses and reduced energy consumption in the sugarcane milling and ethanol conversion are found to be significant in determining the energy values and yield ratio of MOE. In addition, there are clear measures that can be taken to improve efficiency along the production chain. Finally, energy security, scarcity of hard currency for importing fossil fuels and opportunities for regional development are also strong reasons for considering local renewable energy options in developing countries. (author)

  2. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  3. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  4. A quantitative assessment of the determinants of the net energy value of biofuels

    International Nuclear Information System (INIS)

    Bureau, Jean-Christophe; Disdier, Anne-Celia; Gauroy, Christine; Treguer, David

    2010-01-01

    Many studies have investigated the net energy balance of biofuel products (in terms of savings on fossil fuels) and assessed the reductions in greenhouse gas emissions from substituting biofuels for fossil fuel. These studies provide very different results, with net balance ranging from highly positive to negative. Our study analyses a large sample of these studies by retrieving the main parameters used and converting them into units of measurement that are comparable. This information is used to unravel the main determinants of the differences in net energy value across studies. Our approach relies on descriptive statistics and econometric estimates based on a meta-analysis methodology. Our results suggest that the large variability across studies can be explained by the degree to which particular inputs (i.e. nitrogen, farm labor) are controlled for, and the way fossil energy consumption is allocated to the various co-products.

  5. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  6. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    Science.gov (United States)

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  7. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... a value of 2, implying a constant maximum daily chewing time. The intercept NEI0 in the regression of NEI on CINE may be interpreted as metabolic net energy intake capacity of the cows fed without physical constraints on intake. Based on experimental data, the maximum chewing time was estimated as 1...

  8. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  9. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    Science.gov (United States)

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  10. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  11. The operational performance of “net zero energy building”: A study in China

    International Nuclear Information System (INIS)

    Zhou, Zhihua; Feng, Lei; Zhang, Shuzhen; Wang, Chendong; Chen, Guanyi; Du, Tao; Li, Yasong; Zuo, Jian

    2016-01-01

    Highlights: • Choose energy efficiency technology in office building to implement “nZEB”. • Simulate its energy consumption. • Study on the operational performance. • Optimize its running. - Abstract: There is no lack of studies on “net zero energy buildings” (“nZEB”). However, the vast majority of these studies focus on theories and simulation. The actual operational performance of “net zero energy building” during occupation has been largely overlooked by previous studies. This study aims to investigate the operational performance of net “zero energy buildings” via the case study of an office building in Tianjin, China. Using simulation, the energy consumption of the building at design phase was estimated and a solar photovoltaic (PV) system was selected. A whole year operation of the occupied building showed that energy consumption of the case building was much higher than the energy generated from the solar PV system. This was mainly due to three issues. Firstly, the equipment was different in terms of category, quantity and running time between operation and design stages, leading to considerable underestimate of energy consumption at the design stage. Secondly, the operational strategies need to be further improved in order to regulate users’ behaviors. Thirdly, the efficiency of solar PV system was substantially reduced due to poor atmospheric environment (i.e. haze weather). Therefore, during the design process of “net zero energy buildings”, it is imperative to ensure that the energy simulation accurately reflects how the building will actually operate once occupied. The research also revealed other barriers to the design and implementation of “nZEB” in China, such as extra efforts required for effective communicating the capacity of the HVAC design and systems to clients, and the increased cost of “nZEB” (e.g. solar PV system) particularly for public buildings. Finally, the solar radiation intensity of standard

  12. Experiences with Department of Fisheries and Oceans' 'No net loss guiding principle' at hydroelectric developments in Newfoundland

    International Nuclear Information System (INIS)

    Hill, E.L.

    1995-01-01

    The 'no net loss' guiding principle and policy objectives of the Canafdian and Newfoundland fisheries authorities were defined and British Columbia (BC) Hydro's experiences with implementation of a similar policy were described. In this instance no environmental assessment had been performed prior to the expansion being proposed in 1989. A key issue was the impact on habitats of land-locked salmon and brook trout. An environmental preview report (EPR) prepared by Hydro, which used already existing photos and habitat information, concluded that spawning habitat was poor and would be relatively unaffected by the amount of additional flooding proposed. Options to make up for lost habitat were discussed, among them reintroduction of previously lost habitat, preferred fish for local anglers, budget constraints, legal aspects and current fish demographics. It was concluded that quantitative impacts and habitat loss mitigation or compensation for freshwater fish with low recreation or commercial significance were difficult to assess. It was suggested that angler preference and socioeconomic concerns should be considered when fulfilling the 'no net loss principle'. Additional research and a more active role by the Department of Fisheries in identifying mitigation and compensation measures were recommended. 6 refs.,i fig

  13. Assessing the engineering performance of affordable net-zero energy housing

    Science.gov (United States)

    Wallpe, Jordan P.

    The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.

  14. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  15. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...

  16. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  17. Life Cycle Cost Analysis of a Multi-Storey Residential Net Zero Energy Building in Denmark

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    demand and three alternatives of energy supply systems: (1) photovoltaic installation with photovoltaic/solar thermal collectors and an ambient air/solar source heat pump; (2) photovoltaic installation with a ground-source heat pump; (3) photovoltaic installation with district heating grid. The results...... source of heat than a heat pump for the Net ZEB....

  18. Achieving informed decision-making for net zero energy buildings design using building performance simulation tools

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the

  19. Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany; Earle, Lieko; Christensen, Craig; Norton, Paul

    2016-05-17

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight. Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.

  20. Energy system analysis of a pilot net-zero exergy district

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2014-01-01

    Highlights: • Östra Sala backe is analyzed as a pilot district for the net-zero exergy target. • An analysis tool is developed for proposing an energy system for Östra Sala backe. • A total of 8 different measures are included and integrated in the energy system. • The exergy produced on-site is 49.7 GW h, the annual exergy consumed is 54.3 GW h. • The average value of the level of exergy match in the supply and demand is 0.84. - Abstract: The Rational Exergy Management Model (REMM) provides an analytical model to curb primary energy spending and CO 2 emissions by means of considering the level of match between the grade/quality of energy resources (exergy) on the supply and demand sides. This model is useful for developing forward-looking concepts with an energy systems perspective. One concept is net-zero exergy districts, which produce as much energy at the same grade or quality as consumed on an annual basis. This paper analyzes the district of Östra Sala backe in Uppsala Municipality in Sweden as a pilot, near net-zero exergy district. The district is planned to host 20,000 people at the end of four phases. The measures that are considered include an extension of the combined heat and power based district heating and cooling network, heat pumps driven on renewable energy, district heating driven white goods, smart home automation, efficient lighting, and bioelectricity driven public transport. A REMM Analysis Tool for net-zero exergy districts is developed and used to analyze 5 scenarios based on a Net-Zero Exergy District Option Index. According to the results, a pilot concept for the first phase of the project is proposed. This integrates a mix of 8 measures considering an annual electricity load of 46.0 GW h e and annual thermal load of 67.0 GW h t . The exergy that is produced on-site with renewable energy sources is 49.7 GW h and the annual exergy consumed is 54.3 GW h. The average value of the level of match between the demand and supply of

  1. Energy-dependent losses in pulsed-feedback preamplifiers

    International Nuclear Information System (INIS)

    Landis, D.A.; Madden, N.W.; Goulding, F.S.

    1978-11-01

    Energy dependent counting losses occur in most pulsed-feedback preamplifiers due to the loss of those pulses which activate the recharge system. A pulsed-feedback system that overcomes this inefficiency is described. Pulsed-light feedback as used with germanium gamma-ray spectrometers is discussed as used at high energies and high rates where those losses become significant. Experimental results are presented

  2. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  3. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  4. Elucidating Jet Energy Loss Using Jets Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet $R_{AA}$, the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  5. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    International Nuclear Information System (INIS)

    Grau, N.

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet R AA , the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  6. Energy loss of charged particles to molecular gas targets

    International Nuclear Information System (INIS)

    Sigmund, P.

    1976-01-01

    The energy loss spectrum of fast charged particles penetrating a dilute molecular gas target has been analysed theoretically, with a homogeneous gas mixture in the state of complete dissociation as a reference standard. It is shown that the geometrical structure of molecules causes the energy-loss straggling and higher moments over the energy-loss spectrum to be greater than the corresponding quantities for a completely dissociated gas of equal composition. Such deviations from additivity are shown to be most pronounced at energies around the stopping-power maximum. There is found supporting evidence in the experimental literature. (Auth.)

  7. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  8. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility

    International Nuclear Information System (INIS)

    Babson, David M.; Bellman, Karen; Prakash, Shaurya; Fennell, Donna E.

    2013-01-01

    During anaerobic digestion, organic matter is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia is recycled as a fertilizer or removed via nitrification–denitrification in treatment systems; alternatively it could be recovered and catalytically converted to hydrogen, thus supplying additional fuel. To provide a basis for further investigation, a theoretical energy balance for a model system that incorporates anaerobic digestion, ammonia separation and recovery, and conversion of the ammonia to hydrogen is reported. The model Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system energy demands including heating, pumping, mixing, and ammonia reforming were subtracted from the total energy output from methane and hydrogen to create an overall energy balance. The energy balance was examined for the ADBH system operating with a fixed feedstock loading rate with C:N ratios (gC/gN) ranging from 136 to 3 which imposed corresponding total ammonia nitrogen (TAN) concentrations of 20–10,000 mg/L. Normalizing total energy potential to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH system than from anaerobic digestion generating only methane. Decreasing the C:N ratio increased the methane content of the biogas comprising primarily methane to >80% and increased the ammonia stripping energy demand. The system required 23–34% of the total energy generated as parasitic losses with no energy integration, but when internally produced heat and pressure differentials were recovered, parasitic losses were reduced to between 8 and 17%. -- Highlights: •Modeled an integrated Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system. •Demonstrated positive net energy produced over a range of conditions by ADBH. •Demonstrated significant advantages of dual fuel recovery for energy gain by >20%. •Suggested system design considerations for energy recovery with

  9. Energy loss in grazing proton-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Juaristi, J I [Dept. Fisica de Materiales, Facultad de Quimicas, UPV/EHU, San Sebastian (Spain); Garcia de Abajo, F J [Dept. Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, San Sebastian (Spain)

    1994-05-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: (i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and (ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  10. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  11. Energy loss in grazing proton-surface collisions

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  12. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  13. Proton energy loss in multilayer graphene and carbon nanotubes

    Science.gov (United States)

    Uribe, Juan D.; Mery, Mario; Fierro, Bernardo; Cardoso-Gil, Raul; Abril, Isabel; Garcia-Molina, Rafael; Valdés, Jorge E.; Esaulov, Vladimir A.

    2018-02-01

    Results of a study of electronic energy loss of low keV protons interacting with multilayer graphene targets are presented. Proton energy loss shows an unexpectedly high value as compared with measurements in amorphous carbon and carbon nanotubes. Furthermore, we observe a classical linear behavior of the energy loss with the ion velocity but with an apparent velocity threshold around 0.1 a.u., which is not observed in other carbon allotropes. This suggests low dimensionality effects which can be due to the extraordinary graphene properties.

  14. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1...

  15. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  16. Measurements of energy losses, distributions of energy loss and additivity of energy losses for 50 to 150 keV protons in hydrogen and nine hydrocarbon gases

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1976-05-01

    Measurements of energy-loss distributions were made for 51, 102, and 153 keV protons traversing hydrogen, methane, ethyne (acetylene), ethene (ethylene), ethane, propyne (methyl acetylene), propadiene (allene), propene (propylene), cyclopropane and propane. The objectives were to test the theories of energy-loss distribution in this energy range and to see if the type of carbon bonding in a hydrocarbon molecule affects the shape of the distribution. Stopping powers and stopping cross sections were also measured at these energies and at 76.5 and 127.5 keV to determine effects of chemical binding. All of the measurements were made at the gas density required to give a 4 percent energy loss. The mean energy, second central moment (a measure of the width of the distribution), and the third central moment (a measure of the skew) were calculated from the measured energy-loss distributions. Stopping power values, calculated using the mean energy, compared reasonably well with those calculated from the Bethe stopping power theory. For the second and third central moments, the best agreement between measurement and theory was when the classical scattering probability was used for the calculations, but even these did not agree well. In all cases, variations were found in the data that could be correlated to the type of carbon binding in the molecule. The differences were statistically significant at a 99 percent confidence interval for the stopping powers and second central moments measured with 51 keV protons. Similar trends were noted at other energies and for the third central moment, but the differences were not statistically significant at the 99 percent confidence interval

  17. Holographic energy loss in non-relativistic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir; Farahbodnia, Mitra [Shahrood University of Technology, Physics Department, P.O. Box 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-03-15

    In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius l with angular velocity ω in theories with general dynamical exponent z and hyperscaling violation exponent θ. It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown how the total energy loss rate depends non-trivially on two characteristic exponents (z,θ). We find that at zero temperature there is a special radius l{sub c} where the energy loss is independent of different values of (θ,z). Also at zero temperature, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We find that the energy loss of the particle decreases by increasing θ and z. We note that, unlike in the zero temperature, there is no special radius l{sub c} at finite temperature case. (orig.)

  18. Analysis of three loss-of-flow accidents in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-05-01

    This report presents the thermal-hydraulic analysis of three Loss-of-Flow Accidents (LOFAs) in the first wall cooling system of the Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design. The LOFAs considered result from a loss of the forced coolant flow caused by a loss of electrical power for the recirculation pump in the primary circuit. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analyses, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. In the LOFA case without plasma shutdown, melting starts in the first wall about 150 s after accident initiation. In the LOFA case with delayed plasma shutdown, melting starts in the first wall when the plasma shutdown is initiated later than about 110 s after accident initiation. Melting does not occur in the first wall during a LOFA with prompt plasma scram. (orig.)

  19. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  20. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  1. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  2. Kramers-Kronig transform for the surface energy loss function

    International Nuclear Information System (INIS)

    Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.

    2005-01-01

    A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function

  3. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    2010-04-22

    Apr 22, 2010 ... channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. .... of these studies report on numerical modelling of flow over transitions. ... that the frictional losses are negligible, the energy equation between Sections (1) ...

  4. Model calculation for energy loss in ion-surface collisions

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Gravielle, M.S.

    2003-01-01

    The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces

  5. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  6. Radiative energy loss of neighboring subjets arXiv

    CERN Document Server

    Mehtar-Tani, Yacine

    We compute the in-medium energy loss probability distribution of two neighboring subjets at leading order, in the large-$N_c$ approximation. Our result exhibits a gradual onset of color decoherence of the system and accounts for two expected limiting cases. When the angular separation is smaller than the characteristic angle for medium-induced radiation, the two-pronged substructure lose energy coherently as a single color charge, namely that of the parent parton. At large angular separation the two subjets lose energy independently. Our result is a first step towards quantifying effects of energy loss as a result of the fluctuation of the multi-parton jet substructure and therefore goes beyond the standard approach to jet quenching based on single parton energy loss. We briefly discuss applications to jet observables in heavy-ion collisions.

  7. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.

    Science.gov (United States)

    Nguyen, Anna; Khaleel, Haroun M; Razak, Khaleel A

    2017-07-01

    Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  9. Windows: Win/Win? or when are windows net energy sources?

    Energy Technology Data Exchange (ETDEWEB)

    Moller, S.K.; Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1994-12-31

    The energy balance of domestic glazing is quantified by using program CHEETAH to examine the effects of orientation, U-value, shading coefficient, overhangs, heating operation (times and temperature), curtain U-value, climate, and building thermal mass. The results are presented graphically, allowing the benefit of increasingly glazing area to be assessed quickly. It is shown that unfavourable combinations of these factors can lead to glazing that is a net loser of energy, even when it is facing north. (author). 1 tab., 17 figs., 6 refs.

  10. Net modelling of energy mix among European Countries: A proposal for ruling new scenarios

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2012-01-01

    European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries. -- Highlights: ► Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. ► Panel data from 1996 to 2008 as part of a network of exchanges was considered from Eurostat official database. ► The European import/export energy flows modelled as a network with Small-World phenomena, interpreting the evolution over the years. ► Interesting behavioural features as outcome derived, as shown for the case example of the Germany.

  11. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    Science.gov (United States)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  12. Comments on GUT monopole energy loss and ionization

    International Nuclear Information System (INIS)

    Hagstrom, R.

    1982-01-01

    A few comments about the likely behavior of the electromagnetic energy loss and ionization rates of super-slowly moving magnetic monopoles are presented. The questions of energy loss rates and ionization rates for super-low monopoles passing through matter are considered, concentrating on aspects of these issues which affect practical detection techniques. It is worthwhile here to emphasize that there is a potentially great distinction between energy loss rates and ionization rates and that the magnitude of this distinction is really the great issue which must be settled in order to understand the significance of experimental results from present and proposed investigations of the slow monopole question. Energy loss here means the total dE/dX of the projectile due to interactions with the electrons of the slowing medium. To the extent that nuclear collisions can be neglected, this so-called electronic energy loss is the relevant quantity in questions about whether monopoles stop within the earth's crust, whether they are slowed by interstellar plasmas, or the signal in a truly calorimetric measurement (measuring temperature rises along the trajectory), etc. Most of our successful detection techniques depend upon the promotion of ground state electrons into states which lie above some energy gap in the material of the detector: electrons must be knocked completely free from the gas atoms in a proportional chamber gas, electrons must be promoted to a higher band in solid scintillator plastics. These processes are generically identified as ionization

  13. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    Science.gov (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  14. Construction of energy loss function for low-energy electrons in helium

    Energy Technology Data Exchange (ETDEWEB)

    Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1976-02-01

    The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.

  15. Responses in live weight change to net energy intake in dairy cows

    DEFF Research Database (Denmark)

    Jensen, Charlotte; Østergaard, Søren; Bertilsson, Jan

    2015-01-01

    The objective of this analysis was to estimate the effect of increased energy intake on daily live weight changes during the first 100 days of lactation of primiparous and multiparous cows. A data set with 78 observations (treatment means) was compiled from 6 production trials from Denmark, Norway...... or multiparous. Feed ration energy values were recalculated by use of NorFor to obtain consistent energy expression in all trials as opposed to the varying feed evaluation systems used in original analysis of trials. Regression analysis with linear and quadratic effects were performed on live weight...... change were made by linear mixed effects model with trial as random factor. For both primiparous and multiparous cows there was an increasing curvilinear response at a decreasing rate to increased net energy intake and the daily live weight change at day 30 was negative and at day 90 it was positive...

  16. Energy-Efficiency Options for Insurance Loss Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  17. Energy loss and thermalization of low-energy electrons

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Mozumder, A.; Notre Dame Univ., IN

    1984-01-01

    Various processes involved in the moderation of low-energy electrons (< 10 keV in energy) have been delineated in gaseous and liquid media. The discussion proceeds in two stages. The first stage ends and the second stage begins when the electron energy equals the first excitation potential of the medium. The second stage ends with thermalization. Cross sections for electronic excitation and for the excitation (and de-excitation) of sub-electronic processes have been evaluated and incorporated in suitable stopping power and transport theories. Comparison between experiment and theory and intercomparisons between theories and experiments have been provided where possible. (author)

  18. The impact of cell culture equipment on energy loss.

    Science.gov (United States)

    Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth

    2014-01-01

    Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.

  19. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  20. Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2007-01-01

    The most important theme in this study is to obtain equations based on economic indicators (gross national product-GNP and gross domestic product-GDP) and population increase to predict the net energy consumption of Turkey using artificial neural networks (ANNs) in order to determine future level of the energy consumption and make correct investments in Turkey. In this study, three different models were used in order to train the ANN. In one of them (Model 1), energy indicators such as installed capacity, generation, energy import and energy export, in second (Model 2), GNP was used and in the third (Model 3), GDP was used as the input layer of the network. The net energy consumption (NEC) is in the output layer for all models. In order to train the neural network, economic and energy data for last 37 years (1968-2005) are used in network for all models. The aim of used different models is to demonstrate the effect of economic indicators on the estimation of NEC. The maximum mean absolute percentage error (MAPE) was found to be 2.322732, 1.110525 and 1.122048 for Models 1, 2 and 3, respectively. R 2 values were obtained as 0.999444, 0.999903 and 0.999903 for training data of Models 1, 2 and 3, respectively. The ANN approach shows greater accuracy for evaluating NEC based on economic indicators. Based on the outputs of the study, the ANN model can be used to estimate the NEC from the country's population and economic indicators with high confidence for planing future projections

  1. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  2. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming, in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling. This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  3. Daily pattern of energy distribution and weight loss.

    Science.gov (United States)

    Raynor, Hollie A; Li, Fan; Cardoso, Chelsi

    2018-08-01

    Timing of energy intake, a temporal dietary pattern, may enhance health. Eating a greater amount of energy earlier and a smaller amount of energy later in the day, a behavioral circadian rhythm, may assist with chronoenhancement. Chronoenhancement seeks to enhance entrainment (synchronization) of biological and behavioral circadian rhythms. In humans, research reports that eating a greater amount of energy early and a smaller amount of energy later in the day increases dietary induced thermogenesis, improves cardiometabolic outcomes, and enhances weight loss. However, little human research has examined if this eating pattern enhances regularity of biological circadian rhythm. In a randomized controlled 8-week pilot study, the influence of energy distribution timing on weight loss and regularity of sleep onset and wake times (marker for biological circadian rhythm) was examined. Within an hypocaloric, three-meal prescription, participants (n = 8) were assigned to either: 1) Morning: 50%, 30%, and 20% of kcal at breakfast, lunch, and dinner, respectively; or 2) Evening: 20%, 30%, and 50% of kcal at breakfast, lunch, and dinner, respectively. Percent weight loss and regularity of sleep onset and wake times were significantly (p energy distribution timing on health, longer studies conducted in free-living participants, with dietary intake assessed using time-stamped methods, that include measures of the circadian timing system are needed. This small review is based upon a symposium presentation at the Society of the Study of Ingestive Behavior in 2017. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  5. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    Science.gov (United States)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  6. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  7. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-01-01

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies

  8. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  9. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  10. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    International Nuclear Information System (INIS)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2017-01-01

    Highlights: • Using ethanol in subcritical thermodynamic conditions, without catalysts. • The net energy ratio-NER identifies opportunities for industrial application. • The presence of water and free fatty acids improved the TG conversion. • Transesterification reactions of animal fat, soybean and palm oils. - Abstract: Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. These results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.

  11. Energy Consumption and Saving Analysis for Laser Engineered Net Shaping of Metal Powders

    Directory of Open Access Journals (Sweden)

    Zhichao Liu

    2016-09-01

    Full Text Available With the increasing awareness of environmental protection and sustainable manufacturing, the environmental impact of laser additive manufacturing (LAM technology has been attracting more and more attention. Aiming to quantitatively analyze the energy consumption and extract possible ways to save energy during the LAM process, this investigation studies the effects of input variables including laser power, scanning speed, and powder feed rate on the overall energy consumption during the laser deposition processes. Considering microhardness as a standard quality, the energy consumption of unit deposition volume (ECUDV, in J/mm3 is proposed as a measure for the average applied energy of the fabricated metal part. The potential energy-saving benefits of the ultrasonic vibration–assisted laser engineering net shaping (LENS process are also examined in this paper. The experimental results suggest that the theoretical and actual values of the energy consumption present different trends along with the same input variables. It is possible to reduce the energy consumption and, at the same time, maintain a good part quality and the optimal combination of the parameters referring to Inconel 718 as a material is laser power of 300 W, scanning speed of 8.47 mm/s and powder feed rate of 4 rpm. When the geometry shaping and microhardness are selected as evaluating criterions, American Iron and Steel Institute (AISI 4140 powder will cause the largest energy consumption per unit volume. The ultrasonic vibration–assisted LENS process cannot only improve the clad quality, but can also decrease the energy consumption to a considerable extent.

  12. Beam energy loss to parasitic modes in SPEAR II

    International Nuclear Information System (INIS)

    Allen, M.A.; Paterson, J.M.; Rees, J.R.; Wilson, P.B.

    1975-01-01

    The energy loss due to the excitation of parasitic modes in the SPEAR II rf cavities and vacuum chamber components was measured by observing the shift in synchronous phase angle as a function of circulating beam current and accelerating cavity voltage. The resulting parasitic mode loss resistance is 5 M OMEGA at a bunch length of 6.5 cm. The loss resistance varies with bunch length sigma/sub z/ approximately as exp(-0.3 sigma/sub z/). If the measured result is compared with reasonable theoretical predictions, it may be inferred that the major portion of the parasitic loss takes place in ring vacuum components rather than in the rf cavities. (auth)

  13. Energy Drinks, Weight Loss, and Disordered Eating Behaviors

    Science.gov (United States)

    Jeffers, Amy J.; Vatalaro Hill, Katherine E.; Benotsch, Eric G.

    2014-01-01

    Objective: The present study examined energy drink consumption and relations with weight loss attempts and behaviors, body image, and eating disorders. Participants/Methods: This is a secondary analysis using data from 856 undergraduate students who completed the American College Health Association-National College Health Assessment II…

  14. Acceleration and energy loss in N = 4 SYM

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Gueijosa, Alberto

    2009-01-01

    This contribution is based on two talks given at the XIII Mexican School of Particles and Fields. We revisit some of the results presented in [19], concerning the rate of energy loss of an accelerating quark in strongly-coupled N = 4 super-Yang-Mills.

  15. Acceleration and energy loss in N = 4 SYM

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto

    2009-04-01

    This contribution is based on two talks given at the XIII Mexican School of Particles and Fields. We revisit some of the results presented in [19], concerning the rate of energy loss of an accelerating quark in strongly-coupled N = 4 super-Yang-Mills.

  16. Rotating gravity currents. Part 1. Energy loss theory

    Science.gov (United States)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  17. Photosynthetic Energy Storage for the Built Environment: Modeling Energy Generation and Storage for Net-Zero Analysis

    Science.gov (United States)

    Lichter-Marck, Eli Morris

    There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.

  18. Energy loss of muons in the energy range 1-10000 GeV

    International Nuclear Information System (INIS)

    Lohmann, W.; Kopp, R.; Voss, R.

    1985-01-01

    A summary is given of the most recent formulae for the cross-sections contributing to the energy loss of muons in matter, notably due to electro-magnetic interactions (ionization, bremsstrahlung and electron-pair production) and nuclear interactions. Computed energy losses dE/dx are tabulated for muons with energy between 1 GeV and 10,000 GeV in a number of materials commonly used in high-energy physics experiments. In comparison with earlier tables, these show deviations that grow with energy and amount to several per cent at 200 GeV muon energy. (orig.)

  19. Energy Behavior Change and Army Net Zero Energy; Gaps in the Army’s Approach to Changing Energy Behavior

    Science.gov (United States)

    2014-06-13

    efficient technologies, the next step is investigating energy recovery and cogeneration for economic feasibility. Lastly, meet remaining energy loads...by energy efficiency, then energy recovery and cogeneration technologies and last filling the remaining energy requirement with renewable energy ...access to sufficient energy supplies, and reduced adverse impacts on the environment (Army Senior Energy Council 2009, 4). In order to meet these goals

  20. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    International Nuclear Information System (INIS)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Hirohisa, Aki; Lai, Judy

    2009-01-01

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon/CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case

  1. Energy loss to parasitic modes of accelerating cavities

    International Nuclear Information System (INIS)

    Sands, M.

    1974-01-01

    At the maximum stored current, each circulating beam in PEP will consist of three bunches, each about 10 cm long containing 1.5 /times/ 10 12 particles. The large electric charge carried by such a bunch (2.5 /times/ 10/sup /minus/7/ coulomb) will, because of its short length, give rise to a large transient excitation of hundreds of parasitic modes in the accelerating cavities. The energy loss of the stored beam to the cavities from this process may be comparable to the loss to synchrotron radiation, and may, therefore, require a significant increase in power from the accelerating rf system. In this note I considered three aspects of this effect. First, an attempt is made to estimate the magnitude of the energy loss of a bunch in a single passage through the accelerating cavities. Then, I consider the effects of the periodic passages of the bunches in a single stored beam. And finally, I look at the consequences of storing two counter-rotating beams. The general conclusions are that the magnitude energy loss to the parasitic modes is serious, though probably not disastrous; and that, in general, the separate stored bunches will act incoherently. 2 refs., 7 figs

  2. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    Science.gov (United States)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-06-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ( E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ( E, q) as found in optical spectra and ab initio calculations of aluminum.

  3. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    Science.gov (United States)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-04-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ(E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ(E, q) as found in optical spectra and ab initio calculations of aluminum.

  4. Net Energy Payback and CO2 Emissions from Three Midwestern Wind Farms: An Update

    International Nuclear Information System (INIS)

    White, Scott W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO 2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO 2 analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO 2 emissions, in tonnes of CO 2 per GW e h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively

  5. Net energy payback and CO2 emissions from three midwestern wind farms: An update

    Science.gov (United States)

    White, S.W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.

  6. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Netrakanti, P.K.; Mishra, D.K.; Mohanty, A.K.; Mohanty, B.

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider facility has reported results for the cumulants and their ratios from the net-proton distributions upto the fourth order cumulants at various collision energies. These measurements were carried to look for the signatures of the possible critical point (CP) in the phase diagram for a system undertaking strong interactions. The results show an intriguing dependence of the cumulant ratios C 3 /C 2 and C 4 /C 2 as a function of beam energy. The beam energy dependence appears to be non-monotonic in nature. However the experiment also reports that the energy dependence is observed to be consistent with expectation from an approach based on the independent production of proton and anti-protons in the collisions. In this paper we emphasize the need to have a proper baseline for appropriate interpretation of the cumulant measurements and argue that the comparison to independent production approach needs to be done with extreme caution

  7. Chapter 21: Estimating Net Savings - Common Practices. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Violette, Daniel M. [Navigant, Boulder, CO (United States); Rathbun, Pamela [Tetra Tech, Madison, WI (United States)

    2017-11-02

    This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM and V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to a program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings but does not prescribe methods.

  8. Higher moments of net kaon multiplicity distributions at RHIC energies for the search of QCD Critical Point at STAR

    Directory of Open Access Journals (Sweden)

    Sarkar Amal

    2013-11-01

    Full Text Available In this paper we report the measurements of the various moments mean (M, standard deviation (σ skewness (S and kurtosis (κ of the net-Kaon multiplicity distribution at midrapidity from Au+Au collisions at √sNN = 7.7 to 200 GeV in the STAR experiment at RHIC in an effort to locate the critical point in the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as also to the correlation length of the system. A non-monotonic behavior of these variable indicate the presence of the critical point. In this work we also present the moments products Sσ, κσ2 of net-Kaon multiplicity distribution as a function of collision centrality and energies. The energy and the centrality dependence of higher moments of net-Kaons and their products have been compared with it0s Poisson expectation and with simulations from AMPT which does not include the critical point. From the measurement at all seven available beam energies, we find no evidence for a critical point in the QCD phase diagram for √sNN below 200 GeV.

  9. Design of advanced solar homes aimed at net-zero annual energy consumption in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, Andreas

    2010-09-15

    This paper overviews the design of three sustainable low or net-zero energy solar homes in Canada. The major features of the houses are: 1. direct gain passive solar design that emphasizes utilization of distributed thermal mass in the equatorial-facing part of the ground floor; 2. a building-integrated photovoltaic-thermal system (BIPV/T); 3. a two-stage ground-source heat pump used to heat/cool air in the house or an air source heat pump using BIPV/T air as the source to heat a storage tank; 4. a floor heating system integrated in the floor mass of the direct gain zone; 5. a multizone programmable thermostat.

  10. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, L.M.; Markussen, B.; Nielsen, N.I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows......, and disturbance, across and within experiments on independent data from 19 experiments including 812 primi- and multiparous lactating dairy cows of different breeds fed 80 different diets ad libitum. The NEI model predicted NEI with an MSPE of 8% of observed, and across the 19 experiments the error central...

  11. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    Science.gov (United States)

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  12. System of failures diagnosis for energy transmission systems, using Petri nets

    International Nuclear Information System (INIS)

    Zapata, German; Grisales, John Faber; Gomez, Juan Camilo; Quintero Henao, Luis Fernando

    2005-01-01

    An expert system of second generation was used integrating the inverse Petri nets (RPN) and the systems based on rules (rule-based system) for the accomplishment of a program in Visual Basic that helps in the obtaining of an opportune and fast analysis of transmission of energy at the time of happening a fault in anymore of its components (line or bus). The program is proven in a portion of system IEEE -118 standard bus test system, in which two extracted cases of literature are developed and are the obtained results. Finally tests realized with the method developed in the laboratory of machines of the national university of Colombia, Medellin campus, simulating a system of transmission with two lines and two buses

  13. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  14. Neutrino energy loss rate in a stellar plasma

    International Nuclear Information System (INIS)

    Esposito, S.; Mangano, G.; Miele, G.; Picardi, I.; Pisanti, O.

    2003-01-01

    We review the purely leptonic neutrino emission processes, contributing to the energy loss rate of the stellar plasma. We perform a complete analysis up to the first order in the electromagnetic coupling constant. In particular the radiative electromagnetic corrections, at order α, to the process e + e - →νν-bar at finite density and temperature have been computed. This process gives one of the main contributions to the cooling of stellar interior in the late stages of star evolution. As a result of the analysis we find that the corrections affect the energy loss rate, computed at tree level, by a factor (-4-1)% in the temperature and density region where the pair annihilation is the most efficient cooling mechanism

  15. WE-NET. Substask 4. Development of hydrogen production technologies; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work), researches were conducted aiming at the establishment of a hydrogen production technology through electrolysis of polymer electrolyte solution. In fiscal 1998, element technologies were developed for the development of high-efficiency/large-capacity water electrolyzing plants using electrodeless deposition and hot pressing, research and investigation of optimum operating conditions were conducted, and a service plant conceptual design and a polymer electrolytic membrane were developed. In addition, literature was searched for the current state of ion exchange membranes and water electrolysis, both indispensable for the hydrogen production technology discussed in this paper. In the field of lamination of large cells (electrode surface:2500cm{sup 2}), an excellent energy efficiency level exceeding 90% set as the target for a large laminated cell performance test was achieved - 92.6% by electrodeless deposition and 94.4% by hot pressing. As for polymer membranes capable of resisting high temperatures, a membrane with an ionic conductivity of 0.066S/cm at 200 degrees C was newly developed. (NEDO)

  16. Limiting energy loss distributions for multiphoton channeling radiation

    International Nuclear Information System (INIS)

    Bondarenco, M.V.

    2015-01-01

    Recent results in the theory of multiphoton spectra for coherent radiation sources are overviewed, with the emphasis on channeling radiation. For the latter case, the importance of the order of resummation and averaging is emphasized. Limiting shapes of multiphoton spectra at high intensity are discussed for different channeling regimes. In some spectral regions, there emerges a correspondence between the radiative energy loss and the electron integrals of motion

  17. Probing hot dense matter with jet energy loss

    International Nuclear Information System (INIS)

    Levai, P.; Barnafoeldi, G.G.; Gyulassy, M.; Vitev, I.; Fai, G.; Zhang, Y.

    2002-01-01

    We study, in a pQCD calculation augmented by nuclear effects, the jet energy loss needed to reproduce the π 0 spectra in Au+Au collisions at large p T , measured by PHENIX at RHIC. The transverse width of the parton momentum distributions (intrinsic k T ) is used phenomenologically to obtain a reliable baseline pp result. Jet quenching is applied to the nuclear spectra (including shadowing and multiscattering) to fit the data. Latest results on fluctuating gluon radiation are considered to measure the opacity of the produced hot dense matter at RHIC energy. (orig.)

  18. Fiscal 1994 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Research and development was made for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. In this fiscal year, surveys were conducted of the status of research and development in each of the fields, and research was started on element technologies in some of the fields. Under subtask 1, surveys and studies were started for pilot plant phase 2. Under subtask 2, an international symposium was held for the enhancement of technical information exchange. Under subtask 3, a liquid hydrogen system conceptual design was prepared for the estimation of facility cost, etc. Under subtask 4, small experimental cells were fabricated for evaluating electrode bonding methods. Under subtask 5, studies were made about the processes of the helium Brayton cycle and hydrogen Claude cycle for the development of a large-scale hydrogen liquefaction plant. Under subtasks 6-9, furthermore, surveys and studies were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  19. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  20. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    Science.gov (United States)

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  1. Inelastic collisions of medium energy atomic elements. Qualitative model of energy losses during collisions

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2006-01-01

    A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru

  2. Estimating the net electricity energy generation and demand using the ant colony optimization approach. Case of Turkey

    International Nuclear Information System (INIS)

    Toksari, M. Duran

    2009-01-01

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear A COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic A COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)

  3. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  4. Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Exporting Countries.

    OpenAIRE

    Kahia, Montassar; Ben Aissa, Mohamed Safouane

    2014-01-01

    This study investigate the relationship between renewable and non-renewable energy consumption and economic growth in a sample of 13 MENA Net Oil Exporting Countries covering the period 1980–2012 within a multivariate panel framework. The Pedroni (1999, 2004), Kao (1999) as well as the Westerlund (2007) panel cointegration tests indicate that there is a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital ...

  5. Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Importing Countries

    OpenAIRE

    Kahia, Montassar; Ben Aissa, Mohamed Safouane

    2014-01-01

    In this paper, we use panel cointegration techniques to explore the relationship between renewable and non-renewable energy consumption and economic growth in a sample of 11 MENA Net Oil Importing Countries covering the period 1980–2012. The Pedroni (1999, 2004), Kao(1999) as well as Westerlund(2007) panel cointegration tests indicate that there is a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital for...

  6. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  7. Characteristic losses of electrons energy under reflection from leadsilicate glasses

    International Nuclear Information System (INIS)

    Gusarov, A.I.; Mashkov, V.A.; Pronin, V.P.; Tyutikov, A.M.

    1986-01-01

    The spectra of characteristic losses of energy (CLE) for the case of electron reflection from the surface of leadsilicate glasses of the composition xPbOx(1-x)SiO 2 , depending on molar concentration of lead oxide x, has been calculated for the first time. It is shown that the given model of glass energy structure permits to describe correctly general behaviour of CLE spectrum. However, the energy of plasma maximum measured experimentally remains approximately constant. The behaviour can be conditioned by ω 0 dependence on x[4], which has not been taken into account, and (or) by a slower change in ΔE, than it has been assumed. Further refining of theory and experiment is required to solve the problem

  8. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    International Nuclear Information System (INIS)

    Bernstein, Jonathan J; Bancu, Mirela G; Bauer, Joseph M; Cook, Eugene H; Kumar, Parshant; Nyinjee, Tenzin; Perlin, Gayatri E; Ricker, Joseph A; Teynor, William A; Weinberg, Marc S; Newton, Eric

    2015-01-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (∼16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip. (paper)

  9. Elastic energy loss and longitudinal straggling of a hard jet

    International Nuclear Information System (INIS)

    Majumder, A.

    2009-01-01

    The elastic energy loss encountered by jets produced in deep-inelastic scattering (DIS) off a large nucleus is studied in the collinear limit. In close analogy to the case of (nonradiative) transverse momentum broadening, which is dependent on the medium transport coefficient q, a class of medium enhanced higher twist operators which contribute to the nonradiative loss of the forward light-cone momentum of the jet (q - ) are identified and the leading correction in the limit of asymptotically high q - is isolated. Based on these operator products, a new transport coefficient e is motivated which quantifies the energy loss per unit length encountered by the hard jet. These operator products are then computed, explicitly, in the case of a similar hard jet traversing a deconfined quark-gluon plasma (QGP) in the hard-thermal-loop (HTL) approximation. This is followed by an evaluation of subleading contributions which are suppressed by the inverse light-cone momentum q - , which yields the longitudinal 'straggling', i.e., a slight change in light cone momentum due to the Brownian propagation through a medium with a fluctuating color field.

  10. 1999 annual summary report on results. International clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the international clean network (WE-NET) which aims at producing hydrogen by using renewable energy, converting it in a form suitable for transportation and supplying the hydrogen to places of quantity consumption of energy. The FY 1999 results were summed up. In the system evaluation, study was made on sodium carbonate electrolysis by-producing hydrogen, the supply amount by coke oven by-producing hydrogen and the economical efficiency, etc. As to the safety, study was made on the design of hydrogen supply stand model. Concerning the power generation technology, study was conducted on element technologies of injection valve, exhaust gas condenser, gas/liquid separator, etc. Relating to the hydrogen fueled vehicle system, the shock destructive testing, etc. were conducted on the hydrogen tank and hydrogen storage alloys. Besides, a lot of R and D were carried out of pure water use solid polymer fuel cells, hydrogen stand, hydrogen production technology, hydrogen transportation/storage technology, low temperature materials, transportation/storage using hydrogen storage alloys, innovative advanced technology, etc. (NEDO)

  11. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  12. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation

    International Nuclear Information System (INIS)

    Jones, Christopher; Gilbert, Paul; Raugei, Marco; Mander, Sarah; Leccisi, Enrica

    2017-01-01

    Increasing distributed renewable electricity generation is one of a number of technology pathways available to policy makers to meet environmental and other sustainability goals. Determining the efficacy of such a pathway for a national electricity system implies evaluating whole system change in future scenarios. Life cycle assessment (LCA) and net energy analysis (NEA) are two methodologies suitable for prospective and consequential analysis of energy performance and associated impacts. This paper discusses the benefits and limitations of prospective and consequential LCA and NEA analysis of distributed generation. It concludes that a combined LCA and NEA approach is a valuable tool for decision makers if a number of recommendations are addressed. Static and dynamic temporal allocation are both needed for a fair comparison of distributed renewables with thermal power stations to account for their different impact profiles over time. The trade-offs between comprehensiveness and uncertainty in consequential analysis should be acknowledged, with system boundary expansion and system simulation models limited to those clearly justified by the research goal. The results of this approach are explorative, rather than for accounting purposes; this interpretive remit, and the assumptions in scenarios and system models on which results are contingent, must be clear to end users. - Highlights: • A common LCA and NEA framework for prospective, consequential analysis is discussed. • Approach to combined LCA and NEA of distributed generation scenarios is proposed. • Static and dynamic temporal allocation needed to assess distributed generation uptake.

  13. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  14. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  15. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  16. Occupational noise exposure assessment using O*NET and its application to a study of hearing loss in the US general population.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Hu, Howard; Tak, SangWoo; Mukherjee, Bhramar; Park, Sung Kyun

    2012-03-01

    Although occupational noise is a well known risk factor for hearing loss, little epidemiological evidence has been reported on its association with hearing loss in the general population, in part, because of the difficulty in exposure assessment. This study introduced a quantitative occupational noise exposure assessment tool using the Occupational Information Network (O*NET) database and evaluated its applicability for epidemiological research using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. The O*NET noise exposure data were assessed by questionnaires across numerous occupations, asking the frequency of exposure to sounds and noise levels that are distracting and uncomfortable (with five possible responses from 'never' to 'every day'). Means of the O*NET noise scores were computed to correspond to NHANES occupational categories and assigned to 3828 adults aged 20-69 years, who participated in the 1999-2004 NHANES. Pure-tone averages (PTA) of hearing thresholds at 0.5, 1, 2 and 4 kHz were computed, and hearing loss was defined as a PTA >25 dB in either ear. Linear and logistic regression models with either continuous or quintiles of the O*NET noise scores were fitted on log-transformed PTA and binary hearing loss, respectively. Noise scores ranged from 1.80 to 4.37 with mean±SE of 3.06±0.02. After controlling for potential confounders, the highest (vs lowest) noise score quintile had a 22.5% (95% CI 11.0% to 35.2%) increase in PTA, and there was a linear dose-dependent trend across the quintiles of noise scores (p trendhearing loss comparing the highest with the lowest noise score quintiles was 2.1 (95% CI 1.2 to 3.6). This study suggests that the O*NET noise score is a useful tool for examining occupational noise-induced health effects in the general population in the absence of actual occupational noise exposure assessment data.

  17. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. An overview of heavy quark energy loss puzzle at RHIC

    International Nuclear Information System (INIS)

    Djordjevic, Magdalena

    2006-01-01

    We give a theoretical overview of the heavy quark tomography puzzle posed by recent non-photonic single electron data from central Au+Au collisions at √s = 200A GeV. We show that radiative energy loss mechanisms alone are not able to explain large single electron suppression data, as long as realistic parameter values are assumed. We argue that a combined collisional and radiative pQCD approach can solve a substantial part of the non-photonic single electron puzzle

  19. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell......, dimer with nanometer-sized gaps, core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases we compare the nonlocal models with the local-response approximation. Below the plasma frequency, we find that the distance between the induced positive and negative surface charges...

  20. Acceleration and Energy Loss in N=4 SYM

    OpenAIRE

    Chernicoff, Mariano; Guijosa, Alberto

    2009-01-01

    We give a brief overview of the results obtained in arXiv:0803.3070, concerning the rate of energy loss of an accelerating quark in strongly-coupled N=4 super-Yang-Mills, both at zero and finite temperature. For phenomenological purposes, our main result is that, when a quark is created within the plasma together with its corresponding antiquark, the quark starts feeling the plasma only after the q-\\bar{q} separation becomes larger than the (v-dependent) screening length, and from this point ...

  1. EELOSS: the program for calculation of electron energy loss data

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1980-10-01

    A computer code EELOSS has been developed to obtain the electron energy loss data required for shielding and dosimetry of beta- and gamma-rays in nuclear plants. With this code, the following data are obtainable for any energy from 0.01 to 15 MeV in any medium (metal, insulator, gas, compound, or mixture) composed of any choice of 69 elements with atomic number 1 -- 94: a) Collision stopping power, b) Restricted collision stopping power, c) Radiative stopping power, and d) Bremsstrahlung production cross section. The availability of bremsstrahlung production cross section data obtained by the EELOSS code is demonstrated by the comparison of calculated gamma-ray spectrum with measured one in Pb layer, where electron-photon cascade is included implicitly. As a result, it is concluded that the uncertainty in the bremsstrahlung production cross sections is negligible in the practical shielding calculations of gamma rays of energy less than 15 MeV, since the bremsstrahlung production cross sections increase with the gamma-ray energy and the uncertainty for them decreases with increasing the gamma-ray energy. Furthermore, the accuracy of output data of the EELOSS code is evaluated in comparison with experimental data, and satisfactory agreements are observed concerning the stopping power. (J.P.N.)

  2. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  3. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  4. Energy loss effect in high energy nuclear Drell-Yan process

    International Nuclear Information System (INIS)

    Duan, C.G.; Song, L.H.; Huo, L.J.; Li, G.L.

    2003-01-01

    The energy loss effect in nuclear matter, which is a nuclear effect apart from the nuclear effect on the parton distribution as in deep-inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the measured Drell-Yan production cross sections for 800 GeV proton incident on a variety of nuclear targets are analyzed within the Glauber framework which takes into account the energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866 data. (orig.)

  5. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  6. A Governance Perspective on Net Zero Energy Building Niche Development in India: The Case of New Delhi

    NARCIS (Netherlands)

    Jain, Mansi; Hoppe, T.; Bressers, Hans

    2017-01-01

    The net zero-energy building (NZEB) concept has recently gained prominence worldwide. Large scale adoption and implementation of NZEBs would potentially contribute greatly to greening of the building sector. However, it is still at a nascent stage of niche formation. This paper aims to assess the

  7. A governance perspective on net zero energy building niche development in India : The case of New Delhi

    NARCIS (Netherlands)

    Jain, Mansi; Hoppe, Thomas; Bressers, Hans

    2017-01-01

    The net zero-energy building (NZEB) concept has recently gained prominence worldwide. Large scale adoption and implementation of NZEBs would potentially contribute greatly to greening of the building sector. However, it is still at a nascent stage of niche formation. This paper aims to assess the

  8. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  9. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  10. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  11. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence

    Directory of Open Access Journals (Sweden)

    K. S. Rodgers

    2009-08-01

    Full Text Available Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3 material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3 incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production – dissolution was positive at 3.3 mmol CaCO3 m−2 h−1 under ambient seawater pCO2 conditions as opposed to negative at −0.04 mmol CaCO3 m−2 h−1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates, and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  12. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  13. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  14. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  15. Energy loss and (de)coherence effects beyond eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A.

    2014-01-01

    The parton branching process is known to be modified in the presence of a medium. Colour decoherence processes are known to determine the process of energy loss when the density of the medium is large enough to break the correlations between partons emitted from the same parent. In order to improve existing calculations that consider eikonal trajectories for both the emitter and the hardest emitted parton, we provide in this work, the calculation of all finite energy corrections for the gluon radiation off a quark in a QCD medium that exist in the small angle approximation and for static scattering centres. Using the path integral formalism, all particles are allowed to undergo Brownian motion in the transverse plane and the offspring allowed to carry an arbitrary fraction of the initial energy. The result is a general expression that contains both coherence and decoherence regimes that are controlled by the density of the medium and by the amount of broadening that each parton acquires independently.

  16. LRSPC, Proton High-Energy Loss in Matter

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The LRSPC program is designed to estimate the energy loss, due to ionization and excitation, and the range of charged particles passing through matter. The code treats protons in elements or mixtures composed of elements with atomic numbers ranging from 1 to 100. The results for protons are generally valid from 1 MeV to 100 GeV. The code may be extended to treat other charged particles such as muons, pions, hyperons, deuterons, tritons and alphas by changing the particle mass, charge and range at 2 MeV. 2 - Method of solution: Stopping power is calculated from the Bethe-Bloch equation with shell and density corrections included. Range is calculated by integrating the reciprocal of the stopping power from an initial value at 2 MeV. The K-shell correction is taken from Walske's data. The L-shell and higher shell corrections are adjusted to fit low energy measurements fro 30 elements. The density correction is calculated by a method similar to that of Sternheimer, differing chiefly in the large number of electron shells considered. LRSPC computes improved proton range and stopping power data for use in the proton penetration code, LPPC (CCC-0051). It is packages separately and may be requested independently. 3 - Restrictions on the complexity of the problem: Number of elements in mixture ≤ 10, Atomic number of element ≤ 100, Number of energy points ≤ 500

  17. Energy loss of heavy ion beams in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Hotta, T [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The energy loss of heavy-ion beams (HIB) is studied by means of Vlasov theory and Particle-in-Cell (PIC) simulations in a plasma. The interaction of HIB with a plasma is of central importance for inertial confinement fusion (ICF). A number of studies on the HIB interaction with target plasma have been published. It is important for heavy-ion stopping that the effects of the non-linear interaction of HIB within the Vlasov theory are included. Reported are results of a numerical study of nonlinear effects to the stopping power for HIB in plasma. It is shown that the PIC simulations of collective effects of the stopping power are in a good agreement with the Vlasov theory. (author). 2 tabs., 1 fig., 5 refs.

  18. Production and energy loss of strange and heavy quarks

    International Nuclear Information System (INIS)

    2010-01-01

    Data taken over the last several years have demonstrated that RHIC has created a hot, dense medium with partonic degrees of freedom. Identified particle spectra at high transverse momentum (p T ) and heavy flavor that are thought to be well-calibrated probes thus serve as ideal tools to study the properties of the medium. We present p T distributions of particle ratios in p+p collisions from the STAR experiment to understand the particle production mechanisms. These measurements will also constrain fragmentation functions in hadron-hardon collisions. In heavy-ion collisions, we highlight (1) recent measurements of strange hadrons and heavy flavor decay electrons up to high p T to study jet interaction with the medium and explore partonic energy loss mechanisms, and (2) Υ and high p T J/ψ measurements to study the effect of color screening and other possible production mechanisms.

  19. Analysis and performance assessment of a multigenerational system powered by Organic Rankine Cycle for a net zero energy house

    International Nuclear Information System (INIS)

    Hassoun, Anwar; Dincer, Ibrahim

    2015-01-01

    This paper develops a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building and assesses such a system for an application to a net zero energy house in Lebanon. Solar energy is the prime source for the integrated system to achieve multigeneration to supply electricity, fresh and hot water, seasonal heating and cooling. The study starts by optimizing the power system with and without grid connection. Then, a comprehensive thermodynamic analysis through energy and exergy, and a parametric study to assess the sensitivity and improvements of the overall system are conducted. Furthermore, exergoeconomic analysis and a follow-up optimization study for optimizing the total system cost to the overall system efficiency using genetic algorithm to obtain the optimal design or a set of optimal designs (Pareto Front), are carried out. The present results show that the optimum solar energy system for a total connected load to the house of 90 kWh/day using a combination of ORC, batteries, convertor has a total net present cost of US $52,505.00 (based on the prices in 2013) with a renewable energy fraction of 1. Moreover, the optimization for the same connected load with ORC, batteries and converter configuration with grid connection results in a total net present cost of $50,868.00 (2013) with a renewable energy fraction of 0.992 with 169 kg/yr of CO 2 emissions. In addition, exergoeconomic analysis of the overall system yields a cost of $117,700.00 (2013), and the multi-objective optimization provides the overall exergetic efficiency by 14% at a total system cost increase of $10,500.00 (2013). - Highlights: • To develop a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building. • To perform a comprehensive thermodynamic analysis through energy and exergy approaches. • To apply an exergoeconomic model for exergy-based cost accounting. • To undertake

  20. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  1. Structural Variations to a Donor Polymer with Low Energy Losses

    KAUST Repository

    Bazan, Guillermo C

    2017-08-01

    Two regioregular narrow band gap conjugated polymers with a D’-A-D-A repeat unit architecture, namely PIFCF and PSFCF, were designed and synthesized. Both polymers contain strictly organized fluorobenzo[c][1,2,5]thiadiazole (FBT) orientations and different solubilizing side chains for solution processing. Compared to the previously reported asymmetric pyridyl-[2,1,3]thiadiazole (PT) based regioregular polymer, namely PIPCP, PIFCF and PSFCF exhibit wider band gaps, tighter π-π stacking, and improved hole mobilities. When incorporated into solar cells with fullerene acceptors, the Eloss = Eg - eVoc values of PIFCF and PSFCF devices are increased compared to solar cells based on PIPCP. Determination of Ect in these solar cells reveals that, relative to PIPCP, PIFCF solar cells lose more energy from Eg - Ect, and PSFCF solar cells lose more energy from both Eg - Ect and Ect - eVoc. The close structural relationship between PIPCP and PIFCF provides an excellent framework to establish molecular features that impact the relationship between Eg and Ect. Theoretical calculations predict that Eloss of PIFCF:PC61BM would be higher than in the case of PIPCP:PC61BM, due to greater Eg - Ect. These findings provide insight into the design of high performance, low voltage loss photovoltaic polymeric materials with desirable optoelectronic properties.

  2. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  3. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  4. Mutations in Cancer Cause Gain of Cysteine, Histidine, and Tryptophan at the Expense of a Net Loss of Arginine on the Proteome Level

    Directory of Open Access Journals (Sweden)

    Viktoriia Tsuber

    2017-07-01

    Full Text Available Accumulation of somatic mutations is critical for the transition of a normal cell to become cancerous. Mutations cause amino acid substitutions that change properties of proteins. However, it has not been studied as to what extent the composition and accordingly chemical properties of the cell proteome is altered as a result of the increased mutation load in cancer. Here, we analyzed data on amino acid substitutions caused by mutations in about 2000 protein coding genes from the Cancer Cell Line Encyclopedia that contains information on nucleotide and amino acid alterations in 782 cancer cell lines, and validated the analysis with information on amino acid substitutions for the same set of proteins in the Catalogue of Somatic Mutations in Cancer (COSMIC; v78 in circa 18,000 tumor samples. We found that nonsynonymous single nucleotide substitutions in the analyzed proteome subset ultimately result in a net gain of cysteine, histidine, and tryptophan at the expense of a net loss of arginine. The extraordinary loss of arginine may be attributed to some extent to composition of its codons as well as to the importance of arginine in the functioning of prominent tumor suppressor proteins like p53.

  5. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  6. The digestible energy, metabolizable energy, and net energy content of dietary fat sources in thirteen- and fifty-kilogram pigs.

    Science.gov (United States)

    Kellner, T A; Patience, J F

    2017-09-01

    The objective was to determine the energy concentration of a diverse array of dietary fat sources and, from these data, develop regression equations that explain differences based on chemical composition. A total of 120 Genetiporc 6.0 × Genetiporc F25 (PIC, Inc., Hendersonville, TN) individually housed barrows were studied for 56 d. These barrows (initial BW of 9.9 ± 0.6 kg) were randomly allotted to 1 of 15 dietary treatments. Each experimental diet included 95% of a corn-soybean meal basal diet plus 5% either corn starch or 1 of 14 dietary fat sources. The 14 dietary fat sources (animal-vegetable blend, canola oil, choice white grease source A, choice white grease source B, coconut oil, corn oil source A, corn oil source B, fish oil, flaxseed oil, palm oil, poultry fat, soybean oil source A, soybean oil source B, and tallow) were selected to provide a diverse and robust range of unsaturated fatty acid:SFA ratios (U:S). Pigs were limit-fed experimental diets from d 0 to 10 and from d 46 to 56, providing a 7-d adaption for fecal collection on d 7 to 10 (13 kg BW) and d 53 to 56 (50 kg BW). At 13 kg BW, the average energy content of the 14 sources was 8.42 Mcal DE/kg, 8.26 Mcal ME/kg, and 7.27 Mcal NE/kg. At 50 kg BW, the average energy content was 8.45 Mcal DE/kg, 8.28 Mcal ME/kg, and 7.29 Mcal NE/kg. At 13 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 9.363 + [0.097 × (FFA, %)] - [0.016 × omega-6:omega-3 fatty acids ratio] - [1.240 × (arachidic acid, %)] - [5.054 × (insoluble impurities, %)] + [0.014 × (palmitic acid, %)] ( = 0.008, = 0.82). At 50 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 8.357 + [0.189 × U:S] - [0.195 × (FFA, %)] - [6.768 × (behenic acid, %)] + [0.024 × (PUFA, %)] ( = 0.002, = 0.81). In summary, the chemical composition of dietary fat explained a large degree of the variation observed in the energy content of dietary fat sources at both 13 and 50 kg BW.

  7. A net-zero building application and its role in exergy-aware local energy strategies for sustainability

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2012-01-01

    Highlights: ► Net-zero exergy targets are put forth for more energy-sufficient buildings and districts. ► A premier building that is the first LEED Platinum building in Turkey exemplifies this target. ► The building integrates low-exergy measures with PV/BIPV, CHP, GSHP, solar collectors and TES. ► Two districts in the south heating network of Stockholm are compared with this technology bundle. ► Net-zero exergy targets are related to a re-structuring of an exergy-aware energy value chain. - Abstract: Based on two case studies, this paper explores the nexus of exergy, net-zero targets, and sustainable cities as a means of analyzing the role of exergy-aware strategies at the building and district level. The first case study is a premier building in Ankara that is ready to meet the net-zero exergy target. It is also the first building in Turkey to receive the highest Platinum rating in Leadership in Energy and Environmental Design. A net-zero exergy building (NZEXB) is a building that has an annual sum of net-zero exergy transfer across the building-district boundary. This new target is made possible by lowered annual exergy consumption, (AEXC), and increased on-site production from a bundle of sustainable energy technologies. The modeled results of the building indicate that the reduced AEXC of 60 kW h/m 2 yr is met with on-site production of 62 kW h/m 2 yr. On-site production includes PV and building integrated PV, a micro-wind turbine, combined heat and power, GSHP, and solar collectors. Diversified thermal energy storage tanks further facilitate the exergy supply to meet with the exergy demand. The results of this case study provide key lessons to structure an energy value chain that is more aware of exergy, which are up-scalable to the district level when the bundle of sustainable energy technologies is zoomed out across a larger spatial area. These key lessons are then compared with the second case study of two districts in the south heating network

  8. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  9. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  10. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    Science.gov (United States)

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  11. Daily energy expenditure and physical activity measured in Parkinson's disease patients with and without weight loss

    Science.gov (United States)

    Patients with Parkinson's disease (PD) commonly exhibit weight loss, which investigators attribute to various factors, including elevated resting energy expenditure. We tested the hypothesis that daily energy expenditure (DEE) and its components, resting energy expenditure (REF) and physical activit...

  12. Daily energy expenditure, physical activity, and weight loss in Parkinson's disease patients

    Science.gov (United States)

    Patients with Parkinson's disease (PD) commonly exhibit weight loss (WL) which investigators attribute to various factors, including elevated energy expenditure. We tested the hypothesis that daily energy expenditure (DEE) and its components, resting energy expenditure (REE) and physical activity (P...

  13. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  14. Investigation of the impact of using thermal mass with the net zero energy town house in Toronto using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Tse, H.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-07-01

    Since buildings in Canada account for 30 per cent of the country's total energy consumption, it has become necessary to find ways to reduce the overall energy use in buildings. Heating and cooling loads in buildings can be effectively reduced by using the thermal mass incorporated into the building envelope, particularly in climates where a large daily temperature fluctuations exist. Thermal mass is defined as any building material that has a high heat storage capacity that can be integrated into the structural fabric of the building to use the passive solar energy for heating or cooling purposes. Concrete slabs, bricks and ceramic blocks are some of the commonly used materials. This study analyzed the impact of using thermal mass with a highly insulated building envelope such as that used in Low Energy or Net Zero housing. In particular, TRNSYS was used to simulate a Net Zero Energy Town House located in Toronto, in which a ground source heat pump was integrated with an infloor radiant heating system. The simulation revealed that for colder climates such as in Canada, thermal mass can replace some of the insulation while still providing excellent results in terms of the reductions in daily indoor temperature fluctuations. The impact of thermal mass during the winter was more significant when compared with summer, possibly because of the unique construction and orientation of the Net Zero Energy House. The optimum thickness of the concrete slab was determined to be 6 inches for the winter season and 4 inches for summer. The optimum location for the thermal mass was found to be right next to the gypsum wallboard that forms the interior part of the wall. 12 refs., 1 tab., 11 figs.

  15. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  16. Inelastic collisions of atomic particles at mean energies. Pt.1. Qualitative model of energy losses during a collision

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2005-01-01

    A new approach is proposed for description of the energy losses of mean-energy atomic particles during their interactions with atomic particles of solids. It is shown that all these interactions are inelastic ones and are determined by different scattering zones with different laws of energy loss dependences [ru

  17. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  18. Energy-loss measurement with the ZEUS Central Tracking Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, D.

    2007-05-15

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  19. Energy-loss measurement with the ZEUS Central Tracking Detector

    International Nuclear Information System (INIS)

    Bartsch, D.

    2007-05-01

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  20. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  1. Electronic energy loss of fast molecules in matter

    International Nuclear Information System (INIS)

    Steinbeck, J.

    1975-06-01

    In high velocity collisions of molecular ions the correlated motion influence of the ion cores on the electronic energy loss is investigated. The stopping power in first Born approximation for a random arrangement of target atoms can be formulated in terms of the inelastic electronic structure factor. In treating the target atoms in Hartree-Fock approximation each electron can be regarded as stopping the ion independent of all other electrons without restriction by the Pauli principle. A second equivalent formulation of the stopping power leads to the dielectric function of the target. The results are applied to the stopping of H 2 + -ions. For vanishing distance between the two protons the stopping power per particle is twice that for single proton collisions. For distances in the order of the Bohr radius the correlated stopping power may even be smaller than for uncorrelated protons. With increasing distances the correlation influence vanishes. The stopping of H 2 + -ions in C, Si and Ge is discussed using Clementi wave functions for the core electrons and a free electron approximation with Lindhard's dielectric function for the valence electrons. The comparison with the only experimental result available for H 2 + in C at 300 keV yields qualitative agreement. (orig.) [de

  2. Bipolar energy-loss measurements on cryostable, low-loss conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.

    1981-01-01

    Losses have been measured on a prototype conductor for the 20 MJ coil for conditions which simulate closely the actual coil field sweep. The data on the prototype II conductor indicates coil losses which exceed the coil specification. The application of certain correction factors reduces the projected losses within the specification for a 2 s reversal but not for a 1 s reversal. Verification of these corrections await measurements on the actual strand and completion of coil construction and testing.

  3. Excess heat production of future net zero energy buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    2012-01-01

    Denmark’s long-term energy goal is to develop an energy system solely based on renewable energy sources by 2050. To reach this goal, energy savings in buildings is essential. Therefore, the focus on energy efficient measures in buildings and netzeroenergybuildings (NZEBs) has increased. Most...

  4. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 79, č. 2 (2009), 024906/1-024906/14 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : NET CHARGE * DYNAMICAL FLUCTUATIONS * HEAVY-ION COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  5. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  6. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  7. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  8. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel

    2017-03-15

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  9. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  10. Redesign of a Rural Building in a Heritage Site in Italy: Towards the Net Zero Energy Target

    Directory of Open Access Journals (Sweden)

    Maurizio Cellura

    2017-07-01

    Full Text Available In order to achieve the ambitious objective of decarbonising the economy, it is mandatory, especially in Europe and in Italy, to include the retrofitting of existing buildings. In a country where a large share of existing buildings have heritage value, it is important to design effective retrofit solutions also in historical buildings. In this context, the paper describes the experience of re-design of an existing rural building located in Sicily, inside the ancient Greeks' “Valley of the Temples”. An energy audit was performed on the building, and its energy uses were thoroughly investigated. A building model was developed in the TRNSYS environment and its performances validated. The validated model was used for redesign studies aimed towards the achievement of the Net Zero Energy Building target. The best performing solutions to be applied to a case study like the Sanfilippo House were those regarding the management of the building, as in the case of the natural ventilation and the energy systems setpoints, that would allow a large impact (up to 10% reductions in energy uses on the energy performances of the building with no invasiveness, and those with very limited invasiveness and high impact on the energy efficiency of the building, as in the lighting scenario (up to 30% energy uses reduction. The most invasive actions can only be justified in the case of high energy savings, as in the case of the insulation of the roof, otherwise they should be disregarded.

  11. Cascade-probabilistic function with taking unto account energy losses of ions. Chapter 3

    International Nuclear Information System (INIS)

    1998-01-01

    Mathematical simulation of cascade-probabilistic functions (CPF) for ions with taking into account of energy losses is carried out. Recommendations for CPF calculation on computer are given. Influence of both the interaction number on CPF domain and the interaction depth on CPF domain are determined. Contribution of energy losses into simplest CPF is estimated. Algorithm of radiation defects concentration calculation under ion irradiation with taking into consideration energy losses is cited

  12. Acute visual loss and intraretinal hemorrhages associated to energy drink consumption.

    Science.gov (United States)

    Pagano, Christina W; Wu, Max; Wu, Lihteh

    2017-12-01

    To report the association of acute visual loss secondary to intraretinal hemorrhages and energy drink consumption. Case report and literature review. A 48-year-old hypertensive man developed an elevation in systemic blood pressure, tachycardia, and acute visual loss secondary to intraretinal hemorrhages shortly after drinking several cans of energy drinks. High consumption of energy drinks may lead to intraretinal hemorrhages and acute visual loss.

  13. Far-from-equilibrium heavy quark energy loss at strong coupling

    CERN Document Server

    Chesler, Paul; Rajagopal, Krishna

    2013-01-01

    We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.

  14. On the Trade-off between Energy Consumption and Food Quality Loss in Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Cai, Junping; Jensen, Jørgen Bauck; Skogestad, Sigurd

    2008-01-01

    This paper studies the trade-off between energy consumption and food quality loss, at varying ambient conditions, in supermarket refrigeration systems. Compared with the traditional operation with pressure control, a large potential for energy savings without extra loss of food quality is demonst......This paper studies the trade-off between energy consumption and food quality loss, at varying ambient conditions, in supermarket refrigeration systems. Compared with the traditional operation with pressure control, a large potential for energy savings without extra loss of food quality...

  15. High resolution spectroscopy of H+ energy loss in thin carbon film

    International Nuclear Information System (INIS)

    Matsunami, Noriaki; Kitoh, Kenshin

    1991-05-01

    The energy loss of ∼100 keV H + transmitted through thin carbon film of ∼7 nm has been measured with the resolution of ∼20 eV. We have observed new energy loss peaks around 210 and 400 eV in addition to the normal energy loss peak around 1 keV. We find that the experimental artifacts, ionization of C K-(290 eV) and impurity inner-shells, extreme non-uniformity of films, events associated with elastic scattering are not responsible for these peaks. The origin of these low energy loss peaks will be discussed. (author)

  16. Transmitted ion energy loss distributions to detect cluster formation in silicon

    International Nuclear Information System (INIS)

    Selen, L.J.M.; Loon, A. van; IJzendoorn, L.J. van; Voigt, M.J.A. de

    2002-01-01

    The energy loss distribution of ions transmitted through a 5.7±0.2 μm thick Si crystal was measured and simulated with the Monte Carlo channeling simulation code FLUX. A general resemblance between the measured and simulated energy loss distributions was obtained after incorporation of an energy dependent energy loss in the simulation program. The energy loss calculations are used to investigate the feasibility to detect the presence of light element dopant clusters in a host crystal from the shape of the energy loss distribution, with transmission ion channeling. A curved crystal structure is used as a model for a region in the host crystal with clusters. The presence of the curvature does have a large influence on the transmitted energy distribution, which offers the possibility to determine the presence of dopant clusters in a host crystal with transmission ion channeling

  17. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  18. An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village

    Directory of Open Access Journals (Sweden)

    Fahd Diab

    2015-07-01

    Full Text Available The main objective of this study is to discuss the economical and the environmental analysis of a net zero energy (NZE tourist village in Alexandria, Egypt, by maximizing the renewable energy fraction and minimizing the greenhouse gases (GHG emissions. The hybrid photovoltaics (PV/wind/diesel/battery system is found to be the optimum hybrid renewable energy system (HRES for the proposed tourist village under the study. The optimum HRES consists of 1600 kW of PV panels (58.09% solar energy penetration, 1000 kW of wind turbines (41.34% wind energy penetration, 1000 kW of power converters, 200 kW diesel generator (only 0.57% diesel generator penetration in addition to 2000 batteries with the capacity of 589 Ah each. The levelized cost of energy (COE from the optimum HRES is $0.17/kWh and the total net present cost (NPC of this system is $15,383,360. Additionally, the maximum renewable energy fraction is 99.1% and the amount of GHG emitted from the optimum HRES is only 31,289 kg/year, which is negligible in comparison with the other system configurations, therefore the optimum HRES can be considered as a green system. In addition to this, the achieved percentage of the capacity shortage and the unmet load in the optimal HRES is only 0% for both.

  19. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  20. A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings

    International Nuclear Information System (INIS)

    Garshasbi, Samira; Kurnitski, Jarek; Mohammadi, Yousef

    2016-01-01

    Graphical abstract: The energy consumption and renewable generation in a cluster of NZEBs are modeled by a novel hybrid Genetic Algorithm and Monte Carlo simulation approach and used for the prediction of instantaneous and cumulative net energy balances and hourly amount of energy taken from and supplied to the central energy grid. - Highlights: • Hourly energy consumption and generation by a cluster of NZEBs was simulated. • Genetic Algorithm and Monte Carlo simulation approach were employed. • Dampening effect of energy used by a cluster of buildings was demonstrated. • Hourly amount of energy taken from and supplied to the grid was simulated. • Results showed that NZEB cluster was 63.5% grid dependant on annual bases. - Abstract: Employing a hybrid Genetic Algorithm (GA) and Monte Carlo (MC) simulation approach, energy consumption and renewable energy generation in a cluster of Net Zero Energy Buildings (NZEBs) was thoroughly investigated with hourly simulation. Moreover, the cumulative energy consumption and generation of the whole cluster and each individual building within the simulation space were accurately monitored and reported. The results indicate that the developed simulation algorithm is able to predict the total instantaneous and cumulative amount of energy taken from and supplied to the central energy grid over any time period. During the course of simulation, about 60–100% of total daily generated renewable energy was consumed by NZEBs and up to 40% of that was fed back into the central energy grid as surplus energy. The minimum grid dependency of the cluster was observed in June and July where 11.2% and 9.9% of the required electricity was supplied from the central energy grid, respectively. On the other hand, the NZEB cluster was strongly grid dependant in January and December by importing 70.7% and 76.1% of its required energy demand via the central energy grid, in the order given. Simulation results revealed that the cluster was 63

  1. Self-Directed Weight Loss Strategies: Energy Expenditure Due to Physical Activity Is Not Increased to Achieve Intended Weight Loss

    Directory of Open Access Journals (Sweden)

    Ulf Elbelt

    2015-07-01

    Full Text Available Reduced physical activity and almost unlimited availability of food are major contributors to the development of obesity. With the decline of strenuous work, energy expenditure due to spontaneous physical activity has attracted increasing attention. Our aim was to assess changes in energy expenditure, physical activity patterns and nutritional habits in obese subjects aiming at self-directed weight loss. Methods: Energy expenditure and physical activity patterns were measured with a portable armband device. Nutritional habits were assessed with a food frequency questionnaire. Results: Data on weight development, energy expenditure, physical activity patterns and nutritional habits were obtained for 105 patients over a six-month period from an initial cohort of 160 outpatients aiming at weight loss. Mean weight loss was −1.5 ± 7.0 kg (p = 0.028. Patients with weight maintenance (n = 75, with substantial weight loss (>5% body weight, n = 20 and with substantial weight gain (>5% body weight, n = 10 did not differ in regard to changes of body weight adjusted energy expenditure components (total energy expenditure: −0.2 kcal/kg/day; non-exercise activity thermogenesis: −0.3 kcal/kg/day; exercise-related activity thermogenesis (EAT: −0.2 kcal/kg/day or patterns of physical activity (duration of EAT: −2 min/day; steps/day: −156; metabolic equivalent unchanged measured objectively with a portable armband device. Self-reported consumption frequency of unfavorable food decreased significantly (p = 0.019 over the six-month period. Conclusions: An increase in energy expenditure or changes of physical activity patterns (objectively assessed with a portable armband device are not employed by obese subjects to achieve self-directed weight loss. However, modified nutritional habits could be detected with the use of a food frequency questionnaire.

  2. Self-Directed Weight Loss Strategies: Energy Expenditure Due to Physical Activity Is Not Increased to Achieve Intended Weight Loss.

    Science.gov (United States)

    Elbelt, Ulf; Schuetz, Tatjana; Knoll, Nina; Burkert, Silke

    2015-07-16

    Reduced physical activity and almost unlimited availability of food are major contributors to the development of obesity. With the decline of strenuous work, energy expenditure due to spontaneous physical activity has attracted increasing attention. Our aim was to assess changes in energy expenditure, physical activity patterns and nutritional habits in obese subjects aiming at self-directed weight loss. Energy expenditure and physical activity patterns were measured with a portable armband device. Nutritional habits were assessed with a food frequency questionnaire. Data on weight development, energy expenditure, physical activity patterns and nutritional habits were obtained for 105 patients over a six-month period from an initial cohort of 160 outpatients aiming at weight loss. Mean weight loss was -1.5 ± 7.0 kg (p = 0.028). Patients with weight maintenance (n = 75), with substantial weight loss (>5% body weight, n = 20) and with substantial weight gain (>5% body weight, n = 10) did not differ in regard to changes of body weight adjusted energy expenditure components (total energy expenditure: -0.2 kcal/kg/day; non-exercise activity thermogenesis: -0.3 kcal/kg/day; exercise-related activity thermogenesis (EAT): -0.2 kcal/kg/day) or patterns of physical activity (duration of EAT: -2 min/day; steps/day: -156; metabolic equivalent unchanged) measured objectively with a portable armband device. Self-reported consumption frequency of unfavorable food decreased significantly (p = 0.019) over the six-month period. An increase in energy expenditure or changes of physical activity patterns (objectively assessed with a portable armband device) are not employed by obese subjects to achieve self-directed weight loss. However, modified nutritional habits could be detected with the use of a food frequency questionnaire.

  3. Demonstration of the Energy Component of the Installation Master Plan Using the Net Zero Energy Planner Tool

    Science.gov (United States)

    2015-09-01

    electricity , natural gas, propane, and energy generated 12 from renewable sources (e.g., solar, wind, hydro , etc.). It is also important to...for energy intensity, that meets energy security requirements at a lower cost, and that controls electrical capacity growth requirements. If the... energy intensity, meeting energy security requirements at a lower cost, and controlling electrical capacity growth requirements. Rapid deployment

  4. Biodiversity offsetting and restoration under the European Union Habitats Directive: balancing between no net loss and deathbed conservation?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2016-12-01

    's biodiversity. A reinforcement of the preventative approach is instrumental to avert a further biodiversity loss within the European Union, even if it will lead to additional permit refusals for unsustainable project developments.

  5. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  6. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  7. How to Define Nearly Net Zero Energy Buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    2011-01-01

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member State to define what these for them exactly constitute. In the definition, local conditions are to be obviously taken into account, but the uniform methodology can be used in all......This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...

  8. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  9. Exploring energy loss by vector flow mapping in children with ventricular septal defect: Pathophysiologic significance.

    Science.gov (United States)

    Honda, Takashi; Itatani, Keiichi; Takanashi, Manabu; Kitagawa, Atsushi; Ando, Hisashi; Kimura, Sumito; Oka, Norihiko; Miyaji, Kagami; Ishii, Masahiro

    2017-10-01

    Vector flow mapping is a novel echocardiographic flow visualization method, and it has enabled us to quantitatively evaluate the energy loss in the left ventricle (intraventricular energy loss). Although intraventricular energy loss is assumed to be a part of left ventricular workload itself, it is unclear what this parameter actually represents. The aim of the present study was to elucidate the characteristics of intraventricular energy loss. We enrolled 26 consecutive children with ventricular septal defect (VSD). On echocardiography vector flow mapping, intraventricular energy loss was measured in the apical 3-chamber view. We measured peak energy loss and averaged energy loss in the diastolic and systolic phases, and subsequently compared these parameters with catheterization parameters and serum brain natrium peptide (BNP) level. Diastolic, peak, and systolic energy loss were strongly and positively correlated with right ventricular systolic pressure (r=0.76, 0.68, and 0.56, p<0.0001, = 0.0001, and 0.0029, respectively) and right ventricular end diastolic pressure (r=0.55, 0.49, and 0.49, p=0.0038, 0.0120, and 0.0111, respectively). In addition, diastolic, peak, and systolic energy loss were significantly correlated with BNP (r=0.75, 0.69 and 0.49, p<0.0001, < 0.0001, and=0.0116, respectively). In children with VSD, elevated right ventricular pressure is one of the factors that increase energy loss in the left ventricle. The results of the present study encourage further studies in other study populations to elucidate the characteristics of intraventricular energy loss for its possible clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)

    2014-12-01

    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  11. Energy Losses through Unharnessed Biomass in South- Eastern ...

    African Journals Online (AJOL)

    Nekky Umera

    energy and which can be made available to both the rural and urban areas of the ... when burnt, it produces carbon (iv) oxide, which results in the ... attitude of exploiting the much available and cleaner alternative energy ... human wastes.

  12. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  13. Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

    2010-12-01

    The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

  14. Electron energy-loss spectrometry at the frontier of spatial and energy resolution

    International Nuclear Information System (INIS)

    Hofer, F.; Grogger, W.; Kothleitner, G.

    2004-01-01

    Full text: Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) is now used routinely as a means of measuring chemical and structural properties of very small regions of a thin specimen. The power of this technique depends significantly on two parameters: its spatial resolution and the energy resolution available in the spectrum and in the energy-filtered TEM (EFTEM) image. The cold field emission source and the Schottky emitter have made an energy resolution below 1 eV possible and it is now feasible to obtain data with a spatial resolution close to atomic dimensions, given the right instrumentation and specimen. EFTEM allows to record elemental maps at sub-nanometre resolution, being mainly limited by chromatic and spherical aberration of the objective lens and by delocalization of inelastic scattering. Recently the possibility of correcting spherical and even chromatic aberrations of electron lenses has become a practical reality thus improving the point resolution of the TEM to below 0.1 nm. The other limiting factor for EFTEM resolution is delocalization. However, recent measurements show that resolution values in the range of 1 nm and below can be achieved, even for energy-losses of only a few eV. In terms of energy-resolution, EELS and EFTEM compare less favourably with other spectroscopies. For common TEMs, the overall energy-resolution is mainly determined by the energy width of the electron source, typically between 0.5 and 1.5 eV. For comparison, synchrotron x-ray sources and beam line spectrometers, provide a resolution well below 0.1 eV for absorption spectroscopy. During the early sixties, the energy spread of an electron beam could be reduced by incorporating an energy-filter into the illumination system, but the system lacked spatial resolution. Later developments combined high energy resolution in the range of 0.1 eV with improved spatial resolution. Recently, FEI introduced a new high resolution EELS system based

  15. On Productions of Net-Baryons in Central Au-Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ya-Hui Chen

    2015-01-01

    Full Text Available The transverse momentum and rapidity distributions of net-baryons (baryons minus antibaryons produced in central gold-gold (Au-Au collisions at 62.4 and 200 GeV are analyzed in the framework of a multisource thermal model. Each source in the model is described by the Tsallis statistics to extract the effective temperature and entropy index from the transverse momentum distribution. The two parameters are used as input to describe the rapidity distribution and to extract the rapidity shift and contribution ratio. Then, the four types of parameters are used to structure some scatter plots of the considered particles in some three-dimensional (3D spaces at the stage of kinetic freeze-out, which are expected to show different characteristics for different particles and processes. The related methodology can be used in the analyses of particle production and event holography, which are useful for us to better understand the interacting mechanisms.

  16. Improving a radiative plus collisional energy loss model for application to RHIC and LHC

    International Nuclear Information System (INIS)

    Wicks, Simon; Gyulassy, Miklos

    2007-01-01

    With the QGP opacity computed perturbatively and with the global entropy constraints imposed by the observed dN ch /dy ∼ 1000, radiative energy loss alone cannot account for the observed suppression of single non-photonic electrons. Collisional energy loss is comparable in magnitude to radiative loss for both light and heavy jets. Two aspects that significantly affect the collisional energy loss are examined: the role of fluctuations and the effect of introducing a running QCD coupling as opposed to the fixed α s = 0.3 used previously

  17. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  18. Electromagnetic therapeutic coils design to reduce energy loss

    Directory of Open Access Journals (Sweden)

    Syrek Przemyslaw

    2016-01-01

    Full Text Available The article introduces the problem of power loss reduction in applicators used in magnetotherapy. To generate magnetic field whose distribution is optimal and to reduce the power loss, the authors establish a set of parameters to evaluate the model of device. Results make it possible to infer that the real power input necessary to operate the magnetic field generator properly may vary significantly depending on construction and localization. The issues raised in this paper should be treated as a basis for further discussion on the construction of applicators used, e.g., in Transcranial Magnetic Stimulation.

  19. Fecal energy losses in enterally fed intensive care patients: An explorative study using bomb calorimetry

    NARCIS (Netherlands)

    Strack van Schijndel, R.J.M.; Wierdsma, N.J.; van Heijningen, E.M.B.; Weijs, P.J.M.; de Groot, S.D.W.; Girbes, A.R.J.

    2006-01-01

    Background & Aims: Early enteral nutrition and tailored supply of nutrients have become standard in most of the intensive care units (ICU). So far little attention has been given to losses of energy in the stools. The purpose of this explorative study was to evaluate the energy losses of patients

  20. REFINED ALGORITHMS OF ELECTRICAL ENERGY LOSSES CALCULATION IN 0,38 KV NETWORKS IN REAL TIME

    Directory of Open Access Journals (Sweden)

    Miroshnyk A.

    2010-08-01

    Full Text Available An approach for closer definition of electrical energy losses size in air lines due to the accounting of environment temperature influence and flowing current size on the wire resistance is offered. Multifunctional microprocessor devices for energy losses calculation are elaborated.

  1. Integration of net zero energy building with smart grid to improve regional electrification ratio towards sustainable development

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu

    2017-12-01

    Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.

  2. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-09-30

    Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE

  3. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    Science.gov (United States)

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy , solar heating (and cooling), and...financial evaluation of all projects. The costs of natural gas, alternative energy technology, alter- native fuels and the impact of greenhouse gas...distribution is unlimited. 1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17-22, 2010 Phoenix

  4. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carey W. King

    2015-11-01

    Full Text Available I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date. This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs. Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.

  5. LTE UE Energy Saving by Applying Carrier Aggregation in a HetNet Scenario

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Wang, Hua; Mogensen, Preben

    2013-01-01

    In this work it is examined if downlink Carrier Aggregation (CA) can be used to save UE energy. A dual-receiver LTE release 10 UE is compared with a single-receiver LTE release 8 UE. The models are based on scaling of an existing LTE release 8 UE power model. The energy consumption of the UEs...... is examined in a Heterogeneous Network scenario consisting of macro and small cells. The unexpected conclusion is that CA UEs can save energy, compared to LTE release 8 UEs, if they, depending on cell load, experience a throughput gain of 20%. However if the UE throughput is unaltered the energy consumption...

  6. Skipping meals and alcohol consumption. The regulation of energy intake and expenditure among weight loss participants.

    Science.gov (United States)

    Carels, Robert A; Young, Kathleen M; Coit, Carissa; Clayton, Anna Marie; Spencer, Alexis; Wagner, Marissa

    2008-11-01

    Research suggests that specific eating patterns (e.g., eating breakfast) may be related to favorable weight status. This investigation examined the relationship between eating patterns (i.e., skipping meals; consuming alcohol) and weight loss treatment outcomes (weight loss, energy intake, energy expenditure, and duration of exercise). Fifty-four overweight or obese adults (BMI> or =27 kg/m(2)) participated in a self-help or therapist-assisted weight loss program. Daily energy intake from breakfast, lunch, dinner, and alcoholic beverages, total daily energy intake, total daily energy expenditure, physical activity, and weekly weight loss were assessed. On days that breakfast or dinner was skipped, or alcoholic beverages were not consumed, less total daily energy was consumed compared to days that breakfast, dinner, or alcoholic beverages were consumed. On days that breakfast or alcohol was consumed, daily energy expenditure (breakfast only) and duration of exercise were higher compared to days that breakfast or alcohol was not consumed. Individuals who skipped dinner or lunch more often had lower energy expenditure and exercise duration than individuals who skipped dinner or lunch less often. Individuals who consumed alcohol more often had high daily energy expenditure than individuals who consumed alcohol less often. Skipping meals or consuming alcoholic beverages was not associated with weekly weight loss. In this investigation, weight loss program participants may have compensated for excess energy intake from alcoholic beverages and meals with greater daily energy expenditure and longer exercise duration.

  7. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining

    Science.gov (United States)

    J.Y. Zhu; X.S. Zhuang

    2012-01-01

    There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process...

  8. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.

  9. Energy Density and Weight Loss: Feel Full on Fewer Calories

    Science.gov (United States)

    ... Behavior. 2009;97:609. Rouhani MH, et al. Associations between dietary energy density and obesity: A systematic review and meta-analysis of observational studies. Nutrition. 2016;32:1037. Stelmach-Mardas M, et al. Link between food energy density and body weight changes in obese ...

  10. Successfully Implementing Net-Zero Energy Policy through the Air Force Military Construction Program

    Science.gov (United States)

    2013-03-01

    source, it is necessary to use site-to-source multipliers to account for the prime energy required to transport , produce, and deliver the power...ensure that the roof structure is sufficient. See the American Society of Civil Engineers ( ASCE ) international building code 7-05 for the method of...strip of shading (lightning rods, antennas , etc.) can limit the current of the entire array. Find out what the energy production of the proposed

  11. Energy losses in magnetically insulated transmission lines due to microparticles

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1987-01-01

    We discuss the effects of high-velocity and hypervelocity microparticles in the magnetically insulated transmission lines of multiterawatt accelerators used for particle beam fusion and radiation effects simulation. These microparticles may be a possible source for plasma production near the anode and cathode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Losses in the current pulse, due to microparticles, are estimated to be approximately 12 mA/cm 2 (0.3 kA) as a lower limit, and --0.3 A/cm 2 (7.2 kA) for microparticle initiated, anode plasma positive ion transport. We have calculated the velocities reached by these microparticles and the effects on them of Van der Waals forces. Field emission from the particles and their effects on cathode and anode plasma formation have been examined. Particle collision with the electrodes is also examined in terms of plasma production, as in the electron deposition in the particles in transit across the anode-cathode gap. Blistering of the electrode surface, thought to be due to H - bombardment was also observed and appears to be consistent with losses due to negative ions previously reported by J. P. VanDevender, R. W. Stinnett, and R. J. Anderson [App. Phys. Lett. 38, 229 (1981)

  12. Energy loss and straggling of MeV ions through biological samples

    International Nuclear Information System (INIS)

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-01-01

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula

  13. Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    OpenAIRE

    Gusso, André

    2011-01-01

    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the ...

  14. Electrical energy prices and losses respect to Turkish social-economic situations

    International Nuclear Information System (INIS)

    Berktay, Ali; Demirbas, Ayhan; Kocak, Saim; Nas, Bilgehan

    2004-01-01

    Electricity is a basic part of nature and it is one of the most widely used forms of energy. Electricity, which is a secondary energy source, can be generated from the conversion of other sources of energy, such as coal, natural gas, oil, nuclear power and renewable resources. Electricity prices have a deep impact on the competitiveness of a country's industry. Some electricity losses may occur during the process of transmission and distribution from generators to consumers. Generally there are two types of losses, one is technical losses which cover transmission losses and the other is non-technical losses including distribution losses and the incidence of illegal usage. The aim of this paper is to present the electricity usage and prices and is also to focus on the electricity losses occur both technical and non-technical means. An 'electricity losses map' was produced to illustrate the electricity losses. For this purpose, a vector based Geographic Information System (GIS) software package Arc GIS 8.3 was employed to map the data. The rate of losses within the electricity provided to the national network was about 19% in Turkey. The incidence of illegal usage and hence the rate of non-technical losses could be reduced dramatically through establishing regular action. (Author)

  15. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  16. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  17. Net fossil energy savings for alternative mixes in various electric supply systems

    International Nuclear Information System (INIS)

    Essam, P.; Stocks, K.J.

    1978-11-01

    The actual and projected electric power station building programs of several countries and regions have been examined to determine what effect the introduction of nuclear power has on fossil fuel usage by the electricity system. It was found that (1) nuclear power leads directly to savings in fossil fuel usage, a larger nuclear component leading to larger savings; (2) individual nuclear stations rapidly wipe out the energy 'debt' incurred during building; and (3) the relatively short periods of consolidation in the early stages of a nation's building program usually prevent the nuclear component from going into energy 'debt'. Assessments of the energy requirements to build and run various types of power station have been made from the available literature

  18. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  19. Evaluation of the net energy value of glucose (cerelose) and maize starch in diets for rainbow trout (Salmo gairdneri).

    Science.gov (United States)

    Hilton, J W; Atkinson, J L; Slinger, S J

    1987-11-01

    1. Quadruplicate groups of rainbow trout (Salmo gairdneri) (mean body-weight 24.9 g) were reared on six dietary treatments (practical-type diets) in a modified paired-feeding experiment for 12 weeks at 15 degrees to determine the net energy (NE) value of starch and glucose to rainbow trout. 2. Three test diets were prepared to contain (g/kg): 0 supplemented carbohydrate (diet 1), 250 maize starch (diet 2) and 250 glucose (diet 3) and were given ad lib. to the trout with the feeding rate of the glucose- and starch-fed groups being monitored after each feeding. The remaining three treatments involved controlled feeding of the trout with diet 1 at 75% of the feed intake of trout reared on diets 2 and 3, so as to provide the same levels of protein and lipids without carbohydrate, and with diet 2 at 100% of the feed intake of trout reared on diet 3. 3. The difference in the final carcass energy of the ad lib.-fed group and the respective controlled-fed group divided by the amount of dietary glucose or starch energy consumed by the trout is the NE value for that carbohydrate. 4. The determined NE value of glucose was 3.99 kJ/g and starch 2.17 kJ/g, which is 24.6 and 12.6% respectively of the gross energy values of these carbohydrates in rainbow trout. 5. The results indicate that digestible energy and calculated metabolizable energy values for carbohydrates in rainbow trout overestimate the utilizable energy content of the diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [ORNL; Gandy, David [Electric Power Research Institute (EPRI); Lannom, Robert [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test valve

  1. Microanalysis by spectroscopy of transmitted electron energy losses

    International Nuclear Information System (INIS)

    Colliex, C.; Trebbia, P.

    1978-01-01

    Among the various signals which, in a transmission electron microscope, result from the interactions between the primary beam of well defined energy E 0 and the sample, the spectrum of the energy distribution of the electrons transmitted contains useful informations on the chemical and physical properties of the sample. Consequently the adaptation of an energy dispersive system on an electron microscope enables new fields of research to be investigated, particularly a localised chemical analysis technique with a space resolution scale equal to that of the electron microscope. It is this second aspect that we suggest describing in particular here. Already, this technique appears to be indispensable in the problems arising from the analysis of very small quantities of matter: detection limits in the order of 10 -19 to 10 -20 g (around 100 to 1000 atoms) would seem to be resonably possible [fr

  2. Addressing student models of energy loss in quantum tunnelling

    International Nuclear Information System (INIS)

    Wittmann, Michael C; Morgan, Jeffrey T; Bao Lei

    2005-01-01

    We report on a multi-year, multi-institution study to investigate students' reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wavefunctions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials designed to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so

  3. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  4. Testing the rationality of DOE's energy price forecasts under asymmetric loss preferences

    International Nuclear Information System (INIS)

    Mamatzakis, E.; Koutsomanoli-Filippaki, A.

    2014-01-01

    This paper examines the rationality of the price forecasts for energy commodities of the United States Department of Energy's (DOE), departing from the common assumption in the literature that DOE's forecasts are based on a symmetric underlying loss function with respect to positive vs. negative forecast errors. Instead, we opt for the methodology of Elliott et al. (2005) that allows testing the joint hypothesis of an asymmetric loss function and rationality and reveals the underlying preferences of the forecaster. Results indicate the existence of asymmetries in the shape of the loss function for most energy categories with preferences leaning towards optimism. Moreover, we also examine whether there is a structural break in those preferences over the examined period, 1997–2012. - Highlights: • Examine the rationality of DOE energy forecasts. • Departing from a symmetric underlying loss function. • Asymmetries exist in most energy prices. • Preferences lean towards optimism. • Examine structural breaks in those preferences

  5. Energy flow models for the estimation of technical losses in distribution network

    International Nuclear Information System (INIS)

    Au, Mau Teng; Tan, Chin Hooi

    2013-01-01

    This paper presents energy flow models developed to estimate technical losses in distribution network. Energy flow models applied in this paper is based on input energy and peak demand of distribution network, feeder length and peak demand, transformer loading capacity, and load factor. Two case studies, an urban distribution network and a rural distribution network are used to illustrate application of the energy flow models. Results on technical losses obtained for the two distribution networks are consistent and comparable to network of similar types and characteristics. Hence, the energy flow models are suitable for practical application.

  6. Privacy-preserving smart meter control strategy including energy storage losses

    OpenAIRE

    Avula, Chinni Venkata Ramana R.; Oechtering, Tobias J.; Månsson, Daniel

    2018-01-01

    Privacy-preserving smart meter control strategies proposed in the literature so far make some ideal assumptions such as instantaneous control without delay, lossless energy storage systems etc. In this paper, we present a one-step-ahead predictive control strategy using Bayesian risk to measure and control privacy leakage with an energy storage system. The controller estimates energy state using a three-circuit energy storage model to account for steady-state energy losses. With numerical exp...

  7. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-01

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  8. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  9. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  10. Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.

    Science.gov (United States)

    Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y

    2018-04-01

    Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The cascade probabilistic functions with taking into account energy losses for ions. Chapter 3

    International Nuclear Information System (INIS)

    2003-01-01

    In the Chapter 3 the cascade probabilistic functions mathematical simulation with taking into account energy losses for ions are considered. The calculation of the CPF on the computer is carried out. The influence of both the interaction number and the penetration depth on the CPF determination field for ions are revealed. The estimation of energy losses contribution in the simplest CPF is made. Calculation algorithm for radiation defects concentration at ion irradiation with use of the CPF with taking into account of energy losses is given

  12. The role of energy losses in photosynthetic light harvesting

    NARCIS (Netherlands)

    Kruger, T. P. J.; van Grondelle, R.

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic

  13. Energy and Economic Losses Due to Constant Power Outages in ...

    African Journals Online (AJOL)

    This study assesses the economic implication of electricity self-generation in Nigeria. In this regard, energy and exergetic utilization efficiencies of 19 representative generators and gas turbines from Afam power station were assessed based on real data obtained through survey of companies, oral interview, individuals and ...

  14. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  15. Energy efficient selective reforming of hydrocarbons. ERA-NET Bioenergy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, J.

    2010-07-15

    The research project 'Energy efficient selective reforming of hydrocarbons', funded by the Swedish and Energinet.dk Agency has now reached its end. The report is an overview of the work. Details of the work within the different areas can be found in the reports from each part. In this project, an innovative method for tar removal and reformation of hydrocarbons was investigated: Chemical Looping Reforming (CLR). This gas treatment has the potential to be economically competitive, reliable and environmentally friendly (due to higher energy efficiency, amongst others). The aim of the CLR is to 1) eliminate downstream problems with tar 2) simplify the energy recovery from the hot product gas 3) selectively save lighter hydrocarbons for the production of synthetic natural gas (SNG). A guarantor for the outcome of the project is the engagement of Goeteborg Energi, which has a commitment to build a 20 MW output SNG plant by 2012. DTU (Danish Technical University) is responsible for carrying out the laboratorial part, where different oxygen carriers for the CLR have been considering their capability of selectively reforming hydrocarbons. The conclusion was that, of the four carriers tested, the Mn and Ni40 was the most promising. CUT (Chalmers University of Technology) has installed a 600 W CLR unit connected to a slipstream from the gasifier. During the firing season 2010 the CLR has been tested with raw gas for 36 hours and the results so far show that the equipment works as intended and that it can reduce the amount of tars substantially. GE (Goeteborg Energi AB) together with SEP (Scandinavian Energy Project AB) and CUT have studied the integration of a methane production plant to an existing boiler. The main focus of the study has been the gasifier and the CLR. The integration of a 100 MW methane production plant is estimated to cost 1.3-2.4 billion SEK. The different work packages have altogether shown that a CLR is a possible solution to the tar problem

  16. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... (PCM). The ground heat exchanger acts as the heat sink and heat source for cooling and heating seasons, respectively. Free cooling enables the same cooling effect to be delivered with 8% of the energy consumption of a representative chiller. The heating and cooling needs of the house are addressed...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  17. Demonstrate Energy Component of the Installation Master Plan Using Net Zero Installation Virtual Testbed

    Science.gov (United States)

    2015-09-01

    compliant GIS, usually obtained from the installation itself. NZP also includes an appropriate weather file for the location selected, using the closest...such as solar photovoltaics, solar-thermal, wind energy, biomass (wood chips, etc.), biogas , or synthetic gas need to be considered as part of the mix...have better information. In some cases, such as photovoltaics, users can obtain data from an online system and enter it into NZP. In this case, users

  18. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Ju [Univ. of Colorado, Boulder, CO (United States)

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  19. Case Library Construction Technology of Energy Loss in Distribution Networks Considering Regional Differentiation Theory

    Directory of Open Access Journals (Sweden)

    Ze Yuan

    2017-11-01

    Full Text Available The grid structures, load levels, and running states of distribution networks in different supply regions are known as the influencing factors of energy loss. In this paper, the case library of energy loss is constructed to differentiate the crucial factors of energy loss in the different supply regions. First of all, the characteristic state values are selected as the representation of the cases based on the analysis of energy loss under various voltage classes and in different types of regions. Then, the methods of Grey Relational Analysis and the K-Nearest Neighbor are utilized to implement the critical technologies of case library construction, including case representation, processing, analysis, and retrieval. Moreover, the analysis software of the case library is designed based on the case library construction technology. Some case studies show that there are many differences and similarities concerning the factors that influence the energy loss in different types of regions. In addition, the most relevant sample case can be retrieved from the case library. Compared with the traditional techniques, constructing a case library provides a new way to find out the characteristics of energy loss in different supply regions and constitutes differentiated loss-reducing programs.

  20. Program NICOLET to integrate energy loss in superconducting coils

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ∫ΔVdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures

  1. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Conceptual design of the total system; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Zentai system gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on the conceptual design of the total system for the WE-NET project in 1996. Basic conditions are as follows: solid polymer water electrolysis, hydrogen combustion turbine power generation, hydrogen transport/storage through ammonia medium, power generation scale of 1000-4000MW (2-5 yen/kWh), and transport distance of 5000-20000km between supply and consumption places. The system efficiency was estimated to be 68% and 23% at an ammonia arrival time and power sending end, respectively, and it was dependent on a transport distance, while no power generation scale. The power cost was estimated to be 7 yen/Mcal and 33 yen/kWh, respectively. The system efficiency at a sending end was lower by 15% and 2% than that of the liquid hydrogen and methanol system, while the power cost was higher by 0 and 8 yen/kWh, respectively. It was necessary for loss reduction of this ammonia system to develop a new high-efficiency ammonia synthesis process, and hydrogen separation (decomposition/refining) process. 80 figs., 52 tabs.

  2. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  3. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Science.gov (United States)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  4. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew; Sadhanala, Aditya; Nikolka, Mark; Ran, Niva A.; Ravva, Mahesh Kumar; Abdel-Azeim, Safwat; Stern, Hannah L.; Wang, Ming; Sirringhaus, Henning; Nguyen, Thuc-Quyen; Bredas, Jean-Luc; Bazan, Guillermo C.; Friend, Richard H.

    2016-01-01

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  5. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew

    2016-11-03

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  6. Energy loss of particles in dense matter - calorimetry

    International Nuclear Information System (INIS)

    Wigmans, R.

    1987-08-01

    In the last decade, a class of detectors gradually have become more and more important in experimental particle physics. They are called calorimeters, or total absorption detectors. Basically a calorimeter is a block of matter, in which the particle to be measured interacts, and deposits all its energy in the form of a shower of decreasingly lower-energy particles. The block is made such that certain (usually small and hopefully constant) fraction of the initial particle energy is transformed in a measurable signal (light, electrical charge). This lecture mainly deals with sampling calorimeters but in section 2 also fully sensitive devices are briefly treated. In this section calorimeters for detecting electromagnetic showers are discussed. The physics processes relevant to em shower development are examined, and the factors that limit the performance of em calorimeters. Section 3 is devoted to readout techniques for sampling calorimeters. In sections 4-7 hadron calorimeters are discussed. The physics processes relevant to hadron shower development, their consequences for the calorimeter signals and the possibility for optimizing the performance of hadron calorimeters are examined. In section 8 an outlook for future development is given. 31 refs.; 48 figs

  7. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  8. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  9. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  10. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  11. A Game Theoretic Framework for Green HetNets Using D2D Traffic Offload and Renewable Energy Powered Base Stations

    KAUST Repository

    Yaacoub, Elias; Ghazzai, Hakim; Alouini, Mohamed-Slim

    2015-01-01

    This chapter investigates the interplay between cooperative device-to-device (D2D) communications and green communications in LTE heterogeneous networks (HetNets). Two game theoretic concepts are studied and analyzed in order to perform dynamic HetNet base station (BS) on/off switching. The first approach is a coalition-based method whereas the second is based on the Nash bargaining solution. Afterwards, a method for coupling the BS on/off switching approach with D2D collaborative communications is presented and shown to lead to increased energy efficiency. The savings are additionally increased when a portion of the small cell BSs in a HetNet are powered by renewable energy sources. Different utility functions, modeling the game theoretic framework governing the energy consumption balance between the cellular network and the mobile terminals (MTs), are proposed and compared, and their impact on MT quality of service (QoS) is analyzed.

  12. A Game Theoretic Framework for Green HetNets Using D2D Traffic Offload and Renewable Energy Powered Base Stations

    KAUST Repository

    Yaacoub, Elias

    2015-08-26

    This chapter investigates the interplay between cooperative device-to-device (D2D) communications and green communications in LTE heterogeneous networks (HetNets). Two game theoretic concepts are studied and analyzed in order to perform dynamic HetNet base station (BS) on/off switching. The first approach is a coalition-based method whereas the second is based on the Nash bargaining solution. Afterwards, a method for coupling the BS on/off switching approach with D2D collaborative communications is presented and shown to lead to increased energy efficiency. The savings are additionally increased when a portion of the small cell BSs in a HetNet are powered by renewable energy sources. Different utility functions, modeling the game theoretic framework governing the energy consumption balance between the cellular network and the mobile terminals (MTs), are proposed and compared, and their impact on MT quality of service (QoS) is analyzed.

  13. Well-to-refinery emissions and net-energy analysis of China's crude-oil supply

    Science.gov (United States)

    Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael

    2018-03-01

    Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.

  14. Bremsstrahlung spectra from thick-target electron beams with noncollisional energy losses

    International Nuclear Information System (INIS)

    Brown, J.C.; MacKinnon, A.L.

    1985-01-01

    We consider what can be learned from the bremsstrahlung radiation of fast electrons in a thick target, generalized to include electron energy losses additional to collisions. We show that the observed photon spectrum can, in principle, be inverted to yield an integral functional of the electron spectrum and the effective energy loss rate. In the light of this result, there seems no reason to suppose, in the absence of a priori information to the contrary, that the photon spectrum is symptomatic more of the fast electron distribution than of the energy loss processes. In cases where the electron injection spectrum is known on independent observational or theoretical grounds, it is possible to infer an effective, ''phenomenological'' energy loss function. In the more general case, however, fullest possible modeling of the physical situation and comparison of the resulting spectrum with observations is all that can be attempted

  15. Control of Refrigeration Systems for Trade-off between Energy Consumption and Food Quality Loss

    DEFF Research Database (Denmark)

    Cai, Junping

    In supermarkets, control strategies determine both the energy consumption of refrigeration systems and the quality loss of refrigerated foodstuffs. The question is, what can be done to optimize the balance between quality loss and energy consumption? This thesis tries to answer this question...... by applying two main optimization strategies to traditional refrigeration systems. The first strategy is a new defrost-on-demand scheme, which based on an objective function between quality loss and energy consumption, continuously seeks an optimal time interval for defrosting in dynamic situation. The second...... strategy is through utilization of the thermal mass of the refrigerated foodstuffs, the day-night temperature variation and the capacity control of the compressor, to realize a trade-off between system energy consumption and food quality loss....

  16. Characteristic electron energy loss in lanthanum films adsorbed on tungsten (110) single crystal

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Gorchinskij, A.D.; Kobylyanskij, A.V.

    1988-01-01

    The spectrum of electron energy loss (ELS) in a wide range of energy loss 0-150 eV has been studied for La films adsorbed on W(110) single crystal with the coverage Θ from submonolayer to a few monolayers. The concentration dependence of loss energy peaks amplitude of different nature has been studied for the adsorption of rare earth element on refractory substrate. It has been shown that the essential information for the interpretation of the energy loss nature may be obtained by the investigation of such dependences for La adsorption on W(110). It is found that the surface and bulk plasmons peaks appear in ELS of La-W(110) system before the completion of the physical monolayer. Thus, the collectivization of valence electrons in the rare earth element film at the transition metal surface ensues for the submonolayer coverage like in the case of collective processes in alkali and alkaline earth element films

  17. An investigation of standby energy losses in residential sector: Solutions and policies

    Energy Technology Data Exchange (ETDEWEB)

    Singh Solanki, Parmal [Caledonian (University) College of Engineering, Muscat (Oman); Sarma Mallela, Venkateswara [G. Narayanamma Institute of Technology and Science (for Women), Hyderabad (India); Zhou, Chengke [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2013-07-01

    This paper investigates the standby power losses of household appliances and determines these losses by field measurements and bottom-up approaches. It is revealed that average standby power losses of e-appliances at household in Oman is 103.4 Watts and could further increase if other miscellaneous appliances are also taken into account. Calculations show that TV sets alone are responsible to consume 1.89 MW standby powers across the country. The paper considers various technological and socio-economic options to diminish the standby power consumption and signify that 42.72% of energy consumed by appliances can be saved by end-users implementing suitable measures. Energy management programmes like energy efficiency standards, labelling and policy instruments to tackle the standby power losses are also discussed. Finally, paper looks into the barriers and their way-outs to implement the energy efficiency standards and labelling.

  18. Understanding energy loss in parallelly connected microbial fuel cells: Non-Faradaic current.

    Science.gov (United States)

    An, Junyeong; Sim, Junyoung; Feng, Yujie; Lee, Hyung-Sool

    2016-03-01

    In this work, the mechanisms of energy loss in parallel connection of microbial fuel cells (MFCs) is explored using two MFC units producing different open circuit voltage (OCV) and current. In open circuit mode, non-Faradaic current flows in low OCV unit, implying energy loss caused by different OCVs in parallelly stacked MFCs. In a stacked MFC in parallel under close circuit mode, it is confirmed that energy loss occurs until the working voltage in high OCV unit becomes identical to the other unit having low OCV. This result indicates that different voltage between individual MFC units can cause energy loss due to both non-Faradic and Faradaic current that flow from high voltage unit to low voltage unit even in parallelly stacked MFCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Incorporation of Finite Element Analysis into Annual Energy Loss Estimation for Permanent Magnet Wind Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2013-01-01

    Several methods of estimating the annual energy losses for wind turbine generators are investigated in this paper. Utilizing a high amount of transient simulations with motion is first demonstrated. Usage of a space-time transformation for prediction of iron losses is also explored. The methods, ...

  20. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    International Nuclear Information System (INIS)

    Kuusik, I.; Kaeaembre, T.; Kooser, K.; Pustovarov, V.; Ivanov, V.; Kukk, E.; Kikas, A.

    2011-01-01

    Research highlights: → Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. → A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. → Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. → The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be 2 SiO 4 ) and chrysoberyl (BeAl 2 O 4 ) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K α emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  1. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kuusik, I., E-mail: ivar@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kaeaembre, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kooser, K. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Department of Physics and Astronomy, University of Turku, Turku (Finland); Pustovarov, V.; Ivanov, V. [Ural State Technical University-UPI, Yekaterinburg (Russian Federation); Kukk, E. [Department of Physics and Astronomy, University of Turku, Turku (Finland); Kikas, A. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2011-07-15

    Research highlights: {yields} Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. {yields} A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. {yields} Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. {yields} The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be{sub 2}SiO{sub 4}) and chrysoberyl (BeAl{sub 2}O{sub 4}) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K{sub {alpha}} emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  2. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  3. Energy losses in mixed matrix superconducting wires under fast pulsed conditions

    International Nuclear Information System (INIS)

    Wollan, J.J.

    1976-01-01

    Energy losses have been measured on a set of mixed matrix (CuNi, Cu, NbTi) superconducting wires at B's up to 1.5 x 10 7 G/s. The losses have been measured as a function of wire diameter, twist pitch, maximum applied field, and B. Both static and dynamic losses were measured for a field applied perpendicularly to the wire axis. The dynamic losses were measured by slowly applying an external field to a sample and then causing the field to decay exponentially in roughly 1 ms to 10 ms. Under low B (9 kG) and B (10 6 G/s) conditions the hysteretic loss dominated. At high B (21 kG) and B (1.5 x 10 7 G/s) the matrix losses became dominant. The systematic variation of the losses with the mentioned parameters will be presented and will be compared to theoretical predictions

  4. TFAP2B influences the effect of dietary fat on weight loss under energy restriction

    DEFF Research Database (Denmark)

    Stocks, Tanja; Angquist, Lars; Banasik, Karina

    2012-01-01

    Numerous gene loci are related to single measures of body weight and shape. We investigated if 55 SNPs previously associated with BMI or waist measures, modify the effects of fat intake on weight loss and waist reduction under energy restriction.......Numerous gene loci are related to single measures of body weight and shape. We investigated if 55 SNPs previously associated with BMI or waist measures, modify the effects of fat intake on weight loss and waist reduction under energy restriction....

  5. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Noritake, E-mail: isomura@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Soejima, Narumasa; Iwasaki, Shiro [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Nomoto, Toyokazu; Murai, Takaaki [Aichi Synchrotron Radiation Center (AichiSR), 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965 (Japan); Kimoto, Yasuji [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si{sub 3}N{sub 4}/SiO{sub 2}/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si{sub 3}N{sub 4}/SiO{sub 2}/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  6. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    International Nuclear Information System (INIS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-01-01

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si_3N_4/SiO_2/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si_3N_4/SiO_2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  7. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  8. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  9. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  10. Author Correction: Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    In the version of this Analysis originally published, the value of the pessimistic EROI for the geothermal energy source in Table 1 was incorrectly given as 14:1; it should have read 9:1. This has now been corrected in all versions of the Analysis.

  11. Experimental investigation of energy loss and end loss physics in a linear theta pinch. Scientific report 81-3

    International Nuclear Information System (INIS)

    Jacoby, B.A.

    1981-01-01

    The results of an experimental study of particle and thermal loss processes from a 50-cm long theta pinch are presented. The plasma was generated with a 40-mTorr fill of deuterium in a 3.81 cm radius discharge tube; 67% Z-preionization was followed by a main current discharge that produced a 23-kG peak magnetic field in 4.75 μsec. The electron density and temperature in the plasma column at the end of dynamic implosion were characterized by 1.0 x 10 16 cm -3 and 20 eV, respectively. This was followed by adiabatic compression which occurred with the particle and energy loss of interest. The diagnostics employed in this experiment were Thomson scattering, continuum radiation spectroscopy, local magnetic-field probes, local pressure probes, and diamagnetic loops. Axial temperature and density profiles were mapped from the coil into the end region

  12. Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Garcia y Garcia, Axel; Paz, Joel O.; Hoogenboom, Gerrit [Department of Biological and Agricultural Engineering, 1109 Experiment Street, The University of Georgia, Griffin, GA 30223 (United States); Jones, James W. [Department of Agricultural and Biological Engineering, Frazier Rogers Hall, University of Florida, Gainesville, FL 32611 (United States)

    2009-08-15

    A recent increase in the demand for bio-ethanol has sparked maize production in the USA and other countries across the world. The net energy value (NEV), i.e. the energy output in ethanol and co-products after accounting for energy input requirements in the production chain of ethanol, is a measure of its sustainability. Grain yield of maize, which varies substantially across different climate and soil conditions, greatly impacts the ethanol NEV. The objectives of this study were to determine i) the NEV of ethanol produced from maize grown in four production regions in the southeastern USA and, ii) the specific impact of local soil variability under the same climate conditions within the four regions on the NEV of maize-ethanol. Maize yield was simulated with the Cropping System Model (CSM)-CERES-Maize model for soil and weather conditions, and management practices representing Bulloch, Floyd, Laurens and Mitchell counties, Georgia, USA. The calculation of ethanol NEV took into account the energy inputs and outputs of the entire ethanol production chain, and was based on the crop simulations. There were statistically significant differences in ethanol NEV among the counties, and within counties due to local soil variability. Differences in ethanol NEV among counties were partially due to different transportation distances. Based on the results of this study, it was concluded that maize-ethanol NEV can be increased by accounting for the soil and climate factors in the feedstock production and by locating ethanol-processing facilities in regions with soil and climate conditions that are favorable for ethanol-maize production. (author)

  13. Energy loss and straggling of MeV Si ions in gases

    Energy Technology Data Exchange (ETDEWEB)

    Vockenhuber, C., E-mail: vockenhuber@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Arstila, K. [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland); Jensen, J. [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden); Julin, J.; Kettunen, H.; Laitinen, M.; Rossi, M.; Sajavaara, T. [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland); Thöni, M. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Whitlow, H.J. [Institut des Microtechnologies Appliquées Arc, Haute Ecole Arc Ingénierie, 2300 La Chaux-de-Fonds (Switzerland)

    2017-01-15

    We present measurements of energy loss and straggling of Si ions in gases. An energy range from 0.5 to 12 MeV/u was covered using the 6 MV EN tandem accelerator at ETH Zurich, Switzerland, and the K130 cyclotron accelerator facility at the University of Jyväskylä, Finland. Our energy-loss data compare well with calculation based on the SRIM and PASS code. The new straggling measurements support a pronounced peak in He gas at around 4 MeV/u predicted by recent theoretical calculations. The straggling curve structure in the other gases (N{sub 2}, Ne, Ar, Kr) is relatively flat in the covered energy range. Although there is a general agreement between the straggling data and the theoretical calculations, the experimental uncertainties are too large to confirm or exclude the predicted weak multi-peak structure in the energy-loss straggling.

  14. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  15. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  16. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 9. Investigation of innovative and leading technologies; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 9. Kakushinteki sendoteki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The WE-NET Project is a long-term project designed to ensure that an energy network technology using hydrogen becomes a reality not later than 2020. So the project cannot remain effective unless constant efforts are made to foresee future trends of technology and optimize it as the making of entire system for the project. In this project, new technologies which are not up for development are also investigated. Their feasibility should be studied, if necessary. From the foregoing point of view, new technologies are studied, collected and evaluated. Thus, useful suggestions and proposals may be made as to the course for the project to follow, as well as its research and development. Proposals highly evaluated up to FY 1995 are the hydrogen-oxygen internal-combustion Stirling`s engine, hydrogen production by solid oxide electrolysis, magnetic refrigeration technology for liquefaction of hydrogen, solar thermal hydrogen production with iron sponge technology, and hydrogen producing technology with photocatalyst. Conceptual investigation themes in FY 1996 are the hydrogen internal-combustion Stirling engine, solar thermal hydrogen production, phototransformation process, and high-temperature steam electrolysis. 9 figs., 54 tabs.

  17. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    DEFF Research Database (Denmark)

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...

  18. Soil fertility and soil loss constraints on crop residue removal for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, S.

    1979-07-01

    A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

  19. CMB bounds on dark matter annihilation: Nucleon energy losses after recombination

    NARCIS (Netherlands)

    Weniger, C.; Serpico, P.D.; Iocco, F.; Bertone, G.

    2013-01-01

    We consider the propagation and energy losses of protons and antiprotons produced by dark matter annihilation at redshifts 100energy injected into e± and γ’s,

  20. Quark Energy Loss and Shadowing in Nuclear Drell-Yan Process

    International Nuclear Information System (INIS)

    Duan Chungui; Cui Shuwen; Yan Zhanyuan

    2005-01-01

    The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of three kinds of quark energy loss parameterizations given in literature and the nuclear parton distribution extracted only with lepton-nucleus deep inelastic scattering experimental data, measured Drell-Yan production cross sections are analyzed for 800 GeV proton incident on a variety of nuclear targets from FNAL E866. It is shown that our results with considering the energy loss effect are much different from those of the FNAL E866, who analyzes the experimental data with the nuclear parton distribution functions obtained by using the deep inelastic lA collisions and pA nuclear Drell-Yan data. Considering the existence of energy loss effect in Drell-Yan lepton pairs production, we suggest that the extraction of nuclear parton distribution functions should not include Drell-Yan experimental data.

  1. Quark Energy Loss and Shadowing in Nuclear Drell-Yan Process

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; CUI Shu-Wen; YAN Zhan-Yuan

    2005-01-01

    The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of three kinds of quark energy loss parameterizations given in literature and the nuclear parton distribution extracted only with lepton-nucleus deep inelastic scattering experimental data, measured Drell-Yan production cross sections are analyzed for 800 GeV proton incident on a variety of nuclear targets from FNAL E866. It is shown that our results with considering the energy loss effect are much different from those of the FNAL E866, who analyzes the experimental data with the nuclear parton distribution functions obtained by using the deep inelastic IA collisions and pA nuclear Drell-Yan data. Considering the existence of energy loss effect in Drell-Yan lepton pairs production, we suggest that the extraction of nuclear parton distribution functions should not include Drell-Yan experimental data.

  2. Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions

    International Nuclear Information System (INIS)

    Zhang Benwei; Wang, Enke; Wang Xinnian

    2005-01-01

    Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum

  3. Distributions of energy losses of electrons and pions in the CBM TRD

    International Nuclear Information System (INIS)

    Akishina, E.P.; Akishina, T.P.; Ivanov, V.V.; Denisova, O.Yu.

    2007-01-01

    The distributions of energy losses of electrons and pions in the TRD detector of the CBM experiment are considered. We analyze the measurements of the energy deposits in one-layer TRD prototype obtained during the test beam (GSI, Darmstadt, February 2006) and Monte Carlo simulations for the n-layered TRD realized with the help of GEANT in frames of the CBM ROOT. We show that 1) energy losses both for real measurements and GEANT simulations are approximated with a high accuracy by a log-normal distribution for π and a weighted sum of two log-normal distributions for e; 2) GEANT simulations noticeably differ from real measurements and, as a result, we have a significant loss in the efficiency of the e/π identification. A procedure to control and correct the process of the energy deposit of electrons in the TRD is developed

  4. Reconfiguration of distribution nets

    International Nuclear Information System (INIS)

    Latorre Bayona, Gerardo; Angarita Marquez, Jorge Luis

    2000-01-01

    Starting of the location of the reconfiguration problem inside the context of the operation of distribution nets, of the quality indicators definition and of the presentation of the alternatives more used for reduction of technical losses, they are related diverse reconfiguration methodologies proposed in the technical literature, pointing out their three principals limitations; also are presents the results of lost obtained starting from simulation works carried out in distribution circuits of the ESSA ESP, which permitting to postulate the reconfiguration of nets like an excellent alternative to reduce technical losses

  5. Electronic energy loss of low velocity H+ beams in Al, Ag, Sb, Au and Bi

    International Nuclear Information System (INIS)

    Valdes, J.E.; Martinez Tamayo, G.; Lantschner, G.H.; Eckardt, J.C.; Arista, N.R.

    1993-01-01

    The energy loss of H + ions in thin polycrystalline Al, Sb, Ag, Au and Bi films has been determined in the energy range below 10 keV. This low-energy range is of special interest to fill a lack of low-energy experimental data and test various theoretical predictions and semiempirical formulas. We find that the general theoretical prediction of a velocity-proportional dependence of energy loss does not hold for all targets studied in this work. The velocity-proportionality is better satisfied for Al, Sb and Bi, whereas a departure from such dependence is observed at lower energies for Ag and Au targets. The results obtained here are in good general agreement with nonlinear stopping power calculations based on density functional theory. Comparison with semiempirical predictions, and other experimental results are also done. (orig.)

  6. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  7. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  8. Net requirements of energy, protein and macrominerals for weight gain of grazing beef cattle castrated at different ages, with and without supplementation

    Directory of Open Access Journals (Sweden)

    Anilza Andréia da Rocha

    2012-02-01

    Full Text Available The objective of this experiment was to estimate the requirements of energy, protein and macrominerals of grazing crossbreds calves, in Brachiaria decumbens Stapf pasture, castrated at different ages, with and without supplementation. Forty-seven young calves at initial age of 120±30.1 days and 115.3±1.97 kg of live weight were used. To estimate net energy requirements for weight gain, a regression equation between energy retained in the gain and empty body weight gain and metabolic empty body weight was obtained. For estimation of net protein requirements for weight gain, a regression equation was adjusted between protein retained in gain and empty body weight gain and energy content of this gain. Net requirements of Ca, P, Mg and Na for weight gain were determined by the equation Y' = a.b. Xb-1, in which a and b represent the intercept and the coefficient of the alometric equation of macromineral body content prediction, respectively. Neither castration nor concentrate supplementation affects body weight gain net requirements, except the ones of Ca, which were higher for non-castrated animals.

  9. Low-maintenance energy requirements of obese dogs after weight loss.

    Science.gov (United States)

    German, Alexander J; Holden, Shelley L; Mather, Nicola J; Morris, Penelope J; Biourge, Vincent

    2011-10-01

    Weight rebound after successful weight loss is a well-known phenomenon in humans and dogs, possibly due to the fact that energy restriction improves metabolic efficiency, reducing post-weight-loss maintenance energy requirements (MER). The aim of the present study was to estimate post-weight-loss MER in obese pet dogs that had successfully lost weight and did not subsequently rebound. A total of twenty-four obese dogs, successfully completing a weight management programme at the Royal Canin Weight Management Clinic, University of Liverpool (Wirral, UK), were included. In all dogs, a period of >14 d of stable weight ( lean tissue lost was negatively associated with post-weight-loss MER. MER are low after weight loss in obese pet dogs (typically only 10 % more than required during weight-loss MER), which has implications for what should constitute the optimal diet during this period. Preserving lean tissue during weight loss may maximise post-weight-loss MER and help prevent rebound.

  10. Energy loss straggling in Aluminium foils for Li and C ions in fractional energy loss limits (ΔE/E) ∼10-60%

    Science.gov (United States)

    Diwan, P. K.; Kumar, Sunil; Kumar, Shyam; Sharma, V.; Khan, S. A.; Avasthi, D. K.

    2016-02-01

    The energy loss straggling of Li and C ions in Al foils of various thicknesses has been measured, within the fractional energy loss limit (∆E/E) ∼ 10-60%. These measurements have been performed using the 15UD Pelletron accelerator facility available at Inter University Accelerator Centre (IUAC), New Delhi, India. The measured straggling values have been compared with the corresponding predicted values adopting popularly used collisional straggling formulations viz Bohr, Lindhard and Scharff, Bethe-Livingston, Titeica. In addition, the experimental data has been compared to the Yang et al. empirical formula and Close Form Model, recently proposed by Montanari et al. The straggling values derived by Titeica theory were found to be in better agreement with the measured values as compared to other straggling formulations. The charge-exchange straggling component has been estimated from the measured data based on Titeica's theory. Finally, a function of the ion effective charge and the energy loss fraction within the target has been fitted to the latter straggling component.

  11. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Methodologies on estimating the energy requirements for maintenance and determining the net energy contents of feed ingredients in swine: a review of recent work.

    Science.gov (United States)

    Li, Zhongchao; Liu, Hu; Li, Yakui; Lv, Zhiqian; Liu, Ling; Lai, Changhua; Wang, Junjun; Wang, Fenglai; Li, Defa; Zhang, Shuai

    2018-01-01

    In the past two decades, a considerable amount of research has focused on the determination of the digestible (DE) and metabolizable energy (ME) contents of feed ingredients fed to swine. Compared with the DE and ME systems, the net energy (NE) system is assumed to be the most accurate estimate of the energy actually available to the animal. However, published data pertaining to the measured NE content of ingredients fed to growing pigs are limited. Therefore, the Feed Data Group at the Ministry of Agricultural Feed Industry Centre (MAFIC) located at China Agricultural University has evaluated the NE content of many ingredients using indirect calorimetry. The present review summarizes the NE research works conducted at MAFIC and compares these results with those from other research groups on methodological aspect. These research projects mainly focus on estimating the energy requirements for maintenance and its impact on the determination, prediction, and validation of the NE content of several ingredients fed to swine. The estimation of maintenance energy is affected by methodology, growth stage, and previous feeding level. The fasting heat production method and the curvilinear regression method were used in MAFIC to estimate the NE requirement for maintenance. The NE contents of different feedstuffs were determined using indirect calorimetry through standard experimental procedure in MAFIC. Previously generated NE equations can also be used to predict NE in situations where calorimeters are not available. Although popular, the caloric efficiency is not a generally accepted method to validate the energy content of individual feedstuffs. In the future, more accurate and dynamic NE prediction equations aiming at specific ingredients should be established, and more practical validation approaches need to be developed.

  13. Energy Deficit Required for Rapid Weight Loss in Elite Collegiate Wrestlers.

    Science.gov (United States)

    Kondo, Emi; Sagayama, Hiroyuki; Yamada, Yosuke; Shiose, Keisuke; Osawa, Takuya; Motonaga, Keiko; Ouchi, Shiori; Kamei, Akiko; Nakajima, Kohei; Higaki, Yasuki; Tanaka, Hiroaki; Takahashi, Hideyuki; Okamura, Koji

    2018-04-26

    To determine energy density for rapid weight loss (RWL) of weight-classified sports, eight male elite wrestlers were instructed to lose 6% of body mass (BM) within 53 h. Energy deficit during the RWL was calculated by subtracting total energy expenditure (TEE) determined using the doubly labeled water method (DLW) from energy intake (EI) assessed with diet records. It was also estimated from body composition change estimated with the four-component model (4C) and other conventional methods. BM decreased significantly by 4.7 ± 0.5 kg (6.4 ± 0.5%). Total body water loss was the major component of the BM loss (71.0 ± 7.6%). TEE was 9446 ± 1422 kcal, and EI was 2366 ± 1184 kcal during the RWL of 53-h; therefore, the energy deficit was 7080 ± 1525 kcal. Thus, energy density was 1507 ± 279 kcal/kg ∆BM during the RWL, comparable with values obtained using the 4C, three-component model, dual energy X-ray absorptiometry, and stable isotope dilution. Energy density for RWL of wrestlers is lower than that commonly used (7400 or 7700 kcal/kg ΔBM). Although RWL is not recommended, we propose that commonly practiced extreme energy restriction such as 7400 or 7700 kcal/kg ΔBM during RWL appears to be meaningless.

  14. Energy Deficit Required for Rapid Weight Loss in Elite Collegiate Wrestlers

    Directory of Open Access Journals (Sweden)

    Emi Kondo

    2018-04-01

    Full Text Available To determine energy density for rapid weight loss (RWL of weight-classified sports, eight male elite wrestlers were instructed to lose 6% of body mass (BM within 53 h. Energy deficit during the RWL was calculated by subtracting total energy expenditure (TEE determined using the doubly labeled water method (DLW from energy intake (EI assessed with diet records. It was also estimated from body composition change estimated with the four-component model (4C and other conventional methods. BM decreased significantly by 4.7 ± 0.5 kg (6.4 ± 0.5%. Total body water loss was the major component of the BM loss (71.0 ± 7.6%. TEE was 9446 ± 1422 kcal, and EI was 2366 ± 1184 kcal during the RWL of 53-h; therefore, the energy deficit was 7080 ± 1525 kcal. Thus, energy density was 1507 ± 279 kcal/kg ∆BM during the RWL, comparable with values obtained using the 4C, three-component model, dual energy X-ray absorptiometry, and stable isotope dilution. Energy density for RWL of wrestlers is lower than that commonly used (7400 or 7700 kcal/kg ΔBM. Although RWL is not recommended, we propose that commonly practiced extreme energy restriction such as 7400 or 7700 kcal/kg ΔBM during RWL appears to be meaningless.

  15. Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride

    Science.gov (United States)

    Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick

    2017-09-01

    Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.

  16. Loss experience from natural phenomena hazards in the Department of Energy (50 years of natural phenomena hazard losses)

    International Nuclear Information System (INIS)

    Hill, J.R.

    1993-01-01

    This paper presents a historical prespective on losses due to natural hazard incidents (1943-1993) at Department of Energy (DOE) and predecessor agencies including the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA). This paper also demonstrates how an existing DOE resource can be used to gain valuable insight into injury or property damage incidents. That resource is the Computerized Accident/Incident Reporting System (CAIRS) module of DOE's Safety Performance Measurement System. CAIRS data selected the 1981-1991 DOE injury/illness reports, from all the accident reports of the AEC that cited a natural phenomena hazard as either the direct or indirect cause of the injury/property damage. Specifically, injury or property damage reports were selected for analysis if they had a causal factor link to severe weather or natural phenomena hazard categories. Natural phenomena hazard categories are injury/property damage caused by hurricane/tornado, earthquake, lightning, or flood. Severe weather categories are injury/property damage associated with other than normal weather conditions. The lessons learned, as a result of reviewing case histories, are presented, as are suggestions on how to reduce the likelihood of future injuries/property damage as a result of similar events. A significant finding, is that most injuries and property damage were the result of an indirect causal link to a natural phenomena hazard and thus, may be more preventable than previously thought possible. The primary message, however, is that CAIRS and other incident data bases are valuable resources and should be considered for use by those interested in identifying new ways of protecting the health and safety of the worker and for reducing building losses due to the effects of natural phenomena hazards

  17. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  18. Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber

    Science.gov (United States)

    Held, A. A.; Steduto, P.; Orgaz, F.; Matista, A.; Hsiao, T. C.

    1990-12-01

    This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration ( ET) and net CO2 flux ( NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns of NCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similar NCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes

  19. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  20. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  1. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H + and He + ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predictions and the experimental results, for a wide range of projectile energies and target characteristics. Firstly, we apply the theoretical procedure to calculate the stopping cross sections for H + and He + beams in foils of different allotropic forms of carbon (such as diamond, graphite, amorphous carbon, glassy carbon and C 60 -fullerite), as a function of the projectile energy. We take into account the electronic structure of the projectile, as well as the different charge states it can acquire, the energy loss associated to the electronic capture and loss processes, the polarization of the projectile, and a realistic description of the target. On the other hand, the simulation code is used to evaluate the energy distributions of swift H + and He + ion beams when traversing several foils of the above mentioned allotropic forms of carbon, in order to analyze the influence of the chemical and physical state of the target in the projectile energy loss. These allotropic effects are found to become more important around the maximum of the stopping cross-section

  2. Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime

    KAUST Repository

    Menke, S. Matthew; Ran, Niva A.; Bazan, Guillermo C.; Friend, Richard H.

    2017-01-01

    Reducing energy and voltage loss is an imperative area of improvement for the design of organic solar cells (OSCs). Both in the context of charge generation and charge recombination, significant amounts of energy are lost even in state-of-the-art OSCs compared with their inorganic counterparts. Through a set of recent examples, however, we show that (1) charge generation can proceed with high quantum efficiency even in the absence of an offset energy at the donor-acceptor interface and (2) non-radiative charge recombination may be mitigated by considering systems with distinct properties of the interfacial charge-transfer state. To capitalize on these recent advances in understanding, we provide three actionable paths forward that aim to better identify, process, and characterize low energy loss systems: incorporating consistent and accurate measurements for energy levels, moving away from photoluminescence quenching, and exploring blends with reduced miscibility.

  3. Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime

    KAUST Repository

    Menke, S. Matthew

    2017-10-19

    Reducing energy and voltage loss is an imperative area of improvement for the design of organic solar cells (OSCs). Both in the context of charge generation and charge recombination, significant amounts of energy are lost even in state-of-the-art OSCs compared with their inorganic counterparts. Through a set of recent examples, however, we show that (1) charge generation can proceed with high quantum efficiency even in the absence of an offset energy at the donor-acceptor interface and (2) non-radiative charge recombination may be mitigated by considering systems with distinct properties of the interfacial charge-transfer state. To capitalize on these recent advances in understanding, we provide three actionable paths forward that aim to better identify, process, and characterize low energy loss systems: incorporating consistent and accurate measurements for energy levels, moving away from photoluminescence quenching, and exploring blends with reduced miscibility.

  4. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D.; Chantler, C.T., E-mail: chantler@unimelb.edu.au

    2014-10-15

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques.

  5. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2014-01-01

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques

  6. How strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake

    Science.gov (United States)

    Polidori, David; Sanghvi, Arjun; Seeley, Randy; Hall, Kevin D.

    2016-01-01

    Objective To quantify the feedback control of energy intake in response to long-term covert manipulation of energy balance in free-living humans. Methods We used a validated mathematical method to calculate energy intake changes during a 52 week placebo-controlled trial in 153 patients treated with canagliflozin, a sodium glucose co-transporter inhibitor that increases urinary glucose excretion thereby resulting in weight loss without patients being directly aware of the energy deficit. We analyzed the relationship between the body weight time course and the calculated energy intake changes using principles from engineering control theory. Results We discovered that weight loss leads to a proportional increase in appetite resulting in eating above baseline by ~100 kcal/day per kg of lost weight – an amount more than 3-fold larger than the corresponding energy expenditure adaptations. Conclusions While energy expenditure adaptations are often thought to be the main reason for slowing of weight loss and subsequent regain, feedback control of energy intake plays an even larger role and helps explain why long-term maintenance of a reduced body weight is so difficult. PMID:27804272

  7. Jet suppression and the flavor dependence of partonic energy loss with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Tomas

    2016-12-15

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. One manifestation of the energy loss of jets propagating through the medium is a lower yield of jets and hadrons emerging from this medium than expected in the absence of medium effects. Therefore modifications of the jet yield are directly sensitive to the energy loss mechanism. Furthermore, jets with different flavor content are expected to be affected by the medium in different ways. In this publication, the latest ATLAS results on single hadron suppression along with the complementary measurements of single jet suppression are presented. Rapidity dependence, which is sensitive to the relative energy loss between quark and gluon jets, is discussed. Finally, a new measurement of jet fragmentation functions is presented.

  8. Energy loss of MeV protons specularly reflected from metal surfaces

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.; Echenique, P.M.

    1996-01-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. copyright 1996 The American Physical Society

  9. Prediction of transmission loss through an aircraft sidewall using statistical energy analysis

    Science.gov (United States)

    Ming, Ruisen; Sun, Jincai

    1989-06-01

    The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.

  10. Energy Level Tuning of Poly(phenylene-alt-dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells.

    Science.gov (United States)

    Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J

    2017-03-01

    Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.

  11. Laser field effects on the transport phenomena: Energy loss and stopping power

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.

    1990-01-01

    The energy loss method has been applied to a large variety of transport problems in optics, solid-state and fusion research. In these papers, however, the transport equations were linearized, so there are no multiphoton interaction. On the other hand, Bivona et al. (1982) [2] have shown that, for a one-component plasma, the strong field effects would be only of academic interest. On the basis of the center of mass approach [3], a generalization of the energy loss rate which is in accordance with the recent results of Arista et al. (1989) [4] is obtained. (Author)

  12. Vacuum ultra-violet and electron energy loss spectroscopy of gaseous and solid organic compounds

    International Nuclear Information System (INIS)

    Koch, E.E.; Otto, A.

    1976-01-01

    The experimental arrangements used by the authors for the study of optical vacuum ultra-violet and electron energy loss spectra of organic compounds are described and some theoretical aspects of studies of higher excited states are considered. Results for alkanes, benzene, naphthalene, anthracene and some more complex hydrocarbons are reviewed. Recent results obtained by reflection and electron energy loss spectroscopy for single crystals of anthracene are included and their relevance for gas phase work as well as for the understanding of exciton effects in organic solids is described. (author)

  13. Modelling of prompt losses of high energy charged particles in Tokamaks

    International Nuclear Information System (INIS)

    Dillner, Oe.; Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    A simple analytical expression for the total prompt loss fraction of high energy charged particles in an axisymmetric Tokamak is derived. The results are compared with predictions obtained from numerical simulations and show good agreement. An application is made to sawtooth induced changes in the losses of fusion generated high energy charged particles. Particular emphasis is given to the importance of sawtooth induced profile changes of the background ion densities and temperature as well as to redistribution of particles which have accumulated during the sawtooth rise but are being lost by redistribution at the sawtooth crash. (au)

  14. Characteristic electron energy losses in monoatomic antimony films on (110) and (112) tungsten faces

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Gorchinskij, A.D.; Shevlyakov, S.A.

    1981-01-01

    Complex investigations of antimony condensation on a monoatomical clean surface of tungsten monocrystals are carried out. The completion of a physical antimony monolayer has been controlled by the methods of Auger-electron spectroscopy and slow electron diffraction. It is shown that at submonolayer coatings a collectivization of valent electrons occurs leading to appearance of peaks of surface and volumetric plasmons in the energy losses spectrum. The anomalous cencentrational dependence of antimony ionization peak intensity has been found. The origin of previously unexplored peaks in the energy losses spectrum is discussed [ru

  15. Comparing energy loss and pperpendicular -broadening in perturbative QCD with strong coupling N=4 SYM theory

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen

    2008-01-01

    We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD

  16. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  17. More than 30 per cent energy savings possible with LEDs in gerbera : substantial energy savings and little loss in production

    NARCIS (Netherlands)

    Helm, van der F.P.M.

    2015-01-01

    By installing LED-lighting and limiting it to 80 instead of 100 μmol gerbera growers can save 30 per cent on energy without any great loss in production, according to research. Light integration and interlighting don’t yet deliver any savings.

  18. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  19. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Mitsuo, E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Rauhala, Eero [Department of Physics, University of Helsinki (Finland)

    2015-10-01

    Backscattering spectra for {sup 4}He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50–100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp ({sup 4}He, {sup 12}C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  20. Thermal energy storage and losses in a room-Trombe wall system located in Mexico

    International Nuclear Information System (INIS)

    Hernández-López, I.; Xamán, J.; Chávez, Y.; Hernández-Pérez, I.; Alvarado-Juárez, R.

    2016-01-01

    A thermal evaluation of a R-TW system (room with a Trombe wall) is presented. Hourly climatic data of the coldest and the warmest days of 2014 was used to assess the behavior of the R-TW in two cities of Mexico with cold climate (Huitzilac and Toluca). The simulations were done with an in-house code based on the Finite Volume Method. It was found that thermal energy losses through the semitransparent wall are about 60% of the solar radiation incident on the system (G_s_o_l). Despite of the thermal losses, the system gets enough energy to keep the air inside the room with a temperature above 35 °C. For both cities during the coldest day, the maximum energy stored is about 109 MJ and during the warmest day is about 70 MJ. This energy is supplied from the storage wall to the air inside the room during periods without insolation. - Highlights: • Thermal performance of a Room-Trombe Wall system was evaluated under two cold cities. • Thermal energy losses through the semitransparent wall were about 60% of the solar radiation incident of the system. • The maximum energy stored by the Trombe Wall was 109 MJ during the coldest day. • The maximum energy stored by the Trombe Wall was 70 MJ during the warmest day.

  1. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women.

    Science.gov (United States)

    Williams, Rebecca L; Wood, Lisa G; Collins, Clare E; Morgan, Philip J; Callister, Robin

    2016-06-01

    Sex differences in weight loss are often seen despite using the same weight loss program. There has been relatively little investigation of physiological influences on weight loss success in males and females, such as energy homeostasis and appetite regulating hormones. The aims were to 1) characterise baseline plasma leptin, ghrelin and adiponectin concentrations in overweight and obese males and females, and 2) determine whether baseline concentrations of these hormones predict weight loss in males and females. Subjects were overweight or obese (BMI 25-40 kg/m(2)) adults aged 18-60 years. Weight was measured at baseline, and after three and six months participation in a weight loss program. Baseline concentrations of leptin, adiponectin and ghrelin were determined by enzyme-linked immunosorbent assay (ELISA). An independent t-test or non-parametric equivalent was used to determine any differences between sex. Linear regression determined whether baseline hormone concentrations were predictors of six-month weight change. Females had significantly higher baseline concentrations of leptin, adiponectin and unacylated ghrelin as well as ratios of leptin:adiponectin and leptin:ghrelin. The ratio of acylated:unacylated ghrelin was significantly higher in males. In males and females, a higher baseline concentration of unacylated ghrelin predicted greater weight loss at six months. Additionally in females, higher baseline total ghrelin predicted greater weight loss and a higher ratio of leptin:ghrelin predicted weight gain at six months. A higher pre-weight-loss plasma concentration of unacylated ghrelin is a modest predictor of weight loss success in males and females, while a higher leptin:ghrelin ratio is a predictor of weight loss failure in females. Further investigation is required into what combinations and concentrations of these hormones are optimal for weight loss success. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  3. Energy reduction in buildings in temperate and tropic regions utilizing a heat loss measuring device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2012-01-01

    There exist two ordinary ways to obtain global energy efficiency. One way is to make improvements on the energy production and supply side, and the other way is, in general, to reduce the consume of energy in the society. This paper has focus on the latter and especially the consume of energy...... for heating up, and cooling down our houses. There is a huge energy saving potential on this area reducing both the World climate problems and economy challenges as well. Heating of buildings in Denmark counts for approximately 40% of the entire national energy consume. Of this reason a reduction of heat...... losses from building envelopes are of great impor­tance in order to reach the Bologna CO2-emission reduction goals. Energy renovation of buildings is a topic of huge focus around the world these years. Not only expenses for heating in the tempered and arctic regions are of importance, but also expenses...

  4. WE-NET substask 3. Conceptual design of total system (Safety measures and evaluation techniques); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 3. Zentai system gainen sekkei anzen taisaku hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work) in fiscal 1998, researches and studies were conducted to clearly define safety designs and to improve on accident-and-safety analyses. In relation with system safety design, investigations continued into Japanese and foreign manuals and regulations about the handling of hydrogen and its peripherals, and safe design guidelines (draft) were compiled. Anomalies and accidents supposed to be typical of each of the systems concerned were investigated. As for accident-and-safety analyses, incorporation of a turbulence model was studied in relation to models representing the leak, evaporation, and diffusion of liquid hydrogen, and improvement was achieved when the scope of evaluation was enlarged concerning the hydrogen detonation model. The integration of the two models was discussed for the due evaluation of a series of processes of liquid hydrogen leak, evaporation, diffusion, and detonation. Calculation was performed for two assumed accidents, and the results were found to justify the integration of the two models. (NEDO)

  5. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Science.gov (United States)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  6. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  7. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  8. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  9. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  10. Petri Nets

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE ... In Part 1 of this two-part article, we have seen im- ..... mable logic controller and VLSI arrays, office automation systems, workflow management systems, ... complex discrete event and real-time systems; and Petri nets.

  11. A precise measurement of 180 GeV muon energy losses in iron

    Czech Academy of Sciences Publication Activity Database

    Amaral, P.; Amorim, A.; Davídek, T.; Krivková, P.; Leitner, R.; Lokajíček, Miloš; Němeček, Stanislav; Suk, M.; Valkar, S.; Zaitsev, A.

    2001-01-01

    Roč. 20, - (2001), s. 487-495 ISSN 1434-6044 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : energy loss spectrum * muons * hadron Tile calorimeter * CERN SPS * production of electron-positron pairs * energetic knock-on elecktrons * ion elastic form factor correction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.194, year: 2001

  12. Energy losses (gains) of massive coloured particles in stochastic colour medium

    International Nuclear Information System (INIS)

    Leonidov, A.; Rossijskaya Akademiya Nauk, Moscow

    1995-01-01

    The propagation of massive coloured particles in stochastic background chromoelectric field is studied using the semiclassical equations of motion. Depending on the nature of the stochastic background we obtain the formulae for the energy losses of heavy coloured projectile in nonperturbative hadronic medium and for the energy gains in the stochastic field present, e.g., in the turbulent plasma. The result appears to be significantly dependent on the form of the correlation function of stochastic external field. (orig.)

  13. Electron-energy-loss spectral library and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1983-09-01

    An electron energy loss spectral library can be an invaluable tool in materials research from a fundamental as well as a practical standpoint. Although it will not alleviate all the complications associated with quantification, this type of library can help to elucidate details of spectral profiles previously found intractable. This work was supported by the US Department of Energy. The author also wishes to express his gratitude to the organizing committee for partial financial support provided to attend this meeting.

  14. Fusion-product energy loss in inertial confinement fusion plasmas with applications to target burns

    International Nuclear Information System (INIS)

    Harris, D.B.; Miley, G.H.

    1984-01-01

    Inertial confinement fusion (ICF) has been proposed as a competitor to magnetic fusion in the drive towards energy production, but ICF target performance still contains many uncertainties. One such area is the energy-loss rate of fusion products. This situation is due in part to the unique plasma parameters encountered in ICF plasmas which are compressed to more than one-thousand times solid density. The work presented here investigates three aspects of this uncertainty

  15. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  16. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    Science.gov (United States)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  17. Extended defect related energy loss in CVD diamond revealed by spectrum imaging in a dedicated STEM

    International Nuclear Information System (INIS)

    Bangert, U.; Harvey, A.J.; Schreck, M.; Hoermann, F.

    2005-01-01

    This article aims at investigations of the low EEL region in the wide band gap system diamond. The advent of the UHV Enfina electron energy loss spectrometer combined with Digital Micrograph acquisition and processing software has made reliable detection of absorption losses below 10 eV possible. Incorporated into a dedicated STEM this instrumentation allows the acquisition of spectral information via spectrum maps (spectrum imaging) of sample areas hundreds of nanometers across, with nanometers pixel sizes, adequate spectrum statistics and 0.3 eV energy resolution, in direct correlation with microstructural features in the mapping area. We aim at discerning defect related losses at band gap energies, and discuss different routes to simultaneously process and analyse the spectra in a map. This involves extracting the zero loss peak from each spectrum and constructing ratio maps from the intensities in two energy windows, one defect related and one at a higher, crystal bandstructure dominated energy. This was applied to the residual spectrum maps and their first derivatives. Secondly, guided by theoretical EEL spectra calculations, the low loss spectra were fitted by a series of gaussian distributions. Pixel maps were constructed from amplitude ratios of gaussians, situated in the defect and the unaffected energy regime. The results demonstrate the existence of sp 2 -bonded carbon in the vicinity of stacking faults and partial dislocations in CVD diamond as well as additional states below conduction band, tailing deep into the band gap, at a node in a perfect dislocation. Calculated EEL spectra of shuffle dislocations give similar absorption features at 5-8 eV, and it is thought that this common feature is due to sp 2 -type bonding

  18. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  19. Polarization correction in the theory of energy losses by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  20. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    Science.gov (United States)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  1. Two types of charge transfer excitations in low dimensional cuprates: an electron energy-loss study

    Czech Academy of Sciences Publication Activity Database

    Knupfer, M.; Fink, J.; Drechsler, S.-L.; Hayn, R.; Málek, Jiří; Moskvin, A.S.

    137-140, - (2004), s. 469-473 ISSN 0368-2048 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprates * electronic excitations * electron energy-loss spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.069, year: 2004

  2. Estimation of the energy loss at the blades in rowing: common assumptions revisited

    NARCIS (Netherlands)

    Hofmijster, M.J.; de Koning, J.J.; van Soest, A.J.

    2010-01-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the

  3. STIM with energy loss contrast: An imaging modality unique to MeV ions

    International Nuclear Information System (INIS)

    Lefevre, H.W.; Schofield, R.M.S.; Bench, G.S.; Legge, G.J.F.

    1991-01-01

    Scanning transmission ion microscopy (STIM) through measurement of energy loss of individual ions is a quantitative imaging technique with several unique capabilities. The uniqueness derives conjointly from the large penetration with small scattering of MeV ions in low-Z specimens, from the simple relationship between energy loss and projected or areal density, and from the almost 100% efficiency with which one obtains pixel data from individual ions. Since contrast is in energy loss and not in numbers of events, the statistics of energy loss straggling affects the image but the statistics of counting does not. Small scattering makes it possible to observe details within transparent specimens. High efficiency makes it possible to collect large data sets for computed tomography, stereo, or high-definition imaging with a small radiation dose. High efficiency allows one to minimize aberrations by use of small apertures, to achieve good precision in the determination of areal density, or even to image live biological specimens in air since only one or a few ions per pixel are required. This paper includes a bibliography on STIM with MeV ions, it discusses the accuracy that one can achieve in the areal density coloring of a pixel with data from one or a few ions, and it supplements that review with recent examples from the Melbourne and the Eugene microprobes. (orig.)

  4. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sands, M; Rees, J.; /SLAC

    2016-12-19

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called "cavity radiation". The proposed method is analyzed in some detail.

  5. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  6. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, D.S.; Yang, G.; Zhao, Y.Q.

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...

  7. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix

    Czech Academy of Sciences Publication Activity Database

    Granja, C.; Krist, Pavel; Chvátil, David; Šolc, J.; Pospíšil, S.; Jakubek, J.; Opalka, L.

    2013-01-01

    Roč. 59, DEC (2013), s. 245-261 ISSN 1350-4487 Institutional support: RVO:61389005 Keywords : interaction of radiation with matter * dE/dx detectors * particle tracking detectors * hybrid pixel detectors * active nuclear emulsion * energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.140, year: 2013

  8. Estimation of the energy loss at the blades in rowing: common assumptions revisited.

    Science.gov (United States)

    Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J

    2010-08-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.

  9. Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Loarte, A.

    2005-01-01

    In this paper we analyse and discuss the thermal energy loss dynamics before and during JET disruptions that occurred between 2002 and 2004 in discharges which reached >4.5 MJ of thermal energy. We observe the slow thermal energy transients with diamagnetic loops and the fast ones with electron cyclotron emission and soft x-ray diagnostics. For most disruption types in JET, the plasma thermal energy at the time of the thermal quench is substantially less than that of the full performance plasma, typically in the range of 10-50% depending on plasma conditions and disruption type. The exceptions to this observation are disruptions in plasmas with a strong internal transport barrier (ITB) and in discharges terminating in a pure vertical displacement event, in which the plasma conserves a very high energy content up to the thermal quench. These disruption types are very sudden, leaving little scope for the combined action of soft plasma landing strategies and intrinsic performance degradation, both requiring >500 ms to be effective, to decrease the available thermal energy. The characteristic time for the loss of energy from the main plasma towards the PFCs in the thermal quench of JET disruptions is in the range 0.05-3.0 ms. The shortest timescales are typical of disruptions caused by excessive pressure peaking in ITB discharges. The available thermal energy fraction and thermal quench duration observed in JET can be processed (with due caution) into estimates for the projected PFC lifetime of the ITER target

  10. Probing medium-induced jet splitting and energy loss in heavy-ion collisions

    Science.gov (United States)

    Chang, Ning-Bo; Cao, Shanshan; Qin, Guang-You

    2018-06-01

    The nuclear modification of jet splitting in relativistic heavy-ion collisions at RHIC and the LHC energies is studied based on the higher twist formalism. Assuming coherent energy loss for the two splitted subjets, a non-monotonic jet energy dependence is found for the nuclear modification of jet splitting function: strongest modification at intermediate jet energies whereas weaker modification for larger or smaller jet energies. Combined with the smaller size and lower density of the QGP medium at RHIC than at the LHC, this helps to understand the groomed jet measurements from CMS and STAR Collaborations: strong modification of the momentum sharing zg distribution at the LHC and no obvious modification of zg distribution at RHIC. In addition, the observed nuclear modification pattern of the groomed jet zg distribution cannot be explained solely by independent energy loss of the two subjets. Our result may be tested in future measurements of groomed jets with lower jet energies at the LHC and larger jet energies at RHIC, for different angular separations between the two subjets.

  11. Where do the main losses of energy resources occur - at the point of consumption or at the point of production?

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Alexander

    2010-09-15

    This is an opinion of an independent consultant about key sources of energy losses. It differentiates from the one commonly accepted. The main loser of energy is an energy sector - producers of energy and the distribution networks, responsible for transporting of energy, not the housing and the transportation sector. This opinion is based on the GCE Group's experience. The author proposes to focus the work to reduce energy losses on increasing the energy efficiency of energy sector, not on the end consumer. This will allow to reduce the cost of energy unit production and to reduce greenhouse gas emissions.

  12. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  13. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

    2010-01-01

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10 5 e/nm 2 despite the fact that observable damage begins at doses as low as 10 3 e/nm 2 . The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  14. Effect of Diet Composition on Energy Expenditure during Weight Loss: The POUNDS LOST Study

    Science.gov (United States)

    Bray, George A.; Smith, Steven R.; DeJonge, Lilian; de Souza, Russell; Rood, Jennifer; Champagne, Catherine M.; Laranjo, Nancy; Carey, Vincent; Obarzanek, Eva; Loria, Catherine M.; Anton, Stephen D.; Ryan, Donna H.; Greenway, Frank L.; Williamson, Donald; Sacks, Frank M.

    2011-01-01

    Background Weight loss reduces energy expenditure, but the contribution of different macronutrients to this change is unclear. Hypothesis We tested the hypothesis that macronutrient composition of the diet might affect the partitioning of energy expenditure during weight loss. Design A sub-study of 99 participants from the POUNDS LOST trial had total energy expenditure (TEE) measured by doubly labeled water and resting energy expenditure (REE) measured by indirect calorimetry at baseline and repeated at 6 months in 89 participants. Participants were randomly assigned to one of 4 diets with either 15% or 25% protein and 20% or 40% fat. Results TEE and REE were positively correlated with each other and with fat free mass and body fat, at baseline and 6 months. The average weight loss of 8.1±0.65 kg (LSmean±SE) reduced TEE by 120±56 kcal/d and REE by 136±18 kcal/d. A greater weight loss at 6 months was associated with a greater decrease in TEE and REE. Participants eating the high fat diet lost significantly more fat free mass (1.52±0.55 kg) than the low fat diet group (p<0.05). Participants eating the low fat diet had significantly higher measures of physical activity than the high fat group. Conclusion A greater weight loss was associated with a larger decrease in both TEE and REE. The low fat diet was associated with significant changes in fat free body mass and energy expenditure from physical activity compared to the high fat diet. PMID:21946707

  15. The energy legal net access in judicial and trust-official practice; Der energierechtliche Netzzugang in der gerichtlichen und kartellbehoerdlichen Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Henrichs, K.

    2005-07-01

    The author of the contribution under consideration reports on the energy legal net access in judicial and trust-official practice. At first, the fundamentals and conditions of the paragraph (paragraph) 6 sect. 1 of the Energy Economy Act (EnWG) are described more exactly, whereby contents, the nature of right, and the actual conditions of the claims of transmission are considered. The possibility of the denial of transmission forms the emphasis in accordance with paragraph 6 section 1 of EnWG. Furthermore, the author reports on the cartel law regulation paragraph 19 IV No. 4 GWB (German Antitrust Act), a basis for the patents of transmission. Finally, the author reports on the procedural problems in connection with the net access. The matters of procedure form a substantial key with the desire of transmission.

  16. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  17. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  18. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy

    CERN Document Server

    Brydson, R; Brown, A

    2003-01-01

    We briefly outline the factors determining the intrinsic widths of features in electron energy loss near edge structure (ELNES) measured by electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). We have made estimates of the differing contributions of both the initial and final state lifetime effects in the ELNES ionisation processes and also show how these may be combined with the instrumental energy resolution. We discuss the potential benefits of source monochromation for ELNES measurements via a comparison of these theoretical estimates with experimental spectra from the literature. We show that for certain core level excitations, solid state broadening mechanisms may be the fundamental limiting factor for resolving fine detail in ELNES. (orig.)

  19. Study of the radiated energy loss during massive gas injection mitigated disruptions on EAST

    Science.gov (United States)

    Duan, Y. M.; Hao, Z. K.; Hu, L. Q.; Wang, L.; Xu, P.; Xu, L. Q.; Zhuang, H. D.; EAST Team

    2015-08-01

    The MGI mitigated disruption experiments were carried out on EAST with a new fast gas controlling valve in 2012. Different amounts of noble gas He or mixed gas of 99% He + 1% Ar are injected into plasma in current flat-top phase and current ramp-down phase separately. The initial results of MGI experiments are described. The MGI system and the radiation measurement system are briefly introduced. The characteristics of radiation distribution and radiation energy loss are analyzed. About 50% of the stored thermal energy Wdia is dissipated by radiation during the entire disruption process and the impurities of C and Li from the PFC play important roles to radiative energy loss. The amount of the gas can affect the pre-TQ phase. Strong poloidal asymmetry of radiation begins to appear in the CQ phase, which is possibly caused by the plasma configuration changes as a result of VDE. No toroidal radiation asymmetry is observed presently.

  20. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.