WorldWideScience

Sample records for net energy greenhouse

  1. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-01-01

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies

  2. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    NARCIS (Netherlands)

    Louwen, Atse|info:eu-repo/dai/nl/375268456; Van Sark, Wilfried G J H M|info:eu-repo/dai/nl/074628526; Faaij, André P C; Schropp, Ruud E I|info:eu-repo/dai/nl/072502584

    2016-01-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We

  3. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reductions?

    International Nuclear Information System (INIS)

    Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J.; Gyldenkaerne, S.; Hermansen, J.E.

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: → GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. → Effects of measures to further reduce GHG emissions are listed. → Land use scenarios for a substantially reduced GHG emission by 2050 are presented. → A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. → Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO 2 reductions for Danish agriculture by 2050, sustaining current food production.

  4. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  5. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reduction?

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Olesen, Jørgen E; Petersen, Søren O

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG e...

  6. Greenhouse and Energy

    International Nuclear Information System (INIS)

    Swaine, D.J.

    1990-01-01

    The book is based on papers at the conference held at Macquarie University, Australia, in December 1989. The topics include energy aspects of the greenhouse effect, effects of reduction of carbon dioxide, methane emissions, sources of energy production, various aspects of electricity, liquid building, new technology, energy management and environmental and sociological aspects. Whilist the emphasis is on Australian conditions, the approaches are of relevance to other countries. Contains lists of referees and participants. Twenty-three papers have been separately indexed

  7. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  8. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  9. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  10. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  11. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  12. Energy conserving dehumidification of greenhouses

    NARCIS (Netherlands)

    Zwart, de H.F.

    2014-01-01

    As greenhouses become better insulated and increasingly airtight, the humidity of the inside air rises easily and may become unfavourably high. Therefore, most greenhouses frequently open their vents to remove the moisture excess. When heated, opening the vents will increase the energy consumption.

  13. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO{sub 2} reductions?

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, T., E-mail: tommy.dalgaard@agrsci.dk [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Gyldenkaerne, S. [Aarhus University, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Hermansen, J.E. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark)

    2011-11-15

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: > GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. > Effects of measures to further reduce GHG emissions are listed. > Land use scenarios for a substantially reduced GHG emission by 2050 are presented. > A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. > Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO{sub 2} reductions for Danish agriculture by 2050, sustaining current food production.

  14. Net greenhouse gas emissions at Eastmain-1 reservoir, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Alain; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul; Demarty, Maud; Garneau, Michelle; Helie, Jean-Francois; Pelletier, Luc; Prairie, Yves; Roulet, Nigel; Strachan, Ian; Teodoru, Cristian

    2010-09-15

    The growing concern regarding the long-term contribution of freshwater reservoirs to atmospheric greenhouse gases (GHG), led Hydro-Quebec, to study net GHG emissions from Eastmain 1 reservoir, which are the emissions related to the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period. This large study was realized in collaboration with University du Quebec a Montreal, McGill University and Environnement IIlimite Inc. This is a world premiere and the net GHG emissions of EM-1 will be presented in details.

  15. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  16. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  17. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  18. Greenhouse energy consumption

    Science.gov (United States)

    Eric van Steenis

    2009-01-01

    Depending on location and luck, natural gas rates have gone from less that CAN$ 3.00 to more than CAN$ 20.00/gigajoule (Gj). Natural gas rates are currently around CAN$ 13.00/Gj, although industry "analysts" predict an increase. A gigajoule is equivalent to the energy released by the combustion of approximately 30 L (8 gal) of gasoline. It is also equivalent...

  19. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  20. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.

  1. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  2. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  3. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  4. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  5. The net greenhouse warming forcing of methanol produced from biomass

    International Nuclear Information System (INIS)

    Ellington, R.T.; Meo, M.; El-Sayed, D.A.

    1993-01-01

    Recent national and international actions regarding atmosphere warming mitigation, clean technology, and technology transfer have emphasized the need for a method for unambiguous greenhouse gas emissions analysis for comparing technologies, documentation of application of the method, and proof of applicability. We have developed and applied such an approach to production of methanol fuel from woody biomass. The system was defined, its emission for its entire lifetime delineated, and the atmospheric warming forcing calculated for that lifetime plus after effects. The results are presented with materials and energy balances including ancillary equipment, external energy subsidies and invested quantities. These extend the analysis considerably beyond those possible using the global warming potential (GWP). For wood input of 283 mg day -1 , 70 mg of methanol are produced. System carbon dioxide emissions are 3.18 tonne/tonne methanol produced, with another 1.37 mg emitted when that tonne methanol is burned in a vehicle. System energy usage efficiency was 41.2%, and 41.1% with inclusion of energy to construct the system. In essence, more than two Joules of carbon must be produced in wood for every Joule burned in the vehicle. (author)

  6. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  7. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  8. Global greenhouse and energy situation and outlook

    International Nuclear Information System (INIS)

    Allen, R.W.; Clively, S.R.; Tilley, J.W.

    1990-01-01

    Fossil fuels provide the basis for world energy usage and, in the absence of fundamental policy changes, are expected to continue to do so for the next few decades. However, the prospect of global warming due to the greenhouse effect will have profound implications for the use of energy. This paper outlines the current situation and trends in world energy use, with a focus on energy requirements by region and fuel. Implications for greenhouse gas emissions and greenhouse policy challenges are also discussed. 8 refs., 1 tab., 2 figs

  9. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  10. The nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Marignac, Y.; Legrand, V.

    2003-01-01

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  11. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  12. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  13. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  14. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  15. Army Net Zero Prove Out. Net Zero Energy Best Practices

    Science.gov (United States)

    2014-11-18

    recovery and cogeneration opportunities, offsetting the remaining demand with the production of renewable energy from onsite sources so that the Net...implementing energy recovery and cogeneration opportunities, and then offsetting the remaining demand with the production of renewable energy from on-site...they impact overall energy performance. The use of energy modeling in the design stage provides insights that can contribute to more effective design

  16. The solar greenhouse: a survey of energy saving methods

    NARCIS (Netherlands)

    Saye, A.; Loon, van W.K.P.; Bot, G.P.A.; Zwart, de H.F.

    2000-01-01

    The solar greenhouse project is aimed at the development of a greenhouse concept for the Netherlands with zero-fossil energy consumption. The solar greenhouse is formulated as a combination of a low energy demand greenhouse, an energy recovery installation and an energy storage facility. In this

  17. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  18. Development of concepts for a zero-fossil-energy greenhouse

    NARCIS (Netherlands)

    Ooster, A. van 't; Henten, E.J. van; Janssen, E.G.O.N.; Bot, G.P.A.; Dekker, E.

    2008-01-01

    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The

  19. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  20. Ozone depletion, greenhouse effect and atomic energy

    International Nuclear Information System (INIS)

    Adzersen, K.H.

    1991-01-01

    After describing the causes and effects of ozone depletion and the greenhouse effect, the author discusses the alternative offered by the nuclear industry. In his opinion, a worldwide energy strategy of risk minimisation will not be possible unless efficient energy use is introduced immediately, efficiently and on a reliable basis. Atomic energy is not viewed as an acceptable means of preventing the threatening climate change. (DG) [de

  1. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  2. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  3. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  4. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  5. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  6. The greenhouse effect and nuclear energy

    International Nuclear Information System (INIS)

    Coulter, J.

    1988-01-01

    The author argues that nuclear power will do little to mitigate the problem of the greenhouse effect and is likely to exacerbate it. Changes since the mid 1970s illustrate the close linking of nuclear and economic growth with the associated growth of fossil fill consumption, the inability of nuclear power to substitute for fossil either technically or economically, and the greater contribution that can be made to energy availability and to reduction of carbon dioxide release by conservation

  7. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  8. Modeling GHG emission and energy consumption in selected greenhouses in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, SH.; Khoshnevisan, B. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2013-07-01

    It is crucial to determine energy efficiency and environmental effects of greenhouse productions. Such study can be a viable solution in probing challenges and existing defects. The aims of this study were to analyze energy consumption and greenhouse gas (GHG) emissions for pepper production using biological method inside greenhouses which used natural gas (NG) heating system in Esfahan province. Data were collected from 22 greenhouse holders using a face to face questionnaire method, in 2010-2011. Also, functional area was selected 1000 m2. Total energy input, total energy output, energy ratio, energy productivity, specific energy, net energy gain and total GHG emissions were calculated as 297799.9 MJ area-1, 3851.84 MJ area-1, 0.013, 0.016 kg MJ-1, 61.85 MJ kg-1, -293948 MJ area-1 and 14390.85 kg CO2 equivalent area-1, respectively. Result revealed that replacing diesel fuel with NG will not be an effective way of reducing energy consumption for greenhouse production. However, it is crucial to focus on energy management in order to enhance the energy and environmental indices. One way to supply adequate input energy and a reduction in GHG emissions is the utilization of renewable and clean energy sources instead of NG and diesel fuel. Also, it is suggested to adopt solar greenhouses in the region and to supply electricity from non-fossil sources seriously.

  9. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  10. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  11. Zero Net Energy Myths and Modes of Thought

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  12. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  13. Energy and the greenhouse effect. Answers to 60 questions

    International Nuclear Information System (INIS)

    Visser, H.; De Wolff, J.J.; Folkert, R.J.M.; Hoekstra, J.; Ruijgrok, W.; Stortelder, B.J.M.; Vosbeek, M.E.J.P.; Ruiter, J.P.

    1997-11-01

    The aim of this report is to clarify the complex interaction between the greenhouse effect and the energy sector in the Netherlands, focusing on the future of the energy supply and how changes in policies with respect to energy consumption can influence climatic change. The relation between energy sector and greenhouse effect is dealt with on the basis of 60 questions on the greenhouse effect, emission of greenhouse gases and energy scenarios, and concise answers. Calculations of consequences of future scenarios for the climate are executed by means of the KEMA-developed integrated scenario model for climatic change DIALOOG. 27 refs

  14. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  15. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  16. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  17. The greenhouse effect: A new source of energy

    International Nuclear Information System (INIS)

    Meunier, Francis

    2007-01-01

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy

  18. The greenhouse effect: A new source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Francis [CNAM-IFFI (EA 21), 292 rue Saint Martin, 75141 Paris (France)]. E-mail: meunierf@cnam.fr

    2007-02-15

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy.

  19. Net farm income and land use under a U.S. greenhouse gas cap and trade

    Science.gov (United States)

    Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam. Daigneault

    2010-01-01

    During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...

  20. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran

    International Nuclear Information System (INIS)

    Banaeian, Narges; Omid, Mahmoud; Ahmadi, Hojat

    2011-01-01

    The aims of this study were to determine energy use pattern, to investigate the energy use efficiency, and to make an economical analysis in greenhouse strawberry production in Iran. Data used in this study were obtained from 25 greenhouse strawberry growers using a face to face questionnaire method. The results indicate that greenhouse strawberry production consumed a total energy of 121891.33 MJ ha -1 . About 78% of this was generated by diesel fuel, 10% from chemical fertilizers, and 4.5% from electricity. Energy ratio, specific energy, net energy and energy intensiveness of greenhouse strawberry production were 0.15, 12.55 MJ kg -1 , -683488.37 MJ ha -1 and 8.18 MJ $ -1 , respectively. Determination of the efficient allocation of energy resources were modeled by Cobb-Douglas production function. Econometric model evaluation showed the impact of human labor, fertilizers, installation of equipment and transportation costs for strawberry production were all significant at 1% level. The elasticity estimates indicated that among the cost inputs, transportation is the most important input (-0.75) that influences total cost of production, followed by labor (0.31), fertilizers (0.18) and installation of equipments (0.22). The benefit-cost ratio and net return were obtained as 1.74 and 151907.91 $ ha -1 , respectively.

  1. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  2. Net-Zero Energy Technical Shelter

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    Technical shelters are the basic structures for storing electronic and technical equipment, and commonly used for telecommunication base station, windmill, gas station, etc. Due to their high internal heat load density and special operation schedule, they consume more energy than normal residential...... or commercial buildings. On the other hand, it is a big challenge to power the technical shelter in remote area where the grids are either not available or the expansion of grid is expensive. In order to minimize the energy consumption and obtain a reliable and cost-efficient power solution for technical...... shelter, this study will apply the net-zero energy concept into the technical shelter design. The energy conservation can be achieved by proper design of building envelop and optimization of the cooling strategies. Both experiments and numerical simulations are carried out to investigate the indoor...

  3. Energy, environment and economics: greenhouse policy in the balance

    International Nuclear Information System (INIS)

    Wilkenfeld, G.L.

    1990-01-01

    Taking New South Wales as a case study, this paper reviews the government's major economic and environmental concerns, and analyses how they bear on energy and greenhouse policy options. The government's economic strategy emphasises the continuing importance of primary resources, minerals processing and energy-intensive manufacturing, where the State is perceived to have a competitive advantage because of its extensive coal resources. The implications of these trends for the energy utilities and for greenhouse energy policy are analysed. 22 refs., 1 tab

  4. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  5. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  6. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  7. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  8. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  9. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  10. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies

    International Nuclear Information System (INIS)

    Huang, Jianxiong; Chen, Yuanquan; Sui, Peng; Gao, Wansheng

    2013-01-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (− 1315 kg CO 2 −eq ha −1 ), whereas maize–soybean intercropping (MS) was a sink (107 kg CO 2 −eq ha −1 ). When estimated by the soil-based approach, both cropping systems were sources (− 3410 for M and − 2638 kg CO 2 −eq ha −1 for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO 2 −eq ha −1 , respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: − 3533 for MP and − 2241 kg CO 2 −eq ha −1 for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in agricultural systems. - Highlights: • Net greenhouse gas balance (NGHGB) of

  11. greenhouse gaseous emission and energy analysis in rice ...

    African Journals Online (AJOL)

    ACSS

    Agriculture in Africa is associated with low food production. The attempt ... objective of this study was to assess greenhouse gas (GHG) emissions and energy impacts of rice production in. Ghana. .... Assessment (LCA) techniques, tropical rice.

  12. Energy productivity growth in the Dutch Greenhouse Industry

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Ondersteijn, C.J.M.

    2006-01-01

    Profitability of Dutch greenhouse firms is largely dependent on energy costs, and policy makers focus on reducing the use of energy by these firms. This article uses Russell measures of TE to develop indicators of energy productivity growth. Results show that energy productivity grew by 2.8%

  13. Energy saving in greenhouses can be obtained by energy balance-controlled screens

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, N. E. (Univ. of Aarhus, Faculty of Agricultural Sciences, Dept. of Horticulture, Aarslev (Denmark)), e-mail: niels.andersson@agrsci.dk

    2011-03-15

    The energy screens in two greenhouses, one clad with double acrylic and one with single glass, were controlled by an energy balance model. The parameters in the model were heat transmission coefficients, air temperature in the greenhouse and outdoors, irradiance and a single constant for the solar energy efficiency. The energy consumption, screen movements and daily light integral were compared with a glass greenhouse in which the energy screens were controlled by irradiance. In the greenhouse with light-controlled screens the set point for opening and closing of the screens was 5 Wm-2. The energy-saving screens controlled by the energy balance model opened later and closed earlier than in the greenhouse with light-controlled screens. When using the energy balance model the energy saving was 14% for the glass greenhouse and 41% for the double acrylic greenhouse compared with the glass greenhouse with light-controlled screens. The air temperature was on average similar in the three greenhouses, but when the screens were controlled by energy balance the daily light integral was approximately 10% lower and the number of hours the screens were closed was prolonged with 35% for the glass-covered greenhouse and 25% for the double acrylic-covered greenhouse compared with the greenhouse with light-controlled screens. Energy peaks in connection with operation of the screens were not reduced. During the experiment Begonia elatior, Dendranthema grandiflora (Chrysanthemum), Hedera helix, Helianthus annuus, Gerbera jamesonii and Kalanchoe blossfeldiana were grown in the greenhouses. There was a trend in prolongation of the production time when the plants were grown in the glass greenhouse with energy balance control of the screens. A lower number of flowers or inflorescences were observed for some of the plant species produced in the greenhouses with energy balance-controlled screens

  14. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    based on the information provided by other authors resulted in 2406 kg CO{sub 2}e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO{sub 2}e/MJ. Thus, avoided life cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. (author)

  15. Energy-WEB. Greenhouse sector in a sustainable regional energy network. Starting paper

    International Nuclear Information System (INIS)

    Van Liere, J.; Van Wunnik, A.W.M.; Van der Burgt, M.J.; Van Oosten, H.J.

    2004-08-01

    The horticulture sector can make use of surplus heat, produced within the greenhouses, and supply the heat to several energy consuming parties (other greenhouse businesses, buildings, etc.). Thus, a local or regional web of suppliers and consumers starts. This report is a starting memo which should inspire the debate on a sustainable energy supply for the greenhouse sector in the Netherlands [nl

  16. The greenhouse effect and energy efficiency: some facts and figures

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Human activities are changing the composition of the atmosphere. In particular the burning of fossil fuels emits carbon dioxide, one of the so-called ''greenhouse gases'' that help maintain the Earth's surface at a temperature suitable for life. They transmit incoming sunlight but trap outgoing radiated heat. Levels of greenhouse gases are increasing, giving rise to concern that the world may warm further, leading to climate change. Energy efficiency can make an important contribution to controlling the greenhouse effect, and brings further benefits for industry and commerce through cost savings. 17 figs

  17. Comparisons of micrometeorology, growth of leather-fern [Rumohra adiantiformis, pteridophyta] and comfortable working environment between PO-film-covered and net-covered greenhouses in summer

    International Nuclear Information System (INIS)

    Yokoyama, H.; Harazono, Y.

    2004-01-01

    Protected cultivation of leather-fern in Hachijo-Island has been urged to prevent the Mottled Yellowing Syndrome (MYS) damage and to reduce the production costs. The purpose of the study was to reveal greenhouse environments that would provide good plant growth, a comfortable working environment and low-cost management, by comparing the micrometeorology and leatherfern productivity between Poly-Olefin (PO) film-covered greenhouses and the conventional netcovered greenhouses. Both greenhouses were fully covered by the same net. Field studies of leather-fern cultivation in Hachijo-Island showed that better productivity and quality of leather-fern have been provided by farmer's net-covered greenhouses than by farmer's PO-covered greenhouses. The light transmittance in the net-covered greenhouse was higher and the air temperature was lower than those in the PO-covered greenhouse. The comparative experiments using PO-covered greenhouses (PO), and net-covered greenhouses (NET), were conducted at the Hachijojima Horticultural Research Center. Air temperature and its vertical gradient in NET were lower than those in PO. Irrigation in PO was 225 mm during August and September in 1999, but 507 mm of precipitation in addition to the irrigation was supplied in NET. Air temperature and its vertical gradient in PO increased with solar radiation increase. Heat disorder in working environments for farmers did not occur in the NET, but several warning hours of heat disorder occurred in the PO as a dangerous working environment. The NET was thought to be a better system of leather-fern cultivation bringing about low costs and comfortable working environments. However, further application of fully rolled-up PO-film greenhouse system was recommended to control the soil water condition

  18. A quantitative assessment of the determinants of the net energy value of biofuels

    International Nuclear Information System (INIS)

    Bureau, Jean-Christophe; Disdier, Anne-Celia; Gauroy, Christine; Treguer, David

    2010-01-01

    Many studies have investigated the net energy balance of biofuel products (in terms of savings on fossil fuels) and assessed the reductions in greenhouse gas emissions from substituting biofuels for fossil fuel. These studies provide very different results, with net balance ranging from highly positive to negative. Our study analyses a large sample of these studies by retrieving the main parameters used and converting them into units of measurement that are comparable. This information is used to unravel the main determinants of the differences in net energy value across studies. Our approach relies on descriptive statistics and econometric estimates based on a meta-analysis methodology. Our results suggest that the large variability across studies can be explained by the degree to which particular inputs (i.e. nitrogen, farm labor) are controlled for, and the way fossil energy consumption is allocated to the various co-products.

  19. The role of nuclear energy in mitigating greenhouse warming

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    A behavioral, top-down, forced-equilibrium market model of long-term (∼ 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately

  20. Radiation and energy balance of lettuce culture inside a polyethylene greenhouse

    International Nuclear Information System (INIS)

    Frisina, V. de A.; Escobedo, J.F.

    1999-01-01

    The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mm) and in an external area, both areas with 35 m 2 . Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K↓) and reflected (K) radiations showed that the average transmission of global radiation (K↓in / K↓ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (Kin / Kex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K↓), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K↓) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G. (author) [pt

  1. Energy and greenhouse effect. Twelve short notes

    International Nuclear Information System (INIS)

    Prevot, Henri

    2013-12-01

    The author proposes twelve brief notes aimed at discussing the reduction of fossil energy consumption in order to reduce CO 2 emissions and to improve the French energy supply security, without any useless expense. These notes address the reason for energy savings, the cost and price of a CO 2 ton, the issue of thermal regulation for buildings (it's not in compliance with the law, and results in higher expenses and increased CO 2 emissions), the introduction of a carbon tax to incite investments for energy saving, the status and health of the CO 2 European market, the support of actions aimed at reducing fossil energy consumption, the fact that bio-heat is ten times more efficient than bio-fuel and that therefore car holders should finance bio-heat, the development of hybrid uses of energy to avoid the difficulty of energy storage, the reduction of CO 2 emissions at low cost (by consuming as much renewable energy as nuclear energy but without wind or photovoltaic energy), the cost of less CO 2 , less fossil energy and less nuclear, and the interest of France to act on its own to reduce CO 2 emissions. The author proposes a brief synthesis of these notes and some proposals regarding thermal regulation for buildings, taxes, the European CO 2 market, the forest biomass, electricity production, and the European and word dimensions of these issues

  2. Greenhouse gas emissions and energy balances of jatropha biodiesel as an alternative fuel in Tanzania

    International Nuclear Information System (INIS)

    Eshton, Bilha; Katima, Jamidu H.Y.; Kituyi, Evans

    2013-01-01

    This paper evaluates GHG emissions and energy balances (i.e. net energy value (NEV), net renewable energy value (NREV) and net energy ratio (NER)) of jatropha biodiesel as an alternative fuel in Tanzania by using life cycle assessment (LCA) approach. The functional unit (FU) was defined as 1 tonne (t) of combusted jatropha biodiesel. The findings of the study prove wrong the notion that biofuels are carbon neutral, thus can mitigate climate change. A net GHG equivalent emission of about 848 kg t −1 was observed. The processes which account significantly to GHG emissions are the end use of biodiesel (about 82%) followed by farming of jatropha for about 13%. Sensitivity analysis indicates that replacing diesel with biodiesel in irrigation of jatropha farms decreases the net GHG emissions by 7.7% while avoiding irrigation may reduce net GHG emissions by 12%. About 22.0 GJ of energy is consumed to produce 1 t of biodiesel. Biodiesel conversion found to be a major energy consuming process (about 64.7%) followed by jatropha farming for about 30.4% of total energy. The NEV is 19.2 GJ t −1 , indicating significant energy gain of jatropha biodiesel. The NREV is 23.1 GJ t −1 while NER is 2.3; the two values indicate that large amount of fossil energy is used to produce biodiesel. The results of the study are meant to inform stakeholders and policy makers in the bioenergy sector. -- Highlights: • Production and use of jatropha biodiesel in Tanzania result into positive net greenhouse gas (GHG) emissions. • The net GHG emission is highly influenced by end use of biodiesel in a diesel engine followed by soil N 2 O emissions during farming of Jatropha. • Jatropha biodiesel results into significant net energy gain; however its production requires large quantity of fossil energy input. • Biodiesel conversion found to be a major energy consuming process followed by jatropha farming. • The results of the study are meant to inform stakeholders and policy makers in the

  3. Economic aspects of energy saving in greenhouses: physical considerations

    CERN Document Server

    Danloy, L; Gay, J B; Mercier, J A; Reist, A

    1989-01-01

    An important result of experiments carried out over the past six years in a trial greenhouse at CERN (The European Organization for Nuclear Research, Geneva, Switzerland) was the development of a simple and precise method for calculating the energy requirements of a glasshouse; this is valid for any type of greenhouse and climate. An economic study is made using the above method for evaluating the financial effectiveness of various energy-saving methods: double glazing of the side walls, low emissivity glass 'Hortiplus' roofing, soil level heating and a thermal screen.

  4. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  5. Energy and greenhouse emissions from South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Surridge, A.D.; Grobbelaar, C.J.; Asamoah, J.K. [Dept. Mineral and Energy Affairs, Pretoria (South Africa)

    1995-12-31

    The Republic of South Africa (RSA) is home to approximately 37 million people, were the highest population density is in the central industrial area. The RSA is rich in minerals, which are the main source of national prosperity. However, the country lacks a plentiful supply of water and is subject to periodic droughts. The RSA can be classified as a water stressed country, and this is the factor which has a major influence on development. The limited and variable supply of water sensitises the RSA to changes in climate, especially rainfall. Hence the RSA has a vested interest in climate change, particularly as the outputs of some current theoretical models predict a lowering of rainfall over an already drought prone central southern Africa. The population can be broadly apportioned into two groups; a first world component with a standard of living approaching that of Europe/USA, and a third world component whose living standard need to be increased. The development of this latter group, many of whom live below the poverty line, is of high priority and will require an expansion of the economy, and consequently may result in increased greenhouse gas emissions in the medium term. (author)

  6. Energy and greenhouse emissions from South Africa

    International Nuclear Information System (INIS)

    Surridge, A.D.; Grobbelaar, C.J.; Asamoah, J.K.

    1995-01-01

    The Republic of South Africa (RSA) is home to approximately 37 million people, were the highest population density is in the central industrial area. The RSA is rich in minerals, which are the main source of national prosperity. However, the country lacks a plentiful supply of water and is subject to periodic droughts. The RSA can be classified as a water stressed country, and this is the factor which has a major influence on development. The limited and variable supply of water sensitises the RSA to changes in climate, especially rainfall. Hence the RSA has a vested interest in climate change, particularly as the outputs of some current theoretical models predict a lowering of rainfall over an already drought prone central southern Africa. The population can be broadly apportioned into two groups; a first world component with a standard of living approaching that of Europe/USA, and a third world component whose living standard need to be increased. The development of this latter group, many of whom live below the poverty line, is of high priority and will require an expansion of the economy, and consequently may result in increased greenhouse gas emissions in the medium term. (author)

  7. Energy and greenhouse emissions from South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Surridge, A D; Grobbelaar, C J; Asamoah, J K [Dept. Mineral and Energy Affairs, Pretoria (South Africa)

    1996-12-31

    The Republic of South Africa (RSA) is home to approximately 37 million people, were the highest population density is in the central industrial area. The RSA is rich in minerals, which are the main source of national prosperity. However, the country lacks a plentiful supply of water and is subject to periodic droughts. The RSA can be classified as a water stressed country, and this is the factor which has a major influence on development. The limited and variable supply of water sensitises the RSA to changes in climate, especially rainfall. Hence the RSA has a vested interest in climate change, particularly as the outputs of some current theoretical models predict a lowering of rainfall over an already drought prone central southern Africa. The population can be broadly apportioned into two groups; a first world component with a standard of living approaching that of Europe/USA, and a third world component whose living standard need to be increased. The development of this latter group, many of whom live below the poverty line, is of high priority and will require an expansion of the economy, and consequently may result in increased greenhouse gas emissions in the medium term. (author)

  8. The contribution to the greenhouse effect from the use of peat and coal for energy

    International Nuclear Information System (INIS)

    Zetterberg, L.; Klemedtsson, L.

    1996-06-01

    Emissions and uptake of greenhouse gases have been estimated for the production and combustion of peat in four Swedish regions. Net emissions have been defined as the sum of emissions and uptake from mining, loading, transportation, combustion and forestation of the peat land minus emissions from the virgin peat land. Cropping of the forested peat land is not considered. Net CO 2 -emissions from the production and combustion of peat is estimated to be 87 g/MJ in the regions Bergslagen and Smaaland, 99 g/MJ in Haerjedalen and 95 g/MJ in Vaesterbotten kustland. Net N 2 -emissions are estimated to be 66 mg/MJ for all regions. Due to the natural methane emissions from a virgin peat bog, the production and combustion of peat reduces net CH 4 -emissions by 0.9 g CH 4 /MJ peat. A hypothetical case has been studied where all the drained peat areas are forested (instead of about half of the area as it is today). According to this scenario the net CO 2 -emissions are reduced from 87 to 57 g CO 2 /MJ peat for Bergslagen. As a comparison, CO 2 -emissions from the combustion of coal are ca 92 g CO 2 /MJ. Based on the emissions inventory the contribution to the greenhouse effect has been calculated in terms of the contribution to atmospheric radiative forcing. In conclusion, the contribution to the greenhouse effect from the use of peat for energy from Southern Sweden (Smaaland and Bergslagen) is ca 20% lower than the contribution from coal, counted as an average over 100 years after the mining starts. Corresponding figures for Northern Sweden (Haerjedalen and Vaesterbotten kustland) is ca 15% lower than coal. 21 refs, 12 figs, 7 tabs

  9. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    Science.gov (United States)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop

  10. Greenhouse

    Data.gov (United States)

    Federal Laboratory Consortium — PurposeThe greenhouse at ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) is used for germination and root-growth studies to support basic and field...

  11. Asia least-cost greenhouse gas abatement strategy identification and assessment of mitigation options for the energy sector

    International Nuclear Information System (INIS)

    Gupta, Sujata; Bhandari, Preety

    1998-01-01

    The focus of the presentation was on greenhouse gas mitigation options for the energy sector for India. Results from the Asia Least-cost Greenhouse gas Abatement Strategies (ALGAS) project were presented. The presentation comprised of a review of the sources of greenhouse gases, the optimisation model, ie the Markal model, used for determining the least-cost options, discussion of the results from the baseline and the abatement scenarios. The second half of the presentation focussed on a multi-criteria assessment of the abatement options using the Analytical Hierarchical Process (AHP) model. The emissions of all greenhouse gases, for India, are estimated to be 986.3 Tg of carbon dioxide equivalent for 1990. The energy sector accounted for 58 percent of the total emissions and over 90 percent of the CO2 emissions. Net emissions form land use change and forestry were zero. (au)

  12. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  13. Greenhouse gaseous emission and energy analysis in rice ...

    African Journals Online (AJOL)

    Agriculture in Africa is associated with low food production. The attempt to increase food productivity has the potential to generate some environmental concerns such as greenhouse emissions and energy impacts. The environmental impact of the rice production in the tropics, especially Africa, has not received much ...

  14. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  15. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    will be lower than indicated by our data. We obtained the greatest net reduction in greenhouse gas emissions by co-production of bioethanol and biogas or by biogas alone produced from either fresh grass-clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 per hectare per year...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  16. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  17. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO{sub 2} - from the whole energy chain, from ``cradle to grave``. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs.

  18. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO 2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  19. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Candanedo, José A.; Geier, Sonja

    2010-01-01

    of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load......“Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  20. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  1. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  2. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  3. Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen

    International Nuclear Information System (INIS)

    Keshavarz-Afshar, Reza; Mohammed, Yesuf Assen; Chen, Chengci

    2015-01-01

    Despite the great potential of camelina (Camelina sativa L. Crantz) as a promising biofuel feedstock, in-farm energy flow of the crop and its associated environmental impacts has not received sufficient attention from researchers. In order to assess net energy gain and to identify energy saving and environmental friendly production operations, a two year study was conducted at central Montana. We investigated the effects of tillage method (CT (conventional tillage) vs. NT (no-tillage)) and N (nitrogen) fertilizer rate (0, 45, 90 kg N ha −1 ) on energy balance and GHG (greenhouse gas emission) of dryland camelina production. Results indicated that energy input and GHG emission were 5 and 8% lower in NT than in CT. Application of 45 and 90 kg N ha −1 increased camelina energy input by 186 and 365%, while increased energy output by only 21 and 64%, respectively. There was no significant difference in net energy gain in response to N fertilization, but lower energy efficiency in response to higher N inputs. Averaged across tillage systems, the GHG emission was 32.0 kg C eq ha −1 with 0 N applied, and the GHG emission increased by 206 and 389% when 45 and 90 kg N ha −1 was applied. Overall, N fertilizer had the biggest share in total energy input. Averaged over all experimental treatments, 14,945 MJ ha −1 net energy was obtained from camelina crop in this study which shows the potential of this crop as a bioenergy feedstock. Our result showed that implementation of NT is strongly recommendable for camelina production in this region. Moreover, improvement of N use efficiency has the highest priority to improve energy performance and reduce GHG emissions in camelina production. - Highlights: • Camelina produced 14,945 MJ ha −1 of net energy in this study. • No tillage operation reduced 5% energy input and 8% greenhouse gas emission. • Nitrogen fertilizer was the most energy-intensive input in camelina production.

  4. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  5. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  6. Criteria for Definition of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Sartori, Igor; Marszal, Anna Joanna; Napolitano, Assunta

    2010-01-01

    The idea of a Net Zero Energy Building (Net ZEB) is understood conceptually, as it is understood that the way a Net ZEB is defined affects significantly the way it is designed in order to achieve the goal. However, little agreement exists on a common definition; the term is used commercially...... without a clear understanding and countries are enacting policies and national targets based on the concept without a clear definition in place. This paper presents a harmonised framework for describing the relevant characteristics of Net ZEBs in a series of criteria. Evaluation of the criteria...... and selection of the related options becomes a methodology for elaborating sound Net ZEB definitions in a formal, systematic and comprehensive way, creating the basis for legislations and action plans to effectively achieve the political targets. The common denominator for the different possible Net ZEB...

  7. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  8. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  9. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  10. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  11. Experience in the use of wind energy for greenhouse heating

    Energy Technology Data Exchange (ETDEWEB)

    O' Flaherty, T; Kocsis, K; Petersen, H [eds.

    1987-05-01

    Study of the appliction of wind energy for greenhouse heating began at Kinsealy Research Centre in 1980 with the installation of a multi-blade 6m diamter wind turbine. This produced electricity which was used to provide root zone warming for a glasshouse tomato crop. The application worked well and the wind turbine is still in operation, although it has been out of service for substantial periods and has required major refurbishment. In July 1985 a new wind turbine was commissioned as an EEC Wind Energy Demonstration Project. This is an 11m diameter grid-connected unit, and the project involves using its output to power a heat pump which in turn supplies heat to a greenhouse. The system is operating well and initial performance results have been obtained during the 1985-'86 heating season. The paper summarises the experience to data with both of these projects.

  12. Efficacy of insect-proof nets used in Tunisian tomato greenhouses against Tuta absoluta (Meyrick (Lepidoptera: Gelechiidae and potential impact on plant growth and fruit quality

    Directory of Open Access Journals (Sweden)

    A. Harbi

    2015-12-01

    Full Text Available Insect-proof screens constitute efficient physical means of protecting horticultural crops against insect pests and their use has become widespread. However, they may have a negative impact on plant growth and fruit quality by modifying climatic parameters of greenhouses. In case of tomato crops, they are used mainly against white flies and the tomato leaf miner Tuta absoluta (Meyrick. In Tunisia, tomato plastic tunnels are often netted following two modalities: i complete netting of the greenhouse under the plastic screen (total netting; or ii netting only doors and lateral aeration windows (partial netting. Weekly monitoring of T. absoluta in two tomato greenhouses with different netting setups using pheromone traps and sampling of leaves and fruits showed no differences in the levels of infestation by the pest with a maximum average values of 6.66 eggs/leaf, 4.16 larvae/leaf and 4.16 mines/leaf. The maximum infestation rate of leaves was 86.66% and that of fruits was 10.83%. No effects of the netting setup used on plant growth parameters were detected. However, the study of fruit quality parameters revealed significant decrease in sugar contents in tomato fruits when using total netting setup (4.26°Brix versus 3.68°Brix. Recommendations regarding the combined use of pheromones traps and insect-proof nets are given and possibilities to enhance the efficiency of nets as physical barrier against T. absoluta are explored.

  13. Exploring the 'permanent forest' paradigm: might renewable commercial forest estates lead to greater net greenhouse abatement over the longer term?

    International Nuclear Information System (INIS)

    Anderson, Graeme

    2007-01-01

    Full text: Understanding permanence: A common perception exists which suggests that long term or 'permanent' tree plantings are considered a superior form of (post 1990) carbon sink, and commercial plantations (which allow for harvesting and replanting) are less useful for abatement. However, common to all forms of forest carbon sink is the issue of permanence. None of these are truly permanent stores of carbon because at any point either a fire, disease, harvest or major event can mean part of the carbon store is released. Why then the perceived bias against sink projects which allow for commercial harvesting and replanting? Let's not forget - things are getting hotter: Australian projections for climate change provide plenty of challenges for current and future forest managers. Over the next century many key forest species may have to endure conditions outside their'current growing range. This poses risks for the emergent offsets industry which needs to be actively managed. Simply planting local indigenous species alone may no longer be the only best practice. Think 'true fate of carbon': It is important that our thinking is not constrained by current rules, as these will continually be refined as our knowledge about carbon systems improves over the next century (between now and 2100 there will be 22 post-Kyoto negotiation periods). Our key focus should be in considering the 'true fate' of carbon, and the real contribution to greenhouse abatement. Policy makers need to keep this in mind, and ensure that the entire carbon life cycle is considered in their decision making. 'Standing forest' versus 'Net abatement effect': There are two effective means for forests to achieve genuine greenhouse abatement. One is the carbon sequestered and stored in the 'standing forest', the other is the greenhouse benefit (carbon flow or net abatement effect) of an ongoing and renewable supply of tree based products from the site (wood, fibre, biomass, biofuel), which replace

  14. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  15. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  16. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  17. Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia

    International Nuclear Information System (INIS)

    Kuswardhani, Nita; Soni, Peeyush; Shivakoti, Ganesh P.

    2013-01-01

    This paper estimates energy consumption per unit floor area of greenhouse and open field for tomato, chili and lettuce production. Primary data were collected from 530 vegetable farmers during Jan–Dec, 2010 in West Java, Indonesia. Energy estimates were calculated from actual amount of inputs and outputs and corresponding conversion factors. Results reveal that the total input energy used in greenhouse (GH) production of tomato, chili (medium and high land) and lettuce were 47.62, 41.55, 58.84, and 24.54 GJ/ha respectively. Whereas, the requirement of total input energy for open field (OF) production of tomato, chili (medium and high land) and lettuce were 49.01, 41.04, 57.94 and 23.87 GJ/ha, respectively. The ratio of output to input energy was higher in greenhouse production (0.85, 0.45 and 0.49) than open field vegetable production (0.52, 0.175 and 0.186) for tomato, chili medium land and chili highland, respectively, but output–input ratio of lettuce open field production was twice as that of greenhouse vegetable production. Financial analysis revealed higher mean net returns from greenhouse vegetable production as 7043 $/ha (922–15,299 $/ha) when compared to 571 $/ha (44–1172 $/ha) from open field vegetable production. Among the greenhouse vegetables, tomato cultivation was the most profitable in terms of energy efficiency and financial productivity. - Highlights: ► Energy input–output analysis is carried out to compare vegetables production in greenhouse and open field. ► Tomato, Chili and Lettuce production in West Java, Indonesia. ► Economic analysis is conducted to compare the two production systems

  18. Energy policies and the greenhouse effect. V. 1

    International Nuclear Information System (INIS)

    Grubb, Michael.

    1991-01-01

    This study represents the culmination of two years of research on the Greenhouse Effect by the Energy and Environmental Programme. It is the fourth study which we have published on the policy aspects of this subject, following Issues for Policymakers, Negotiating Targets, and our report of October 1990 Formulating a Convention. The first volume of the study concentrates on the policy issues arising from attempts to reduce greenhouse gas emissions from the energy sector. The second volume on 'country studies and technical options' provides the detailed analysis on which the conclusions of this book have been based, and will be published in early 1991. Although it was not our intention to produce such a large work at the outset, the upsurge of interest in the subject has expanded the framework of measures being considered to address environmental issues in general and the greenhouse effect in particular. These developments have had a major impact on the size and content. In this book, as in our previous publications, the Programme's work is aimed at moving the policy debate forward as quickly as possible into areas which seem to offer the best prospects for effective policy action. (Author)

  19. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  20. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  1. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran.

    Science.gov (United States)

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha(-1), respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ(-1), respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO2, 31.58 kg N2O and 3.82 kg CH4 per hectare. Hence, total GWP was 12,864.84 kg Co2eq ha(-1) in corn production systems. In terms of CO2 equivalents 23% of the GWPs came from CO2, 76% from N2O, and 1% from CH4. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg Cha(-1). Net carbon and sustainability indexes in corn production systems were 7187.75 kg Cha(-1) and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  3. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis

    International Nuclear Information System (INIS)

    Lenzen, M.

    1998-01-01

    Input-output modeling of primary energy and greenhouse gas embodiments in goods and services is a useful technique for designing greenhouse gas abatement policies. The present paper describes direct and indirect primary energy and greenhouse gas requirements for a given set of Australian final consumption. It considers sectoral disparities in energy prices, capital formation and international trade flows and it accounts for embodiments in the Gross National Expenditure as well as the Gross Domestic Product. Primary energy and greenhouse gas intensities in terms of MJ/$ and kg CO 2 -e/$ are reported, as well as national balance of primary energy consumption and greenhouse gas emissions. (author)

  4. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  5. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  6. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    Taylor, H.F.

    1991-01-01

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO 2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO 2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  7. Performance of modified greenhouse dryer with thermal energy storage

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2016-11-01

    Full Text Available In this attempt, the main goal is to do annual performance, environomical analysis, energy analysis and exergy analysis of the modified greenhouse dryer (MGD operating under active mode (AM and passive mode (PM. Thermal storage is being applied on the ground of MGD. It is applied in three different ways namely barren floor, floor covered with black PVC sheet (PVC and Black Coated. Experimental study of dryers in no-load conditions reveals that floor covered with a black PVC sheet is more conducive for drying purpose than other floors. The MGD under AM is found to be more effective as compared to PM for tomato and capsicum, which are high moisture content crops. For medium moisture content crop (potato chips, both dryers show relatively similar drying performance. Crops dried inside the greenhouse dryer are found to be more nutrient than open sun dried crops. The payback period of the modified greenhouse dryer under passive mode is found to be 1.11 years. However, for the active mode of the modified greenhouse dryer is only 1.89 years. The embodied energy of the passive mode of the dryer is a 480.277 kWh and 628.73 kWh for the active mode of the dryer. The CO2 emissions per annum for passive and active mode greenhouse dryers are found to be 13.45 kg and 17.6 kg respectively. The energy payback time, carbon mitigation and carbon credit have been calculated based type of crop dried. The range of exergy efficiency is 29%–86% in MGD under PM and 30%–78% in the MGD under AM. The variation of Heat utilization factor (HUF for MGD under PM is 0.12–0.38 and 0.26–0.53 for MGD under AM. The range of co-efficient of performances (COP for MGD under PM is 0.55–0.87 and 0.58–0.73 for MGD under AM.

  8. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  9. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  10. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  11. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  12. Calculation Tool for Determining the Net Energy Gain

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    is dependent on both the U-values and the g-values. Beyond this it is dependent on the orientation of the windows and the climate and the actual period. This makes it difficult to choose the glazings and windows that are optimal with regard to energy performance in a given case. These facts have aroused a need...... for simple and accurate methods to determine and compare the energy performance of different window products. When choosing windows for new buildings or retrofitting a calculation tool that in a simple way determines the net energy gain from the specific windows in the actual building will ease the selection...... of the best window solution. Such a tool combined with a database with window products can make calculations of the heat loss or energy demand corresponding to the requirements in the new building code easier and more correct. In the paper, methods to determine energy performance data and the net energy gain...

  13. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran

    International Nuclear Information System (INIS)

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-01-01

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha −1 , respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ −1 , respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO 2, 31.58 kg N 2 O and 3.82 kg CH 4 per hectare . Hence, total GWP was 12,864.84 kg Co 2 eq ha −1 in corn production systems. In terms of CO 2 equivalents 23% of the GWPs came from CO 2 , 76% from N 2 O, and 1% from CH 4 . In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg C ha −1 . Net carbon and sustainability indexes in corn production systems were 7187.75 kg C ha −1 and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. - Highlights: • Increasing of energy consumption leaded to decreasing energy use efficiency in corn agroecosystems. • Total greenhouse gas (GHG) emission as CO 2 , N 2 O and CH 4 in corn production systems were 2994.66, 31.58 and 3.82 kg ha -1 , respectively. • Global warming potential (GWP) was 12864.84 kg CO 2 eq ha -1 in corn production systems. • Sustainability index in corn production systems was 2.05. • Reducing use of chemicals fertilizer and diesel fuel are necessary for better management of energy flow, global warming potential and

  14. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Mohammad, E-mail: m.yousefi@pgs.razi.ac.ir [Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah (Iran, Islamic Republic of); Damghani, Abdolmajid Mahdavi [Departments of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khoramivafa, Mahmud [Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha{sup −1}, respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ{sup −1}, respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO{sub 2,} 31.58 kg N{sub 2}O and 3.82 kg CH{sub 4} per hectare{sub .} Hence, total GWP was 12,864.84 kg Co{sub 2}eq ha{sup −1} in corn production systems. In terms of CO{sub 2} equivalents 23% of the GWPs came from CO{sub 2}, 76% from N{sub 2}O, and 1% from CH{sub 4}. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg C ha{sup −1}. Net carbon and sustainability indexes in corn production systems were 7187.75 kg C ha{sup −1} and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. - Highlights: • Increasing of energy consumption leaded to decreasing energy use efficiency in corn agroecosystems. • Total greenhouse gas (GHG) emission as CO{sub 2}, N{sub 2}O and CH{sub 4} in corn production systems were 2994.66, 31.58 and 3.82 kg ha{sup -1}, respectively. • Global warming potential (GWP) was 12864.84 kg CO{sub 2}eq ha{sup -1} in corn production systems. • Sustainability index in corn production systems was 2.05. • Reducing use of chemicals fertilizer and diesel fuel

  15. Sustainable supply of global energy needs and greenhouse gas reductions

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2009-01-01

    Nuclear plants emit virtually no greenhouse gases over their full life-cycle. Consequently, continued operation of existing nuclear plants is recognized as essential to meeting even the modest greenhouse gas reduction targets of the Kyoto Accord. However, much expanded nuclear deployment will be needed as developing economies aggressively grow GDP with its associated growth in electrical power. Projecting to 2040 and based on the scenarios of the United Nations Intergovernmental Panel on Climate Change's (IPCC), we have examined deploying increased non-carbon energy sources for electricity production, including further conversion of electricity to hydrogen using conventional low-temperature water electrolysis. Our NuWind model has been used to calculate the production costs for hydrogen in typical potential markets, using the actual prices of electricity paid by the Alberta Power Pool and by the Ontario Grid. The analysis shows clearly that by optimizing the co-production of hydrogen and electricity (referred to as the H2/e process) the cost for hydrogen produced can comfortably meet the US Department of Energy's target for realistic nuclear investment costs, hydrogen generation systems, and wind capacity factors. The synergy of nuclear plus wind power for hydrogen generation plus co-production of electricity improves the economics of harnessing wind energy to produce hydrogen. (author)

  16. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  17. The Energy Balance and Energy-Saving Measures in Greenhouse Tomato Cultivation

    NARCIS (Netherlands)

    Elings, A.; Kempkes, F.L.K.; Kaarsemaker, R.C.; Ruijs, M.N.A.; Braak, van de N.J.; Dueck, T.A.

    2005-01-01

    Reliable and quick assessment of energy conservation measures in greenhouse cultivation supports growers in their operations. Such an overview should quantify the consequences of changes in energy flows for total energy consumption, amount and quality of production, and farm economy. Using tomato as

  18. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  19. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  20. Net energy levels on the lipid profile of pork

    Directory of Open Access Journals (Sweden)

    Stephan Alexander da Silva Alencar

    2017-09-01

    Full Text Available ABSTRACT: This study was conducted to evaluate the effects of net energy levels on the lipid profile of adipose tissue and muscle of swines. A total of 90 animals, with initial weight of 71.94±4.43kg, were used, and distributed in a randomized block design in five net energy levels (2,300, 2,425, 2,550, 2,675, and 2,800Kcal kg-1 feed, with nine replicates and two animals per experimental unit. Lipid profiles of adipose tissue and muscle were analyzed using gas chromatography. Increasing the levels of net energy using soybean oil, improved the lipid profile of adipose tissue and muscle, increased linearly (P<0.05 the concentrations of polyunsaturated fatty acids, especially linoleic and α-linolenic acid, reduced linearly (P<0.05 the monounsaturated and saturated fatty acids and omega 6: omega 3. In adipose tissue was observed linear reduction (P<0.05 of atherogenic and thrombogenic indexes. In conclusion, increasing the level of net energy of the diet using soybean oil improved the lipid profile of adipose tissue and muscle.

  1. Net energy analysis in a Ramsey–Hotelling growth model

    International Nuclear Information System (INIS)

    Macías, Arturo; Matilla-García, Mariano

    2015-01-01

    This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented. - Highlights: • A neoclassical growth model with EROI (“Energy Return on Energy Invested”) is shown • All concepts linking neoclassical economics and net energy analysis are discussed • Any EROI decline can be compensated increasing gross activity in the energy sector. • The economic impact of EROI depends on some non-energy cost in the energy sector. • Comparative steady-state statics for different EROI levels is performed and discussed. • Policy implications are suggested.

  2. Integrated energy, air quality and greenhouse gas management plan

    International Nuclear Information System (INIS)

    2004-03-01

    This report outlines the measures that the Resort Municipality of Whistler has taken to become a sustainable community. In 2000, the Municipality adopted the Natural Step, a tool developed by international scientists to integrate ecological principles into the practices of communities, organizations and individuals. In 2001, the Municipality adopted a comprehensive sustainability plan. This report describes the efforts to manage energy, air quality, and greenhouse gases (GHG). More than 90 per cent of the common air contaminants that contribute to air quality problems in Whistler come from the combustion of fossil fuels. The community can reduce emissions of carbon monoxide, oxides of nitrogen, oxides of sulphur, volatile organic compounds, and particulate matter by managing energy and GHG emissions. This report is divided into several sections dealing with corporate and community energy use. It presents a community profile for Whistler, its energy and emissions inventory from 2000, and an integrated energy plan. An energy and emissions forecast for 2000 to 2020 was also included along with an implementation strategy for a sustainable energy future for Whistler. refs., tabs., figs

  3. Greenhouse gas emission inventory based on full energy chain analysis

    International Nuclear Information System (INIS)

    Dones, R.; Hirschberg, S.; Knoepfel, I.

    1996-01-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study 'Environmental Life-Cycle Inventories of Energy Systems' are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs

  4. Greenhouse gas emission inventory based on full energy chain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Knoepfel, I [Federal Inst. of Technology Zurich, Zurich (Switzerland)

    1996-07-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study `Environmental Life-Cycle Inventories of Energy Systems` are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs.

  5. Designing building energy efficiency programs for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Lima Azevedo, Ines; Scott Matthews, H.; Hendrickson, Chris T.

    2011-01-01

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO 2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: → We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. → We use optimization to evaluate trade-offs between program objectives and capital constraints. → Local energy market conditions significantly influence efficiency expectations. → Different program objectives can lead to different effective investment strategies. → We reflect on the implications of our results for efficiency program design.

  6. Designing building energy efficiency programs for greenhouse gas reductions

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael, E-mail: mfb@andrew.cmu.edu [Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712 (United States); Lima Azevedo, Ines, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Scott Matthews, H., E-mail: hsm@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Hendrickson, Chris T., E-mail: cth@andrew.cmu.edu [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-09-15

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO{sub 2} eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: > We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. > We use optimization to evaluate trade-offs between program objectives and capital constraints. > Local energy market conditions significantly influence efficiency expectations. > Different program objectives can lead to different effective investment strategies. > We reflect on the implications of our results for efficiency program design.

  7. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  8. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  9. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    Science.gov (United States)

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  10. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  11. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  12. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  13. The greenhouse effect - conclusions for agricultural-, energy- and tax policies

    International Nuclear Information System (INIS)

    Hultkrantz, L.

    1992-01-01

    The possibility to use forests as carbon sinks to reduce the greenhouse effect is discussed in this report. In the medium time perspective (30-50 years), reforestation in order to create new carbon sinks will give extra time for the transition from fossil fuels. Furthermore, the reforestation may be valuable as future fuel. Sweden has good possibilities for assisting developing countries in a reforestation effort. Swedish wood reserves will probably have to be used extensively for heat and power production during the same period, due to the planned phasing out of nuclear power. Economic and climatic arguments for subsidizing short rotation energy crops on agricultural land are discussed and, largely, refuted. 51 refs

  14. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  15. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    Science.gov (United States)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.

  16. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  17. Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996)

    International Nuclear Information System (INIS)

    Macedo, Isaias de Carvalho

    1998-01-01

    Production of sugar cane in Brazil in the 1996/97 season was 273 million t (harvested wet wt)/year, leading to 13.7 million m 3 ethanol and 13.5 million t of sugar. Emissions of greenhouse gases were evaluated for the agronomic/industrial production processes and product utilization including N 2 O and methane. Up-dating the energy balance from 1985 to 1995 indicated the effect of the main technological trends; apparently, fossil fuel consumption due to the increasing agricultural mechanization is largely off-set by technological advances in transportation and overall conversion efficiencies (agricultural and industrial). Output/input energy ratio in ethanol grew to 9.2 (average) and 11.2 (best values). Net savings in CO 2 (equivalent) emissions, due to ethanol and bagasse substitution for fossil fuels, correspond to 46.7 x 10 6 t CO 2 (equivalent)/year, nearly 20% of all CO 2 emissions from fuels in Brazil. Ethanol alone is responsible for 64% of the net avoided emissions. (author)

  18. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    Science.gov (United States)

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  19. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Jan Krantz

    2015-10-01

    Full Text Available Greenhouse gas (GHG emissions from construction processes are a serious concern globally. Of the several approaches taken to assess emissions, Life Cycle Assessment (LCA based methods do not just take into account the construction phase, but consider all phases of the life cycle of the construction. However, many current LCA approaches make general assumptions regarding location and effects, which do not do justice to the inherent dynamics of normal construction projects. This study presents a model to assess the embodied energy and associated GHG emissions, which is specifically adapted to address the dynamics of infrastructure construction projects. The use of the model is demonstrated on the superstructure of a prefabricated bridge. The findings indicate that Building Information Models/Modeling (BIM and Discrete Event Simulation (DES can be used to efficiently generate project-specific data, which is needed for estimating the embodied energy and associated GHG emissions in construction settings. This study has implications for the advancement of LCA-based methods (as well as project management as a way of assessing embodied energy and associated GHG emissions related to construction.

  20. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  1. Energy and greenhouse gas balances of cassava-based ethanol

    International Nuclear Information System (INIS)

    Le, Loan T.; Ierland, Ekko C. van; Zhu, Xueqin; Wesseler, Justus

    2013-01-01

    Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO 2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses. -- Highlights: ► Cassava-based ethanol substitution for gasoline in form of E5 could save 1.4 MJ km −1 ► Ethanol substitution for gasoline in form of E5 reduces a CO 2 e emission of 156 g km −1 ► We examined changes in fuel efficiency of blends affecting energy and GHG balances. ► LUC and change in soil management lead to a CO 2 e emission of 942 g L −1 of ethanol. ► LUC effects, energy inputs, yields, and by-products explain results among

  2. 40 CFR 73.83 - Secretary of Energy's action on net income neutrality applications.

    Science.gov (United States)

    2010-07-01

    ... Renewable Energy Reserve § 73.83 Secretary of Energy's action on net income neutrality applications. (a) First come, first served. The Secretary of Energy will process and certify net income neutrality... of Energy determines that the net income neutrality certification application does not meet the...

  3. The greenhouse effect

    International Nuclear Information System (INIS)

    Berger, A.

    1991-01-01

    The greenhouse effect on earth can be defined as the long wave energy trapped in the atmosphere. Climate forcing and climate system response within which climate feedback mechanisms are contained are determined. Quantitative examples illustrate what could happen if the greenhouse effect is perturbed by human activities, in particular if CO2 atmospheric concentration would double in the future. Recent satellite measurements of the greenhouse effect are given. The net cooling effect of clouds and whether or not there will be less cooling by clouds as the planet warms are also discussed

  4. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  5. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  6. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  7. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  8. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  9. Regional energy observatory. Energy status - greenhouse effect in the Aquitaine region. First results

    International Nuclear Information System (INIS)

    2003-06-01

    The IDEA organization (information about the environmental development in Aquitaine region) has created an energy observatory, the mission of which is to supply regularly a reliable, objective and useful information about energy and greenhouse effect in the Aquitaine region (SW France). This document presents: the end-use energy consumption, the sectorial statuses (residential, tertiary sector, industry, agriculture, transports), the energy production and the renewable energy sources in Aquitaine region. Details are given in separate files at the end of the document for the 5 departements of Aquitaine (Dordogne, Gironde, Landes, Lot-et-Garonne, Pyrennees Atlantiques). (J.S.)

  10. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  11. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    Science.gov (United States)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  12. How to prevent greenhouse gas emissions in electrical installations: lighting energy savings and solar energy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, C.; Aksoy, C. [Sakarya University, Faculty of Engineering, Electrical and Electronics Engineering Department, Serdivan (Turkey)

    2012-07-01

    Day by day greenhouse gas emissions increase dramatically. A passive adaptive method of lighting energy savings, daylight responsive systems are considered one of the best solutions for energy efficiency, saving and prevent CO{sub 2} emissions. Results of an annual experiment which was held in Sakarya University proves the necessity of daylight responsive systems with a 41% energy saving and 942.5 kg of prevented CO{sub 2} emissions Thinking this prevention is realized just only in a 36 m{sup 2} room with the use of 8 luminaries spreading such systems to nationwide, a major amount of greenhouse gas emissions would be prohibited. On the other hand energy saving is not the only way to reduce CO{sub 2} emissions. Again in Sakarya University a project has started to investigate the possibility of illumination of a complete building by using solar energy. This paper evaluates these mentioned systems both in energy efficiency, greenhouse gas emissions prevention and economic point of views. (author)

  13. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  14. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...

  15. C-NET: the Centre for Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Roberts, J.W.

    2011-01-01

    The Centre for Nuclear Energy Technology was established as part of the Dalton Nuclear Institute at The University of Manchester in 2009 to focus the UK research on front-end nuclear technologies. This includes plant-life extension, new build, naval propulsion and next generation reactors. Building on £4M of government funding through the North West Development Agency (NWDA), C-NET will act as a hub for nuclear research in the North West of England collaborating with both universities and industry. (author)

  16. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  17. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Science.gov (United States)

    2017-01-01

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal. PMID:29165399

  18. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-22

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990-2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  19. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Lu

    2017-11-01

    Full Text Available This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  20. Nitrogen fertilization of switchgrass increases biomass yield and improves net greenhouse gas balance in northern Michigan, U.S.A

    International Nuclear Information System (INIS)

    Nikiema, Paligwende; Rothstein, David E.; Min, Doo-Hong; Kapp, Christian J.

    2011-01-01

    Nitrogen (N) fertilization can increase bioenergy crop production; however, fertilizer production and application can contribute to greenhouse gas (GHG) emissions, potentially undermining the GHG benefits of bioenergy crops. The objective of this study was to evaluate the effects of N fertilization on GHG emissions and biomass production of switchgrass bioenergy crop, in northern Michigan. Nitrogen fertilization treatments included 0 kg ha -1 (control), 56 kg ha -1 (low) and 112 kg ha -1 (high) of N applied as urea. Soil fluxes of CO 2 , N 2 O and CH 4 were measured every two weeks using static chambers. Indirect GHG emissions associated with field activities, manufacturing and transport of fertilizer and pesticides were derived from the literature. Switchgrass aboveground biomass yield was evaluated at the end of the growing season. Nitrogen fertilization contributed little to soil GHG emissions; relative to the control, there were additional global warming potential of 0.7 Mg ha -1 y -1 and 1.5 Mg ha -1 y -1 as CO 2 equivalents (CO 2 eq), calculated using the IPCC values, in the low and high N fertilization treatments, respectively. However, N fertilization greatly stimulated CO 2 uptake by switchgrass, resulting in 1.5- and 2.5-fold increases in biomass yield in the low and high N fertilization treatments, respectively. Nitrogen amendments improved the net GHG benefits by 2.6 Mg ha -1 y -1 and 9.4 Mg ha -1 y -1 as CO 2 eq relative to the control. Results suggest that N fertilization of switchgrass in this region could reduce (15-50%) the land base needed for bioenergy production and decrease pressure on land for food and forage crop production. -- Highlights: → We examine the effects of N fertilization of switchgrass on GHG emissions. → Effects of N fertilization on biomass production of switchgrass bioenergy crop. → N fertilization contributed little to greenhouse gas emissions. → N fertilization greatly stimulated CO 2 uptake by the switchgrass. → N

  1. Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia

    Directory of Open Access Journals (Sweden)

    Soni HARSONO

    2013-06-01

    Full Text Available The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan and Sumatra are different: energy input in Sumatra is higher than in Kalimantan, except for transport processes; the input/output ratios are positive in both regions and all production systems. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6 to 49.2 GJ t-1 biodiesel yr-1 as well as greenhouse gas emissions (1969.6 to 5626.4 kg CO2eq t-1 biodiesel yr-1. The output to input ratios are positive in all cases. The largest greenhouse gas emissions result from land use change effects, followed by the transesterification, fertilizer production, agricultural production processes, milling and transportation. Ecosystem carbon payback times range from 11 to 42 years.

  2. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  3. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  4. Water balance and energy partitioning in a semi-closed greenhouse

    NARCIS (Netherlands)

    Teitel, M.; Zwart, de H.F.; Kempkes, F.L.K.

    2012-01-01

    The concept of a closed (or semi-closed) greenhouse that is used to harvest solar energy can be attractive to reduce the fossil fuel input or for an increment of water use efficiency. To examine the concept, a 550 m2 greenhouse was built in The Netherlands and experiments were carried out with a

  5. Energy saving potential of long-term climate adaptive greenhouse shells

    NARCIS (Netherlands)

    Lee, C.; Costola, D.; Loonen, R.C.G.M.; Hensen, J.L.M.

    2013-01-01

    This paper describes yearly and monthly optimization of greenhouse shells. Simulations adopt a validated building energy simulation program, adapted and re-validated for simulation of commercial greenhouses, including a tomato crop model. The work focuses on multi-objective optimization of thermal

  6. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  7. The nuclear energy and the greenhouse effect; Le nucleaire et l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Marignac, Y.; Legrand, V. [Wise, 75 - Paris (France)

    2003-10-15

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  8. Dynamic modeling and verification of an energy-efficient greenhouse with an aquaponic system using TRNSYS

    Science.gov (United States)

    Amin, Majdi Talal

    Currently, there is no integrated dynamic simulation program for an energy efficient greenhouse coupled with an aquaponic system. This research is intended to promote the thermal management of greenhouses in order to provide sustainable food production with the lowest possible energy use and material waste. A brief introduction of greenhouses, passive houses, energy efficiency, renewable energy systems, and their applications are included for ready reference. An experimental working scaled-down energy-efficient greenhouse was built to verify and calibrate the results of a dynamic simulation model made using TRNSYS software. However, TRNSYS requires the aid of Google SketchUp to develop 3D building geometry. The simulation model was built following the passive house standard as closely as possible. The new simulation model was then utilized to design an actual greenhouse with Aquaponics. It was demonstrated that the passive house standard can be applied to improve upon conventional greenhouse performance, and that it is adaptable to different climates. The energy-efficient greenhouse provides the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems.

  9. A Cellular Approach to Net-Zero Energy Cities

    Directory of Open Access Journals (Sweden)

    Miguel Amado

    2017-11-01

    Full Text Available Recent growth in the use of photovoltaic technology and a rapid reduction in its cost confirms the potential of solar power on a large scale. In this context, planning for the deployment of smart grids is among the most important challenges to support the increased penetration of solar energy in urban areas and to ensure the resilience of the electricity system. As part this effort, the present paper describes a cellular approach to a Net-Zero energy concept, based on the balance between the potential solar energy supply and the existing consumption patterns at the urban unit scale. To do that, the Geographical Urban Units Delimitation model (GUUD has been developed and tested on a case study. By applying the GUUD model, which combines Geographic Information Systems (GIS, parametric modelling, and solar dynamic analysis, the whole area of the city was divided into urban cells, categorized as solar producers and energy consumers. The discussion around three theoretical scenarios permits us to explore how smart grids can be approached and promoted from an urban planning perspective. The paper provides insights into how urban planning can be a driver to optimize and manage energy balance across the city if the deployment of smart grids is correctly integrated in its operative process.

  10. Modelling and Simulation for Energy Production Parametric Dependence in Greenhouses

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2010-01-01

    Full Text Available Greenhouses crops in Italy are made by using prefabricated structures, leaving out the preliminary study of optical and thermal exchanges between the external environment and the greenhouse, dealing with heating and cooling and the effects of air conditioning needed for plant growth. This involves rather significant costs that directs the interest of designers, builders, and farmers in order to seek constructive solutions to optimize the system of such emissions. This work was done by building a model of gases using TRNSYS software, and these gases then have been checked for compliance. The model was constructed considering an example of a prefabricated greenhouse, located in central of Italy. Aspects of the structural components, and thermal and optical properties are analyzed in order to achieve a representation of reality.

  11. Returns on investments in energy-saving technologies under energy price uncertainty in Dutch greenhouse horticulture

    NARCIS (Netherlands)

    Diederen, P.J.M.; Tongeren, van F.W.; Veen, van der H.B.

    2003-01-01

    Conventional net present value calculations evaluating the profitability of investments in energy-saving technologies in Dutch horticultural outlays predict a much higher rate of adoption of these technologies than is actually observed. This paper tries to explain this gap by applying a real options

  12. Sectoral trends in global energy use and greenhouse gasemissions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth

  13. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  14. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  15. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States

    International Nuclear Information System (INIS)

    Upton, Brad; Miner, Reid; Spinney, Mike; Heath, Linda S.

    2008-01-01

    Data developed by the Consortium for Research on Renewable Industrial Materials were used to estimate savings of greenhouse gas emissions and energy consumption associated with use of wood-based building materials in residential construction in the United States. Results indicate that houses with wood-based wall systems require 15-16% less total energy for non-heating/cooling purposes than thermally comparable houses employing alternative steel- or concrete-based building systems. Results for non-renewable energy consumption are essentially the same as those for total energy, reflecting the fact that most of the displaced energy is in fossil fuels. Over a 100-year period, net greenhouse gas emissions associated with wood-based houses are 20-50% lower than emissions associated with thermally comparable houses employing steel- or concrete-based building systems. Assuming 1.5 million single-family housing starts per year, the difference between wood and non-wood building systems represents about 9.6 Mt of CO 2 equivalents per year. The corresponding energy benefit associated with wood-based building materials is approximately 132 PJ year -1 . These estimates represent about 22% of embodied energy and 27% of embodied greenhouse gas emissions in the residential sector of the US economy. The results of the analysis are very sensitive to assumptions and uncertainties regarding the fate of forestland that is taken out of wood production due to reduced demand for wood, the continued production of co-products where demand for wood products is reduced, and the rate at which carbon accumulates in forests

  16. Transit investments for greenhouse gas and energy reduction program : first assessment report.

    Science.gov (United States)

    2012-07-01

    The purpose of this report is to provide an overview and preliminary analysis of the U.S. Department of Transportation, Federal Transit Administrations TIGGER Program. TIGGER, which stands for Transit Investments for Greenhouse Gas and Energy Redu...

  17. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    Science.gov (United States)

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  18. Pot plant production, environmental conditions and energy consumption in insulated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, H.; Amsen, M.G. (Statens Planteavlsforsoeg, Havebrugscentret, Institut for Vaeksthuskulturer, Aarslev, Denmark)

    1984-01-01

    An energy experiment with 4 different types of greenhouses was carried out in the winter 1980-81 and 1981-82. Three of these greenhouses were insulated. The reference house was a single layer glasshouse with a mobile shading curtain, which was drawn at night. A comparison with the reference house showed the following energy savings for the insulated houses: Double glass 29-32%, double acryllic 39%, and thermal screens 22-24%. On average the air humidity was 80-86% RH in the double acryllic greenhouse and in the double glass house, whereas the levels was 5-10% lower in the 2 greenhouses with single glass. In spite of the high air humidity in the permanently insulated houses, no plant diseases occurred. The dry matter production of seven plant species was recorded in all greenhouses on the same date. Compared with the reference house 3 of the plant species showed a 5-10% higher production in the double acryllic greenhouse as well as the house with thermal screens. The remaining 4 plant species did not show any differences, between the 3 greenhouses. In the double glass house the production was considerably lower. To study the growth in detail, Tagetes plants were grown for 3-week periods during the winter in all houses. The aim of this study was to investigate whether the ratio between the growth in the 4 greenhouses was the same when periods of high light intensity were compared to periods with low light intensity. No characteristic changes with increasing light intensities could be observed between the different greenhouses. The differences between the greenhouses in time of production for the pot plants were generally small. The most remarkable difference in plant quality between the houses could be seen with Chrysanthemum and Kalanchoe. These 2 plant species were considerably less compact in the double acryllic greenhouse. Chrysanthemum was also less compact in the double glass house.

  19. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  20. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  1. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    Science.gov (United States)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  2. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    Science.gov (United States)

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Energy efficient lighting design for Venlo type greenhouses

    NARCIS (Netherlands)

    Janssen, E.; Zonneveldt, L.; Sools, F.

    2006-01-01

    TNO has developed a Radiance software model to calculate the light distribution in the greenhouse using raytracing methods, suitable for daylight and artificial lighting. The model is based on a 3D CAD (Computer aided design) model. The objective is to maximize the efficiency of the artificial

  4. Energy efficient lighting design for Venlo type greenhouses

    NARCIS (Netherlands)

    Janssen, E.G.O.N.; Zonneveldt, L.; Sools, F.

    2005-01-01

    TNO has developed a Radiance software model to calculate the light distribution in the greenhouse using raytracing methods, suitable for daylight and artificial lighting. The model is based on a 3d CAD model. The objective is to maximize the efficiency of the artificial lighting system (the amount

  5. Evaluation of a hybrid system for a nearly zero energy greenhouse

    International Nuclear Information System (INIS)

    Yildirim, Nurdan; Bilir, Levent

    2017-01-01

    Highlights: • A nearly zero energy greenhouse concept was foreseen for three products. • A hybrid system with photovoltaics and a ground source heat pump was evaluated. • Annual photovoltaics electricity generation was found as 21510.4 kWh. • Yearly coverage ratio values were determined between 86.8% and 104.5%. • Economic and environmental analyses were also conducted. - Abstract: Greenhouses are widely used in the World, especially in the Mediterranean climate, to provide suitable environment in cultivation of different agricultural crops. Significant amount of energy is necessary to produce, process and distribute these crops. Various systems, including steam or hot water radiation system and hot air heater system, are being used in greenhouse heating. A ground source heat pump system, generally seen as a favorable option since it can provide both heating and cooling energy, is considered for a greenhouse in this study. The aim of this study is to evaluate a renewable energy option for the required total energy need of a greenhouse. Grid connected solar photovoltaic panels are selected to assist a ground source heat pump, and generate sufficient electrical energy for lighting. In this way, a nearly zero energy greenhouse concept is foreseen for three different agricultural products. Monthly and annual heating, cooling and lighting energy load of the greenhouse for these agricultural products were computed. The monthly average electricity generation of 66 photovoltaic panels, which cover 50% of the southern face part of the asymmetric roof, was calculated. Annual photovoltaic electricity generation was found as 21510.4 kWh. It was observed that photovoltaic electricity generation can meet 33.2–67.2% of greenhouse demand in summer operation months. Nevertheless, the coverage ratio, calculated by dividing the photovoltaic panels electricity generation to the electricity demand of the greenhouse (heating, cooling and lighting) for each crop, were very

  6. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa Junior, Ciniro, E-mail: cinirojr@hotmail.com [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil); Cerri, Carlos E.P., E-mail: cepcerri@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Soil Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Pires, Alexandre V., E-mail: pires.1@usp.br [University of São Paulo, “Luiz de Queiroz” College of Agriculture, Department of Animal Science, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900 (Brazil); Cerri, Carlos C., E-mail: cerri@cena.usp.br [University of São Paulo, Center of Nuclear Energy in Agriculture, Laboratory of Biogeochemistry, Avenida Centenário, 303, Piracicaba, SP 13416-000 (Brazil)

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH{sub 4} and N{sub 2}O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO{sub 2}eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO{sub 2}eq per kg lwg{sup −1}). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO{sub 2}eq kg lwg{sup −1} or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions

  7. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.

    Science.gov (United States)

    Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90 days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO₂eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO₂eq per kg lwg(-1)). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO₂eq kg lwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems. Copyright

  8. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    International Nuclear Information System (INIS)

    Costa Junior, Ciniro; Cerri, Carlos E.P.; Pires, Alexandre V.; Cerri, Carlos C.

    2015-01-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH 4 and N 2 O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO 2 eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO 2 eq per kg lwg −1 ). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO 2 eq kg lwg −1 or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems

  9. The incineration, a net benefit to reduce the greenhouse effect; L'incineration, un benefice net pour reduire l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Chefdebien, H. de [CNIM, Dir. des Relations Institutionnelles, 75 - Paris (France)

    2007-07-01

    Many sources indicate that the wastes incineration contributes to reduce the greenhouse gases emissions. Meanwhile data appear very different from a study to another. It can result of different situations and hypothesis, or because the elements taking into account are not the same. This document aims to give some markers in the domain. (A.L.B.)

  10. Effect on energy use and greenhouse micro climate through fan motor control by variable frequency drives

    International Nuclear Information System (INIS)

    Teitel, Meir; Zhao Yun; Barak, Moti; Bar-lev, Eli; Shmuel, David

    2004-01-01

    A comparison was conducted between ON-OFF and variable frequency drive (VFD) systems to control greenhouse ventilation fans. The study aimed to determine the effect of each system on the energy consumption and resulting greenhouse micro climate. The experiments were conducted in a commercial size greenhouse in which pepper was grown. To check the performance of the fan that was controlled by a VFD system, it was installed in a test facility and operated under several rotation speeds. At each speed of rotation, the static pressure on the fan was changed and parameters, such as electricity consumption and air flow rate, were measured. Reducing the fan speed with the VFD system resulted in reductions in the air flow rate through the greenhouse and energy consumption, the latter being much more significant. The study showed that VFD control can reduce electricity consumption compared with ON-OFF operation by an amount that depends on the weather. In the present study, the average energy consumption with the VFD control system over a period of one month, was about 0.64 of that with an ON-OFF system. The average greenhouse daily air temperatures and humidity ratios obtained with each control system between 0700 and 1800 were nearly equal during that month. The results obtained in the greenhouse further show that the VFD system has a greater potential than the ON-OFF to reduce the range of amplitude variations in the air temperature and humidity ratio within the greenhouse

  11. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  12. A 2nd generation static model of greenhouse energy requirements (horticern) : a comparison with dynamic models

    CERN Document Server

    Jolliet, O; Munday, G L

    1989-01-01

    Optimisation of a greenhouse and its components requires a suitable model permitting precise determination of its energy requirements. Existing static models are simple but lack precision; dynamic models though more precise, are unsuitable for use over long periods and difficult to handle in practice. A theoretical study and measurements from the CERN trial greenhouse have allowed the development of new static model named "HORTICERN", precise and easy to use for predicting energy consumption and which takes into account effects of solar energy, wind and radiative loss to the sky. This paper compares the HORTICERN model with the dynamic models of Bot, Takakura, Van Bavel and Gembloux, and demonstrates that its precision is comparable; differences on average being less than 5%, it is independent of type of greenhouse (e.g. single or double glazing, Hortiplus, etc.) and climate. The HORTICERN method has been developed for PC use and is proving to be a powerful tool for greenhouse optimisation by research work...

  13. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2011-01-01

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO 2 . These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: → Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. → Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. →Energy use in livestock breeding found to be 16% of agriculture energy emissions. → Energy use found to be 3% of total livestock breeding emissions. → 87% of the energy emissions is CO 2 .

  14. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  15. Energy resources' utilization in organic and conventional vineyards: Energy flow, greenhouse gas emissions and biofuel production

    International Nuclear Information System (INIS)

    Kavargiris, Stefanos E.; Mamolos, Andreas P.; Tsatsarelis, Constantinos A.; Nikolaidou, Anna E.; Kalburtji, Kiriaki L.

    2009-01-01

    An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO 2 , CH 4 and N 2 O-emissions based on the used fossil energy and to explore if wine industry wastes can be used to extract bioethanol. The data were collected through personal interviews with farmers during 2004-2005. Eighteen farmers, who owned vineyards about 1 ha each, were randomly selected to participate in this study [(3 conventional and 3 organic) x 3 locations]. The means averaged over all locations for fertilizer application, plant protection products application, transportation, harvesting, labor, machinery, fuels, plant protections products and tools energy inputs, total energy inputs, outputs (grapes), outputs (grapes + shoots), grape yield, man hour, pomace and ethanol from pomace were significantly higher in conventional than in organic vineyards, while the opposite occurred for the pruning. Means averaged over two farming systems for harvesting, tools energy inputs, energy outputs (grapes), grape yield, pomace and ethanol from pomace were significantly higher at location A, followed by location C and location B. Finally, for irrigation, the means averaged over the two farming systems were significantly lower at location C. Greenhouse gas emissions were significant lower in organic than in conventional vineyards. The results show a clear response of energy inputs to energy outputs that resulted from the farming system and location.

  16. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  17. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    Science.gov (United States)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  18. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  19. Mitigation of greenhouse gases in the energy sector: an overview

    International Nuclear Information System (INIS)

    Romani, M.N.

    1998-01-01

    It is fairly well recognised that greenhouse gases (GHG) have an impact on the global climate as they trap heat in the atmosphere. With the result earth is warmed in manner similar to the glass panels of a greenhouse increase. Hence the name 'green house effect' during the last two centuries in CO/sub 2/ in the atmosphere has been reckoned at 25%, with corresponding values for CH/sub 4/ and N/sub 2/O as 100% and 10% during 1950-80. CFC concentration increased by 10%. It is estimated that the earth has warmed by 0.5 deg. C and sea level has increased by 15 cm over the last 100 years or so. The major cause has been attributed to the process of industrialization. (author)

  20. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  1. Innovations in greenhouse systems - Energy conservation by system design, sensors and decision support systems

    NARCIS (Netherlands)

    Hemming, S.; Balendonck, J.; Dieleman, J.A.; Gelder, De A.; Kempkes, F.L.K.; Swinkels, G.L.A.M.; Visser, De P.H.B.; Zwart, De H.F.

    2017-01-01

    The targets for energy saving in Dutch horticulture are high. Research follows the two lines: total energy reduction and sustainability. The principles for that are: maximum use of natural sunlight (free energy input to greenhouse, free light for crop growth and production); maximum insulation

  2. Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

    International Nuclear Information System (INIS)

    Lettens, Suzanna; Muys, Bart; Ceulemans, Reinhart; Moons, Ellen; Garcia, Juan; Coppin, Pol

    2003-01-01

    The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr. Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most

  3. Energy and Greenhouse gas balances of the utilisation of biogas for energy

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Karlsson, Kenneth Bernard; Holm-Nielsen, Jens Bo

    1998-01-01

    of the implementation programmes has been on development of technologies for joint biogas plants, where more than one farm supplies the animal slurry. The joint biogas plants are dependent on industrial organic wastes to obtain high biogas yields for making the biogas plant economical. The industrial organic waste will......The utilisation of biogas for energy is an important part of the Danish energy plan for reducing Danish emissions of greenhouse gases. Implementation programmes for new biogas plants have been in operation since 1990, promoted by the Ministry of Environment and Energy. The focus......, however, be the scarce factor in a further development of the joint biogas plants in Denmark. The purpose of the present study is related to the discussion on the role of transportation in the biogas fuel chain. Transportation plays a central role in the assessment of environmental advantages of utilising...

  4. Impact of renewable energy sources on greenhouse gas emissions in comparison to conventional energies - Simplified examples

    International Nuclear Information System (INIS)

    Nieminen, J.P.

    1997-01-01

    The paper discusses definition problem of the full energy chain greenhouse gas (FENCH-GHG) emission analysis. The importance of good definition of the problem is essential: for what purpose this analysis is done, what shall be included and what can be excluded from the analysis. This is done by giving simplified examples of FENCH-GHG emission analysis. The example is use of small solar heating systems in an oil heated single family house in Finland and another renewable energy source: liquid biofuel combustion. The paper gives rough data for those options. Paper concludes with this example, to recommendations how definition of FENCH-GHG analysis should be done for intermittent renewable energies. (author)

  5. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  6. Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms

    Directory of Open Access Journals (Sweden)

    Jiaoliao Chen

    2015-01-01

    Full Text Available Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA. HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.

  7. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.

    Science.gov (United States)

    Poulsen, Tjalfe G; Hansen, Jens Aage

    2009-11-01

    Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.

  8. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin

    2015-01-01

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  9. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  10. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  11. Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II

    Science.gov (United States)

    The long-term dynamic changes in the triad, energy consumption, economic development, and Greenhouse gas (GHG) emissions, in Japan after World War II were quantified, and the interactions among them were analyzed based on an integrated suite of energy, emergy and economic indices...

  12. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  13. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  14. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  15. Uses of geothermal energy in Jordan for heating greenhouses; project proposal

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.; Masarwah, Rober; Elkarmi, Fawwaz

    1993-08-01

    A proposal for the exploration of geothermal energy in Jordan for heating greenhouses. The report gives some background information on geothermal anomalies in Jordan, and outlines some on-going uses of geothermal energy in various parts of Jordan. The proposal is modelled on the 2664 square meter Filclair Super 9 Multispan greenhouse from France. The overall cost of the project involves three variables, the cost of the borehole, the cost of the greenhouse, and the cost of engineering services. The total cost ranges between three to four million dollars depending on the quantity and quality of information to be collected from the borehole. The advantages of geothermal heating compared with oil heating are emphasized. The project will enable geothermal heating and horticultural production to be monitored throughout the year, will produce data enabling rational and reliable water resources management, and will produce environmentally clean and efficient energy. (A.M.H.). 1 tab. 1 map

  16. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  17. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    International Nuclear Information System (INIS)

    Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; Van Erp, J.B.

    2015-01-01

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  18. Net soil respiration and greenhouse gas balance along a sequence of forest disturbance to smallholder rubber and oil palm plantations in Sumatra

    Science.gov (United States)

    Khusyu Aini, Fitri; Hergoualc'h, Kristell; Smith, Jo; Verchot, Louis; Martius, Christopher

    2017-04-01

    The rapid increase in demand for land to establish oil palm and rubber plantations has led to the conversion of forests, with potential impacts on greenhouse gas emissions and on climate change. This study evaluates the net greenhouse gas balance following forest change to other land uses, i.e. one year rubber plantation, twenty-year rubber plantation and eight year oil palm plantation on Sumatran mineral soils. None of the plantations had ever been fertilized previously. During this study they were fertilized to provide nitrogen at the recommended rate used by farmers (33.3 kg N ha-1 y-1). The ecosystem stores carbon in litterfall, standing litter biomass (undergrowth vegetation, leaves, twigs, litter on the soil surface), soil organic matter, root biomass, and standing tree biomass. It releases carbon to the atmosphere through soil respiration fluxes, negative values indicating that carbon is stored by the land use change and positive values indicating emissions to the atmosphere. Net soil respiration was assessed using a mass balance approach: standing litter and tree biomass were measured once; the rate of carbon accumulation from standing litter and tree biomass was calculated by dividing the stock by the age of plantation or the time since logging started in the disturbed forest. The carbon accumulation in standing litter, tree biomass in the forest and soil organic matter for all land-uses was estimated from available in the literature. Root biomass for each land-use system was calculated using the root:shoot ratio. The net soil respiration of carbon dioxide from the forest, disturbed forest, one year rubber plantation, twenty-year rubber plantation and oil palm plantation were calculated to be -6 (± 5), 12 (± 6), 11 (± 15), 10 (± 5), 39 (± 7) Mg ha-1 y-1, respectively. Soil nitrous oxide, methane and litterfall were measured for 14 months and respiration fluxes were measured for 5 months across land uses and different seasons. The measured emissions of

  19. Analysis of energy and greenhouse gas balance as indexes for environmental assessment of wheat and maize farming: a case study

    Directory of Open Access Journals (Sweden)

    Móslem SAMI

    2015-12-01

    Full Text Available In this study, the net balance of greenhouse gas (GHG emission and energy of wheat and maize production systems in two farms in Khuzestan province of Iran was assessed. The results showed that totally wheat farming is more efficient than maize farming in terms of energy and CO2-eq indexes. The total energy requirement for maize and wheat farming was 92560.24 MJ ha-1 and 39624.15 MJ ha-1, which caused the emission of 20191.47 and 7541.04 kg CO2-equivalent per hectare in maize and wheat farms respectively. Electricity, fertilizers and fuel were the most important pollutants of environment in terms of energy and gas emission in both farms. Theses inputs consumed 55.52, 22.62 and 6.44 % of total energy of maize and 47.32, 21.19 and 9.01 % of total energy of wheat farm and were responsible for the 88.60, 8.79 and 2.03 % of CO2-equivalent in maize and 86.54, 9.54 and 3.24 % of CO2-equivalent in wheat farms respectively. The results of this study also showed that the enhancement of 60.74 and 27.02 % in energy ratio and 46.06 and 27.87 % in CO2-eq index in maize and wheat farming can be expected using simple improving scenarios.

  20. International energy R and D spillovers and the economics of greenhouse gas atmospheric stabilization

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Carraro, Carlo; Massetti, Emanuele; Tavoni, Massimo

    2008-01-01

    It is now widely recognized that technological change will play a substantial role in reducing GHG emissions without compromising economic growth; hence, any better understanding of the process of technological innovation is likely to increase our knowledge of mitigation possibilities and costs. This paper explores how international knowledge flows affect the dynamics of the domestic R and D sector and the main economic and environmental variables. The analysis is performed using WITCH, a dynamic regional model of the world economy, in which energy-related technological change is endogenous. The focus is on disembodied energy R and D international spillovers. The knowledge pool from which regions draw foreign ideas differs between High Income and Low Income countries. Absorption capacity is also endogenous in the model. The basic questions are as follows. Do knowledge spillovers enhance energy-related technological innovation in different regions of the world? Does the speed of innovation increase? Or do free-riding incentives prevail and international spillovers crowd out domestic R and D efforts? What is the role of domestic absorption capacity and of policies designed to enhance it? Do greenhouse gas stabilization costs drop in the presence of international technological spillovers? The new specification of the WITCH model presented in this paper enables us to answer these questions. Our analysis shows that international knowledge spillovers tend to increase free-riding incentives and decrease the investments in energy R and D. The strongest cuts in energy R and D investments are recorded among High Income countries, where international knowledge flows crowd out domestic R and D efforts. The overall domestic pool of knowledge, and thus total net GHG stabilization costs, remain largely unaffected. International spillovers, however, are also an important policy channel. We therefore analyze the implication of a policy-mix in which climate policy is combined with a

  1. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  2. An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village

    Directory of Open Access Journals (Sweden)

    Fahd Diab

    2015-07-01

    Full Text Available The main objective of this study is to discuss the economical and the environmental analysis of a net zero energy (NZE tourist village in Alexandria, Egypt, by maximizing the renewable energy fraction and minimizing the greenhouse gases (GHG emissions. The hybrid photovoltaics (PV/wind/diesel/battery system is found to be the optimum hybrid renewable energy system (HRES for the proposed tourist village under the study. The optimum HRES consists of 1600 kW of PV panels (58.09% solar energy penetration, 1000 kW of wind turbines (41.34% wind energy penetration, 1000 kW of power converters, 200 kW diesel generator (only 0.57% diesel generator penetration in addition to 2000 batteries with the capacity of 589 Ah each. The levelized cost of energy (COE from the optimum HRES is $0.17/kWh and the total net present cost (NPC of this system is $15,383,360. Additionally, the maximum renewable energy fraction is 99.1% and the amount of GHG emitted from the optimum HRES is only 31,289 kg/year, which is negligible in comparison with the other system configurations, therefore the optimum HRES can be considered as a green system. In addition to this, the achieved percentage of the capacity shortage and the unmet load in the optimal HRES is only 0% for both.

  3. Energy analysis of fuel cell system for commercial greenhouse application – A feasibility study

    International Nuclear Information System (INIS)

    Vadiee, Amir; Yaghoubi, Mahmoud; Sardella, Marco; Farjam, Pardis

    2015-01-01

    Highlights: • Feasibility study of integrating a PEMFC with a commercial greenhouse. • An energy analysis has been performed in order to evaluate the energetic performance of the system. • A sensitivity analysis on the main influencing operating parameters for optimization. - Abstract: The purpose of this paper is to investigate the feasibility of integrating a proton exchange membrane fuel cell (PEMFC) system with a commercial greenhouse and assess the mutual benefits of such integration. The main objective is to recover the low quality waste heat of the PEMFC system in order to meet the thermal energy demand of a commercial greenhouse. In addition the PEMFC covers the some part of the greenhouse electrical demand. In this study an energy analysis has been performed in order to evaluate the energetic performance of the system. To achieve these aims, first, a system model has been developed using TRNSYS. Afterwards, a sensitivity analysis has been carried out varying the main influencing operating parameters in order to evaluate an optimal configuration of the system. In particular the influences of temperature and air stoichiometry have been investigated. The results show that a 3 kW fuel cell system is capable to cover approximately the 25% and 10% of the usual electricity and heat demands of a 1000 m 2 commercial greenhouse during a year, respectively

  4. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Ioan Aschilean

    2018-05-01

    Full Text Available Bio-organic greenhouses that are based on alternative resources for producing heat and electricity stand out as an efficient option for the sustainable development of agriculture, thus ensuring good growth and development of plants in all seasons, especially during the cold season. Greenhouses can be used with maximum efficiency in various agricultural lands, providing ideal conditions of temperature and humidity for short-term plant growing, thereby increasing the local production of fruit and vegetables. This paper presents the development of a durable greenhouse concept that is based on complex energy system integrating fuel cells and solar panels. Approaching this innovative concept encountered a major problem in terms of local implementation of this type of greenhouses because of the difficulty in providing electrical and thermal energy from conventional sources to ensure an optimal climate for plant growing. The project result consists in the design and implementation of a sustainable greenhouse energy system that is based on fuel cells and solar panels.

  5. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  6. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  7. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded

  8. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    Science.gov (United States)

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID

  9. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  10. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  11. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  12. Producing energy without greenhouse effect gases: the CEA action

    International Nuclear Information System (INIS)

    2008-01-01

    Major actor in the domain of new energy technologies, the CEA manages the french research on the hydrogen and the fuel cells. It is also implied with INES (National Institute for the Solar Energy) in the photovoltaic and thermal solar. With the IFP (French Petroleum Institute), it manages research on biofuels. Of course the thermonuclear fusion, for the development of the energy of the future, is in its research program too. This information document presents the possibilities of these energies and the associated research programs. (A.L.B.)

  13. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Energy Technology Data Exchange (ETDEWEB)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

  14. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  15. Heat Mismatch of future Net Zero Energy Buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    The long-term goal for Denmark is to develop an energy system solely based on renewable energy sources (RES) in 2050. To reach this goal energy savings in buildings are essential. Therefore, a focus on energy efficient measures in buildings and net zero energy buildings (NZEBs) have increased...... systems enables them to send or receive energy from these systems. This is beneficial for NZEBs because even though they have an annual net exchange of zero, there is a temporal mismatch in regard to the energy consumption of buildings and the production from the renewable energy units added to them...

  16. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ali; Omid, Mahmoud [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran)

    2010-01-15

    This paper studies the energy balance between the input and the output per unit area for greenhouse cucumber production. For this purpose, the data on 43 cucumber production greenhouses in the Tehran province, Iran, were collected and analyzed. The results indicated that a total energy input of 148836.76 MJ ha{sup -1} was consumed for cucumber production. Diesel fuel (with 41.94%) and chemical fertilizers (with 19.69%) were amongst the highest energy inputs for cucumber production. The energy productivity was estimated as 0.80 kg MJ{sup -1}. The ratio of energy output to energy input was approximately 0.64. Results indicate 10.93% and 89.07% of total energy input was in renewable and non-renewable forms, respectively. The regression results revealed that the contribution of energy inputs on crop yield (except for fertilizers and seeds energies) was significant. The human labour energy had the highest impact (0.35) among the other inputs in greenhouse cucumber production. Econometric analysis indicated that the total cost of production for one hectare of cucumber production was around 33425.70$. Accordingly, the benefit-cost ratio was estimated as 2.58. (author)

  17. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  18. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  19. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  20. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline

    2013-01-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  1. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2013-02-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  2. Thermal analysis of a hybrid solar energy saving system inside a greenhouse

    International Nuclear Information System (INIS)

    Ntinas, G.K.; Fragos, V.P.; Nikita-Martzopoulou, Ch.

    2014-01-01

    Highlights: • A hybrid solar system consisted of water filled polyethylene sleeves was examined. • The thermal behaviour of the system was studied based on the sleeves energy balance. • Water temperature and heat exchanges of the sleeves were dynamically estimated. • Experimental data used to validate the predictions of the mathematical model. • The use of the system led to an energy saving of 23% inside a heated greenhouse. - Abstract: The intensive greenhouse energy requirements are a major operational and economical problem for producers around the world. Energy conservation techniques and innovative applications of solar energy for heating are being employed in greenhouse operation to reduce heating costs during cold periods. The present study investigated the development of a mathematical model to predict the thermal efficiency of a novel hybrid solar energy saving system inside a heated greenhouse. The solar system consisted of a transparent water-filled polyethylene sleeve and two perforated air-filled polyethylene tubes on the top peripheral sides of it. Above the sleeve and between the two tubes, rockwool substrates were placed for hydroponic cultivation of tomato crop. In order to validate this model, experiments were carried out in two identical parts of a polyethylene arched-type greenhouse to obtain data during winter. By comparing the measured and the predicted values, a correlation of 95% was found, indicating that the model can simulate the water temperature inside the hybrid solar sleeves. Moreover, the additional energy provided by the hybrid solar system reached approximately 23% during the examined period, depending on solar radiation levels

  3. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  4. Energy Use Consequences of Ventilating a Net-Zero Energy House

    Science.gov (United States)

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  5. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    Science.gov (United States)

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  6. Greenhouse impacts of the use of peat and wood for energy

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    Atmospheric concentrations of greenhouse gases may well double or increase even more during the next hundred years. The resultant disturbance in the global radiation energy balance (radiative forcing) may change almost as much. Stabilizing these concentrations at a level innocuous to the climate - the aim expressed in the Climate Convention - will take decades, perhaps more than a hundred years, to carry out. This study examines the greenhouse impacts of using peat and wood for energy and the time factors involved, taking the entire energy production chain and renewal of the energy source into account. The greenhouse effects of peat and wood use are compared with those of fossil fuels. The calculations apply to test cases. Financial considerations and other sources of energy are not dealt with. Greenhouse effects are measured in terms of radiative forcing caused by using an energy resource. The calculations are made per units of primary energy. The study further proposes ways to apply the results obtained to assessing the extent to which radiative forcing caused by Finland could be reduced by the use of peat or wood fuels. The calculations take into account emissions of CO 2 , CH 4 , N2 O and possible sinks of CO 2 arising from energy production. The emissions and sinks of each chain of energy production are calculated as a function of time, deducting emissions which would arise in the reference case, in which energy production is not begun. Real emissions due to production are obtained by deducting emissions in the reference case from emissions which arise during production. The difference is used as a basis for calculating radiative forcing per unit of energy produced

  7. Energy crops as a strategy for reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Olesen, J.E.

    2002-01-01

    The current Danish energy plan stipulates a production of 5 PI from energy crops in 2010. This may be attained through growing of either annual (e.g., cereal) or perennial energy crops (e.g., willow or Miscanthus). Existing Danish data and the IPCC methodology was used to calculate nitrous oxide emissions from and carbon sequestration in soils cropped with an annual energy crop (triticale) or a perennial energy crop (Miscanthus). The calculations for Miscanthus were performed separately for harvest in November or April, since the harvest time affects both yields and emissions. The estimates for Miscanthus were based on a 20-year duration of the cultivation period. The energy use for growing the crops was included in the energy budgets, as was the reduction in CO 2 emission that will result from substitution of fossil fuel (natural gas). The calculations were performed for both a coarse sandy soil and a loamy sand. The results were compared with current (reference) practice for growing cereals. There were only minor differences in production data and emissions between the two soil types. The area required to produce 5 PI was smallest for Miscanthus harvested in November (c. 25,000 ha), and about equal for triticale and Miscanthus harvested in April (c. 32,000 ha). The reduction in nitrous oxide emissions compared with cereal production was smallest for triticale (20 kt CO 2 equivalents /eq] yr -1 ) and about equal for Miscanthus at the two harvest times (30-36 kt CO 2 eq yr -1 ). Growing Miscanthus resulted in a carbon sequestration, with the highest rates (100 kt CO 2 eq yr -1 ) for Miscanthus harvested in April. The energy use for production of triticale was slightly lower than for normal cereal growing, whereas growing Miscanthus for harvest in April resulted in a smaller energy use which corresponded to an emission reduction of 20 kt CO 2 yr -1 . The substitution of fossil fuel corresponded to 285 kt CO 2 yr -1 . Summing all items, growing 5 PI worth of

  8. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Science.gov (United States)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  9. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    International Nuclear Information System (INIS)

    Barnes, C.D.; Colby, E.R.; Plettner, T.

    2005-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  10. LEAP Phase II, net energy gain from laser fields in vacuum

    International Nuclear Information System (INIS)

    Barnes, Christopher D.; Colby, Eric R.; Plettner, Tomas

    2002-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  11. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Roberto, E-mail: roberto.rana@unifg.it; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP{sub 100}) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP{sub 100} associated with electricity production through the biogas plant investigated was equal to 111.58 g CO{sub 2eq} MJ{sub e}{sup −1} and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly

  12. Innovation and greenhouse gas reductions in the Canadian energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Potter, I.J. [Alberta Research Council, Edmonton, AB (Canada); Stewart, B. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2005-07-01

    Canada's hydrocarbon industry must address the challenges presented by the Kyoto Protocol in order to thrive. This paper argued that technological innovations are the primary means of creating long-term options to provide clean hydrocarbon energy. Both federal and provincial governments have developed energy policies to ensure environmental stewardship, promote economic growth, and create a diversified energy sector. While the Canadian energy industry funds and undertakes a significant amount of research and development, government programs must continue to show leadership in research and development activities. In order to ensure Canada's future prosperity, research and innovation programs must expand. Adequate commercialization processes must be in place. Industry and government programs must also link market needs with research directions. Enhanced research coordination is needed between government agencies, research agencies, and educational facilities. Future research and development agendas must be designed to focus on energy technology developments that offer Canada a competitive advantage. The Cleaner Hydrocardon Technology Futures (CHTF) Group has recently focused on 5 key areas in which Canada's energy industry can contribute to a clean hydrocarbon future: (1) clean coal; (2) oil sands and heavy oil; (3) conventional and unconventional oil and gas; (4) carbon capture, use and storage; and (5) hydrocarbon to hydrogen bridging technologies. Investments in research and development in all 5 areas are expected to create a suite of new transformational technologies that will sever the relationship between GHG emissions and the continued production of hydrocarbons. A systems approach was recommended to encourage the creation of new networks and increase Canada's capacity to nurture science and technology innovation. Directions advocated by the EnergyINet have also been embraced by universities and research organizations in western Canada. It

  13. Energy Saving in Greenhouse Horticulture as a response to changing societal demands

    NARCIS (Netherlands)

    Verstegen, J.A.A.M.; Westerman, A.D.; Bremmer, J.; Ravensbergen, P.

    2004-01-01

    In response to societal demands, the Dutch government implemented policy measures to reduce the use of fossil energy in greenhouse horticulture. A survey study was conducted to analyse behavioural aspects of horticultural growers to see 1) if they know about the policy measures and know what they

  14. Measurements on a solar greenhouse combining cooling and electrical energy production

    NARCIS (Netherlands)

    B. van Tuijl; Piet Sonneveld; H. Janssen; J. van Campen; G. Bot; Gert-Jan Swinkels

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  15. Performance results of a solar greenhouse combining electrical and thermal energy production

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Campen, J.B.; Tuijl, van B.A.J.; Janssen, H.J.J.; Bot, G.P.A.

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  16. GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere

    Science.gov (United States)

    Floyd, M.; Grunberg, M.; Wilson, E. L.

    2017-12-01

    Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.

  17. An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006

    International Nuclear Information System (INIS)

    Curtin, Richard

    2011-01-01

    Highlights: → Residential sector emits 38% of total CO 2 emissions. → Transport and industry/commerce sectors emit 28% each. → Oil composes 91% of total primary energy requirement (TPER). → Methane accounts for 25% of total greenhouse gas emissions. → Agriculture accounts for 36% of total greenhouse gas emissions. -- Abstract: In this paper an energy balance and a greenhouse gas profile has been formulated for the county of Wexford, situated in the south east of Ireland. The energy balance aims to aggregate all energy consumption in the county for the year 2006 across the following sectors; residential, agriculture, commerce and industry, and transport. The results of the energy balance are compared with the previous energy balance of 2001 where it is found that the residential sector is the biggest emitter of CO 2 with 38% of total emissions with the transport and industry/commerce sectors sharing second place on 28%. Consumption of oil is seen to have increased significantly in nearly all sectors, accounting for over 70% of the total final energy consumed (TFC) while the total primary energy requirement (TPER) sees oil consumption accounting for 91% of all fuels consumed. To take into account the contribution of agriculture in total GHG emissions the gases CH 4 and N 2 O will be estimated from the agricultural and waste sectors. The results show that methane contributes 25% of total GHG emissions with agriculture being the primary contributor accounting for 36% of total emissions.

  18. The impacts of a concept greenhouse with highly insulating double glass and a new method for greenhouse dehumidification management on energy use

    NARCIS (Netherlands)

    Kempkes, F.; Zwart, de H.F.; Janse, J.

    2014-01-01

    In order to reduce the dependency on fossil fuels, the Dutch horticultural sector puts a lot of effort in the reduction of energy demand. By using multiple thermal screens, a modest temperature regime and allowing high humidities, the energy consumption of a greenhouse can be reduced substantially,

  19. Material and energy balances of an integrated biological hydrogen production and purification system and their implications for its potential to reduce greenhouse gas emissions.

    Science.gov (United States)

    Fukushima, Yasuhiro; Huang, Yu-Jung; Chen, Jhen-Wei; Lin, Hung-Chun; Whang, Liang-Ming; Chu, Hsin; Lo, Young-Chong; Chang, Jo-Shu

    2011-09-01

    The materials and energy in an integrated biological hydrogen production and purification system involving hydrolysis, dark fermentation, photo fermentation, CO2 fixation and anaerobic digestion are balanced by integrating the results from multiple experiments, simulations and the literature. The findings are two fold. First, using 1000 kg rice straw as a substrate, 19.8 kg H2 and 138.0 kg CH4 are obtained. The net energy balance (NEB) and net energy ratio (NER) are -738.4 kWh and 77.8%, respectively, both of which imply an unfavorable energy production system. Opportunities to improve the performance particularly lie in the photo fermentation process. Second, greenhouse gas emissions are evaluated for various options. The results were comparable with the emission inventory of electricity generated from fossil fuels. NEB and NER under a zero-carbon-emission constraint were discussed in detail to clarify completely the implications of the energy and material balances on greenhouse gas emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Energy and greenhouse gas profile of the Nouvelle Aquitaine region. Release 2017

    International Nuclear Information System (INIS)

    Rousset, Alain; Poitevin, Lionel; Loeb, Amandine; Philippot, Herve; Rebouillat, Lea; Jacquelin, Antoine

    2017-06-01

    This publication first proposes graphs and comments characterising final energy consumption of the Nouvelle Aquitaine region: regional situation in 2015 (analysis per sector and per energy), primary resources, social-economic analysis (energy bill, level of energy poverty, burden due to old housing and commuting for households), evolution of energy consumption between 2005 and 2015 (per sector, per source of energy, evolution of energy intensity and of the energy bill). The next part addresses greenhouse gas emissions: regional situation in 2015 (distribution in terms of emission type and per gas), evolutions between 1990 and 2015, evolutions per sector. The third part addresses renewable energies: regional situation for the different types of renewable energy, comparison with final energy consumption, comparison with national data, production evolutions, focus per sector (wood and wood by-products, heat pumps in the housing sector, urban waste valorisation units, biogas valorisation, bio-fuels, wind energy, hydroelectricity, solar photovoltaic). The last part recalls national objectives related to energy, to greenhouse gas emissions for France and for the region, in relationship with the law on energy transition and for a green growth

  1. Greener greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Paksoy, Halime; Turgut, Bekir; Beyhan, Beyza; Dasgan, H. Yildiz; Evliya, Hunay; Abak, Kazim; Bozdag, Saziye

    2010-09-15

    Agricultural greenhouses are solution to the increased demand for higher production yields, facilitating off season cultivation and allowing the growth of certain varieties in areas where it was not possible earlier. Heating and/or cooling system, required to maintain the inside micro-climate in greenhouses mostly rely on fossil fuels and/or electricity. This paper aims to discuss the 'greener' solutions for heating and cooling systems of greenhouses based on different thermal energy storage concepts. Results from a greenhouse Aquifer Thermal Energy Storage (ATES) application in Turkey producing tomatoes with zero fossil fuels and up to 40% higher yield are presented.

  2. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  3. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  4. Federal Campuses Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office Energy Efficiency and Renewable Energy (EERE) defined a zero energy campus as "an energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy campuses to federal sector campuses. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  5. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    International Nuclear Information System (INIS)

    Parayre, P.; Bruhnes, P.; Huglo, Ch.

    2000-12-01

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  6. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  7. Energy Efficiency of a Greenhouse for the Conservation of Forestry Biodiversity

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-01-01

    Full Text Available Forest biodiversity conservation is one of the most interesting and crucial problems in forestry world. Currently, the conservation methods are based on two phases: the conservation of seeds at low temperatures and the multiplication of vegetable material. This latter operation can be successfully developed in properly designed greenhouses. The aim of this paper is to define a type of greenhouse which is particularly suitable for plant material propagation in order to preserve forest biodiversity in the area of the Central Italy. Some general parameters were first defined for a correct planning of the structure, such as: the shape of the section, volume, cover material, systems for heating and cooling, and those for the control of the internal microclimate parameters (light, air temperature, and relative humidity. Considering the construction characteristics and the climatic conditions of the place, the internal microclimatic conditions have been later determined by the useful implementation in TRNSYS in order to analyse the energy efficiency of the greenhouse.

  8. Energy efficiency as a greenhouse gas mitigation strategy

    International Nuclear Information System (INIS)

    Salmon, G.

    1995-01-01

    This paper focuses on the best strategy for New Zealand to follow in order to meet obligations under the Framework Convention on Climate Change (FCCC). The New Zealand government's current policy is to rely on the increased carbon storage in commercial tree plantings to meet 80% of FCCC obligations with the balance being met by policy measures including voluntary energy efficiency agreements with industry and enhanced state support for energy efficiency activities. If targets are not on track for achievement by 2000, the government will introduce a carbon charge in 1997. An alternative strategy involving microeconomic reforms in the electricity and transport sectors and tradable abatement obligations including credits for emission reductions and carbon storage is proposed. 1 fig., 11 refs

  9. Development of bioengineering processes to transform greenhouse waste into energy, fertilizer and tomato

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, D.; Masse, D.I. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada). Dairy and Swine Research and Development Centre; Juteau, P. [Quebec Univ., Laval, PQ (Canada). INRS-Institut Armand Frappier; Saint-Laurent CEGEP, Montreal, PQ (Canada). Centre des technologies de l' eau; Dorais, M. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada). Horticultural Research Centre

    2010-07-01

    Methods to promote sustainable production systems in greenhouses were discussed with particular reference to anaerobic digestion (AD) and nitrification processes for waste and nutrient management and energy consumption. The high cost of organic soluble fertilizers and the difficulty in obtaining a quality product are strong limitations for converting conventional greenhouses to organic practices. AD has been shown to be a promising solution for disposal of tomato leaves pruned during greenhouse operations. Studies have shown that AD generates end-products, notably supernatant sludge that have agronomic benefits of land application for forage and cereal crops. However, little has been done for horticultural crops. Unlike field crops, nitrification of digester effluents is a key step for using AD effluents as fertilizers for vegetable greenhouse plants. Greenhouse vegetables need nitrogen mainly under the nitrate form for an adequate growth because the other forms of nitrogen are detrimental to plant and fruit quality. However, nitrification of AD supernatant can be challenging because of its high ammonia content and its inhibition potential of nitrifying micro-organisms. This study examined the few nitrification processes that have the potential to operate under these conditions.

  10. Development of an intelligent indoor environment and energy management system for greenhouses

    International Nuclear Information System (INIS)

    Kolokotsa, D.; Saridakis, G.; Dalamagkidis, K.; Dolianitis, S.; Kaliakatsos, I.

    2010-01-01

    The microclimate control in a greenhouse is a complicated procedure since the variables that influence it are several and dependant on each other. This work is an effort of integrating these variables in a common control methodology through the development of an intelligent environment and energy management system for greenhouses. Two fuzzy logic controllers are developed, embodying the expert knowledge of agriculturists and indoor environment experts. These controllers consist of fuzzy P (Proportional) and PD (Proportional-Derivative) control using desired indoor climatic set-points. The factors being monitored are the greenhouse's indoor illuminance, temperature, relative humidity, CO 2 concentration and the outside temperature. Output actuations include: heating units, motor-controlled windows, motor-controlled shading curtains, artificial lighting, CO 2 enrichment bottles and water fogging valves. These controllers are prototyped in a Matlab environment and simulated using a greenhouse model, which is implemented as a module within the TRNSYS software. The system is tested in a greenhouse located in MAICh (Mediterranean Agronomic Institute of Chania). The overall installation is based on Local Operating Network (LonWorks) protocol.

  11. Green-house gasses reduction in the energy sector

    International Nuclear Information System (INIS)

    Todorovski, Mirko; Markovska, Natasha; Boshevski, Tome; Pop-Jordanov, Jordan

    2004-01-01

    As a follow-up activity of the Macedonian First National Communication under the UNFC-CC, Technology Needs Assessment is conducted, evaluating by GACMO model the measures related mainly to energy efficient and renewable energy technologies. An abatement cost curve is constructed and used as an illustrative tool for recognizing priorities in GHG abatement policy. About half of the measures are shown to be of 'win-win' type, reducing 3% of the baseline GHG emissions, while the total reduction which can be achieved by all measures amounts to 20%. For each measure difficulties for implementation are identified, being the highest for the measures with largest GHG abatement potential. Generally, these difficulties include lack of financing and low prospects for attracting foreign investments as well as legislative and administrative barriers. It must be recognized that climate change issues could not be of high priority in a country with economy in transition. Consequently, in our case the main issues which should be integrated within the framework of ongoing transition reforms, in an effort to implement a GHG emission reduction policy, would be: institutional capacity building, attracting foreign investment, emphasis on energy efficiency and considering the switch toward less carbon intensive fuels. (Author)

  12. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  13. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  14. Solar radiation and energy balance in polyethylene covered greenhouse; Balancos de radiacao solar e de energia em estufa com cobertura de polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Frisina, Valeria de Almeida; Escobedo, Joao Francisco [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Dept. de Ciencias Ambientais

    1998-07-01

    The objective of this paper is describe the radiation and energy balance, during the lettuce (Lactuca sativa, L, var Veronica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside of a tunnel greenhouse with polyethylene cover (100 {mu} m) and in an external area, both area with 35 m{sup 2}. Global (R{sub G}), reflected (R{sub r}) and net radiation (SR), soil heat flux and air temperature (dry and humid) were measured during crop cycle, in this two environment. In the data acquisition it was utilized a DATALOGGER, which operated at 1 Hz frequency, storing 5 minutes averages. The global and reflected radiations (MJ/m{sup 2}) allowed the verification that the average transmission of global radiation (R-G{sub in}/R{sub Gex}) was almost constant, near 79,59% while the average ratio of reflected radiation (R{sub rin}/R{sub rex}) was 69,21% with 8,47% standard-deviation. The short-wave radiation average (SRoc) was bigger in the external area. The normalized relation (SR/R{sub G}) was bigger in the external area, about 12%, when the green culture covered (SRol) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83,07% of total net radiation was converted in latent heat evaporation; 18% in soil heat flux and 9,96% in sensible heat, while, inside of the greenhouse, 58,71% of total net radiation was converted in latent heat evaporation:; 42,68% in sensible heat and 28,79% in soil heat flux. (author)

  15. Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany

    OpenAIRE

    Alexander Maennel; Hyun-Goo Kim

    2018-01-01

    Germany and South Korea are the world’s sixth and seventh largest emitters of greenhouse gases, respectively; their main sources of pollution being fossil-fueled power plants. Since both countries signed the Paris Agreement in 2016, renewable energy transition is emerging as an effective means and method for avoiding air pollutant emissions and for replacing old fossil-fueled power plants. This paper attempts to evaluate—by using a grid emission factor dependent on a series of energy mix scen...

  16. The Rhone-Alpes Observatory of Energy and Greenhouse Gases. Key data for 2012, February 2014 release

    International Nuclear Information System (INIS)

    2014-02-01

    Maps, graphs and tables related to greenhouse gas emissions are presented and briefly commented. They illustrate a comparison between the Rhone-Alpes region and France, the European objectives in this region, energy consumption, greenhouse gas emissions, and energy production. They also illustrate an analysis of final energy consumption and greenhouse gas emissions per sector (housing, office building, industry, transports, agriculture, and uses of energy). They present the renewable energy production in Rhone-Alpes: production of electricity from renewable sources, production of renewable heat, carbon sinks

  17. Alternative Energy Sources and Energy Infrastructure for Dutch Greenhouses : Investigating Growers’ Preferences

    NARCIS (Netherlands)

    Araghi, Yashar; Dijkema, Gerard P.J.

    2015-01-01

    Growing plants, vegetables and flowers in greenhouses constitutes the core business and capability of the Dutch horticulture industry. Greenhouse owners in the Netherlands use advanced technology to maintain the quality of products and to remain competitive in international markets despite high cost

  18. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants.

    Science.gov (United States)

    González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M

    2018-03-14

    The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.

  19. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants

    Directory of Open Access Journals (Sweden)

    Alfonso González-Briones

    2018-03-01

    Full Text Available The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system.

  20. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  1. Examples of Nearly Net Zero Energy Buildings Through One-Step and Stepwise Retrofits

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    2012-01-01

    This paper presents the review of eight single-family house retrofit projects. The main objective is to collect and classify several approaches to nearly net zero energy building retrofitting. The selection has been made on the capacity of reaching a nearly net zero energy level via a one......-step or stepwise retrofit process. The review work is part of a more global Ph.D. project and is used as one of the basement of the future research work. The considered approaches have been sorted in two categories. The first approach has a very high use of energy conservation measures and low use of renewable...... energy production measures. The second approach has a lower use of energy conservation measures (but still high compared to a traditional renovation) and a higher use of renewable energy production measures. A third approach to nearly net zero energy building renovation exists but has not been considered...

  2. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  3. Inventing the future: Energy and the CO2 "greenhouse" effect

    Science.gov (United States)

    Davis, E. E., Jr.

    Dennis Gabor, A winner of the Nobel Prize for Physics, once remarked that man cannot predict the future, but he can invent it. The point is that while we do not know with certainty how things will turn out, our own actions can play a powerful role in shaping the future. Naturally, Gabor had in mind the power of science and technology, and the model includes that of correction or feedback. It is an important: Man does not have the gift of prophecy. Any manager or government planner would err seriously by masterminding a plan based unalterably on some vision of the future, without provision for mid-course correction. It is also a comforting thought. With man's notorious inability to create reliable predictions about such matters as elections, stock markets, energy supply and demand, and, of course, the weather, it is a great consolation to feel that we can still retain some control of the future.

  4. Sustainable development relevant comparison of the greenhouse gas emissions from the full energy chains of different energy sources

    International Nuclear Information System (INIS)

    Van De Vate, J.F.

    1997-01-01

    It is emphasized that sustainable energy planning should account for the emissions of all greenhouse gases (GHGs) from the whole energy chain, hence accounting not only carbon dioxide as the greenhouse gas and not only for the emissions from the combustion of fossil fuels. Lowering greenhouse gas emissions from the worldwide energy use can be done most effectively by accounting in energy planning for the full-energy-chain (FENCH) emissions of all GHGs. Only energy sources with similar output can be compared. This study investigates electricity generating technologies, which are compared in terms their GHG emission factors to be expressed in CO 2 -equivalents per kW.h(e). Earlier IAEA expert meetings are reviewed. A general meeting made general recommendations about methods and input data bases for FENCH-GHG analysis. Two more recent meetings dealt with the energy chains of nuclear and hydropower. The site-specific character of the emission factors of these energy sources is discussed. Both electricity generators have emission factors in the range of 5-30 g CO 2 -equiv./kW.h(e), which is very low compared to the FENCH-GHG emission factors of fossil-fueled power generation and of most of the renewable power generators. (author)

  5. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  6. Talisman Energy Inc. progress on reducing greenhouse gas emissions. Revised ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Talisman Energy Inc., as the largest independent Canadian oil and gas producer, is committed to supporting the Voluntary Challenge and Registry (VCR) Program. To this effect, voluntary measures have been implemented for achieving energy efficiency and greenhouse gas emissions reductions. Some of those measures include a yearly electrical audit in each field, the establishment of facility design and equipment procurement practices, gas well deliverability testing, gas conservation and flare reduction, a new energy data management system, senior management monitoring of greenhouse gas emissions reductions, and several others. Each of these measures was briefly described, and the base year quantification was included along with projections and target setting. Section 6 of the document introduced the measures to achieve targets, followed by section 7 containing results achieved. In section 8, the topic of education, training and awareness was discussed. A brief acknowledgements section was included at the end of the document. 10 tabs., 6 figs

  7. Indicators for the international comparison of energy consumption and greenhouse-gas emissions

    International Nuclear Information System (INIS)

    Hohmann, R.; Steiner, S.; Koch, P.

    2007-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) examines the energy consumption and greenhouse-gas emissions of various Swiss economical sectors including industry, services, households and traffic. Comparisons are made with the corresponding areas in the European Union and other countries. In spite of the relatively good situation in the Swiss industrial sector, further investigation is recommended. Room for improvement in the services sector is mentioned and average performance as far as energy consumption in households is concerned is noted. It is estimated that a considerable potential for improvement is available in this sector. Motorised traffic is quoted as being the main source of greenhouse-gas emissions, Switzerland being the second worst European country in this respect. Estimates are made concerning the potential for emission reductions in the various areas

  8. Conceptual approaches to innovative energy saving technologies and reducing greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Buyadgie, Dmytro; Sechenyh, Vitaliy; Buyadgie, Olexiy; Nichenko, Sergii; Vasil' ev, Igor

    2010-09-15

    The study attempts a comprehensive overview of the effects of human activities and proposes technical solutions for compensation of human anthropogenic intervention. Attention is focused on energy consumption optimization and reduction of harmful emissions at current stage of civilization development. Natural sources of energy and their associated greenhouse gases (GHG) emissions are considered in the paper along with the existed approaches to energy utilization, its merits and demerits. The role of heat-utilizing thermotransformers in reduction of thermal release and GHG emissions is specified. The examples of energy efficient technologies, based on application of jet devices, are presented in the study.

  9. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  10. State of the art of heating greenhouses with geothermal energy in Yugoslavia

    International Nuclear Information System (INIS)

    Milivojevic, M.; Martinovic, M.; Vidovic, S.

    2000-01-01

    The surface of Yugoslavia is relatively small (about 80.000 km 2 ) but its geological and tectonic structure are very complex. Because of that, geothermal characteristics of its territory are interesting. On two thirds of Yugoslav territory values of the heat flow density are greater than average values for the continental part of Europe and on the half of the territory they are around 100 MW/m 2 (Milivojevic, 1989). Consequently, on the territory of Yugoslavia there are more than 60 hydro-geo-thermal low-temperature connective systems (T o C) as well as enormous hydrothermal conductive system in the Yugoslav part of Pannonic basin. In the last three years a lot of effort is put into continuing geothermal researches but the progress is very small. Thus, since the UN embargo was rescinded in 1995 not a single well has been bored yet. The reasons for this are: economic crisis, the beginning of the transition process, energetic focus on the import of oil and gas as well as the fact that people are not conscious about the necessity of increasing energy efficiency and energy rationalisation. Nowadays, geothermal energy is used for the heating of greenhouses and plastic houses here in Yugoslavia. Although that surfaces of geothermal greenhouses and plastic buildings are very small, just about 8 ha on three locations, their owners want to enlarge them since economic indicators show that the production of flowers and vegetables in geothermal greenhouses is better than in those heated on gas or liquid fuel. However, the lack of money for building new and modem complexes of greenhouses as well as for the revitalisation of existing ones prevents the development and enlarging of these buildings. Because of the fact that geothermal resources can be immediately used if the financial problem could be solved, the surfaces of geothermal greenhouses and plastic buildings in Yugoslavia could be several hectares larger. (Authors)

  11. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  12. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    Science.gov (United States)

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy , solar heating (and cooling), and...financial evaluation of all projects. The costs of natural gas, alternative energy technology, alter- native fuels and the impact of greenhouse gas...distribution is unlimited. 1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17-22, 2010 Phoenix

  13. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  14. An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions.

    Science.gov (United States)

    Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung

    2014-03-11

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  15. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.

    Science.gov (United States)

    Liu, Yili; Sun, Weixin; Liu, Jianguo

    2017-10-01

    Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.

  16. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types

    International Nuclear Information System (INIS)

    Wang, Michael; Wu, May; Hong Huo

    2007-01-01

    Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types-categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly-from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path

  17. Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany

    Directory of Open Access Journals (Sweden)

    Alexander Maennel

    2018-01-01

    Full Text Available Germany and South Korea are the world’s sixth and seventh largest emitters of greenhouse gases, respectively; their main sources of pollution being fossil-fueled power plants. Since both countries signed the Paris Agreement in 2016, renewable energy transition is emerging as an effective means and method for avoiding air pollutant emissions and for replacing old fossil-fueled power plants. This paper attempts to evaluate—by using a grid emission factor dependent on a series of energy mix scenarios—the potential for South Korea and Germany to reduce their air pollutants (CO2, NOx, SOx, PM (particulate matter until 2030. South Korea plans to reduce greenhouse gas emissions by increasing nuclear power, while Germany aims to do so by shutting down its nuclear power plants and expanding the proportion of renewable energy in the energy mix to over 50%. Therefore, both countries are able to achieve their voluntary greenhouse gas reduction targets in the power sector. However, since the uncertainty of the CO2 emission factor of coal power plants in South Korea is as high as 10%, efforts to reduce that uncertainty are required in order to produce a reliable assessment of the avoided emissions.

  18. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  19. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    Science.gov (United States)

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  20. Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options

    International Nuclear Information System (INIS)

    Lenzen, Manfred; Dey, Christopher J.

    2002-01-01

    The impacts of selected spending options in the Australian economy are determined in terms of energy consumption, greenhouse gas emissions and a range of economic parameters. Six case studies of one current-practice and one alternative, environmentally motivated spending option are carried out, describing consumer choices, technologies and government outlays. The assessment method is based on input-output theory and, as such, enables both the direct and indirect effects of spending to be quantified. In general, the results indicate that pro-environmental objectives, such as reductions in energy consumption and greenhouse gas emissions, are compatible with broad socio-economic benefits, such as increases in employment and income, and reductions in imports

  1. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  2. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    Science.gov (United States)

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  3. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  4. Energy Consumption and Greenhouse Gas Emission Evaluation Scenarios of Mea Fah Luang University

    Directory of Open Access Journals (Sweden)

    Laingoen Onn

    2016-01-01

    Full Text Available In Thailand, quantity of the educational institutes building shared one fourth of commercial building. Among the energy consumption and conservation in the building in Thailand are mostly study in typical office and resident building. Mea Fah Luang University (MFU was selected to represent the educational institutes building where located in the northern part of Thailand. The average temperature in the northern is lower than other parts of Thailand. This study was firstly collected the data about quantity and behaviour of energy consumption in MFU based on the energy audit handbook. Although MFU is located in the northern of Thailand. The highest energy consumption is in the part of air condition. When the energy efficiency appliances and energy conservation building are implemented, the cost of energy will be saved around 15,867,960 Baht. Furthermore, the greenhouse gas emission is also reduced about 72.01 kg CO2, equivalent/m2/year.

  5. EcoVillage: A Net Zero Energy Ready Community

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Faakye, O. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  6. Working Towards Net Zero Energy at Fort Irwin, CA

    Science.gov (United States)

    2010-09-01

    sub- metering of their energy use. • MERV 15 – 16 air filtration would be used to reduce the impact of very fine desert dust on the heat transfer coil...use and 1,420,414 KWh/yr electrical use. The electrical use can be offset further with waste to energy cogeneration , or the use of a trigeneration...Biogas cogeneration plant (25 kWth / 50 kWth): $70,000–$90,000 Fermentation plant (300 – 400 t/yr): $150,000 7.3.2 Usable energy 200 MWh electricity

  7. The Energy Policy Act of 1992 and reductions in greenhouse gas emissions: The petroleum industry perspective

    International Nuclear Information System (INIS)

    Baer, M.T.

    1994-01-01

    The Energy Policy Act of 1992 (EPAct) directs the US Department of Energy policies, programs and regulations to stabilize and reduce the quantities of greenhouse gas emissions. These objectives will be accomplished through the regulation of sources associated with the production, transportation/distribution, and end-use of energy resources. Almost all of the 30 titles of the Act affect these sources: from the energy efficiency provisions of Titles 1 and XXI to the alternative fuels and vehicles programs of Titles 3 through 5; from the global climate change requirements of Title XVI to the petroleum alternative research programs of Titles VI, XII, XIII, XX, and XXI; and from the multiple titles pertaining to the development and regulation of nuclear facilities, supplies, and waste. The goals of the law are to: (1) reduce the use of oil in the domestic energy mix from 40% in 1990 to 35% by the year 2005, (2) require the use of alternative fuels and alternative fuel vehicles in designated fleets, (3) replace up to 30% of motor fuels with ''replacement fuels'' by the year 2010, (4) increase the overall efficiency of consumer, residential, and commercial products, (5) reduce and stabilize the emissions of greenhouse gases, and (6) encourage the development and commercialization of renewable and non petroleum energy resources. All these goals are intended to reduce the emissions of greenhouse gases as well. The EPAct's potential to impact all forms of energy and all energy producers and suppliers is obvious and substantial. This paper assesses three goals of the EPAct, now under study by the petroleum industry, that will affect the production, supply, composition, and use of petroleum products, most notably gasoline and natural gas

  8. Investigating the Effect of a North Wall on Energy Consumption of an East–West Oriented Single Span Greenhouse

    Directory of Open Access Journals (Sweden)

    H Ghasemi Mobtaker

    2017-10-01

    Full Text Available Introduction Greenhouse is a structure which provides the best condition for the maximum plants growth during the cold seasons. In cold climate zones such as Tabriz province, Iran, the greenhouse heating is one of the most energy consumers. It has been estimated that the greenhouse heating cost is attributed up to 30% of the total operational costs of the greenhouses. Renewable energy resources are clean alternatives that can be used in greenhouse heating. Among the renewable energy resources, solar energy has the highest potential around the world. In this regard, application of solar energy in greenhouse heating during the cold months of a year could be considerable. The rate of thermal energy required inside the greenhouse depends on the solar radiation received inside the greenhouse. Using a north brick wall in an east-west oriented greenhouse can increase the absorption of solar radiation and consequently reduces the thermal and radiation losses. Therefore, the main objective of the present study is to investigate the effect of implementing of a north wall on the solar radiation absorption and energy consumption of an east-west oriented single span greenhouse in Tabriz. Materials and Methods This study was carried out in Tabriz and a steady state analysis was used to predict the energy consumption of a single span greenhouse. For this purpose, thermal energy balance equations for different components of the greenhouse including the soil layer, internal air and plants were presented. For investigating the effect of the north wall on the energy consumption, the Ft and Fn parameters were used to calculate the radiation loss from the walls of the greenhouses. These factors were determined using a 3D–shadow analysis by Auto–CAD software. An east-west oriented single span greenhouse which has a north brick wall and is covered with a single glass sheet with 4 mm thickness was applied to validate the developed models. The measurements were

  9. Energy and greenhouse gas emissions of Australian cotton : from field to fabric

    Energy Technology Data Exchange (ETDEWEB)

    Khabbaz, B.G.; Chen, G.; Baillie, C. [Southern Queensland Univ., Toowoomba, QLD (Australia). Faculty of Engineering and Surveying, National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study in which a life cycle assessment (LCA) of cotton production in Australia was conducted to evaluate energy use and greenhouse gas (GHG) emissions from tillage to export shipping. The study showed that on-farm indirect cotton-farming is the most energy consuming component, consuming nearly 32.36 GJ/ha of energy. On-farm indirect cotton-farming is the most GHG emitting component, emitting about 1.64 tonne of carbon dioxide (CO{sub 2})/ha. Energy use and the emissions by off-farm direct cotton-farming were calculated as 5.09 GJ/ha and 0.14 tonne CO{sub 2}/ha respectively. Energy consumed by off-farm indirect farming was found to be 0.036 GJ/ha or 0.002 tonne CO{sub 2}/ha. The total energy usage and greenhouse gas emissions in the Australian cotton farming system were estimated to be 46.43 GJ/ha and 2.42 tonnes CO{sub 2}/ha for on-farm, and 5.13 GJ/ha and 0.145 tonne CO{sub 2}/ha for the off-farm sections. In total, after including emissions caused by nitrogen based fertilizers, 51.57 GJ/ha of energy is used and 2.86 tonnes CO{sub 2}/ha is emitted by a typical Australian cotton farming system from tillage to export shipping.

  10. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    Science.gov (United States)

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  11. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach. The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4-21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg -1 ). In the GHG emissions analysis, nitrous oxide (N 2 O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha -1 year -1 and N 2 O emissions from soil are 0.5-2.8 kg N ha -1 year -1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260-922 g CO 2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41-61% km -1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions

  12. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2002-01-01

    Nuclear energy plays an essential role in avoiding greenhouse gas emissions. The contribution of nuclear power to electricity supplies has grown rapidly since the 1970's. As of July 2000, 432 power reactors were in operation in 31 countries. Nuclear power provided some 2300 TWh. This is about 17% of the world's total electricity, or 7% of total primary energy. This contribution avoids the emissions of about 2300 million tonnes of carbon dioxide annually, assuming that it would otherwise be provided mainly by coal-fired plants. This represents nearly one-third of the carbon dioxide presently emitted by power generation. Since electricity generation accounts for about 30% of all anthropogenic carbon dioxide emissions, total emissions would be about 10% higher if it were not for nuclear power. In contrast, the objective of the Kyoto Protocol is to reduce greenhouse gas emissions in industrialized nations by 5% by 2008-12 compared to a 1990 baseline. In order for atmospheric greenhouse gas concentrations to be stabilized at a sustainable level, it will be necessary to reduce emissions by around 60% from the 1990 level. Advocates of a policy of 'convergence and contraction', where developed and developing countries are to be allowed similar levels of emissions on a per capita basis, state that developed countries may have to reduce emissions by as much as 80%. Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However, the scale of that contribution will be strongly influenced by the way in which this contribution is recognized in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent

  13. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  14. Greenhouse effect

    International Nuclear Information System (INIS)

    1992-01-01

    This special issue is devoted to the greenhouse effect and reviews the possible climate change by mankind, paleoclimates, climate models, measurement of terrestrial temperature, CO 2 concentration and energy policy

  15. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    Science.gov (United States)

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  16. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  17. GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria

    International Nuclear Information System (INIS)

    Saheb Koussa, Djohra; Koussa, Mustapha

    2016-01-01

    This paper presents a method for economic evaluation and GHGs (greenhouse gases) emissions calculation from a GCRES (grid-connected renewable energy system). An investigation is made on large-scale operations of 67 MWh/day GCRES. A comparison is performed between a GCRES and a standard grid operation focusing on environmental and economic impacts. Emissions and the Renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicators. Costs including NPC (net present cost), COE (cost of energy) and payback period are calculated as the economic indicators. Using the hourly mean global solar irradiance, temperature and wind speed data relative to In Salah and Adrar locations characterized by an arid and hot climate according to the Koppen–Geiger climate classification, a long-term continuous implementation of hybrid renewable energy systems are simulated using HOMER software and are discussed. As results, it is observed that a GCRES reduce 30% and 35% of GHGs emission, and 81% and 76% of COE during the operation phase respectively for In Salah and Adrar. Investments in GCRES should be considered only by planning to produce parts of the equipment locally, which leads to significantly reduce the costs and, consequently, the emissions. - Highlights: • Grid-connected renewable energy system (GCRES). • Economic evaluation and greenhouse gases (GHGs) emissions calculation. • In Salah and Adrar are taken as two examples of the famous Algerian arid land. • The climatic data are used to simulate the long-term implementation of the system.

  18. A 2nd generation static model for predicting greenhouse energy inputs, as an aid for production planning

    CERN Document Server

    Jolliet, O; Munday, G L

    1985-01-01

    A model which allows accurate prediction of energy consumption of a greenhouse is a useful tool for production planning and optimisation of greenhouse components. To date two types of model have been developed; some very simple models of low precision, others, precise dynamic models unsuitable for employment over long periods and too complex for use in practice. A theoretical study and measurements at the CERN trial greenhouse have allowed development of a new static model named "HORTICERN", easy to use and as precise as more complex dynamic models. This paper demonstrates the potential of this model for long-term production planning. The model gives precise predictions of energy consumption when given greenhouse conditions of use (inside temperatures, dehumidification by ventilation, …) and takes into account local climatic conditions (wind radiative losses to the sky and solar gains), type of greenhouse (cladding, thermal screen …). The HORTICERN method has been developed for PC use and requires less...

  19. PNC Financial Services - Net-Zero Energy Bank Branch

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  20. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  1. Energy consumption and commercial applications of liquid foam insulation technology for greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J. [Environnement-MJ, Quebec City, PQ (Canada); De Halleux, D. [Laval Univ., Quebec City, PQ (Canada). Dept. des Sols et de Genie Agroalimentaire; Aberkani, K. [Laval Univ., Quebec City, PQ (Canada). Centre de Recherche en Horticulture; Vineberg, S. [Sunarc of Canada, Montreal, PQ (Canada)

    2010-07-01

    Sunarc of Canada has developed an energy saving system for commercial greenhouse growers. Large amounts of energy are needed to operate commercial greenhouses in northern latitudes, and as energy prices fluctuate, it is important to enable growers to control their microclimate. Sunarc's liquid foam insulating system was installed in 2007 at 2 sites in Ontario. The first site had an area of 14,700 ft{sup 2} while the other site had an area of 43,000 ft{sup 2}. Both facilities were monitored for energy use during the winter period. Night-time energy savings ranged from above 60 per cent to below 10 per cent depending on outdoor temperatures. The greater savings occurred during colder outdoor temperatures. Monthly average night-time energy savings from February, March and April were 46.6, 42, and 32.3 per cent respectively. After initial commercial testing, the liquid foam system was re-engineered to optimize operations, reduce fill time, and improve liquid foam formulas. The new system was installed at a third site in Quebec as a demonstration unit. The company is currently negotiating international distribution rights with several partners.

  2. Marine energy consumption, national economic activity, and greenhouse gas emissions from international shipping

    International Nuclear Information System (INIS)

    Chang, Ching-Chih

    2012-01-01

    The causal relationships among marine energy consumption, greenhouse gas emissions from international shipping, and economic growth for Kyoto Protocol Annex I countries for the period of 1990 to 2006 are discussed. The real gross domestic product is used as a proxy for economic activity. The United States is also discussed because it was the main global polluter before 2006. The co-integration methodology and an error-correction model are used to examine the causal relationships. The empirical results show that marine energy consumption and GDP are the main factors of increased GHG emissions in the short-run, and that economic activity significantly increased emissions in the long-run. Emissions from shipping are more closely related to marine energy consumption than to economic activity. Hence, policies for mitigating greenhouse gas emissions from marine shipping need to focus on greater energy efficiency in the design of ship engines and hulls. - Highlights: ► Energy consumption and GDP are the main causes to increased GHG emissions in the shipping industry. ► Emissions from shipping are more closely related to energy consumption than to GDP. ► Policies to mitigate GHG emissions from shipping industry should focus on the engine and hull design.

  3. Energy and associated greenhouse gas emissions from household appliances in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.; Ahmed, S.

    2007-01-01

    Today, electricity is an indispensable key for civilization and development. The trend of electricity consumption is rather escalating. Electricity generation principally depends upon fossil fuels. In one hand, the stocks of these fuels have been confirmed to be critically limited. On the other hand, in process of electricity generation by means of these fuels, a number of poisonous by-products adversely affect the conservation of natural eco-system. Further, electricity driven appliances use emanate anti-environmental gases that also affect human health and climate. Therefore, estimation of energy consumption for operating household appliances, savings of energy under policy intervention, and emission of poisonous gases in a fast developing country deserve academic attention. This paper focuses on estimation of energy consumption, energy savings, reduction of emissions of greenhouse gases for use of household appliances in Malaysia between 1999 and 2015. In the upstream side of electricity generation, the study estimates the amount of greenhouse gases (GHGs) resulting from burning of fossil fuels. In downstream side, it considers the energy savings and reduction of CHGs. The results show that significant amount of energy can be saved and thus huge volume of toxic emissions can be controlled. The findings can be useful to policy makers as well as household appliances users

  4. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  5. Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies

    International Nuclear Information System (INIS)

    Njakou Djomo, S.; Witters, N.; Van Dael, M.; Gabrielle, B.; Ceulemans, R.

    2015-01-01

    Highlights: • Comparison of 40 bioenergy pathways to a fossil-fuel based CHP system. • Not all energy efficient pathways led to lower GHG emissions. • iLUC through intensification increased the total energy input and GHG emissions. • Fluidized bed technologies maximize the energy and GHG benefits of all pathways. • Perennial crops are in some cases better than residues on GHG emissions criteria. - Abstract: Bioenergy (i.e., bioheat and bioelectricity) could simultaneously address energy insecurity and climate change. However, bioenergy’s impact on climate change remains incomplete when land use changes (LUC), soil organic carbon (SOC) changes, and the auxiliary energy consumption are not accounted for in the life cycle. Using data collected from Belgian farmers, combined heat and power (CHP) operators, and a life cycle approach, we compared 40 bioenergy pathways to a fossil-fuel CHP system. Bioenergy required between 0.024 and 0.204 MJ (0.86 MJ th + 0.14 MJ el ) −1 , and the estimated energy ratio (energy output-to-input ratio) ranged from 5 to 42. SOC loss increased the greenhouse gas (GHG) emissions of residue based bioenergy. On average, the iLUC represented ∼67% of the total GHG emissions of bioenergy from perennial energy crops. However, the net LUC (i.e., dLUC + iLUC) effects substantially reduced the GHG emissions incurred during all phases of bioenergy production from perennial crops, turning most pathways based on energy crops to GHG sinks. Relative to fossil-fuel based CHP all bioenergy pathways reduced GHG emissions by 8–114%. Fluidized bed technologies maximize the energy and the GHG benefits of all pathways. The size and the power-to-heat ratio for a given CHP influenced the energy and GHG performance of these bioenergy pathways. Even with the inclusion of LUC, perennial crops had better GHG performance than agricultural and forest residues. Perennial crops have a high potential in the multidimensional approach to increase energy

  6. Assessment of energy consumption in organic tomato greenhouse production - a case study

    NARCIS (Netherlands)

    Baptista, F.J.; Murcho, D.; Silva, L.; Stanghellini, C.; Montero, J.I.; Kempkes, F.; Munoz, P.; Gilli, Celine; Giuffrida, F.; Stepowska, Agnieszka

    2017-01-01

    Greenhouse production has increased over the last decades in the Mediterranean region. Greenhouses allow protecting crops from adverse climate conditions, creating microclimate conditions appropriate for obtaining high production with high quality all over the year. However, greenhouse production is

  7. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  8. Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis

    International Nuclear Information System (INIS)

    Omid, M.; Ghojabeige, F.; Delshad, M.; Ahmadi, H.

    2011-01-01

    This paper studies the degree of technical efficiency (TE) and scale efficiency (SE) of selected greenhouses in Iran and describes the process of benchmarking energy inputs and cucumber yield. Inquiries on 18 greenhouses were conducted in a face-to-face interviewing during September-December 2008 period. A non-parametric data envelopment analysis (DEA) technique was applied to investigate the degree of TE and SE of producers, and evaluate and rank productivity performance of cucumber producers based on eight energy inputs: human labour, diesel, machinery, fertilizers, chemicals, water for irrigation, seeds and electricity, and output yield values of cucumber. DEA optimizes the performance measure of each greenhouse or decision making unit (DMU). Specifically, the DEA was used to compare the performance of each DMU in region of increasing, constant or decreasing return to scale in multiple-inputs situations. The CRS model helped us to decompose the pure TE into the overall TE and SE components, thereby allowing investigating the scale effects. The results of analysis showed that DEA is an effective tool for analyzing and benchmarking productive efficiency of greenhouses. The VRS analysis showed that only 12 out of the 18 DMUs were efficient. The TE of the inefficient DMUs, on average, was calculated as 91.5%. This implies that the same level of output could be produced with 91.5% of the resources if these units were performing on the frontier. Another interpretation of this result is that 8.5% of overall resources could be saved by raising the performance of these DMUs to the highest level.

  9. Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Omid, M.; Ghojabeige, F.; Ahmadi, H. [Department of Agricultural Machinery, College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Delshad, M. [Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of)

    2011-01-15

    This paper studies the degree of technical efficiency (TE) and scale efficiency (SE) of selected greenhouses in Iran and describes the process of benchmarking energy inputs and cucumber yield. Inquiries on 18 greenhouses were conducted in a face-to-face interviewing during September-December 2008 period. A non-parametric data envelopment analysis (DEA) technique was applied to investigate the degree of TE and SE of producers, and evaluate and rank productivity performance of cucumber producers based on eight energy inputs: human labour, diesel, machinery, fertilizers, chemicals, water for irrigation, seeds and electricity, and output yield values of cucumber. DEA optimizes the performance measure of each greenhouse or decision making unit (DMU). Specifically, the DEA was used to compare the performance of each DMU in region of increasing, constant or decreasing return to scale in multiple-inputs situations. The CRS model helped us to decompose the pure TE into the overall TE and SE components, thereby allowing investigating the scale effects. The results of analysis showed that DEA is an effective tool for analyzing and benchmarking productive efficiency of greenhouses. The VRS analysis showed that only 12 out of the 18 DMUs were efficient. The TE of the inefficient DMUs, on average, was calculated as 91.5%. This implies that the same level of output could be produced with 91.5% of the resources if these units were performing on the frontier. Another interpretation of this result is that 8.5% of overall resources could be saved by raising the performance of these DMUs to the highest level. (author)

  10. Net energy balance of molasses based ethanol. The case of Nepal

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Silveira, Semida

    2009-01-01

    This paper evaluates life cycle energy analysis of molasses based ethanol (MOE) in Nepal. Net energy value (NEV), net renewable energy value (NREV) and energy yield ratio are used to evaluate the energy balance of MOE in Nepal. Total energy requirements in sugarcane farming, cane milling and ethanol conversion processes are estimated and energy allocation is made between co-products (molasses and sugar) as per their market prices. The result shows negative NEV (-13.05 MJ/L), positive NREV (18.36 MJ/L) and energy yield ratio (7.47). The higher positive value of NREV and energy yield ratio reveal that a low amount of fossil fuels are required to produce 1 L of MOE. However, negative NEV reveals that the total energy consumption (both fossil and renewables) to produce the ethanol is higher than its final energy content. Nevertheless, the renewable energy contribution amounts to 91.7% of total energy requirements. The effect of the increased price of molasses and reduced energy consumption in the sugarcane milling and ethanol conversion are found to be significant in determining the energy values and yield ratio of MOE. In addition, there are clear measures that can be taken to improve efficiency along the production chain. Finally, energy security, scarcity of hard currency for importing fossil fuels and opportunities for regional development are also strong reasons for considering local renewable energy options in developing countries. (author)

  11. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  12. Benchmarking energy use and greenhouse gas emissions in Singapore's hotel industry

    International Nuclear Information System (INIS)

    Wu Xuchao; Priyadarsini, Rajagopalan; Eang, Lee Siew

    2010-01-01

    Hotel buildings are reported in many countries as one of the most energy intensive building sectors. Besides the pressure posed on energy supply, they also have adverse impact on the environment through greenhouse gas emissions, wastewater discharge and so on. This study was intended to shed some light on the energy and environment related issues in hotel industry. Energy consumption data and relevant information collected from hotels were subjected to rigorous statistical analysis. A regression-based benchmarking model was established, which takes into account, the difference in functional and operational features when hotels are compared with regard to their energy performance. In addition, CO 2 emissions from the surveyed hotels were estimated based on a standard procedure for corporate GHG emission accounting. It was found that a hotel's carbon intensity ranking is rather sensitive to the normalizing denominator chosen. Therefore, carbon intensity estimated for the hotels must not be interpreted arbitrarily, and industry specific normalizing denominator should be sought in future studies.

  13. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  14. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  15. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  16. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.

    Directory of Open Access Journals (Sweden)

    Benjamin D Duval

    Full Text Available Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L. is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46-76 Mg dry mass · ha(-1. Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq · m(-2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions.

  17. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  18. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... a value of 2, implying a constant maximum daily chewing time. The intercept NEI0 in the regression of NEI on CINE may be interpreted as metabolic net energy intake capacity of the cows fed without physical constraints on intake. Based on experimental data, the maximum chewing time was estimated as 1...

  19. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  20. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    Science.gov (United States)

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  1. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  2. Energy Flexibility of The Commercial Greenhouse Growers, The Potential and Benefits of Participating in The Electricity Market

    DEFF Research Database (Denmark)

    Ma, Zheng; Jørgensen, Bo Nørregaard

    2018-01-01

    Commercial greenhouses can provide energy flexibility with artificial lighting usage and information and communications technology support. Therefore, commercial greenhouse growers can potentially play an important role in the electricity market as a flexibility service provider....... With the application of a climate control software- DynaLight NG, this paper takes Danish commercial growers and the Nordic electricity regulating market as an example, to investigate the market potential with two business models: 1) commercial greenhouse growers directly participate in the regulating market, 2......) to reduce balance responsible parties’ imbalance errors. Two calculations are formulated to evaluate the monetary benefits for the commercial greenhouse growers’ participation in the two business models. The results show that: 1) one big commercial greenhouse grower might get around 55,000 DKK...

  3. The seawater greenhouse: desalination and crop-production in arid zones based on renewable energy

    International Nuclear Information System (INIS)

    Davies, P. A.; Paton, C.; Sablani, S. S.; Perret, J.; Goosen, M. F. A.; Walterbeek, Reinier R.

    2006-01-01

    population growth is threatening the avaliability of fresh water in many regions of the world. With agriculture accounting for approximately 70% of all water used, the water crisis is closely linked to food production and economic development. Conventional agriculture is very inefficient in its use of water with several hundred liters needed to produce just one kilogram of produce. Although seawater is abundant, conventional desalination consumes substantial energy, usually derived from fossil fuels. There is an urgent ned for affordable and sustainable means of p[roducing crops, without heavy reliance on water and energy resource. The seawater Greenhouse is a novel approach to solving this problem. It combines energy-efficient desalination with water-efficient cultivation. Pilot projects have been constructed in Tenerife, the United Arab Emirates and Oman. This paper describes the results from these projects and outlines the potential for opening the seawater Greenhouse from renewable energy sources. Different types of source are evaluated and compared with respect to cost and load matching. Conclusions are drawn about the viability of a stand-alone system for the production of water and crops.(Author)

  4. Energy and greenhouse balance of photocatalytic CO2 conversion to methanol

    Directory of Open Access Journals (Sweden)

    Muench W.

    2012-10-01

    Full Text Available Within the Leading-Edge Cluster “Forum Organic Electronic”, the research project “Solar2Fuel” funded by the German Ministry of education and research (BMBF (2009 – 2012, EnBW, BASF, Karlsruhe Institute of Technology and Ruprecht-Karls-University of Heidelberg aim to develop a future solar powered CO2 to methanol conversion technology. CO2 from stationary sources such as power plants shall be catalytically converted together with water to a product such as methanol by use of solar irradiation. For this purpose a catalyst shall be developed. EnBW investigates the required boundary conditions to make such a principle interesting with respect to energy and greenhouse gas balance as well as economic evaluations. The assessment of boundary conditions includes the analysis of the whole chain from power generation, CO2 capture and transport, a virtual photocatalytic reactor, the product purification and use in the traffic sector. Most important technical factors of the process such as CO2 conversion efficiency is presented. CO2 capturing and liquefaction are the most energy intensive process steps, CO2 transport in pipeline is highly energy efficient and depending on energy need of the photoconversion step and the product purification, the overall greenhouse gas balance is comparable with the underground storage of the captured CO2.

  5. Feasibility study of energy conservation and greenhouse gases mitigation in the sugar industry in Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Upon the request from the Ministry of Agriculture of the Polish Government, a survey has been performed on three sugar production factories (Lesmierz, Lapy and Werbkowice) in Poland in relation with conservation of energy and reduction of warming gas emission. The survey has been made from the following two aspects: improvement of energy utilization efficiency in the sugar production processes, and efficiency improvement and fuel conversion in the boilers being the energy supplying source. As a result of the discussions on the sugar production process improvement, annual fuel conservation of 304,495 GJ (or 12,688 tons as converted to coal) in total for the three factories, or the energy saving rate of 28% was obtained. Regarding the greenhouse gas emission, an effect of reducing 25,235 tons, or a reduction rate of 27% was achieved. In the combination of the sugar production process improvement and the boiler improvement, the fuel conservation will be 18,363 tons as converted into coal, and the reduction of the greenhouse gas emission will be 56,107 tons. However, when based on the present coal price and natural gas price, the improvement efforts will not be realizable economically for both of Lesmierz and Werbkowice factories, hence comprehensive judgment is required from the viewpoint of the fuel price and environment preservation expense in the future. (NEDO)

  6. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications

    International Nuclear Information System (INIS)

    Beyhan, Beyza; Paksoy, Halime; Daşgan, Yıldız

    2013-01-01

    Highlights: • PCM based passive root zone temperature control system was developed. • The system was tested with zucchinis and peppers in a greenhouse in Turkey. • Two different fatty acids and mixtures were determined as suitable PCMs. • The optimum temperature levels necessary for growth of vegetables were maintained. - Abstract: A new root zone temperature control system based on thermal energy storage in phase change materials (PCM) has been developed for soilless agriculture greenhouses. The aim was to obtain optimum growing temperatures around the roots of plants. The candidate PCMs were 40% oleic acid–60% decanoic acid mixture and oleic acid alone. Field experiments with these PCMs were carried out in November 2009 with Cucurbite Pepo and March 2010 with Capsicum annum plants. No additional heating system was used in the greenhouse during these periods. In the November 2009 tests with zucchini, 40% oleic acid + 60% capric acid mixture was the PCM and a temperature increase in the PCM container (versus the control container) was measured as 1.9 °C. In our March 2010 tests with peppers, both PCMs were tried and the PCM mixture was found to be more effective than using oleic acidalone. A maximum temperature difference achieved by the PCM mixture around the roots of peppers was 2.4 °C higher than that near the control plants

  7. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2000-01-01

    Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However the scale of that contribution will be strongly influenced by the way in which this contribution is recognised in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent years, has come about as a result of the massive explosion in greenhouse gas emissions since the beginning of the industrial era. This paper will give an overview of the institutions and organisations involved in the international climate change negotiations. It will describe the political positions of different countries on their perceived role of nuclear power in mechanisms designed to reduce greenhouse gas emissions. The paper will also give an insight into the financial impact of assigning a value to carbon emissions and how that might change the relative economics of nuclear power in comparison to fossil fuel generation

  8. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery.

    Science.gov (United States)

    Stolaroff, Joshuah K; Samaras, Constantine; O'Neill, Emma R; Lubers, Alia; Mitchell, Alexandra S; Ceperley, Daniel

    2018-02-13

    The use of automated, unmanned aerial vehicles (drones) to deliver commercial packages is poised to become a new industry, significantly shifting energy use in the freight sector. Here we find the current practical range of multi-copters to be about 4 km with current battery technology, requiring a new network of urban warehouses or waystations as support. We show that, although drones consume less energy per package-km than delivery trucks, the additional warehouse energy required and the longer distances traveled by drones per package greatly increase the life-cycle impacts. Still, in most cases examined, the impacts of package delivery by small drone are lower than ground-based delivery. Results suggest that, if carefully deployed, drone-based delivery could reduce greenhouse gas emissions and energy use in the freight sector. To realize the environmental benefits of drone delivery, regulators and firms should focus on minimizing extra warehousing and limiting the size of drones.

  9. Telecommunications energy and greenhouse gas emissions management for future network growth

    International Nuclear Information System (INIS)

    Chan, Chien Aun; Gygax, André F.; Leckie, Christopher; Wong, Elaine; Nirmalathas, Ampalavanapillai; Hinton, Kerry

    2016-01-01

    Highlights: • Model to evaluate key interdependencies of a fast growing telecommunications network. • Network growth analysis using real data and Monte Carlo simulation. • Importance of both operational and embodied energy efficiency improvements. • Embodied energy expected to dominate in the future under current energy efficiency trends. • Carbon footprint and energy management through optimum network replacement cycle. - Abstract: A key aspect of greener network deployment is how to achieve sustainable growth of a telecommunications network, both in terms of operational and embodied energy. Hence, in this paper we investigate how the overall energy consumption and greenhouse gas emissions of a fast growing telecommunications network can be minimized. Due to the complexities in modeling the embodied energy of networks, this aspect of energy consumption has received limited attention by network operators. Here, we present the first model to evaluate the interdependencies of the four main contributing factors in managing the sustainable growth of a telecommunications network: (i) the network’s operational energy consumption; (ii) the embodied energy of network equipment; (iii) network traffic growth; and (iv) the expected energy efficiency improvements in both the operational and embodied phases. Using Monte Carlo techniques with real network data, our results demonstrate that under the current trends in overall energy efficiency improvements the network embodied energy will account for over 40% of the total network energy in 2025 compared to 20% in 2015. Further, we find that the optimum equipment replacement cycle, which will result in the lowest total network life cycle energy, is directly dependent on the technological progress in energy efficiency improvements of both operational and embodied phases. Our model and analysis highlight the need for a comprehensive approach to better understand the interactions between network growth, technological

  10. The operational performance of “net zero energy building”: A study in China

    International Nuclear Information System (INIS)

    Zhou, Zhihua; Feng, Lei; Zhang, Shuzhen; Wang, Chendong; Chen, Guanyi; Du, Tao; Li, Yasong; Zuo, Jian

    2016-01-01

    Highlights: • Choose energy efficiency technology in office building to implement “nZEB”. • Simulate its energy consumption. • Study on the operational performance. • Optimize its running. - Abstract: There is no lack of studies on “net zero energy buildings” (“nZEB”). However, the vast majority of these studies focus on theories and simulation. The actual operational performance of “net zero energy building” during occupation has been largely overlooked by previous studies. This study aims to investigate the operational performance of net “zero energy buildings” via the case study of an office building in Tianjin, China. Using simulation, the energy consumption of the building at design phase was estimated and a solar photovoltaic (PV) system was selected. A whole year operation of the occupied building showed that energy consumption of the case building was much higher than the energy generated from the solar PV system. This was mainly due to three issues. Firstly, the equipment was different in terms of category, quantity and running time between operation and design stages, leading to considerable underestimate of energy consumption at the design stage. Secondly, the operational strategies need to be further improved in order to regulate users’ behaviors. Thirdly, the efficiency of solar PV system was substantially reduced due to poor atmospheric environment (i.e. haze weather). Therefore, during the design process of “net zero energy buildings”, it is imperative to ensure that the energy simulation accurately reflects how the building will actually operate once occupied. The research also revealed other barriers to the design and implementation of “nZEB” in China, such as extra efforts required for effective communicating the capacity of the HVAC design and systems to clients, and the increased cost of “nZEB” (e.g. solar PV system) particularly for public buildings. Finally, the solar radiation intensity of standard

  11. Assessing the engineering performance of affordable net-zero energy housing

    Science.gov (United States)

    Wallpe, Jordan P.

    The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.

  12. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  13. Microbial electrosynthesis: a novel strategy for flexible energy storage from electricity surplus and greenhouse gas

    DEFF Research Database (Denmark)

    Zhang, Tian

    2014-01-01

    of the fluctuating electricity generated from renewable sources and to mitigate therelease of greenhouse gases in the atmosphere. Although MES is attracting a lot of attention and hasbeen studied intensively during the last five years, advances related to the engineering and the biologyof this process are required...... for pilot plant scale and commercialization. If MES reaches its fullpotential, it will serve as a highly flexible and tunable approach for the conversion of electrical energyinto chemical energy, generating valuable products especially from surplus electricity and CO2....

  14. Energy production, nutrient recovery and greenhouse gas emission Potentials from Integrated Pig Manure Management Systems

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Poulsen, Tjalfe; Hansen, Jens Aage

    2010-01-01

    of waste materials were considered. Data for the analyses were obtained from existing waste treatment facilities, experimental plants, laboratory measurements and literature. The assessment reveals that incineration combined with liquid/solid separation and drying of the solids is a promising management...... option yielding a high potential energy utilization rate and greenhouse gas savings. If maximum electricity production is desired, anaerobic digestion is advantageous as the biogas can be converted to electricity at high efficiency in a gas engine while allowing production of heat for operation...

  15. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production

    International Nuclear Information System (INIS)

    Nabavi-Pelesaraei, Ashkan; Hosseinzadeh-Bandbafha, Homa; Qasemi-Kordkheili, Peyman; Kouchaki-Penchah, Hamed; Riahi-Dorcheh, Farshid

    2016-01-01

    In this study a non-parametric method of DEA (Data Envelopment Analysis) and MOGA (Multi-Objective Genetic Algorithm) were used to estimate the energy efficiency and greenhouse gas emissions reduction of wheat farmers in Ahvaz county of Iran. Data were collected using a face-to-face questionnaire method from 39 farmers. The results showed that based on constant returns to scale model, 41.02% of wheat farms were efficient, though based on variable returns to scale model it was 53.23%. The average of technical, pure technical and scale efficiency of wheat farms were 0.94, 0.95 and 0.98, respectively. By following the recommendations of this study, 3640.90 MJ ha"−"1 could be saved (9.13% of total input energy). Moreover, 42 optimal units were found by MOGA. The total energy required and GHG (greenhouse gas) emissions of the best generation of MOGA were about 23105 MJ ha"−"1 and 340 kgCO_2_e_q_. ha"−"1, respectively. The results revealed that the total energy required of MOGA was less than DEA, significantly. Also, the GHG emissions of present, DEA and MOGA farms were about 903, 837 and 340 kgCO_2_e_q_. ha"−"1, respectively. - Highlights: • We analyze the energy efficiency and GHG emissions of wheat production in Iran. • The technical and pure technical efficiencies were 0.94 and 0.95 respectively. • DEA can be saved total energy and GHG emissions 9.13% and 7.28% respectively. • MOGA can be reduced total energy and GHG emissions more than DEA significantly.

  16. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.H.; Son, J.E.; Lee, S.D.; Cho, S.I.; Ashtiani-Araghi, A.; Rhee, J.Y.

    2016-11-01

    If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE. (Author)

  17. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Yang

    2016-03-01

    Full Text Available If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE, which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.

  18. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspec...

  19. Papers of the Canadian Energy Pipeline Association's 7. annual climate change workshop : energy efficiency and greenhouse gas reduction opportunities

    International Nuclear Information System (INIS)

    2003-01-01

    This conference focused on the role that Canadian pipeline companies will play in addressing greenhouse gas emissions. Ninety-five per cent of Canada's oil and gas is transported by pipeline. The Canadian Energy Pipeline Association (CEPA) is a national association representing all the major crude oil and natural gas transportation companies in Canada which operate 100,000 kilometres of pipeline in the country. CEPA's ongoing commitment to climate change includes a commitment to participate in the climate change process, share best management practices, develop energy efficient technology, and position Canadian companies so that they can be part of the solution. It was emphasized that a strong commitment to an effective innovation strategy will be crucial to a successful long term energy policy that meets both economic and environmental objectives. One of the key messages at the conference was that Canada's climate change policies should be consistent with those of the United States, its major trading partner, to ensure that Canada is not placed at a competitive disadvantage within North American and world energy markets. It was also noted that greenhouse gas emissions should be reduced in all consuming and producing sectors of the economy through energy efficiency practices and not through reductions in Canadian industry output for domestic or export markets. Five presentations were indexed separately for inclusion in the database. tabs., figs

  20. Experimental Investigation of Two Modified Energy-Saving Constructions of Solar Greenhouses

    DEFF Research Database (Denmark)

    Ermuratskii, V; Oleschuk, V.; Blaabjerg, Frede

    2015-01-01

    The paper presents outcomes of experimental evaluation of operation of two structures of sustainable greenhouse systems. Thermal performance of greenhouse with on-ground heat accumulator and movable internal heat reflectors, and of greenhouse with under-ground accumulator and movable heat (roof-b......-based) reflectors, has been analyzed. Metering of solar irradiation, and temperature and humidity inside greenhouses, has been executed for different seasons and regimes. Conclusions regarding basic peculiarities of operation of two topologies of greenhouses have been formulated....

  1. Biogas in organic agriculture-effects on productivity, energy self-sufficiency and greenhouse gas emissions

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Olesen, Jørgen E; Jørgensen, Uffe

    2014-01-01

    was obtained for all biogas scenarios, showing that biomass production for biogas on 10% of the farm area results in an energy surplus, provided that the heat from the electricity production is utilized. The energy surplus implies a displacement of fossil fuels and thereby reduced CO2 emission from the farm...... of anaerobic digestion and biogas production were analyzed on a 1000 ha model farm with combined dairy and cash crop production, representing organic agriculture in Denmark. The effects on crop rotation, nitrogen flows and losses, yield, energy balance and greenhouse gas (GHG) emissions were evaluated for four...... scenarios of biogas production on the farm. Animal manure was digested for biogas production in all scenarios and was supplemented with: (1) 100 ha grass–clover for biogas, (2) 100 ha maize for biogas, (3) 200 ha grass–clover for biogas and reduced number of livestock, and (4) 200 ha grass–clover for biogas...

  2. Life cycle energy metrics and CO 2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer

    OpenAIRE

    P. Barnwal; G. N. Tiwari

    2008-01-01

    In this paper, life cycle energy metrics, such as energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE), and mitigation of CO 2 emissions for a hybrid photovoltaic/thermal (PV/T) greenhouse dryer have been analyzed. The hybrid PV/T greenhouse (roof type even span) dryer, designed and constructed at Solar Energy Park, Indian Institute of Technology, New Delhi (28°35′N, 77°12′E, 216 m above MSL), India, has a 2.50 m × 2.60 m floor area, 1.80 m ce...

  3. Life Cycle Cost Analysis of a Multi-Storey Residential Net Zero Energy Building in Denmark

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    demand and three alternatives of energy supply systems: (1) photovoltaic installation with photovoltaic/solar thermal collectors and an ambient air/solar source heat pump; (2) photovoltaic installation with a ground-source heat pump; (3) photovoltaic installation with district heating grid. The results...... source of heat than a heat pump for the Net ZEB....

  4. Achieving informed decision-making for net zero energy buildings design using building performance simulation tools

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the

  5. Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany; Earle, Lieko; Christensen, Craig; Norton, Paul

    2016-05-17

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight. Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.

  6. Energy system analysis of a pilot net-zero exergy district

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2014-01-01

    Highlights: • Östra Sala backe is analyzed as a pilot district for the net-zero exergy target. • An analysis tool is developed for proposing an energy system for Östra Sala backe. • A total of 8 different measures are included and integrated in the energy system. • The exergy produced on-site is 49.7 GW h, the annual exergy consumed is 54.3 GW h. • The average value of the level of exergy match in the supply and demand is 0.84. - Abstract: The Rational Exergy Management Model (REMM) provides an analytical model to curb primary energy spending and CO 2 emissions by means of considering the level of match between the grade/quality of energy resources (exergy) on the supply and demand sides. This model is useful for developing forward-looking concepts with an energy systems perspective. One concept is net-zero exergy districts, which produce as much energy at the same grade or quality as consumed on an annual basis. This paper analyzes the district of Östra Sala backe in Uppsala Municipality in Sweden as a pilot, near net-zero exergy district. The district is planned to host 20,000 people at the end of four phases. The measures that are considered include an extension of the combined heat and power based district heating and cooling network, heat pumps driven on renewable energy, district heating driven white goods, smart home automation, efficient lighting, and bioelectricity driven public transport. A REMM Analysis Tool for net-zero exergy districts is developed and used to analyze 5 scenarios based on a Net-Zero Exergy District Option Index. According to the results, a pilot concept for the first phase of the project is proposed. This integrates a mix of 8 measures considering an annual electricity load of 46.0 GW h e and annual thermal load of 67.0 GW h t . The exergy that is produced on-site with renewable energy sources is 49.7 GW h and the annual exergy consumed is 54.3 GW h. The average value of the level of match between the demand and supply of

  7. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  8. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  9. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Science.gov (United States)

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  10. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  11. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  12. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  13. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  14. A comparative study of long-term energy demand and potential greenhouse gas emission control in Bangladesh

    International Nuclear Information System (INIS)

    Khalaquazzaman, Mohammad

    2005-02-01

    This report presents a comparative study of long-term energy demand and potential greenhouse gas emissions projections from energy demand and supply sectors in Bangladesh covering the period 2000 to 2020. The study was conducted employing the IAEA's tool ENPEP- BALANCE model. This study presents a reliable energy system plan with minimal carbon emission for the country. Primary energy demands distributed by energy carriers and electricity demand have been projected based on macro-economic growth scenarios constructed for national energy policy of 1996. The conservation of indigenous energy resources was emphasized to build a long-term secured energy supply system. The potential energy supply options including nuclear energy and prospective greenhouse gas mitigation options were analyzed

  15. The overwhelming role of soil N2O emissions in net greenhouse gas balance of the U.S. Corn Belt: Modeling estimate of nitrogen fertilizer impacts

    Science.gov (United States)

    Lu, C.; Yu, Z.; Cao, P.; Tian, H.

    2017-12-01

    The Corn Belt of the Midwestern U.S. is one of the most productive systems in the world during the growing season, with gross primary production exceeding even that of the Amazon forests. Fueled by increased commodity prices in the late 2000s, the area in corn and soybean in the U.S. has reached record highs with most of the newly added cropland converted from grasslands, wetland, and Conservation Reserve Program land. Intensive management practices, such as fertilizer use, irrigation, tillage, residue removal etc., have been implemented following cropland expansion to maximize crop yield from converted marginal land or from more monoculture production. The Corn Belt has been recognized as one of the major contributors to carbon sinks in the U.S., partially because crop harvest and residue removal reduced soil respiration. In the meanwhile, 75% of the total N2O emission in the U.S. comes from agriculture, among which the Corn Belt is the major source due to nitrogen management, and has large potential of climate mitigation. However, it remains far from certain how intensive cropland expansion and management practices in this region have affected soil carbon accumulation and non-CO2 GHG emissions. In this study, by using a process-based land ecosystem model, Dynamic Land Ecosystem Model (DLEM), we investigated the impacts of nitrogen fertilizer use on soil carbon accumulation and direct N2O emissions across the U.S. Corn Belt. Surprisingly, we found N fertilizer-induced SOC storage continued shrinking after the 1980s while N2O emissions remains relatively constant. The N fertilizer use led to a net greenhouse gas release since 2000 in both the western and eastern Corn Belt, contributing to climate warming. This study implies an increasing importance of nitrogen management for both agricultural production and climate mitigation.

  16. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems.

    Science.gov (United States)

    Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun

    2018-01-15

    This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

  17. Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context

    International Nuclear Information System (INIS)

    Nadal, Ana; Llorach-Massana, Pere; Cuerva, Eva; López-Capel, Elisa; Montero, Juan Ignacio; Josa, Alejandro

    2017-01-01

    Highlights: • iRTG incorporates urban agriculture into and improves energy efficiency in buildings. • iRTG concept recycles low-grade, waste thermal energy for growing vegetables. • iRTG is an adaptable concept to promotes food security through urban agriculture. • Indoor building climate affects iRTG more than outdoor climatic conditions. • iRTG achieved annual CO_2 and cost savings of 113.8 kg CO_2 (eq)/m"2/yr and 19.63 €/m"2/yr. - Abstract: A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO_2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m"2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses

  18. The energy and greenhouse-gas implications of internet video streaming in the United States

    International Nuclear Information System (INIS)

    Shehabi, Arman; Walker, Ben; Masanet, Eric

    2014-01-01

    The rapid growth of streaming video entertainment has recently received attention as a possibly less energy intensive alternative to the manufacturing and transportation of digital video discs (DVDs). This study utilizes a life-cycle assessment approach to estimate the primary energy use and greenhouse-gas emissions associated with video viewing through both traditional DVD methods and online video streaming. Base-case estimates for 2011 video viewing energy and CO 2 (e) emission intensities indicate video streaming can be more efficient than DVDs, depending on DVD viewing method. Video streaming benefits from relatively more efficient end-user devices than DVD viewing, though much of that savings is lost when accounting for the additional energy from network data transmission. Video streaming appears distinctly favorable when compared against any DVD viewing that includes consumer driving, which significantly increases the energy and CO 2 (e) emissions per viewing hour. Total US 2011 video viewing required about 192 PJ of primary energy and emitted about 10.5 billion kg of CO 2 (e). Shifting all 2011 DVD viewing to video streaming reduces the total primary energy use to about 162 PJ and the CO 2 (e) emissions to about 8.6 billion kg, representing a savings equivalent to the primary energy used to meet the electricity demand of nearly 200 000 US households each year. Sensitivity analysis indicates that results are most influenced by the end-user DVD player power demand, data transmission energy, and consumer travel for store DVDs. Data center energy use—both operational and embodied within the IT equipment—account for <1% of the total video streaming energy use. Results from this study indicate that designers and policy makers should focus on the efficiency of end-user devices and network transmission energy to curb future increases in energy use from the proliferation of video streaming. (letters)

  19. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Jungmeier, G.; Apps, M.; Bohlin, F.; Gustavsson, L.; Marland, G.; Pingoud, K.; Savolainen, I.

    1997-01-01

    In this paper, which was prepared as part of IEA Bioenergy Task XV (''Greenhouse Gas Balances of Bioenergy Systems''), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas emissions point of view. (author)

  20. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  1. Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Reza Broun

    2014-11-01

    Full Text Available This paper investigates the breakdown of primary energy use and greenhouse gas (GHG emissions of two common types of exterior walls in the U.K.: insulated concrete form (ICF and cavity walls. A comprehensive assessment was conducted to evaluate the environmental performance of each exterior wall system over 50 years of service life in Edinburgh and Bristol. The results indicate that for both wall systems, use phase is the major contributor to the overall environmental impacts, mainly due to associated electricity consumption. For the ICF wall system in Edinburgh, 91% of GHG emissions were attributed to the use phase, with 7.8% in the pre-use and 1.2% in end-of-life phases. For the same system in Bristol, emissions were 89%, 9% and 2%, respectively. A similar trend was observed for cavity wall systems in both locations. It was concluded that in each scenario, the ICF wall system performed better when compared to the cavity wall system. The results of the sensitivity analysis clearly show that the uncertainties relevant to the change of the thickness of the wall are quite tolerable: variable up to 5%, as far as energy and greenhouse emissions are concerned.

  2. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    Science.gov (United States)

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    Science.gov (United States)

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.

  4. Greenhouse effect, energy conservation; Effet de serre, economie d`energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This symposium is composed of 12 communications grouped in three sessions which titles and themes are: influence of the greenhouse gas emission reduction policy on refrigerating and air conditioning engineering; characteristics and performances of refrigerants and working fluids, circuit architectures, two-phase fluids, single-tube systems and district cooling systems; principles and characteristics of thermo-pumps for heating, refrigerating and air conditioning applications, more especially in residential and small commercial buildings (air condensation thermo-pumps, ammonia thermo-pumps, ground source thermo-pumps), quality assurance

  5. Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India

    International Nuclear Information System (INIS)

    Mittal, Shivika; Dai, Hancheng; Fujimori, Shinichiro; Masui, Toshihiko

    2016-01-01

    Highlights: • India and China’s latest renewable energy targets toward 2030 are assessed. • Carbon emission cap is in line with 2-degree target and governmental commitment. • The impacts of renewable energy on emissions and mitigation costs are quantified. - Abstract: Renewable energy has a critical role in limiting the greenhouse gas (GHG) emissions. This paper assesses the implication of aligning renewable energy deployment target with national emission reduction target for mitigation cost. The assessment methodology uses Asia-Pacific Integrated Assessment/computable general equilibrium (AIM/CGE) model to determine the mitigation cost in terms of GDP and welfare loss under alternative renewable targets in different climate-constrained scenarios. A range of country-specific emission constraints is taken to address the uncertainties related to global emission pathway and emission entitlement scheme. Comparative results show that China needs to increase its share of non-fossil fuel significantly in the primary energy mix to achieve the stringent emission reduction target compared to India. The mitigation cost in terms of economic and welfare loss can be reduced by increasing the penetration of the renewable energy to achieve the same emission reduction target. The modeling results show that coordinated national climate and renewable energy policies help to achieve the GHG emission reduction target in an efficient and cost-effective manner.

  6. Energy demand and greenhouse gas emissions during the production of a passenger car in China

    International Nuclear Information System (INIS)

    Yan Xiaoyu

    2009-01-01

    Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages-material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO 2 -eq). Primary energy demand, petroleum demand and GHG emissions in China's passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.

  7. Planning regional energy system in association with greenhouse gas mitigation under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.P.; Huang, G.H. [Research Academy of Energy and Environmental Studies, North China Electric Power University, Beijing 102206 (China); Chen, X. [Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2011-03-15

    Greenhouse gas (GHG) concentrations are expected to continue to rise due to the ever-increasing use of fossil fuels and ever-boosting demand for energy. This leads to inevitable conflict between satisfying increasing energy demand and reducing GHG emissions. In this study, an integrated fuzzy-stochastic optimization model (IFOM) is developed for planning energy systems in association with GHG mitigation. Multiple uncertainties presented as probability distributions, fuzzy-intervals and their combinations are allowed to be incorporated within the framework of IFOM. The developed method is then applied to a case study of long-term planning of a regional energy system, where integer programming (IP) technique is introduced into the IFOM to facilitate dynamic analysis for capacity-expansion planning of energy-production facilities within a multistage context to satisfy increasing energy demand. Solutions related fuzzy and probability information are obtained and can be used for generating decision alternatives. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner. (author)

  8. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  9. Prospects for greenhouse gas controls and a climate-friendly energy policy in the United States

    International Nuclear Information System (INIS)

    Cochran, V.A.

    2002-01-01

    An update on the activities in the United States regarding climate change and energy policy was presented. The author noted that despite the de-linking of gross domestic product (GDP) growth and energy use, emissions in the United States are currently 14.5 per cent higher than they were in 1990. The impact that the statement by the Bush administration regarding policy on climate change was also reviewed. It was suggested that greenhouse gas emissions in the United States will continue to increased over the next decade, even with the new strategy on climate change. The rate of increase will be only slightly lower than that predicted under a business-as-usual scenario. The author approved support for baseline protection for firms that have already reduced their emissions, but expressed concern that mandatory tracking and reporting systems are not required under the new strategy. 7 figs

  10. Raising energy efficiency and cutting greenhouse gas emissions : an analysis of publicly funded petroleum research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    From the preface: This brochure is based on an analysis study that ascertained that since 2004 the Research Council's PETROMAKS and DEMO 2000 programmes have allocated funding to more than 80 projects carried out by the research community and private industry relating to climate challenges. Once these projects have been concluded, they will have received a total of over half a billion kroner in public funding. There is no doubt that many of the measures recommended by these projects will have positive impacts on the environment. Many of these research findings can contribute to making processes more energy efficient or to directly reducing emissions of greenhouse gases. The brochure presents a selection of these projects. A complete list of projects under the PETROMAKS and DEMO 2000 programmes which address raising energy efficiency may be found at the end of the brochure.(eb)

  11. Energy use and greenhouse gas emissions from an algae fractionation process for producing renewable diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pegallapati, Ambica K.; Frank, Edward D.

    2016-09-01

    In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJ of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel.

  12. Overconsumption of Energy and Excessive Discretionary Food Intake Inflates Dietary Greenhouse Gas Emissions in Australia.

    Science.gov (United States)

    Hendrie, Gilly A; Baird, Danielle; Ridoutt, Brad; Hadjikakou, Michalis; Noakes, Manny

    2016-10-31

    Population dietary guidelines have started to include information about the environmental impacts of food choices, but more quantifiable evidence is needed, particularly about the impacts associated with discretionary foods. This paper utilised the 2011-2012 Australian Health Survey food intake data along with a highly disaggregated input-output model to estimate the greenhouse gas emissions (GHGe) of Australians' dietary intake, and compare current patterns of eating which vary in diet quality and GHGe to the recommended diet. The average dietary GHGe were 18.72 ± 12.06 and 13.73 ± 8.72 kg CO₂e/day for male and female adults, respectively. The correlation between total energy and GHGe was r = 0.54 ( p nutritional benefit at little environmental expense. Public health messages that promote healthy eating, eating to one's energy needs and improved diet quality will also contribute to lowering GHGe.

  13. An input-output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan; Akcaoz, Handan [Akdeniz Univ., Dept. of Agricultural Economics, Antalya (Turkey); Kurklu, Ahmet [Akdeniz Univ., Dept. of Agricultural Machinery, Antalya (Turkey)

    2004-01-01

    The aim of this research was to examine the energy equivalents of inputs and output in greenhouse vegetable production in the Antalya province of Turkey. For this purpose, the data for the production of four greenhouse crops (tomato, cucumber, eggplant and pepper) were collected in eighty-eight greenhouse farms by questionnaire. The results revealed that cucumber production was the most energy intensive of among the four crops investigated. Cucumber production consumed a total of 134.77 GJha{sup -1} followed by tomato with 127.32 GJha{sup -1}. The consumption of energy by eggplants and pepper were 98.68 and 80.25 GJha{sup -1}, respectively. The output-input energy ratio for greenhouse tomato, pepper, cucumber and eggplant were estimated to be 1.26, 0.99, 0.76 and 0.61, respectively. This indicated an intensive use of inputs in greenhouse vegetable production not accompanied by increase in the final product. This can lead to problems associated with these inputs such as global warming, nutrient loading and pesticide pollution. Therefore, there is a need to pursue a new policy to force producers to undertake energy efficient practices to increase the yield without diminishing natural resources. (Author)

  14. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  15. The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System

    Science.gov (United States)

    Brown, Kristen E.

    The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with

  16. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.

    2003-07-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available -- renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada, by using nuclear fuel, has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel. The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors, and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy.

  17. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    International Nuclear Information System (INIS)

    Lemieux, C.

    2003-01-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available - renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada , by using nuclear fuel , has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors , and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy. (author)

  18. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  19. Greenhouse gas emissions from energy production in Russia: Current status and possible scenarios for the future

    International Nuclear Information System (INIS)

    Ginzburg, V.

    1998-01-01

    In accordance with the framework Convention on Climate Change that was signed and ratified by Russian Federation, periodical reports about the actions of Russia are published. An inventory of human origin sources of greenhouse gas was prepared. Carbondioxide represented 72% of total greenhouse das emissions. Policy and action plans for limiting of greenhouse gas emissions are developing

  20. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1...

  1. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  2. Opportunities for reducing greenhouse gas, energy use, and electricity use in the Greater Toronto area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-16

    The Clean Air Partnership (CAP) was interested in scanning and prioritizing energy efficiency opportunities to reduce energy use and the associated greenhouse gas emissions in the greater Toronto area (GTA). A study was conducted to scope out the most promising program directions for the GTA should government funding become available to launch the initiative, based on the relative technical potential of energy efficiency (and some fuel substitution) measures in the targeted sectors. A report to the Ontario Power Authority (OPA) focused on the residential and institutional sectors. These included new and existing residential buildings, condominiums and single-family homes, with special detail provided on appliances and central air conditioning; as well as municipal, university, school, and hospital buildings, with special attention towards measures to make street and traffic signal lighting more energy efficient. This letter provided a summary of findings. Next steps were also presented. It was recommended that three market transformation initiatives be designed and implemented to realize the technical potential for reductions in peak electricity and carbon dioxide emissions reductions. These three programs were discussed with reference to the energy efficient lighting collaborative; a green loan program for new homes and condominiums; and a community residential CDM program. A market transformation framework was also presented. It addressed the five key steps in the movement of a product from the manufacturer to the end user, namely availability; awareness; accessibility; affordability; and acceptance. 1 tab., 3 figs.

  3. Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector

    International Nuclear Information System (INIS)

    Siller, Thomas; Kost, Michael; Imboden, Dieter

    2007-01-01

    The aim of this paper is to explore the possibilities to reach two long-term targets regarding energy consumption and greenhouse gas emissions of the Swiss residential building stock: a reduction of the final energy consumption by a factor of 3 and of CO 2 emissions by a factor of 5 until 2050. A model is constructed to describe the dynamics of the energy-relevant properties of the residential building stock. Appropriate scenarios are discussed in terms of decisions made during construction or renovation of residential buildings which affect heat demand and determine the energy carriers used for heating and hot water generation. We show that both targets could be reached, although ambitious efforts are necessary. The central element of a successful strategy is to reduce the specific heat demand of existing buildings during renovation and to substitute the heating and hot water systems by less carbon intensive ones. Our results suggest that there is more flexibility to reach the emission target than the energy reduction target

  4. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  5. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  6. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    Science.gov (United States)

    Williams, Daniel R; Tang, Yinshan

    2013-05-07

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  7. Description and application of the EAP computer program for calculating life-cycle energy use and greenhouse gas emissions of household consumption items

    NARCIS (Netherlands)

    Benders, R.M.J.; Wilting, H.C.; Kramer, K.J.; Moll, H.C.

    2001-01-01

    Focusing on reduction in energy use and greenhouse gas emissions, a life-cycle-based analysis tool has been developed. The energy analysis program (EAP) is a computer program for determining energy use and greenhouse gas emissions related to household consumption items, using a hybrid calculation

  8. Greenhouse gas and clean energy markets: two sides of the same environmental coin

    International Nuclear Information System (INIS)

    Drummond, S.

    2002-01-01

    This article focuses on emission trading provided by the Flexibility Mechanisms of the Kyoto Protocol which are aimed at encouraging the development of renewable energy generation and are used to help lower the cost of reducing the emissions of greenhouse gases. The economic concept of emissions trading, international emissions trading, the Joint Implementation, and the Clean Development mechanism are examined. The categorization of the market activity for trading carbon dioxide equivalent into the pre-compliance, retail, and regulated markets are discussed along with market characteristics and opportunities for buyers and sellers. The role of the broker and market preparation are considered. A forward market spreadsheet is presented, and trade cycles for buyers and sellers are illustrated

  9. Identification studies about take measures for mitigate of gas emissions greenhouse effect in energy Sector

    International Nuclear Information System (INIS)

    1999-11-01

    In the Unit Nations Convention about Climatic change has get stability of greenhouse effects in atmosphere concentrations. In the framework to Uruguay Project URU/95/631 have been defined the need to identify, measures, practices, process and technologies for reduce some emissions furthermore in Energy sector. Emission impact, cost-benefit, direct or iundirect, national programs, factibility such as social, politics and Institutional agreements was considered in the present work. It was given emissions proyected for 15 years period 1999-2013 of the following atmospheric pollutants: carbon dioxide,carbon monoxide, nitrogen oxides, sulfur oxides and methane.Eight stages was applied the emission evaluation: natural gas; without natural gas; transport; industrial; Montevidean bus- car demand; natural gas uses in bus-taxi; nitrogen oxides control in thermic centrals; catalytic converters in gasoline cars

  10. A SOFTWARE PRODUCT LINE FOR ENERGY-EFFICIENT CONTROL OF SUPPLEMENTARY LIGHTING IN GREENHOUSES

    DEFF Research Database (Denmark)

    Mærsk-Møller, Hans Martin; Jørgensen, Bo Nørregaard

    2011-01-01

    of 2009 – 2010 showed 25 percent savings with no negative effect on plant quality. To accelerate the impact of our approach, we chose to use Software Product Line Engineering, as it enables a greater variety of related software tools to be created faster. We have created a web-based analysis tool, Dyna...... preserving production quality. This paper presents a novel approach addressing this issue. We use weather forecasts and electricity prices to compute cost- and energy-efficient supplementary light plans that achieve the required plant growth defined by the grower. Experiments performed during the winter...... of these two tools is described together with the lessons learned from using Software Product Line Engineering in the domain of greenhouse software development....

  11. Hydropower developments in Canada: greenhouse gas emissions, energy outputs and review of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter G.; Cheng, Ryan; Scheelar, Catherine [Global Forest Watch Canada (Canada)

    2011-11-15

    Hydropower is an important source of energy for Canada, accounting for 60% of the electricity generation mix. It is therefore important to understand the environmental performance of such developments in terms of greenhouse gas emissions and environmental impacts. From study of the Eastmain-1 reservoir, it has been extrapolated that hydropower facilities emit between 20 and 36 kilograms of CO2 per megawatt-hour. Hydropower facilities emissions are thus significantly lower than those of fossil fuel facilities, which can emit up to 1,000 kg of CO2 per MW/h. However, hydro projects have several other environmental impacts, such as habitat degradation, bio-accumulation of methyl mercury, and important sediment flow changes. The 271 large hydropower facilities affect 130,000 km of rivers and tens of thousands square kilometres of adjacent habitat. This study pointed out that despite being a low emitter of carbon dioxide, the hydropower sector has significant environmental impacts which require further assessment.

  12. Reduction of energy consumption peaks in a greenhouse by computer control

    Energy Technology Data Exchange (ETDEWEB)

    Amsen, M.G.; Froesig Nielsen, O.; Jacobsen, L.H. (Danish Research Service for Plant and Soil Science, Research Centre for Horticulture, Department of Horticultural Engineering, Aarslev (DK))

    1990-01-01

    The results of using a computer for environmental control in one greenhouse is in this paper compared with using modified analogue control equipment in another one. Energy consumption peaks can be almost prevented by properly applying the computer control and strategy. Both treatments were based upon negative DIF, i.e. low day and high night minimum set points (14 deg. C/ 22 deg. C) for room temperature. No difference in production time and quality was observed in six different pot plant species. Only Kalanchoe showed significant increase in fresh weight and dry weight. By applying computer control, the lack of flexibility of analogue control can be avoided by applying computer control and a more accurate room temperature control can be obtained. (author).

  13. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carey W. King

    2015-11-01

    Full Text Available I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date. This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs. Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.

  14. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  15. Influência do manejo da irrigação no meloeiro rendilhado cultivado em ambiente protegido Irrigation management on net-melon fruits cultivated under greenhouse

    Directory of Open Access Journals (Sweden)

    Tonny J. A. Silva

    2005-12-01

    Full Text Available Visando a avaliar a cultura do melão rendilhado em função do manejo da irrigação, foi realizado um experimento em casa de vegetação com a cultivar Bônus nº 2, na área experimental do Departamento de Engenharia Rural da Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP. Foram avaliados dois sistemas de manejo (tensiômetro e lisímetro de tensão controlada, e dois níveis de fertilidade (presença e ausência de fertilizantes. O lisímetro de tensão controlada é um dispositivo que utiliza cápsula porosa, capaz de fornecer água automaticamente, acoplado a um tubo de Mariotte, que permite realizar leituras de volume de água consumido pela planta. Para os tratamentos com lisímetro de tensão controlada, a porosidade livre de água média (PLA foi de 15%; já para os irrigados com base nos tensiômetros, a PLA permaneceu em média 35%, favorecendo boa relação ar-água durante todo o experimento. Com relação à variação temporal do potencial matricial do solo (média das três profundidades, os tratamentos com tensiômetro apresentaram valores médios de tensões com desvios de 9,10%, enquanto, para os tratamentos com lisímetro de tensão controlada, os desvios foram de 1,33%. Com manejo da irrigação por tensiômetros, sem adição de fertilizantes, a massa média dos frutos (1.070,4 g quase duplicou em relação ao padrão mínimo comercial (550 g. Adicionando a fertirrigação nesse manejo, o incremento passou a ser de 4,5 vezes (2.493,8 g. O meloeiro apresentou baixo rendimento em condição de porosidade livre de água inferior a 20%.Aiming to evaluate net-melon fruits under irrigation management, it was carried out an experiment in greenhouse conditions. The experimental area was located at the irrigation farm of the Engineering Department of - Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP in Piracicaba, São Paulo, Brazil, planted with Bonus 2 cultivar. Two irrigation management systems were

  16. Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions

    Science.gov (United States)

    Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro

    2017-11-01

    Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.

  17. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Xiaoyu, Yan; Zhang, Xiliang

    2011-01-01

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO 2,e )/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO 2,e /MJ with the development of nuclear and renewable energy and to 169.014 gCO 2,e /MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  18. Overview of existing studies on full-energy-chain (FENCH) emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Literature on investigations into full-energy-chain emissions of greenhouse gases is scanty. Fourteen different studies are reviewed most of which deal with energy use only in parts of the fuel chain or with CO 2 only. The scatter in full-energy-chain emissions factors of individual energy sources is not very large, except that in the emission factors of gas-fired power, biomass-fueled power and hydropower generation. The sources of this scatter are discussed. Fossil fuels have emission factors in the range of 500-1200 g CO 2 equiv./kW(e).h. Wind, nuclear and geothermal power generation are in the range of low emission factors: 10-70 g CO 2 equiv./kW(e).h. Emission factors of hydropower and sustainable biomass-fueled power generation range 10-400 and 40-180 g CO 2 equiv./kW(e).h, resp. The solar and ocean power generating sources are in the range of 100-300 g CO 2 equiv./kW(e).h. (author). 14 refs, 2 figs, 3 tabs

  19. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    Science.gov (United States)

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  20. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Xiaoyu, Yan [Smith School of Enterprise and the Environment, University of Oxford, Oxford OX1 2BQ (United Kingdom); Zhang, Xiliang [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China)

    2011-01-15

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO{sub 2,e})/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO{sub 2,e}/MJ with the development of nuclear and renewable energy and to 169.014 gCO{sub 2,e}/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  1. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Dheeraj Rathore

    2016-06-01

    Full Text Available The increasing demand for biofuels has encouraged the researchers and policy makers worldwide to find sustainable biofuel production systems in accordance with the regional conditions and needs. The sustainability of a biofuel production system includes energy and greenhouse gas (GHG saving along with environmental and social acceptability. Life cycle assessment (LCA is an internationally recognized tool for determining the sustainability of biofuels. LCA includes goal and scope, life cycle inventory, life cycle impact assessment, and interpretation as major steps. LCA results vary significantly, if there are any variations in performing these steps. For instance, biofuel producing feedstocks have different environmental values that lead to different GHG emission savings and energy balances. Similarly, land-use and land-use changes may overestimate biofuel sustainability. This study aims to examine various biofuel production systems for their GHG savings and energy balances, relative to conventional fossil fuels with an ambition to address the challenges and to offer future directions for LCA based biofuel studies. Environmental and social acceptability of biofuel production is the key factor in developing biofuel support policies. Higher GHG emission saving and energy balance of biofuel can be achieved, if biomass yield is high, and ecologically sustainable biomass or non-food biomass is converted into biofuel and used efficiently.

  2. Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost

    International Nuclear Information System (INIS)

    Kim, Hyung Chul; Keoleian, Gregory A.; Horie, Yuhta A.

    2006-01-01

    Although the last decade witnessed dramatic progress in refrigerator efficiencies, inefficient, outdated refrigerators are still in operation, sometimes consuming more than twice as much electricity per year compared with modern, efficient models. Replacing old refrigerators before their designed lifetime could be a useful policy to conserve electric energy and greenhouse gas emissions. However, from a life cycle perspective, product replacement decisions also induce additional economic and environmental burdens associated with disposal of old models and production of new models. This paper discusses optimal lifetimes of mid-sized refrigerator models in the US, using a life cycle optimization model based on dynamic programming. Model runs were conducted to find optimal lifetimes that minimize energy, global warming potential (GWP), and cost objectives over a time horizon between 1985 and 2020. The baseline results show that depending on model years, optimal lifetimes range 2-7 years for the energy objective, and 2-11 years for the GWP objective. On the other hand, an 18-year of lifetime minimizes the economic cost incurred during the time horizon. Model runs with a time horizon between 2004 and 2020 show that current owners should replace refrigerators that consume more than 1000 kWh/year of electricity (typical mid-sized 1994 models and older) as an efficient strategy from both cost and energy perspectives

  3. Renewable energies for reduction of greenhouse gases in the Mexican electricity generation in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Islas, J; Manzini, F; Martinez, M [Centre for Energy Research, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    This study presents three scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the energy policy path that was in effect until 1990. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-90's as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The three scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG). [Spanish] Este estudio presenta tres escenarios relacionados de los futuros ambientales de generacion de electricidad en Mexico hasta el ano 2025. El primer escenario enfatiza la utilizacion de productos del petroleo, particularmente el combustoleo, y representa el curso de la politica de energia vigente hasta 1990. El segundo escenario da prioridad al uso de gas natural, reflejando el patron de consumo de energia que surgio a mediados de los 90's como resultado de reformas en el sector energetico. En el tercer escenario, la alta participacion de las fuentes renovables de energia es considerada factible desde los puntos de vista tecnico y economico. Los tres escenarios son evaluados hasta el ano 2025 en terminos de los gases de efecto invernadero (GHG) y de gases precursores de lluvia acida (ARPG).

  4. Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms

    International Nuclear Information System (INIS)

    Hosseinzadeh-Bandbafha, Homa; Safarzadeh, Dariush; Ahmadi, Ebrahim; Nabavi-Pelesaraei, Ashkan; Hosseinzadeh-Bandbafha, Ehssan

    2017-01-01

    In this study, data envelopment analysis was employed for determined the energy efficiency of fattening farms in order to separate efficient and inefficient ranchers and to calculate the wasteful uses of energy. Also, the effect of energy optimization on greenhouse gas emissions was investigated and the total amount of greenhouse gas emissions based on present energy consumption was compared with optimum energy consumption ones. The results indicated that out of the total number of fattening farms the share of efficient and inefficient units were 43.33% and 56.67% based on constant returns to scale model, respectively. Also, the results revealed the average of technical, pure technical and scale efficiencies of orchardists were 0.937, 0.953 and 0.983, respectively. The total energy consumption and optimum energy required were calculated as 24,003 and 21,931 (MJ calf "−"1), respectively. Energy saving target ratio for fattening farms was calculated as 8.63%. Also, feed intake had the highest share (53%) from total saving energy, followed by fossil fuels (31%). The total greenhouse gas emissions was assessed as 1176 (kg CO_2_e_q_. calf "−"1 6 months"−"1) in fattening farms that value of greenhouse gas emissions can be reduced to 1073 (kg CO_2 _e_q_. calf "−"1 6 months"−"1) with optimum energy consumption. - Highlights: • The energy efficiency and GHG emissions of fattening farms of calf were analyzed. • The energy use of present and target condition was 24,003 and 21,931 MJ calf"−"1. • Enteric fermentation was the main contribution of total GHG emissions. • Total GHG emissions reduced about 9.63% with optimum energy consumption.

  5. Greenhouse gas and energy co-benefits of water conservation[Water Sustainability Project

    Energy Technology Data Exchange (ETDEWEB)

    Maas, C.

    2009-03-15

    Energy is needed to deliver water to, within and from communities to remove contaminants from water and wastewater, and to heat water in homes. The interconnections between water and energy are referred to as the water-energy nexus. Large volumes of water are needed to generate energy, notably to power turbines, to cool thermal or nuclear energy plants, and to extract oil from tar sands. At the same time, large amounts of energy are needed to pump, treat, heat and distribute water for urban, industrial and agricultural use and to collect and treat the resulting wastewater. The two sides of the water-energy nexus are generating new research and policy proposals to address the challenges of climate change, energy security and increasing water scarcity. This report demonstrated that a large untapped opportunity exists for water conservation to reduce energy, municipal costs and greenhouse gas (GHG) emissions. The water-energy research in this study was based on a Soft Path for Water approach that incorporated facets of water demand management while moving beyond a short-term focus on cost-benefit criteria to examine how the services currently provided by water can be delivered to meet the need for economic, social and ecological sustainability. Although the research was conducted using data for municipalities in Ontario, the report is relevant to the rest of Canada and much of North America. Water conservation strategies included water efficiency measures such as high efficiency toilets and washing machines, as well as water saving measures such as xeriscaping and rainwater harvesting. The objectives of the study were to quantify the energy use associated with each component of the urban water use cycle and to determine the potential for energy and GHG emissions reductions associated with water conservation strategies. This report provided an overview of energy inputs needed for water provision. It outlined the methodology used to achieve the project objectives and

  6. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Dunphy, R. T. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States)

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  9. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  10. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  11. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    Science.gov (United States)

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  12. Windows: Win/Win? or when are windows net energy sources?

    Energy Technology Data Exchange (ETDEWEB)

    Moller, S.K.; Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1994-12-31

    The energy balance of domestic glazing is quantified by using program CHEETAH to examine the effects of orientation, U-value, shading coefficient, overhangs, heating operation (times and temperature), curtain U-value, climate, and building thermal mass. The results are presented graphically, allowing the benefit of increasingly glazing area to be assessed quickly. It is shown that unfavourable combinations of these factors can lead to glazing that is a net loser of energy, even when it is facing north. (author). 1 tab., 17 figs., 6 refs.

  13. Net modelling of energy mix among European Countries: A proposal for ruling new scenarios

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2012-01-01

    European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries. -- Highlights: ► Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. ► Panel data from 1996 to 2008 as part of a network of exchanges was considered from Eurostat official database. ► The European import/export energy flows modelled as a network with Small-World phenomena, interpreting the evolution over the years. ► Interesting behavioural features as outcome derived, as shown for the case example of the Germany.

  14. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  15. Energy Consumption and Greenhouse Gas Emissions Resulting From Tourism Travel in an Alpine Setting

    Directory of Open Access Journals (Sweden)

    Rainer Unger

    2016-11-01

    Full Text Available Tourism—with its social, economic, and ecological dimensions—can be an important driver of sustainable development of alpine communities. Tourism is essential for local people's incomes and livelihoods, but it can also have a major impact on the local environment, landscape aesthetics, and (mainly through tourist transport global climate change. A project currently underway is developing the Austrian mountain municipality of Alpbach into a role model for competitive and sustainable year-round alpine tourism using an integrated and spatially explicit approach that considers energy demand and supply related to housing, infrastructure, and traffic in the settlement and the skiing area. As the first outcome of the project, this article focuses on the development of the Model of Alpine Tourism and Transportation, a geographic information system–based tool for calculating, in detail, energy consumption and greenhouse gas emissions resulting from travel to a single alpine holiday destination. Analysis results show that it is crucial to incorporate both direct and indirect energy use and emissions as each contributes significantly to the climate impact of travel. The study fills a research gap in carbon impact appraisal studies of tourism transport in the context of alpine tourism at the destination level. Our findings will serve as a baseline for the development of comprehensive policies and agendas promoting the transformation toward sustainable alpine tourism.

  16. Process industry energy retrofits: the importance of emission baselines for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Aadahl, Anders; Harvey, Simon; Berntsson, Thore

    2004-01-01

    Fuel combustion for heat and/or electric power production is often the largest contributor of greenhouse gas (GHG) emissions from an industrial process plant. Economically feasible options to reduce these emissions include fuel switching and retrofitting the plant's energy system. Process integration methods and tools can be used to evaluate potential retrofit measures. For assessing the GHG emissions reduction potential for the measures considered, it is also necessary to define appropriate GHG emission baselines. This paper presents a systematic GHG emission calculation method for retrofit situations including improved heat exchange, integration of combined heat and power (CHP) units, and combinations of both. The proposed method is applied to five different industrial processes in order to compare the impact of process specific parameters and energy market specific parameters. For potential GHG emission reductions the results from the applied study reveal that electricity grid emissions are significantly more important than differences between individual processes. Based on the results of the study, it is suggested that for sustainable investment decision considerations a conservative emission baseline is most appropriate. Even so, new industrial CHP in the Northern European energy market could play a significant role in the common effort to decrease GHG emissions

  17. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    Science.gov (United States)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  18. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems

    Directory of Open Access Journals (Sweden)

    Ashkan Nabavi-Pelesaraei

    2016-01-01

    Full Text Available This study was conducted in order to determine energy consumption, model and analyze the input–output, energy efficiencies and GHG emissions for watermelon production using artificial neural networks (ANNs in the Guilan province of Iran, based on three different farm sizes. For this purpose, the initial data was collected from 120 watermelon producers in Langroud and Chaf region, two small cities in the Guilan province. The results indicated that total average energy input for watermelon production was 40228.98 MJ ha–1. Also, chemical fertilizers (with 76.49% were the highest energy inputs for watermelon production. Moreover, the share of non-renewable energy (with 96.24% was more than renewable energy (with 3.76% in watermelon production. The rate of energy use efficiency, energy productivity and net energy was calculated as 1.29, 0.68 kg MJ−1 and 11733.64 MJ ha−1, respectively. With respect to GHG analysis, the average of total GHG emissions was calculated about 1015 kgCO2eq. ha−1. The results illustrated that share of nitrogen (with 54.23% was the highest in GHG emissions for watermelon production, followed by diesel fuel (with 16.73% and electricity (with 15.45%. In this study, Levenberg–Marquardt learning Algorithm was used for training ANNs based on data collected from watermelon producers. The ANN model with 11–10–2 structure was the best one for predicting the watermelon yield and GHG emissions. In the best topology, the coefficient of determination (R2 was calculated as 0.969 and 0.995 for yield and GHG emissions of watermelon production, respectively. Furthermore, the results of sensitivity analysis revealed that the seed and human labor had the highest sensitivity in modeling of watermelon yield and GHG emissions, respectively.

  19. Inside the greenhouse debate. Energy issues set to rise on global warming agenda

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    At The Hague in November 2000, pivotal talks on climate change policies and actions - notably ways to cut emissions of greenhouse gases - were suspended after two weeks of intensive debate. Countries now are looking to resume negotiations by June 2001, possibly in Bonn, Germany. Five countries interested in nuclear power under the Clean Development Mechanism (CDM) for reducing greenhouse gas emissions presented national case studies at COP-6. The presentations were made at a ''sidebar'' event introduced by Mr. Hans-Holger Rogner, who heads the IAEA's Planning and Economic Studies Section, Department of Nuclear Energy. Case studies were presented by Mr. R.B. Grover, India; Mr. Chaeyung Lim, Republic of Korea; Mr. Liu Deshun, China; Mr. Le Doan Phac, Viet Nam; and Mr. Muhammad Latif, Pakistan. India's presentation outlined plans to expand electricity production through 2012, including an increase in nuclear capacity. Mr. Grover said that some nuclear power projects are dependent upon receiving financial assistance under the CDM; the dependence is linked to the plant's location relative to India's major coal mines. The Republic of Korea presentation addressed the cost of carbon reduction, noting that reductions using nuclear power would cost about one-tenth of the cost using gas-fired plants in the country. Nuclear power also would contribute to the country's energy security. China's presentation reviewed the country's plans to boost nuclear power capacity over the next 20 years in the face of rising electricity demand, with new plants targeted for coastal regions that are more economically developed. Achieving nuclear expansion plans would result in the annual avoidance of about 63 million tonnes carbon through reduced carbon-dioxide emissions. Nearly 75% of the country's electricity production is now coal-fired, which places a heavy toll on both the environment and transportation requirements. Financial support is needed to more fully develop the nuclear option

  20. Greenhouse effect

    International Nuclear Information System (INIS)

    Lepetit, J.P.

    1992-01-01

    This book speaks about the growth of greenhouse gases content in the atmosphere and try to forecast the different scenarios which may happen. But, in spite of international cooperation and coordinated research programs, nobody owns the answer. So possible future climatic changes depend on the behavior of the concerned actors. A review of energy policy driven by USA, Japan, Sweden, United Kingdom and Federal Republic of Germany is given. Political management of this file and public opinion in front of greenhouse effect are also described. 7 refs., 3 figs., 6 tabs

  1. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  2. Assessment of greenhouse gas emissions from the full energy chain of solar and wind power and other energy sources. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    An international Advisory Group Meeting on Assessment of Greenhouse Gas Emission from the Full Energy Chain of Solar and Wind Power was convened by the IAEA at its Headquarters in Vienna, 21-24 October, 1996. The meeting was attended by 12 experts from 9 countries and two international organizations, and including one consultant to the Agency. The objectives of the workshop were: to define and to analyze the solar and wind power chains in terms of emissions of greenhouse gases from the whole energy chain, i.e., during a plant's operation, and from the construction of the plant to the plant's decommissioning and waste storage; to evaluate existing assessments of full-energy-chain emissions of greenhouse gases from the wind and solar power chains and, where possible, compare these results with such emissions from nuclear power and other energy chains

  3. Assessment of greenhouse gas emissions from the full energy chain of solar and wind power and other energy sources. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    An international Advisory Group Meeting on Assessment of Greenhouse Gas Emission from the Full Energy Chain of Solar and Wind Power was convened by the IAEA at its Headquarters in Vienna, 21-24 October, 1996. The meeting was attended by 12 experts from 9 countries and two international organizations, and including one consultant to the Agency. The objectives of the workshop were: to define and to analyze the solar and wind power chains in terms of emissions of greenhouse gases from the whole energy chain, i.e., during a plant`s operation, and from the construction of the plant to the plant`s decommissioning and waste storage; to evaluate existing assessments of full-energy-chain emissions of greenhouse gases from the wind and solar power chains and, where possible, compare these results with such emissions from nuclear power and other energy chains. Refs, figs, tabs.

  4. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    Science.gov (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  5. Primary energy sources and greenhouse effect; Sources d'energie primaires et effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, B. [Commission Nationale d' Evaluation des Recherches sur la Gestion des Dechets Nucleaires, 75 - Paris (France)

    2003-07-01

    In the frame of the diminution of fossil energy and climate change, the two most difficult demands to satisfy are providing electricity to megalopolises and fuels for transportation. Renewable energies have to be promoted but will not be able to replace fossil fuels in their current uses before several decades. According to the previsions for this century, carefulness is necessary to preserve the future of humanity and the environment. (author)

  6. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  7. Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities.

    Science.gov (United States)

    Hillman, Tim; Ramaswami, Anu

    2010-03-15

    A hybrid life cycle-based trans-boundary greenhouse gas (GHG) emissions footprint is elucidated at the city-scale and evaluated for 8 US cities. The method incorporates end-uses of energy within city boundaries, plus cross-boundary demand for airline/freight transport and embodied energy of four key urban materials [food, water, energy (fuels), and shelter (cement)], essential for life in all cities. These cross-boundary activities contributed 47% on average more than the in-boundary GHG contributions traditionally reported for cities, indicating significant truncation at city boundaries of GHG emissions associated with urban activities. Incorporating cross-boundary contributions created convergence in per capita GHG emissions from the city-scale (average 23.7 mt-CO(2)e/capita) to the national-scale (24.5 mt-CO(2)e/capita), suggesting that six key cross-boundary activities may suffice to yield a holistic GHG emission footprint for cities, with important policy ramifications. Average GHG contributions from various human activity sectors include buildings/facilities energy use (47.1%), regional surface transport (20.8%), food production (14.7%), transport fuel production (6.4%), airline transport (4.8%), long-distance freight trucking (2.8%), cement production (2.2%), and water/wastewater/waste processing (1.3%). Energy-, travel-, and key materials-consumption efficiency metrics are elucidated in these sectors; these consumption metrics are observed to be largely similar across the eight U.S. cities and consistent with national/regional averages.

  8. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    Science.gov (United States)

    Kahrl, Fredrich James

    Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, the world's largest energy consumer. Since 2007, China has been the world's largest emitter of greenhouse gases (GHGs). Despite its large and rapidly expanding influence on global energy markets and the global atmosphere, on a per capita basis energy consumption and GHG emissions in China are low relative to developed countries. The Chinese economy, and with it energy use and GHG emissions, are expected to grow vigorously for at least the next two decades, raising a question of critical historical significance: How can China's economic growth imperative be meaningfully reconciled with its goals of greater energy security and a lower carbon economy? Most scholars, governments, and practitioners have looked to technology---energy efficiency, nuclear power, carbon capture and storage---for answers to this question. Alternatively, this study seeks to root China's future energy and emissions trajectory in the political economy of its multiple transitions, from a centrally planned to a market economy and from an agrarian to a post-industrial society. The study draws on five case studies, each a dedicated chapter, which are organized around three perspectives on energy and GHG emissions: the macroeconomy; electricity supply and demand; and nitrogen fertilizer production and use. Chapters 2 and 3 examine how growth and structural change in China's macroeconomy have shaped energy demand, finding that most of the dramatic growth in the country's energy use over the 2000s was driven by an acceleration of its investment-dominated, energy-intensive growth model, rather than from structural change. Chapters 4 and 5 examine efforts to improve energy efficiency and increase the share of renewable generation in the electric power sector, concluding that China's power system lacks the flexibility in generation, pricing, and demand to

  9. Responses in live weight change to net energy intake in dairy cows

    DEFF Research Database (Denmark)

    Jensen, Charlotte; Østergaard, Søren; Bertilsson, Jan

    2015-01-01

    The objective of this analysis was to estimate the effect of increased energy intake on daily live weight changes during the first 100 days of lactation of primiparous and multiparous cows. A data set with 78 observations (treatment means) was compiled from 6 production trials from Denmark, Norway...... or multiparous. Feed ration energy values were recalculated by use of NorFor to obtain consistent energy expression in all trials as opposed to the varying feed evaluation systems used in original analysis of trials. Regression analysis with linear and quadratic effects were performed on live weight...... change were made by linear mixed effects model with trial as random factor. For both primiparous and multiparous cows there was an increasing curvilinear response at a decreasing rate to increased net energy intake and the daily live weight change at day 30 was negative and at day 90 it was positive...

  10. Evaluating options for balancing the water–electricity nexus in California: Part 2—Greenhouse gas and renewable energy utilization impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott, E-mail: gss@uci.edu

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. - Highlights: • Part I presents a spatially and temporally resolved model of California’s surface reservoirs. • Part II presents GHG emissions and grid renewable penetration for water availability options. • In particular, the energy signature of water supply infrastructure is delineated. • Different pathways for securing California’s water supply are developed quantitatively. • Under baseline conditions, portfolios capable of securing surface reservoir levels emerge. • Under climate change conditions, the

  11. Evaluating options for balancing the water–electricity nexus in California: Part 2—Greenhouse gas and renewable energy utilization impacts

    International Nuclear Information System (INIS)

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-01-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. - Highlights: • Part I presents a spatially and temporally resolved model of California’s surface reservoirs. • Part II presents GHG emissions and grid renewable penetration for water availability options. • In particular, the energy signature of water supply infrastructure is delineated. • Different pathways for securing California’s water supply are developed quantitatively. • Under baseline conditions, portfolios capable of securing surface reservoir levels emerge. • Under climate change conditions, the

  12. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  13. The potentional of renewable energy sources for greenhouse gases emissions reduction in Macedonia

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandar

    2012-01-01

    Full Text Available As European Union (EU candidate country, Macedonia is in the process of adoption of the EU strategic energy policies, harmonization of the national legislation with the EU legislation and defining the respective national goals. In this regard, the government has recently adopted a National Strategy for Utilization of Renewable Energy Sources (RES, prepared by ICEIM-MANU. The main goal of this paper is to assess the potential for greenhouse gases (GHG emissions reduction by implementation of 21%-RES-scenarios from the Strategy. The corresponding emissions reduction is calculated against the baseline (reference scenario developed within the Second National Communication on Climate Change. Furthermore, all potential RES technologies are analyzed from economic aspect and combined in a form of emissions reduction cost curve, displaying the total marginal cost of the GHG emissions reduction by RES. Finally, on the bases of the environmental and economic effectiveness of the considered RES technologies, as well as taking into account the country specific barriers, the priority actions for GHG emissions reduction are identified.

  14. Energy and greenhouse gas inventories by local governments in BC : implications for the CEEI initiative

    International Nuclear Information System (INIS)

    Macdonald, R.

    2007-01-01

    The community energy and emissions inventory (CEEI) initiative has been undertaken through British Columbia's Ministry of Environment in order to establish a cost-effective, provincially-sponsored, rigorous, yet flexible, data collection, analysis and reporting system to provide local governments with energy-related and greenhouse gas inventory baselines, ongoing monitoring and periodic reports to help inform community decision making and support provincial objectives. This report described the CEEI initiative including background information, project objectives, and project methodology. The report also provided a review of community and corporate inventories and discussed the implications of various data and methodological issues for the CEEI initiative. This included reporting and updating issues; desired accuracy and frequency of community inventories; regular inventory generation; and implications for the development of indicators. The report concluded with a sampling of possible indicators, and the factors that affect their use. It was concluded that the characteristics of an ideal indicator for local action on climate change would be one that describes a condition or state of the urban or built environment representing the magnitude of emissions. It would also be one that is within the influence of local governments to affect and would be both measurable and affordable. 11 tabs., 2 appendices

  15. China’s water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture

    International Nuclear Information System (INIS)

    Wang Jinxia; Zhang Lijuan; Li Yumin; Rothausen, Sabrina G S A; Conway, Declan; Xiong Wei; Holman, Ian P

    2012-01-01

    China is the world’s largest emitter of greenhouse gases (GHGs) and the agricultural sector in China is responsible for 17–20% of annual emissions and 62% of total freshwater use. Groundwater abstraction in China has increased rapidly from 10 km 3 yr −1 in the 1950s to more than 100 km 3 yr −1 in the 2000s, such that roughly 70% of the irrigated area in northern China is now groundwater-fed. Pumping of water for irrigation is one of the most energy consuming on-farm processes; however, to date this source of GHG emissions in China and elsewhere has been relatively neglected. We derive the first detailed estimate of GHG emissions from groundwater pumping for irrigation in China, using extensive village survey data from 11 provinces, broadly representative of the situation during the mid-2000s. The 11 provinces cover roughly half of China’s irrigated cropland and we upscale to the national level using government statistics for the remaining 20 provinces. Our results show emissions of 33.1 MtCO 2 e, just over half a per cent of the national total. Groundwater abstraction represents an important source of GHG emissions that has been rapidly increasing and which at present is largely unregulated. Water scarcity in China is already driving policies to improve water conservation. These results suggest that significant potential exists to promote the co-benefits of water and energy saving in order to meet national planning targets. (letter)

  16. Overconsumption of Energy and Excessive Discretionary Food Intake Inflates Dietary Greenhouse Gas Emissions in Australia

    Directory of Open Access Journals (Sweden)

    Gilly A. Hendrie

    2016-10-01

    Full Text Available Population dietary guidelines have started to include information about the environmental impacts of food choices, but more quantifiable evidence is needed, particularly about the impacts associated with discretionary foods. This paper utilised the 2011–2012 Australian Health Survey food intake data along with a highly disaggregated input–output model to estimate the greenhouse gas emissions (GHGe of Australians’ dietary intake, and compare current patterns of eating which vary in diet quality and GHGe to the recommended diet. The average dietary GHGe were 18.72 ± 12.06 and 13.73 ± 8.72 kg CO2e/day for male and female adults, respectively. The correlation between total energy and GHGe was r = 0.54 (p < 0.001. Core foods contributed 68.4% and discretionary foods 29.4%. Within core foods, fresh meat and alternatives (33.9% was the greatest contributor. The modelling of current dietary patterns showed the contribution of discretionary foods to GHGe was 121% greater in the average diet and 307% greater in the “lower quality, higher GHGe” diet compared to the recommended diet. Reducing discretionary food intake would allow for small increases in emissions from core foods (in particular vegetables, dairy and grains, thereby providing a nutritional benefit at little environmental expense. Public health messages that promote healthy eating, eating to one’s energy needs and improved diet quality will also contribute to lowering GHGe.

  17. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  18. Greenhouse as energy source. Inspiring strategies for the horticulture; Kas als energiebron. Inspirerende strategieen voor de glastuinbouw

    Energy Techno