WorldWideScience

Sample records for net energy cost

  1. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  2. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  3. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    Science.gov (United States)

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  4. Life Cycle Cost Analysis of a Multi-Storey Residential Net Zero Energy Building in Denmark

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    demand and three alternatives of energy supply systems: (1) photovoltaic installation with photovoltaic/solar thermal collectors and an ambient air/solar source heat pump; (2) photovoltaic installation with a ground-source heat pump; (3) photovoltaic installation with district heating grid. The results...... source of heat than a heat pump for the Net ZEB....

  5. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  6. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  7. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  8. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  9. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  10. Average Costs versus Net Present Value

    NARCIS (Netherlands)

    E.A. van der Laan (Erwin); R.H. Teunter (Ruud)

    2000-01-01

    textabstractWhile the net present value (NPV) approach is widely accepted as the right framework for studying production and inventory control systems, average cost (AC) models are more widely used. For the well known EOQ model it can be verified that (under certain conditions) the AC approach gives

  11. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  12. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  13. Army Net Zero Prove Out. Net Zero Energy Best Practices

    Science.gov (United States)

    2014-11-18

    recovery and cogeneration opportunities, offsetting the remaining demand with the production of renewable energy from onsite sources so that the Net...implementing energy recovery and cogeneration opportunities, and then offsetting the remaining demand with the production of renewable energy from on-site...they impact overall energy performance. The use of energy modeling in the design stage provides insights that can contribute to more effective design

  14. Techniques for getting the most from an evaluation: Review of methods and results for attributing progress, non-energy benefits, net to gross, and cost-benefit

    International Nuclear Information System (INIS)

    Skumatz, Lisa A.

    2005-01-01

    As background for several evaluation and attribution projects, the authors conducted research on best practices in a few key areas of evaluation. We focused on techniques used in measuring market progress, enhanced techniques in attributing net energy impacts, and examining omitted program effects, particularly net non-energy benefits. The research involved a detailed literature review, interviews with program managers and evaluators across the US, and refinements of techniques used by the authors in conducting evaluation work. The object of the research was to uncover successful (and unsuccessful) approaches being used for key aspects of evaluation work. The research uncovered areas of tracking that are becoming more commonly used by agencies to assess progress in the market. In addition, detailed research by the authors on a number of impact and attribution evaluations have also led to recommendations on key practices that we believe comprise elements of best practices for assessments of attributable program effects. Specifically, we have identified a number of useful steps to improve the attribution of impacts to program interventions. Information on techniques for both attribution/causality work for a number of programs are presented - including market transformation programs that rely on marketing, advertising, training, and mid-stream incentives and work primarily with a network of participating mid-market actors. The project methods and results are presented and include: Theory-based evaluation, indicators, and hypothesis testing; Enhanced measurement of free riders, spillover, and other effects, and attribution of impacts using distribution and ranges of measure and intervention impacts, rather than less reliable point estimates; Attribution of program-induced non-energy benefits; Net to gross, benefit cost analysis, and incorporation of scenario/risk analysis of results; Comparison of net to gross results across program types to explore patterns and

  15. Techniques for getting the most from an evaluation: Review of methods and results for attributing progress, non-energy benefits, net to gross, and cost-benefit

    Energy Technology Data Exchange (ETDEWEB)

    Skumatz, Lisa A. [Skumatz Economic Research Associates, Inc., Superior, CO (United States)

    2005-07-01

    As background for several evaluation and attribution projects, the authors conducted research on best practices in a few key areas of evaluation. We focused on techniques used in measuring market progress, enhanced techniques in attributing net energy impacts, and examining omitted program effects, particularly net non-energy benefits. The research involved a detailed literature review, interviews with program managers and evaluators across the US, and refinements of techniques used by the authors in conducting evaluation work. The object of the research was to uncover successful (and unsuccessful) approaches being used for key aspects of evaluation work. The research uncovered areas of tracking that are becoming more commonly used by agencies to assess progress in the market. In addition, detailed research by the authors on a number of impact and attribution evaluations have also led to recommendations on key practices that we believe comprise elements of best practices for assessments of attributable program effects. Specifically, we have identified a number of useful steps to improve the attribution of impacts to program interventions. Information on techniques for both attribution/causality work for a number of programs are presented - including market transformation programs that rely on marketing, advertising, training, and mid-stream incentives and work primarily with a network of participating mid-market actors. The project methods and results are presented and include: Theory-based evaluation, indicators, and hypothesis testing; Enhanced measurement of free riders, spillover, and other effects, and attribution of impacts using distribution and ranges of measure and intervention impacts, rather than less reliable point estimates; Attribution of program-induced non-energy benefits; Net to gross, benefit cost analysis, and incorporation of scenario/risk analysis of results; Comparison of net to gross results across program types to explore patterns and

  16. Net-Zero Energy Technical Shelter

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    Technical shelters are the basic structures for storing electronic and technical equipment, and commonly used for telecommunication base station, windmill, gas station, etc. Due to their high internal heat load density and special operation schedule, they consume more energy than normal residential...... or commercial buildings. On the other hand, it is a big challenge to power the technical shelter in remote area where the grids are either not available or the expansion of grid is expensive. In order to minimize the energy consumption and obtain a reliable and cost-efficient power solution for technical...... shelter, this study will apply the net-zero energy concept into the technical shelter design. The energy conservation can be achieved by proper design of building envelop and optimization of the cooling strategies. Both experiments and numerical simulations are carried out to investigate the indoor...

  17. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  18. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  19. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  20. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  1. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  2. Demonstration of the Energy Component of the Installation Master Plan Using the Net Zero Energy Planner Tool: Cost and Performance Report

    Science.gov (United States)

    2015-12-11

    These data come from Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE)-compliant GIS, usually obtained from the...solar photovoltaics, solar-thermal, wind energy, biomass (wood chips, etc.), biogas , or synthetic gas need to be considered as part of the mix during...results could be obtained . Both the SME team and the NZP team used an overlapping set of data, with the NZP team also requiring GIS data. Section 2

  3. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  4. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  5. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  6. A case study: The economic cost of net metering in Maryland: Who bears the economic burden?

    International Nuclear Information System (INIS)

    Cook, C.; Cross, J.

    1999-01-01

    The Maryland legislature approved net-metering legislation for residential consumer generators with photovoltaic systems during 1997. Before the legislation passed, the Maryland Energy Administration (MEA) examined its potential economic impact on both the affected utilities and consumer ratepayers--with and without net-metered PV systems. The MEA discovered that the impact on the affected utility is minimal when the net-metered PV capacity is limited to a small percentage of utility peak load. The analysis also determined that the cost burden on other customers under a net-metered scenario is likewise limited. For Maryland's largest investor-owned utility, the maximum amount of any cross-subsidy (or cost) on a per customer basis is 46 cents annually. Furthermore, their analysis showed that when distribution system savings and environmental externalities are incorporated, net-metered customers may actually subsidize other utility customers. The MEA analysis also determined that about 50% of the value of the energy produced is lost if net metering is not available to those customers with grid tied PV systems. Over the long term, most if not all of any potential cost is borne by other residential customers, not utility shareholders. Finally, the additional cost burden to the utility under net metering--compensating the consumer at the retail rate versus the avoided cost rate--is less than expected when one considers the administrative costs associated with a dual-metered billing approach

  7. Net energy analysis in a Ramsey–Hotelling growth model

    International Nuclear Information System (INIS)

    Macías, Arturo; Matilla-García, Mariano

    2015-01-01

    This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented. - Highlights: • A neoclassical growth model with EROI (“Energy Return on Energy Invested”) is shown • All concepts linking neoclassical economics and net energy analysis are discussed • Any EROI decline can be compensated increasing gross activity in the energy sector. • The economic impact of EROI depends on some non-energy cost in the energy sector. • Comparative steady-state statics for different EROI levels is performed and discussed. • Policy implications are suggested.

  8. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  9. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  10. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  11. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  12. Money for nothing? The net costs of medical training.

    Science.gov (United States)

    Barros, Pedro P; Machado, Sara R

    2010-09-01

    One of the stages of medical training is the residency programme. Hosting institutions often claim compensation for the training provided. How much should this compensation be? According to our results, given the benefits arising from having residents among the house staff, no transfer (either tuition fee or subsidy) should be set to compensate the hosting institution for providing medical training. This paper quantifies the net costs of medical training, defined as the training costs over and above the wage paid. We jointly consider two effects. On the one hand, residents take extra time and resources from both the hosting institution and the supervisor. On the other hand, residents can be regarded as a less expensive substitute to nurses and/or graduate physicians, in the production of health care, both in primary care centres and hospitals. The net effect can be either positive or negative. We use the fact that residents, in Portugal, are centrally allocated to National Health Service hospitals to treat them as a fixed exogenous production factor. The data used comes from Portuguese hospitals and primary care centres. Cost function estimates point to a small negative marginal impact of residents on hospitals' (-0.02%) and primary care centres' (-0.9%) costs. Nonetheless, there is a positive relation between size and cost to the very large hospitals and primary care centres. Our approach to estimation of residents' costs controls for other teaching activities hospitals might have (namely undergraduate Medical Schools). Overall, the net costs of medical training appear to be quite small.

  13. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  14. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...... have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance....

  15. Net Energy, CO2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2012-06-01

    Full Text Available Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from Jatropha curcas has become a growing industry. However, many key issues related to the development of this industry are still not fully resolved and the prospects for this industry are complicated. The aim of this paper is to evaluate the net energy, CO2 emission, and cost efficiency of Jatropha biodiesel as a substitute fuel in China to help resolve some of the key issues by studying data from this region of China that is well suited to growing Jatropha. Our results show that: (1 Jatropha biodiesel is preferable for global warming mitigation over diesel fuel in terms of the carbon sink during Jatropha tree growth. (2 The net energy yield of Jatropha biodiesel is much lower than that of fossil fuel, induced by the high energy consumption during Jatropha plantation establishment and the conversion from seed oil to diesel fuel step. Therefore, the energy efficiencies of the production of Jatropha and its conversion to biodiesel need to be improved. (3 Due to current low profit and high risk in the study area, farmers have little incentive to continue or increase Jatropha production. (4 It is necessary to provide more subsidies and preferential policies for Jatropha plantations if this industry is to grow. It is also necessary for local government to set realistic objectives and make rational plans to choose proper sites for Jatropha biodiesel development and the work reported here should assist that effort. Future research focused on breading high-yield varieties, development of efficient field

  16. Nuclear energy: the real cost

    International Nuclear Information System (INIS)

    Spencer, K.; Marshall, R.; Sweet, C.; Prior, M.; Welsh, I.; Bunyard, P.; Goldsmith, E.; Hildyard, N.; Jeffery, J.W.

    1981-01-01

    This report on the discussions within a small group of academics falls under the headings: chairman's foreword; summary and recommendations; the government's nuclear power programme and its implications; the CEGB's planning record; the past performance of Britain's nuclear power stations - a guide for the future (query); nuclear power -early uncertainties; historic costs - 'the fraud inherent in all inflationary finance'; current cost accounting; fuel costs - coal stays steady, nuclear rises; net effective cost and the rationale for nuclear power; reinterpreting net effective costs; other considerations; conclusions and recommendations; references. (U.K.)

  17. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Energy Technology Data Exchange (ETDEWEB)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

  18. Social costs of energy

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1990-01-01

    There have been many studies over the past 20 years which have looked at the environmental and other impacts of energy production, conversion and use. A number of these have attempted to put a monetary value to the external costs which are not reflected in the prices charged for energy. The topic has received increased attention recently as a direct result of the recognition of the potentially large social costs that might arise from the depletion of the ozone layer, the consequences of global warming and the continued releases of acid gases from fossil fuel combustion. The determination of external costs was attempted in the report for the European Economic Community, EUR11519, ''Social Costs of Energy Consumption'', by O Hohmeyer. Due to its official sponsorship, this report has been afforded greater respect than it deserves and is being used in some quarters to claim that the external costs of nuclear power are high relative to those of fossil fuels. The remainder of this note looks at some of the serious deficiencies of the document and why its conclusions offer no meaningful guidance to policy makers. So far as the present author is aware no serious criticism of the Hohmeyer study has previously appeared. (author)

  19. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  20. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  1. Multiple-factor analysis of the net cost of drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Karnaushevskaya, Zh I; Kukhtevich, L I; Lisovskaya, G F; Maguryak, N S; Nasinnik, Z A

    1979-01-01

    Basic factors in the rise in net cost of drilling operations are examined in the association ''Ukrneft''. A mathematical model of their net cost is constructed which takes into consideration the given factors. A number of measures are suggested and their specific influence on the decrease in net cost of well construction is defined.

  2. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  3. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Candanedo, José A.; Geier, Sonja

    2010-01-01

    of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load......“Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  4. A Cellular Approach to Net-Zero Energy Cities

    Directory of Open Access Journals (Sweden)

    Miguel Amado

    2017-11-01

    Full Text Available Recent growth in the use of photovoltaic technology and a rapid reduction in its cost confirms the potential of solar power on a large scale. In this context, planning for the deployment of smart grids is among the most important challenges to support the increased penetration of solar energy in urban areas and to ensure the resilience of the electricity system. As part this effort, the present paper describes a cellular approach to a Net-Zero energy concept, based on the balance between the potential solar energy supply and the existing consumption patterns at the urban unit scale. To do that, the Geographical Urban Units Delimitation model (GUUD has been developed and tested on a case study. By applying the GUUD model, which combines Geographic Information Systems (GIS, parametric modelling, and solar dynamic analysis, the whole area of the city was divided into urban cells, categorized as solar producers and energy consumers. The discussion around three theoretical scenarios permits us to explore how smart grids can be approached and promoted from an urban planning perspective. The paper provides insights into how urban planning can be a driver to optimize and manage energy balance across the city if the deployment of smart grids is correctly integrated in its operative process.

  5. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  6. Criteria for Definition of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Sartori, Igor; Marszal, Anna Joanna; Napolitano, Assunta

    2010-01-01

    The idea of a Net Zero Energy Building (Net ZEB) is understood conceptually, as it is understood that the way a Net ZEB is defined affects significantly the way it is designed in order to achieve the goal. However, little agreement exists on a common definition; the term is used commercially...... without a clear understanding and countries are enacting policies and national targets based on the concept without a clear definition in place. This paper presents a harmonised framework for describing the relevant characteristics of Net ZEBs in a series of criteria. Evaluation of the criteria...... and selection of the related options becomes a methodology for elaborating sound Net ZEB definitions in a formal, systematic and comprehensive way, creating the basis for legislations and action plans to effectively achieve the political targets. The common denominator for the different possible Net ZEB...

  7. The net cost of biofuels in Thailand. An economic analysis

    International Nuclear Information System (INIS)

    Bell, David R.; Kamens, Richard; Silalertruksa, Thapat; Gheewala, Shabbir H.

    2011-01-01

    Biofuels are expected to represent a growing portion of liquid fuel consumption in Thailand due to environmental and social considerations in conjunction with policy goals supporting their domestic production and consumption. This paper reviews the economic costs associated with biofuel policy implementation in Thailand in the short term target year of 2011. Internal (production) and external (environmental, social, etc.) costs and benefits are evaluated, and, where possible, monetized. Domestic production of biofuel is calculated to be 9.5 billion THB (317 million USD) more expensive than importing the equivalent amount of petroleum. The environmental benefits from GHG savings as well as losses due to increased ground level ozone formation and government expenditure to support the biofuel industry yield a total 'net cost' of 8.6 billion THB or 121 THB (4.04 USD) per capita for the year 2011. This result is contextualized with the (non-monetized) consideration that although biofuels are somewhat more expensive in the short term, their domestic production allows virtually all of the money to stay within the Thai economy as opposed to being sent abroad. This fact, coupled with significant uncertainty in future petroleum prices, could strongly influence the direction of Thai policy with respect to biofuels. (author)

  8. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  9. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  10. Least cost analysis of renewable energy projects

    International Nuclear Information System (INIS)

    Cosgrove-Davies, M.; Cabraal, A.

    1994-01-01

    This paper describes the methodology for evaluating dispersed and centralized rural energy options on a least cost basis. In defining the load to be served, each supply alternative must provide equivalent levels of service. The village to be served is defined by the number of loads, load density, distance from the nearest power distribution line, and load growth. Appropriate rural energy alternatives are identified and sized to satisfy the defined load. Lastly, a net present value analysis (including capital, installation, O and M, fuel, and replacement costs, etc.) is performed to identify the least cost option. A spreadsheet-based analytical tool developed by the World Bank's Asia Alternative Energy Unit (ASTAE) incorporates this approach and has been applied to compare photovoltaic solar home systems with other rural energy supply options in Indonesia. Load size and load density are found to be the critical factors in choosing between a grid and off-grid solution

  11. Photovoltaic energy cost limit

    International Nuclear Information System (INIS)

    Coiante, D.

    1992-01-01

    Referring to a photovoltaic system for grid connected applications, a parametric expression of kWh cost is derived. The limit of kWh cost is carried out extrapolating the values of cost components to their lowest figure. The reliability of the forecast is checked by disaggregating kWh cost in direct and indirect costs and by discussing the possible cost reduction of each component

  12. Transaction costs of raising energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K.

    2003-07-01

    Part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called ''no-regret'' potential would comprise measures that from a pure economic efficiency point of view would be ''worth undertaking whether or not there are climate-related reasons for doing so''. The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs. This paper will re-examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures, especially in the context of energy system modelling, will be shown (section 3). (author)

  13. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  14. Cost and cost effectiveness of long-lasting insecticide-treated bed nets - a model-based analysis

    Directory of Open Access Journals (Sweden)

    Pulkki-Brännström Anni-Maria

    2012-04-01

    Full Text Available Abstract Background The World Health Organization recommends that national malaria programmes universally distribute long-lasting insecticide-treated bed nets (LLINs. LLINs provide effective insecticide protection for at least three years while conventional nets must be retreated every 6-12 months. LLINs may also promise longer physical durability (lifespan, but at a higher unit price. No prospective data currently available is sufficient to calculate the comparative cost effectiveness of different net types. We thus constructed a model to explore the cost effectiveness of LLINs, asking how a longer lifespan affects the relative cost effectiveness of nets, and if, when and why LLINs might be preferred to conventional insecticide-treated nets. An innovation of our model is that we also considered the replenishment need i.e. loss of nets over time. Methods We modelled the choice of net over a 10-year period to facilitate the comparison of nets with different lifespan (and/or price and replenishment need over time. Our base case represents a large-scale programme which achieves high coverage and usage throughout the population by distributing either LLINs or conventional nets through existing health services, and retreats a large proportion of conventional nets regularly at low cost. We identified the determinants of bed net programme cost effectiveness and parameter values for usage rate, delivery and retreatment cost from the literature. One-way sensitivity analysis was conducted to explicitly compare the differential effect of changing parameters such as price, lifespan, usage and replenishment need. Results If conventional and long-lasting bed nets have the same physical lifespan (3 years, LLINs are more cost effective unless they are priced at more than USD 1.5 above the price of conventional nets. Because a longer lifespan brings delivery cost savings, each one year increase in lifespan can be accompanied by a USD 1 or more increase in price

  15. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  16. The economic costs of energy

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1980-01-01

    At a recent symposium, the economic costs of nuclear power were examined in four lectures which considered; (1) The performance of different types, size and ages of nuclear power plants. (2) The comparison between coal and nuclear power costs based on the principle of net effective cash. (3) The capital requirements of a nuclear programme. (4) The comparative costs, now and in the future, of coal-fired and nuclear plants. It is concluded that uncertainties seem to get greater rather than smaller with time probably due to the high and fluctuating world inflation rates and the great uncertainty about world economic performance introduced by the politicising of world oil supplies. (UK)

  17. Calculation Tool for Determining the Net Energy Gain

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    is dependent on both the U-values and the g-values. Beyond this it is dependent on the orientation of the windows and the climate and the actual period. This makes it difficult to choose the glazings and windows that are optimal with regard to energy performance in a given case. These facts have aroused a need...... for simple and accurate methods to determine and compare the energy performance of different window products. When choosing windows for new buildings or retrofitting a calculation tool that in a simple way determines the net energy gain from the specific windows in the actual building will ease the selection...... of the best window solution. Such a tool combined with a database with window products can make calculations of the heat loss or energy demand corresponding to the requirements in the new building code easier and more correct. In the paper, methods to determine energy performance data and the net energy gain...

  18. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  19. Net energy levels on the lipid profile of pork

    Directory of Open Access Journals (Sweden)

    Stephan Alexander da Silva Alencar

    2017-09-01

    Full Text Available ABSTRACT: This study was conducted to evaluate the effects of net energy levels on the lipid profile of adipose tissue and muscle of swines. A total of 90 animals, with initial weight of 71.94±4.43kg, were used, and distributed in a randomized block design in five net energy levels (2,300, 2,425, 2,550, 2,675, and 2,800Kcal kg-1 feed, with nine replicates and two animals per experimental unit. Lipid profiles of adipose tissue and muscle were analyzed using gas chromatography. Increasing the levels of net energy using soybean oil, improved the lipid profile of adipose tissue and muscle, increased linearly (P<0.05 the concentrations of polyunsaturated fatty acids, especially linoleic and α-linolenic acid, reduced linearly (P<0.05 the monounsaturated and saturated fatty acids and omega 6: omega 3. In adipose tissue was observed linear reduction (P<0.05 of atherogenic and thrombogenic indexes. In conclusion, increasing the level of net energy of the diet using soybean oil improved the lipid profile of adipose tissue and muscle.

  20. Real energy cost

    International Nuclear Information System (INIS)

    Vinogradova, I.

    1992-01-01

    Different methods of calculating the real power cost in the USA taking account of damage brought to the environment, public health expenses etc., are considered. Application of complex methods allowing one to directly determine the costs linked with ecology has shown that the most expensive power is generated at the new NPPs and thermal plants using coal. Activities on power saving and increasing the capacity of the existing hydroelectrotechnical equipment are considered to be the most effective from the viewpoint of expenses

  1. Social costs of energy consumption

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1988-01-01

    This study systematically compares the external costs and benefits of different electricity generating technologies. It covers environmental and employment effects, the depletion of natural resources, and public subsidies. Electricity production based on fossil fuels and nuclear energy compared with electricity production based on wind energy and photovoltaic systems. The study shows that wind and photovoltaic solar energy induce far less social costs than conventionally generated electricity. The impact of excluding social costs on the competitive position of the different energy technologies is analyzed. It is shown that the allocation process is seriously distorted resulting in sub-optimal investment decisions concerning competing energy technologies. This exclusion of social costs can delay the introduction of renewable energy sources by more than ten years and results in considerable losses to society. (orig./HSCH) With 17 figs., 24 tabs

  2. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  3. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  4. Systems principles of planning the net cost of oil and gas extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryazanova, N I

    1979-01-01

    The automated system of calculation of ASPC ''oil extraction'' is developed in order to improve the existing system of planning of the oil extracting sector. The most complete expression of the systems construction of the plan is found in the section ''net cost and profit.'' Unity of the production process advances definite requirements for construction of the plan for net cost of oil and gas extraction as the model of this unified process. According to these requirements, the plan for net cost must be developed on the basis of interrelationship of the indicators of the plan for net cost within the section and with indicators of other sections of the plan, methodological unity and continuity of the methods of planning net cost by elements of outlays, articles of calculation and technical-economic factors, methodological continuity of regimes and stages of planning, as well as based on methodological continuity of the control levels. The listed requirements are principles for systems planning of the net cost of oil and gas extraction. These principles guarantee improvement in planning of net cost of oil and gas extraction according to the requirements made for the national economic planning.

  5. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  6. Nanobeacon: A low cost time calibration instrument for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David [IFIC. Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each one a set (31) of small area photomultipliers. The main goal of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. Due to the high volume to be covered by KM3NeT, a cost reduction of the different systems is a priority. To this end a very low price calibration device, the so called Nanobeacon, has been designed and developed. At present one of such devices has already been integrated successfully at the KM3NeT telescope and eight of them in the Nemo Tower Phase II. In this article the main properties and operation of this device are described.

  7. Developing macroeconomic energy cost indicators

    International Nuclear Information System (INIS)

    Oberndorfer, Ulrich

    2012-01-01

    Indicators are more and more drawn on for policy making and assessment. This is also true for energy policy. However, while numerous different energy price figures are available, subordinate energy cost indicators are lacking. This paper lays out a general concept for such indicator sets and presents a flexible framework for representative and consistent energy cost indicators with an underlying weighting principle based on consumption shares. Their application would provide interesting new insights into the relationship between energy cost burdens of different sectors and countries. It would allow for more rigorous analysis in the field of energy economics and policy, particularly with regard to market monitoring and impact assessment as well as ex-post-policy analysis.

  8. Net costs of health worker rural incentive packages: an example from the Lao People's Democratic Republic.

    Science.gov (United States)

    Keuffel, Eric; Jaskiewicz, Wanda; Paphassarang, Chanthakhath; Tulenko, Kate

    2013-11-01

    Many developing countries are examining whether to institute incentive packages that increase the share of health workers who opt to locate in rural settings; however, uncertainty exists with respect to the expected net cost (or benefit) from these packages. We utilize the findings from the discrete choice experiment surveys applied to students training to be health professionals and costing analyses in Lao People's Democratic Republic to model the anticipated effect of incentive packages on new worker location decisions and direct costs. Incorporating evidence on health worker density and health outcomes, we then estimate the expected 5-year net cost (or benefit) of each incentive packages for 3 health worker cadres--physicians, nurses/midwives, and medical assistants. Under base case assumptions, the optimal incentive package for each cadre produced a 5-year net benefit (maximum net benefit for physicians: US$ 44,000; nurses/midwives: US$ 5.6 million; medical assistants: US$ 485,000). After accounting for health effects, the expected net cost of select incentive packages would be substantially less than the original estimate of direct costs. In the case of Lao People's Democratic Republic, incentive packages that do not invest in capital-intensive components generally should produce larger net benefits. Combining discrete choice experiment surveys, costing surveys and cost-benefit analysis methods may be replicated by other developing countries to calculate whether health worker incentive packages are viable policy options.

  9. Listen, wind energy costs nothing

    International Nuclear Information System (INIS)

    Poizat, F.

    2008-09-01

    The author discusses the affirmation of the ADEME and the Environmental and sustainable development Ministry: the french wind park will costs in 2008 0,5 euro year for each household. He criticizes strongly this calculi, bringing many data on energy real cost today and in the next 10 years. Many references are provided. (A.L.B.)

  10. Assessing the engineering performance of affordable net-zero energy housing

    Science.gov (United States)

    Wallpe, Jordan P.

    The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses. Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon comparison, off-the-shelf engineering systems such as super-efficient HVAC units, heat pump hot water heaters, and properly designed photovoltaic arrays can affordably enable a house to become net-zero. These important and applicable technologies realized from the Solar Decathlon will reduce the 22 percent of all energy consumed through the residential sector in the United States. In conclusion, affordable net-zero energy buildings can be built today with commitment from design professionals, manufacturers, and home owners.

  11. Body composition and net energy requirements of Brazilian Somali lambs

    Directory of Open Access Journals (Sweden)

    Elzânia S. Pereira

    2014-12-01

    Full Text Available The aim of this study was to determine the energy requirements for maintenance (NEm and growth of 48 Brazilian Somali ram lambs with an average initial body weight of 13.47±1.76 kg. Eight animals were slaughtered at the trials beginning as a reference group to estimate the initial empty body weight (EBW and body composition. The remaining animals were assigned to a randomised block design with eight replications per block and five diets with increasing metabolisable energy content (4.93, 8.65, 9.41, 10.12 and 11.24 MJ/kg dry matter. The logarithm of heat production was regressed against metabolisable energy intake (MEI, and the NEm (kJ/kg0.75 EBW/day were estimated by extrapolation, when MEI was set at zero. The NEm was 239.77 kJ/kg0.75 EBW/day. The animal’s energy and EBW fat contents increased from 11.20 MJ/kg and 208.54 g/kg to 13.54 MJ/kg and 274.95 g/kg of EBW, respectively, as the BW increased from 13 to 28.70 kg. The net energy requirements for EBW gain increased from 13.79 to 16.72 MJ/kg EBW gain for body weights of 13 and 28.70 kg. Our study indicated the net energy requirements for maintenance in Brazilian Somali lambs were similar to the values commonly recommended by the United States’ nutritional system, but lower than the values recommended by Agricultural Research Council and Commonwealth Scientific and Industrial Research Organization. Net requirements for weight gain were less compared to the values commonly recommended by nutritional system of the United States.

  12. 40 CFR 73.83 - Secretary of Energy's action on net income neutrality applications.

    Science.gov (United States)

    2010-07-01

    ... Renewable Energy Reserve § 73.83 Secretary of Energy's action on net income neutrality applications. (a) First come, first served. The Secretary of Energy will process and certify net income neutrality... of Energy determines that the net income neutrality certification application does not meet the...

  13. The operational performance of “net zero energy building”: A study in China

    International Nuclear Information System (INIS)

    Zhou, Zhihua; Feng, Lei; Zhang, Shuzhen; Wang, Chendong; Chen, Guanyi; Du, Tao; Li, Yasong; Zuo, Jian

    2016-01-01

    Highlights: • Choose energy efficiency technology in office building to implement “nZEB”. • Simulate its energy consumption. • Study on the operational performance. • Optimize its running. - Abstract: There is no lack of studies on “net zero energy buildings” (“nZEB”). However, the vast majority of these studies focus on theories and simulation. The actual operational performance of “net zero energy building” during occupation has been largely overlooked by previous studies. This study aims to investigate the operational performance of net “zero energy buildings” via the case study of an office building in Tianjin, China. Using simulation, the energy consumption of the building at design phase was estimated and a solar photovoltaic (PV) system was selected. A whole year operation of the occupied building showed that energy consumption of the case building was much higher than the energy generated from the solar PV system. This was mainly due to three issues. Firstly, the equipment was different in terms of category, quantity and running time between operation and design stages, leading to considerable underestimate of energy consumption at the design stage. Secondly, the operational strategies need to be further improved in order to regulate users’ behaviors. Thirdly, the efficiency of solar PV system was substantially reduced due to poor atmospheric environment (i.e. haze weather). Therefore, during the design process of “net zero energy buildings”, it is imperative to ensure that the energy simulation accurately reflects how the building will actually operate once occupied. The research also revealed other barriers to the design and implementation of “nZEB” in China, such as extra efforts required for effective communicating the capacity of the HVAC design and systems to clients, and the increased cost of “nZEB” (e.g. solar PV system) particularly for public buildings. Finally, the solar radiation intensity of standard

  14. Radiobiologically based assessments of the net costs of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Jones, Bleddyn

    1996-01-01

    Purpose: To examine how the long-term costs of radiation therapy may be influenced by modifications to fractionation schemes, and how any improvements in tumor control might, in principle, be translated into a potential cost saving for the responsible healthcare organization. Methods and Materials: Standard radiobiological modeling based on the linear-quadratic (LQ) model is combined with financial parameters relating to the estimated costs of different aspects of radiotherapy treatment delivery. The cost model includes provision for the long-term costs of treatment failure and enables the extra costs of near optimal radiotherapy to be balanced against suboptimal alternatives, which are more likely to be associated with further radiotherapy, salvage surgery, and continuing care. Results: A number of caveats are essential in presenting a model such as this for the first time, and these are clearly stated. However, a recurring observation is that, in terms of the whole cost of supporting a patient from first radiotherapy treatment onwards, high quality radiotherapy (i.e., based on individual patterns of fractionation that are near optimal for particular subpopulations of tumor) will frequently be associated with the lowest global cost. Conclusions: This work adds weight to the case for identifying fast and accurate predictive assay techniques, and supports the argument that suboptimal radiotherapy is usually more costly in the long term. Although the article looks only at the cost-benefit consequences of altered patterns of fractionation, the method will, in principle, have application to other changes in the way radiotherapy can be performed, e.g., to examining the cost-benefit aspects of tumor dose escalation as a consequence of using advanced conformal treatment planning

  15. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  16. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  17. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  18. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    Science.gov (United States)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  19. Development of net energy ratio for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2012-01-01

    The conversion of biomass to four different outputs via gasification and catalytic methanation is a renewable technology that could reduce the use of fossil fuels and GHG emissions. This study investigates the energy aspects of producing electricity, heat, methanol and methane. The Gas Technology...... Institute (GTI) gasifier and Circulating Fluidized Bed (CFB) technologies are used for this quad generation process. Three different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3–9.3. The lowest limit corresponds to the straw......-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance...

  20. C-NET: the Centre for Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Roberts, J.W.

    2011-01-01

    The Centre for Nuclear Energy Technology was established as part of the Dalton Nuclear Institute at The University of Manchester in 2009 to focus the UK research on front-end nuclear technologies. This includes plant-life extension, new build, naval propulsion and next generation reactors. Building on £4M of government funding through the North West Development Agency (NWDA), C-NET will act as a hub for nuclear research in the North West of England collaborating with both universities and industry. (author)

  1. The real cost of energy

    International Nuclear Information System (INIS)

    Hubbard, H.M.

    1991-01-01

    Gas prices only seem high. When you say fillerup, you pay but a fraction of the actual cost. Not included are the tens of billions (close to $50 for each barrel of oil) the military spends annually to protect oil fields in the Persian Gulf. Then tack on the hidden costs of environmental degradation, health effects, lost employment, government subsidies and more. Sooner or later, the public pays the entire price. Bringing market prices in line with energy's hidden burdens will be one of the great challenges of the coming decades. The author describes these hidden costs and makes estimates of them

  2. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  3. Zero Net Energy Myths and Modes of Thought

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  4. The real cost of energy

    International Nuclear Information System (INIS)

    Di Valdalbero, Domenico Rossetti

    2003-01-01

    Several studies have been carried out in recent years to assess the external costs (externalities) of energy, among them the European Commission's ExternE research project. An external cost occurs when the social or economic activities of one group of people have an impact on another group but that impact is not fully accounted for or compensated for by the first group. For example, a power station that generates emissions of pollutants and greenhouse gases imposes an external cost if these emissions cause damage to human health (fatal or non-fatal), contribute to global warming, or have adverse effects on crops and building materials. ExternE, which was carried out during the 1990s, is the most exhaustive study to date on the evaluation of the external costs associated with the production and consumption of energy and with energy-related activities. Despite the uncertainties associated with setting a value on external costs, the ExternE project has been successful in several ways and these are summarised together with the ways in which external costs to the environment and health can be taken into account or 'internalised'. One possibility is the imposition of eco-taxes. Another option would be to encourage or subsidise cleaner technologies, thereby avoiding socio-environmental costs. Renewable energy technologies, for example, have limited external costs. The results of ExternE have already been used as a basis for European Commission guidelines on state aid for environmental protection. The project's findings are also being used to support the Council of the European Union in formulating proposals for a Directive on the limits to be set for sulphur dioxide, nitrous oxides, particulates and lead in the atmosphere. In 2000, under the EU's Fifth Research and Technological Development Framework programme, a follow-up project was initiated. The purpose of NewExt (New Elements for the Assessment of External Costs from Energy Technologies) is to refine the methodology

  5. The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives

    International Nuclear Information System (INIS)

    Eid, Cherrelle; Reneses Guillén, Javier; Frías Marín, Pablo; Hakvoort, Rudi

    2014-01-01

    Net-metering is commonly known as a practice by which owners of distributed generation (DG) units may offset their electricity consumption from the grid with local generation. The increasing number of prosumers (consumers that both produce and consume electricity) with solar photovoltaic (PV) generation combined with net-metering results in reduced incomes for many network utilities worldwide. Consequently, this pushes utilities to increase charges per kW h in order to recover costs. For non-PV owners, this could result into inequality issues due to the fact that also non-PV owners have to pay higher chargers for their electricity consumed to make up for netted costs of PV-owners. In order to provide insight in those inequality issues caused by net-metering, this study presents the effects on cross-subsidies, cost recovery and policy objectives evolving from different applied netmetering and tariff designs for a residential consumer. Eventually this paper provides recommendations regarding tariffs and metering that will result in more explicit incentives for PV, instead of the current implicit incentives which are present to PV owners due to net-metering. - Highlights: • Network users are frequently charged by energy charging and fixed charging. • Net-metering with energy charging causes potential problems for DSO cost recovery. • Increasing rolling credit timeframes amplify net-metering impacts on cost recovery. • Observed capacity charging can incentivize local storage and self-consumption. • PV owners should receive direct incentives in order to avoid cross subsidization

  6. The costs and effects of a nationwide insecticide-treated net programme: the case of Malawi

    Directory of Open Access Journals (Sweden)

    Ortiz Juan

    2005-05-01

    Full Text Available Abstract Background Insecticide-treated nets (ITNs are a proven intervention to reduce the burden of malaria, yet there remains a debate as to the best method of ensuring they are universally utilized. This study is a cost-effectiveness analysis of an intervention in Malawi that started in 1998, in Blantyre district, before expanding nationwide. Over the 5-year period, 1.5 million ITNs were sold. Methods The costs were calculated retrospectively through analysis of expenditure data. Costs and effects were measured as cost per treated-net year (cost/TNY and cost per net distributed. Results The mean cost/TNY was calculated at $4.41, and the mean cost/ITN distributed at $2.63. It also shows evidence of economies of scale, with the cost/TNY falling from $7.69 in year one (72,196 ITN to $3.44 in year five (720,577 ITN. Cost/ITN distributed dropped from $5.04 to $1.92. Conclusion Combining targeting and social marketing has the potential of being both cost-effective and capable of achieving high levels of coverage, and it is possible that increasing returns to scale can be achieved.

  7. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  8. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  9. Costs and benefits of individuals conceived after IVF: a net tax evaluation in The Netherlands.

    Science.gov (United States)

    Moolenaar, L M; Connolly, M; Huisman, B; Postma, M J; Hompes, P G A; van der Veen, F; Mol, B W J

    2014-02-01

    This study evaluated the lifetime future net tax revenues from individuals conceived after IVF relative to those naturally conceived. A model based on the method of generational accounting was developed to evaluate investments in IVF. Calculations were based on average investments paid and received from the government by an individual. All costs were discounted to their net present values and adjusted for survival. The lifetime net present value of IVF-conceived individuals was -€81,374 (the minus sign reflecting negative net present value). The lifetime net present value of IVF-conceived men and women were -€47,091 and -€123,177, respectively. The lifetime net present value of naturally conceived individuals was -€70,392; respective amounts for men and women were -€36,109 and -€112,195. The model was most sensitive to changes in the growth of healthcare costs, economic growth and the discount rate. Therefore, it is concluded that, similarly to naturally conceived individuals in the Netherlands, IVF-conceived individuals have negative discounted net tax revenue at the end of life. The analytic framework described here undervalues the incremental value of an additional birth because it only considers the fiscal consequences of life and does not take into consideration broader macroeconomic benefits. This study evaluated the lifetime future net tax revenues from individuals conceived after IVF relative those naturally conceived. A model based on the method of generational accounting to evaluate investments in IVF was used. Calculations were based on average investments paid and received from the government by an individual. The lifetime net present value of IVF-conceived individuals was -€81,374 (the minus sign reflecting negative net present value). The lifetime net present value of IVF-conceived men and women were -€47,091 and -€123,177, respectively. The lifetime net present value of naturally conceived individuals was -€70,392; respective

  10. The net effect of alternative allocation ratios on recruitment time and trial cost.

    Science.gov (United States)

    Vozdolska, Ralitza; Sano, Mary; Aisen, Paul; Edland, Steven D

    2009-04-01

    Increasing the proportion of subjects allocated to the experimental treatment in controlled clinical trials is often advocated as a method of increasing recruitment rates and improving the performance of trials. The presumption is that the higher likelihood of randomization to the experimental treatment will be perceived by potential study enrollees as an added benefit of participation and will increase recruitment rates and speed the completion of trials. However, studies with alternative allocation ratios require a larger sample size to maintain statistical power, which may result in a net increase in time required to complete recruitment and a net increase in total trial cost. To describe the potential net effect of alternative allocation ratios on recruitment time and trial cost. Models of recruitment time and trial cost were developed and used to compare trials with 1:1 allocation to trials with alternative allocation ratios under a range of per subject costs, per day costs, and enrollment rates. In regard to time required to complete recruitment, alternative allocation ratios are net beneficial if the recruitment rate improves by more than about 4% for trials with a 1.5:1 allocation ratio and 12% for trials with a 2:1 allocation ratio. More substantial improvements in recruitment rate, 13 and 47% respectively for scenarios we considered, are required for alternative allocation to be net beneficial in terms of tangible monetary cost. The cost models were developed expressly for trials comparing proportions or means across treatment groups. Using alternative allocation ratio designs to improve recruitment may or may not be time and cost-effective. Using alternative allocation for this purpose should only be considered for trial contexts where there is both clear evidence that the alternative design does improve recruitment rates and the attained time or cost efficiency justifies the added study subject burden implied by a larger sample size.

  11. Energy cost of seed drying

    Directory of Open Access Journals (Sweden)

    Weerachet Jittanit

    2017-11-01

    Full Text Available In this work, the energy costs of drying corn, rice and wheat seeds between 3 drying options were compared. They consisted of 1 two-stage drying by using fluidised bed dryer (FBD in the 1st stage and in-store dryer (ISD in the 2nd stage, 2 single-stage drying by fixed bed dryer (FXD and 3 two-stage drying by using FXD in the 1st  stage and ISD in the 2nd  stage. The drying conditions selected for comparison were proved to be safe for seed viability by the previous studies. The results showed that the drying options 2 and 3 consumed less energy than option 1. However, the benefits from lower energy cost must be weighed against some advantages of using FBD. Furthermore, it appeared that running the burners of FXD and ISD for warming up the ambient air during humid weather condition could shorten drying time significantly with a little higher energy cost.

  12. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  13. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-01-01

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies

  14. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  15. The cost of renewable energy

    International Nuclear Information System (INIS)

    Luebbert, E.

    1994-01-01

    Analyses reveal that the economic efficiency of plants for solar water heating and of wind power plants and photovoltaic power plants must be evaluated carefully. The growing photovoltaics market must be cherished and expanded. Energy demands cannot be covered by photovoltaics before 2050, and much research remains to be done until then. The efficiency and service life of plants must be improved, and the cost must be reduced considerably. (orig.) [de

  16. Energy-saving behavior and marginal abatement cost for household CO2 emissions

    International Nuclear Information System (INIS)

    Hamamoto, Mitsutsugu

    2013-01-01

    This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO 2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO 2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior. - Highlights: • Consumers' perceived net costs of energy-saving measures in using energy-consuming durables are measured. • Using the estimated net costs, a marginal abatement cost (MAC) curve for the average household's CO 2 emissions is produced. • A high carbon price is needed in order to provide households with an incentive to take actions for energy-savings. • Households' attributes affecting their energy-saving behavior are revealed by a regression analysis

  17. Cost-volume-profit and net present value analysis of health information systems.

    Science.gov (United States)

    McLean, R A

    1998-08-01

    The adoption of any information system should be justified by an economic analysis demonstrating that its projected benefits outweigh its projected costs. Analysis differ, however, on which methods to employ for such a justification. Accountants prefer cost-volume-profit analysis, and economists prefer net present value analysis. The article explains the strengths and weaknesses of each method and shows how they can be used together so that well-informed investments in information systems can be made.

  18. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    Science.gov (United States)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  19. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  20. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  1. Costs and effects of the Tanzanian national voucher scheme for insecticide-treated nets

    Directory of Open Access Journals (Sweden)

    Hanson Kara

    2008-02-01

    Full Text Available Abstract Background The cost-effectiveness of insecticide-treated nets (ITNs in reducing morbidity and mortality is well established. International focus has now moved on to how best to scale up coverage and what financing mechanisms might be used to achieve this. The approach in Tanzania has been to deliver a targeted subsidy for those most vulnerable to the effects of malaria while at the same time providing support to the development of the commercial ITN distribution system. In October 2004, with funds from the Global Fund to Fight AIDS Tuberculosis and Malaria, the government launched the Tanzania National Voucher Scheme (TNVS, a nationwide discounted voucher scheme for ITNs for pregnant women and their infants. This paper analyses the costs and effects of the scheme and compares it with other approaches to distribution. Methods Economic costs were estimated using the ingredients approach whereby all resources required in the delivery of the intervention (including the user contribution are quantified and valued. Effects were measured in terms of number of vouchers used (and therefore nets delivered and treated nets years. Estimates were also made for the cost per malaria case and death averted. Results and Conclusion The total financial cost of the programme represents around 5% of the Ministry of Health's total budget. The average economic cost of delivering an ITN using the voucher scheme, including the user contribution, was $7.57. The cost-effectiveness results are within the benchmarks set by other malaria prevention studies. The Government of Tanzania's approach to scaling up ITNs uses both the public and private sectors in order to achieve and sustain the level of coverage required to meet the Abuja targets. The results presented here suggest that the TNVS is a cost-effective strategy for delivering subsidized ITNs to targeted vulnerable groups.

  2. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    International Nuclear Information System (INIS)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Hirohisa, Aki; Lai, Judy

    2009-01-01

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon/CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case

  3. A business case evaluation of workplace engineering noise control: a net-cost model.

    Science.gov (United States)

    Lahiri, Supriya; Low, Colleen; Barry, Michael

    2011-03-01

    This article provides a convenient tool for companies to determine the costs and benefits of alternative interventions to prevent noise-induced hearing loss (NIHL). Contextualized for Singapore and in collaboration with Singapore's Ministry of Manpower, the Net-Cost model evaluates costs of intervention for equipment and labor, avoided costs of productivity losses and medical care, and productivity gains from the employer's economic perspective. To pilot this approach, four case studies are presented, with varying degrees of economic benefits to the employer, including one in which multifactor productivity is the main driver. Although compliance agencies may not require economic analysis of NIHL, given scarce resources in a market-driven economy, this tool enables stakeholders to understand and compare the costs and benefits of NIHL interventions comprehensively and helps in determining risk management strategies.

  4. Analysis and performance assessment of a multigenerational system powered by Organic Rankine Cycle for a net zero energy house

    International Nuclear Information System (INIS)

    Hassoun, Anwar; Dincer, Ibrahim

    2015-01-01

    This paper develops a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building and assesses such a system for an application to a net zero energy house in Lebanon. Solar energy is the prime source for the integrated system to achieve multigeneration to supply electricity, fresh and hot water, seasonal heating and cooling. The study starts by optimizing the power system with and without grid connection. Then, a comprehensive thermodynamic analysis through energy and exergy, and a parametric study to assess the sensitivity and improvements of the overall system are conducted. Furthermore, exergoeconomic analysis and a follow-up optimization study for optimizing the total system cost to the overall system efficiency using genetic algorithm to obtain the optimal design or a set of optimal designs (Pareto Front), are carried out. The present results show that the optimum solar energy system for a total connected load to the house of 90 kWh/day using a combination of ORC, batteries, convertor has a total net present cost of US $52,505.00 (based on the prices in 2013) with a renewable energy fraction of 1. Moreover, the optimization for the same connected load with ORC, batteries and converter configuration with grid connection results in a total net present cost of $50,868.00 (2013) with a renewable energy fraction of 0.992 with 169 kg/yr of CO 2 emissions. In addition, exergoeconomic analysis of the overall system yields a cost of $117,700.00 (2013), and the multi-objective optimization provides the overall exergetic efficiency by 14% at a total system cost increase of $10,500.00 (2013). - Highlights: • To develop a new Organic Rankine Cycle (ORC) based multigenerational system to meet the demands of a net zero energy building. • To perform a comprehensive thermodynamic analysis through energy and exergy approaches. • To apply an exergoeconomic model for exergy-based cost accounting. • To undertake

  5. COST OF PRODUCTION, GROSS RETURN AND NET PROFIT IN COMMERCIAL EGG PRODUCTION

    Directory of Open Access Journals (Sweden)

    M. Farooq, Zahoor-ul-Haq1, M.A. Mian, F.R. Durrani and M. Syed

    2003-01-01

    Full Text Available The present study was carried out in Chakwal, Pakistan by collecting data from randomly selected 109 flocks to investigate cost of production, gross return and net profit per layer. Majority of the buildings in the study area were rented therefore, rent per layer was added to the total cost of production instead of depreciation on building and equipments. Overall total cost of production, gross return and net profit per layer was Rs. 393.88 ± 5.36, 432.14 ± 8.01 and 38.26 ± 6.66, respectively. Rate of return over the invested capital was 27%. Mean feed cost per layer was Rs. 302.23 ± 5.01, including Rs. 10.27 ± 0.24, 29.19 ± 0.42 and 262.77 ± 5.08 for starter, grower and layer ration, respectively. Feed cost was the major component contributing 76.73% to the total cost of production. Average cost of labor, day-old chick, building rent, vaccination, therapy, miscellaneous item, electricity, bedding material and transportation was Rs. 19.90 ± 0.45, 19.75 ± 0.05, 16.25 ± 0.26, 12.80 ± 0.10, 10.90 ± 2.32, 4.35 ± 0.09, 3.15 ± 0.07, 2.65 ± 0.09 and 1.90 ± 0.08, respectively, contributing 5.05, 5.01, 4.13, 3.25, 2.77, 1.10, 0.80, 0.67 and 0.48 % to the total cost of production. Gross return from the sale of marketable eggs, culled eggs, spent/culled bird, empty bags and manure was Rs. 388.84 ± 7.91, 3.85 ± 0.01, 35.80 ± 0.23, 2.20 ± 0.04 and 1.45 ± 0.01, respectively, contributing 89.98, 0.89, 8.28, 0.51 and 0.34% to the total return. Determining the effect of different parameters on the cost of production and net profit, large flocks, Hisex strain, brood-grow and lay system of rearing, good hygienic conditions of the farm, normal stocking rate and cage system of housing wee found to give maximum gross return as well as net profit.

  6. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  7. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  8. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  9. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  10. 10 CFR 436.20 - Net savings.

    Science.gov (United States)

    2010-01-01

    ... ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a...

  11. The distribution over time of costs and social net benefits for pertussis immunization programs.

    Science.gov (United States)

    Girard, Dorota Zdanowska

    2010-03-01

    The cost of a six-dose pertussis immunization programs for children and adolescents is investigated in relation to estimators of the price of acellular vaccine, the value of a child's life, levels of vaccination rate and discount rates. We compare the cost of the program maintained over time at 90% with three alternative strategies, each involving a decrease in vaccination coverage. Data from England and Wales, 1966-2005, is used to formalize a delay in occurrence of pertussis cases as a result of a fall in coverage. We first apply the criterion of minimization of the total social cost of pertussis to identify the best cost saving immunization strategy. The results are also discussed in form of the discounted present value of the total social net benefits. We find that the discounted present value of the total social net benefit is maximized when a stable vaccination program at 90% is compared to a gradual decrease in vaccination coverage leading to the lowest vaccination rate. The benefits to society of providing sustained immunization strategy, vaccinating the highest proportion of children and adolescents, are systematically proved on the basis of the second optimisation criterion, independently of the level of estimators applied during economic evaluation for the cost variables.

  12. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  13. Heat Mismatch of future Net Zero Energy Buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    The long-term goal for Denmark is to develop an energy system solely based on renewable energy sources (RES) in 2050. To reach this goal energy savings in buildings are essential. Therefore, a focus on energy efficient measures in buildings and net zero energy buildings (NZEBs) have increased...... systems enables them to send or receive energy from these systems. This is beneficial for NZEBs because even though they have an annual net exchange of zero, there is a temporal mismatch in regard to the energy consumption of buildings and the production from the renewable energy units added to them...

  14. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  15. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  16. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  17. Costs comparison of electric energy in Brazil

    International Nuclear Information System (INIS)

    Goncalves, D.; Menegassi, J.

    1981-01-01

    A cost comparison study of various sources of electric energy generation was performed using uniform analysis criteria. The results indicate higher costs for coal, followed by nuclear and hidro. It was verified that presently, large hidro-power plants can only be located far from the load centers, with increasing costs of hidro-power energy in Brazil. These costs become higher than the nuclear plant if the hidro plant is located at distances exceeding 1000 Km. (Author) [pt

  18. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D [Windpower Monthly, Knebel (Denmark)

    1996-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  19. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  20. Energy costs form European wind farms

    International Nuclear Information System (INIS)

    Milborrow, D.

    1995-01-01

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  1. Energy Use Consequences of Ventilating a Net-Zero Energy House

    Science.gov (United States)

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  2. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    Science.gov (United States)

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved

  3. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  4. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  5. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private...... building owners’ approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  6. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codesand international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building...... owners’ approach to it. For thisparticular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took theperspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that isbalanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  7. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    International Nuclear Information System (INIS)

    Barnes, C.D.; Colby, E.R.; Plettner, T.

    2005-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  8. LEAP Phase II, net energy gain from laser fields in vacuum

    International Nuclear Information System (INIS)

    Barnes, Christopher D.; Colby, Eric R.; Plettner, Tomas

    2002-01-01

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction

  9. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  10. Federal Campuses Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office Energy Efficiency and Renewable Energy (EERE) defined a zero energy campus as "an energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy campuses to federal sector campuses. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  11. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  12. Estimating Drug Costs: How do Manufacturer Net Prices Compare with Other Common US Price References?

    Science.gov (United States)

    Mattingly, T Joseph; Levy, Joseph F; Slejko, Julia F; Onwudiwe, Nneka C; Perfetto, Eleanor M

    2018-05-12

    Drug costs are frequently estimated in economic analyses using wholesale acquisition cost (WAC), but what is the best approach to develop these estimates? Pharmaceutical manufacturers recently released transparency reports disclosing net price increases after accounting for rebates and other discounts. Our objective was to determine whether manufacturer net prices (MNPs) could approximate the discounted prices observed by the U.S. Department of Veterans Affairs (VA). We compared the annual, average price discounts voluntarily reported by three pharmaceutical manufacturers with the VA price for specific products from each company. The top 10 drugs by total sales reported from company tax filings for 2016 were included. The discount observed by the VA was determined from each drug's list price, reported as WAC, in 2016. Descriptive statistics were calculated for the VA discount observed and a weighted price index was calculated using the lowest price to the VA (Weighted VA Index), which was compared with the manufacturer index. The discounted price as a percentage of the WAC ranged from 9 to 74%. All three indexes estimated by the average discount to the VA were at or below the manufacturer indexes (42 vs. 50% for Eli Lilly, 56 vs. 65% for Johnson & Johnson, and 59 vs. 59% for Merck). Manufacturer-reported average net prices may provide a close approximation of the average discounted price granted to the VA, suggesting they may be a useful proxy for the true pharmacy benefits manager (PBM) or payer cost. However, individual discounts for products have wide variation, making a standard discount adjustment across multiple products less acceptable.

  13. Nuclear energy and social costs

    International Nuclear Information System (INIS)

    Ellens, S.H.

    1975-01-01

    The author introduces a new concept under the name 'social costs', defining it more or less as that which society is prepared to pay to solve the risks taken when a new technological system is introduced into that society. Social costs are the result of a complex of advantages and disadvantages inherent to a system. Applying this principle, a comparison is given of the health hazards involved in power generation by nuclear power plants and plants working on natural gas, oil or coal

  14. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  15. Estimating the Size and Cost of the STD Prevention Services Safety Net.

    Science.gov (United States)

    Gift, Thomas L; Haderxhanaj, Laura T; Torrone, Elizabeth A; Behl, Ajay S; Romaguera, Raul A; Leichliter, Jami S

    2015-01-01

    The Patient Protection and Affordable Care Act is expected to reduce the number of uninsured people in the United States during the next eight years, but more than 10% are expected to remain uninsured. Uninsured people are one of the main populations using publicly funded safety net sexually transmitted disease (STD) prevention services. Estimating the proportion of the uninsured population expected to need STD services could help identify the potential demand for safety net STD services and improve program planning. In 2013, an estimated 8.27 million people met the criteria for being in need of STD services. In 2023, 4.70 million uninsured people are expected to meet the criteria for being in need of STD services. As an example, the cost in 2014 U.S. dollars of providing chlamydia screening to these people was an estimated $271.1 million in 2013 and is estimated to be $153.8 million in 2023. A substantial need will continue to exist for safety net STD prevention services in coming years.

  16. Examples of Nearly Net Zero Energy Buildings Through One-Step and Stepwise Retrofits

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    2012-01-01

    This paper presents the review of eight single-family house retrofit projects. The main objective is to collect and classify several approaches to nearly net zero energy building retrofitting. The selection has been made on the capacity of reaching a nearly net zero energy level via a one......-step or stepwise retrofit process. The review work is part of a more global Ph.D. project and is used as one of the basement of the future research work. The considered approaches have been sorted in two categories. The first approach has a very high use of energy conservation measures and low use of renewable...... energy production measures. The second approach has a lower use of energy conservation measures (but still high compared to a traditional renovation) and a higher use of renewable energy production measures. A third approach to nearly net zero energy building renovation exists but has not been considered...

  17. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  18. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  19. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  20. Classification of nuclear plant cost to energy

    International Nuclear Information System (INIS)

    Long, G.A.

    1983-01-01

    In order to understand why the fixed-cost/variable-cost method of classifying nuclear plant costs can lead to rate discontinuities, the author must examine the factors which lead to the decision to build a nuclear power plant and the interrelationship between demand (KW) and energy (KWH). The problems and inequities associated with the nuclear plants can be avoided by recognizing that fixed costs are related to both demand and energy and by using a costing methodology which closely relates to the functional purpose of the plant. Generally, this leads to classifying fixed costs of nuclear plants primarily to the energy function in an embedded cost-of-service study and through either implicit or explicit recognition of fuel savings in a marginal cost study. The large rate discontinuities which occurred in the scenario can be resolved. Costs associated with demand or energy charges remain relatively stable compared to actual capacity costs and customers would not experience large changes in their bills due solely to a particular costing convention

  1. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  2. Fiscal 1994 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Research and development was made for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. In this fiscal year, surveys were conducted of the status of research and development in each of the fields, and research was started on element technologies in some of the fields. Under subtask 1, surveys and studies were started for pilot plant phase 2. Under subtask 2, an international symposium was held for the enhancement of technical information exchange. Under subtask 3, a liquid hydrogen system conceptual design was prepared for the estimation of facility cost, etc. Under subtask 4, small experimental cells were fabricated for evaluating electrode bonding methods. Under subtask 5, studies were made about the processes of the helium Brayton cycle and hydrogen Claude cycle for the development of a large-scale hydrogen liquefaction plant. Under subtasks 6-9, furthermore, surveys and studies were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  3. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher; Hand, Maureen; Bolinger, Mark; Rand, Joseph; Heimiller, Donna; Ho, Jonathan

    2017-04-05

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2015. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  4. 2014 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Settle, Edward [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  5. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  6. On the Costs of Nuclear Energy

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    In considering the use of nuclear energy as a primary source of electricity the important thing is not that it should be ''cheap'' in absolute terms but that it should be competitive, that is to say that the cost of nuclear electricity should be produced at a cost comparable with or less than that of electricity generated by conventional sources - hydroelectric plants or thermo-plants based on coal, natural gas or oil. If energy is vital to a country's development one must be prepared to pay what it is worth; the problem is to obtain the energy at the lowest possible cost

  7. The German energy audit program for firms. A cost-effective way to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Fleiter, T.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Str. 48, 76139, Karlsruhe (Germany); Gruber, E. [Institute for Resource Efficiency and Energy Strategies IREES GmbH, Schoenfeldstr. 8, 76131, Karlsruhe (Germany); Worrell, E. [Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584, Utrecht (Netherlands)

    2012-11-15

    In 2008, a program was established in Germany to provide grants for energy audits in small- and medium-sized enterprises. It aims to overcome barriers to energy efficiency, like the lack of information or a lack of capacity, and is intended to increase the adoption of energy efficiency measures. We evaluate the program's impact in terms of energy savings, CO2 mitigation, and cost-effectiveness. We find that firms adopt 1.7-2.9 energy efficiency measures, which they would not have adopted without the program. Taking a firm's perspective, the program shows a net present value ranging from -0.4 to 6 euro/MWh saved, which very likely implies a net benefit. For the government, each ton of CO2 mitigated costs between 1.8 and 4.1 euro. Each euro of public expenditure on audit grants led to 17-33 euro of private investment. The cost-effectiveness of the program for firms and the low share of public expenditure underline its value for the German energy efficiency policy mix and suggest that it should be expanded in Germany. Further, the good experiences with the program in Germany should encourage countries which have not yet established an audit program to do so.

  8. An analysis of energy conservation measure costs

    International Nuclear Information System (INIS)

    Jones, R.; Ellis, R.; Gellineau, D.

    1990-01-01

    This paper reports on a Denver Support Office project to evaluate cost estimation in the Institutional Conservation Program. Unit cost characteristics and cost prediction accuracy were evaluated from 1,721 Energy Conservation Measures (ECMs) and 390 Technical Assistance (TA) reports funded in the last six years. This information is especially useful to state and DOE review engineers in determining the reasonableness of future cost estimates. The estimated cost provisions for TA report grants were generally adequate to cover the actual costs. Individually, there was a tendency for TA reports to cost less than estimated by about 10%. TA report unit costs averaged $.09 to $.11 per square foot, and decreased as the building size increased. Individually, there was a tendency for ECMs to cost more than estimated by about 17%. Overall, the estimated costs of the 1,721 measures were $20.4 minion, while the actual costs were $21.4 million. This 4.6% difference indicates that, overall, ECM cost estimates have provided a reasonable basis for grant awards. There was a high variation in ECM unit costs. The data did not support speculation that there is a tendency to manipulate cost estimates to fit ECMs within the simple payback eligibility criteria of 2 to 10 years

  9. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  10. 2013 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  11. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  12. EcoVillage: A Net Zero Energy Ready Community

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Faakye, O. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  13. Working Towards Net Zero Energy at Fort Irwin, CA

    Science.gov (United States)

    2010-09-01

    sub- metering of their energy use. • MERV 15 – 16 air filtration would be used to reduce the impact of very fine desert dust on the heat transfer coil...use and 1,420,414 KWh/yr electrical use. The electrical use can be offset further with waste to energy cogeneration , or the use of a trigeneration...Biogas cogeneration plant (25 kWth / 50 kWth): $70,000–$90,000 Fermentation plant (300 – 400 t/yr): $150,000 7.3.2 Usable energy 200 MWh electricity

  14. Energy and GHG abatement cost curves

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Rafael [BHP Billiton Base Metals (Australia)

    2010-07-01

    Global warming due to various reasons but especially to emission of green house gases (GHGs) has become a cause for serious concern. This paper discusses the steps taken by BHP Billiton to reduce energy consumption and GHG emissions using cost curves. According to forecasts, global warming is expected to impact Chile badly and the rise in temperature could be between 1 and more than 5 degrees Celsius. Mining in Chile consumes a lot of energy, particularly electricity. Total energy and electricity consumption in 2007 was 13 and 36 % respectively. BHP base metals developed a set of abatement cost curves for energy and GHG in Chile and these are shown in figures. The methodology for the curves consisted of consultant visits to each mine operation. The study also includes mass energy balance and feasibility maps. The paper concludes that it is important to evaluate the potential for reducing emissions and energy and their associated costs.

  15. Transaction costs of raising energy efficiency. Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Centre International de Recherche sur l' Environnement et le Developpement (CIRED), 94 - Nogent sur Marne (France)

    1999-05-01

    In the face of the uncertainties concerning the importance and the actual impacts of anthropogeneous climate change the extent to which measures should be adopted to avoid greenhouse gas emissions (GHG) already today and in the near future is highly controversial. More specifically, part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called 'no-regret' potential would comprise measures that from a pure economic efficiency point of view would be 'worth undertaking whether or not there are climate-related reasons for doing so' (Bruce et al. 1996, p. 271). The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs (Grubb et al. 1993). This paper will examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures especially in the context of energy system modelling will be shown (section 3). (orig.)

  16. Cost evolution of electric energy in Brazil

    International Nuclear Information System (INIS)

    Oliveira, A. de; Contreras, E.C.A.

    1981-01-01

    An analysis of electric energy costs in Brazil is presented. Hydro, coal and nuclear costs are analysed and the final conclusion seems to indicate that nuclear power plants are not economically interesting untill the Brazilian electric capacity attains 110 GW average power. (Author) [pt

  17. Nuclear energy: the real costs; and reply

    International Nuclear Information System (INIS)

    Jeffery, J.W.; Jones, P.M.S.

    1982-01-01

    Comments are made on a review by Jones (Atom. 306 April 1982) of 'Nuclear Energy: the Real Costs' - a special report by the Committee for the Study of the Economics of Nuclear Electricity, and criticisms contained in the review of the analysis of nuclear costs presented in the report are discussed. Dr Jones replies. (U.K.)

  18. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts for the i......The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts......'s involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system costs. It has been successfully applied...

  19. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  20. Costs and results of federal incentives for commercial nuclear energy

    International Nuclear Information System (INIS)

    Bezdek, R.H.; Wendling, R.M.

    1991-01-01

    This paper (1) estimates the total costs of federal expenditures in support of incentives for the development of commercial nuclear energy through 1988, and (2) analyzes the results and benefits to the nation of this federal investment. The federal incentives analyzed include research and development, regulation of commercial nuclear energy, tax incentives, waste management and disposal, enrichment plants, liability insurance, the uranium mining industry, and all other federal support activities. The authors estimate that net federal incentives totaled about $45-50 billion (1988 dollars). They estimate the results of the federal incentives, focusing on six categories, namely, electric energy produced, the total (direct plus indirect) economic benefits of the industry created, R and D program benefits, value of energy imports displaced, environmental effects, and health, safety, and risk effects. The results total $1.9 trillion, with approximately $250-300 billion identified as net benefits. The authors conclude that the high return on the investment justified federal incentives for nuclear energy development over the past four decades and that the federal government and the nation have received a significant return on the incentives investment

  1. NetPICOmag: A low-cost networked magnetometer and its applications

    Science.gov (United States)

    Schofield, I.; Connors, M.; Russell, C. T.

    2012-03-01

    NetPICOmag (NPM) is the culmination of a design effort to build a compact, low-cost, laboratory-grade, networked magnetometer designed for remote autonomous operation, suited for research and education. NPM allows wide placement of magnetometers sensitive enough to detect auroral activity and the daily variation, and is suitable for education projects and a range of geophysical applications. The use of networked microcontrollers and GPS timing is applicable to other small instruments for field or local deployment, and an onboard data logging capability has also been demonstrated. We illustrate the value of the placement of low-cost magnetometers to increase coverage in an area through the study of a Pc 5 pulsation event which took place on September 4, 2010. By combining results with those from auroral zone magnetometers supporting the THEMIS project, we find that the phase velocity of these morning sector pulsations was northward on the ground. The event took place under very quiet solar wind conditions, and credible mapping associates it with the inner magnetosphere. Another aspect beyond increasing areal coverage is increasing density of coverage, which becomes feasible with instruments of very low cost. We examine aspects of the April 5, 2010 space weather event which are possible to deduce from closely spaced magnetometers.

  2. What will abandonment of nuclear energy cost?

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1988-01-01

    The Federal Republic of Germany holds position five on the list of the world's biggest energy consumers. This alone is a fact that puts special emphasis on the public discussion about the peaceful use of nuclear energy, in addition to the current events such as incidents and accidents in nuclear installations. A sober review of the pros and cons of nuclear energy for power generation has to take into account the economic effects and the costs to be borne by the national economy as a result of immediate abandonment of nuclear energy. The article in hand discusses chances, problems, and alternatives to nuclear energy (solar energy and wind power). (orig.) [de

  3. PNC Financial Services - Net-Zero Energy Bank Branch

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  4. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  5. An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part Two: A Net Zero Energy Tourist Village

    Directory of Open Access Journals (Sweden)

    Fahd Diab

    2015-07-01

    Full Text Available The main objective of this study is to discuss the economical and the environmental analysis of a net zero energy (NZE tourist village in Alexandria, Egypt, by maximizing the renewable energy fraction and minimizing the greenhouse gases (GHG emissions. The hybrid photovoltaics (PV/wind/diesel/battery system is found to be the optimum hybrid renewable energy system (HRES for the proposed tourist village under the study. The optimum HRES consists of 1600 kW of PV panels (58.09% solar energy penetration, 1000 kW of wind turbines (41.34% wind energy penetration, 1000 kW of power converters, 200 kW diesel generator (only 0.57% diesel generator penetration in addition to 2000 batteries with the capacity of 589 Ah each. The levelized cost of energy (COE from the optimum HRES is $0.17/kWh and the total net present cost (NPC of this system is $15,383,360. Additionally, the maximum renewable energy fraction is 99.1% and the amount of GHG emitted from the optimum HRES is only 31,289 kg/year, which is negligible in comparison with the other system configurations, therefore the optimum HRES can be considered as a green system. In addition to this, the achieved percentage of the capacity shortage and the unmet load in the optimal HRES is only 0% for both.

  6. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  7. Demonstration of the Energy Component of the Installation Master Plan Using the Net Zero Energy Planner Tool

    Science.gov (United States)

    2015-09-01

    electricity , natural gas, propane, and energy generated 12 from renewable sources (e.g., solar, wind, hydro , etc.). It is also important to...for energy intensity, that meets energy security requirements at a lower cost, and that controls electrical capacity growth requirements. If the... energy intensity, meeting energy security requirements at a lower cost, and controlling electrical capacity growth requirements. Rapid deployment

  8. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Moné, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-27

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  9. 2016 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Stehly, Tyler J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-29

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind power plants in the United States. Data and results detailed here are derived from 2016 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. This report is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the country. This publication represents the sixth installment of this annual report.

  10. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  11. Assessing the Cost of Energy Independence

    NARCIS (Netherlands)

    Jongerden, M.R.; Hüls, Jannik; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid

    Battery management strategies that reserve a certain capacity for power outages are able to increase the energy independence of a smart home. However, such strategies come at a certain cost, since these storage strategies are less flexible and energy from the grid may have to be bought at a high

  12. Net energy balance of molasses based ethanol. The case of Nepal

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Silveira, Semida

    2009-01-01

    This paper evaluates life cycle energy analysis of molasses based ethanol (MOE) in Nepal. Net energy value (NEV), net renewable energy value (NREV) and energy yield ratio are used to evaluate the energy balance of MOE in Nepal. Total energy requirements in sugarcane farming, cane milling and ethanol conversion processes are estimated and energy allocation is made between co-products (molasses and sugar) as per their market prices. The result shows negative NEV (-13.05 MJ/L), positive NREV (18.36 MJ/L) and energy yield ratio (7.47). The higher positive value of NREV and energy yield ratio reveal that a low amount of fossil fuels are required to produce 1 L of MOE. However, negative NEV reveals that the total energy consumption (both fossil and renewables) to produce the ethanol is higher than its final energy content. Nevertheless, the renewable energy contribution amounts to 91.7% of total energy requirements. The effect of the increased price of molasses and reduced energy consumption in the sugarcane milling and ethanol conversion are found to be significant in determining the energy values and yield ratio of MOE. In addition, there are clear measures that can be taken to improve efficiency along the production chain. Finally, energy security, scarcity of hard currency for importing fossil fuels and opportunities for regional development are also strong reasons for considering local renewable energy options in developing countries. (author)

  13. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  14. 2011 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  15. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  16. A quantitative assessment of the determinants of the net energy value of biofuels

    International Nuclear Information System (INIS)

    Bureau, Jean-Christophe; Disdier, Anne-Celia; Gauroy, Christine; Treguer, David

    2010-01-01

    Many studies have investigated the net energy balance of biofuel products (in terms of savings on fossil fuels) and assessed the reductions in greenhouse gas emissions from substituting biofuels for fossil fuel. These studies provide very different results, with net balance ranging from highly positive to negative. Our study analyses a large sample of these studies by retrieving the main parameters used and converting them into units of measurement that are comparable. This information is used to unravel the main determinants of the differences in net energy value across studies. Our approach relies on descriptive statistics and econometric estimates based on a meta-analysis methodology. Our results suggest that the large variability across studies can be explained by the degree to which particular inputs (i.e. nitrogen, farm labor) are controlled for, and the way fossil energy consumption is allocated to the various co-products.

  17. The energy cost of quantum information losses

    Science.gov (United States)

    Romanelli, Alejandro; de Lima Marquezino, Franklin; Portugal, Renato; Donangelo, Raul

    2018-05-01

    We explore the energy cost of the information loss resulting from the passage of an initial density operator to a reduced one. We use the concept of entanglement temperature in order to obtain a lower bound for the energy change associated with this operation. We determine the minimal energy required for the case of the information losses associated with the trace over the space coordinates of a two-dimensional quantum walk.

  18. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  19. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  20. Influence of Components of Net Working Capital on Costs of Companies Manufacturing Machinery and Equipment in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Zdeněk Motlíček

    2015-01-01

    Full Text Available The approach to working capital management significantly affects the performance of companies. Nevertheless, this effect varies depending on the observed industry and company’s size and it may be assumed that it is also dependent on territory differences. The paper presents an empirical research aiming to identify particular links between net working capital and costs of the company. The outcomes indicate a relatively strong positive correlation between the variables, especially in case of inventory. Furthermore he ratio of financial costs to ordinary costs is low, as well as the impact of net working capital components on financial costs. It follows that a focus on collection period would not lead to significant savings. The findings appropriately complement Czech and foreign literature focused more on impact of net working capital or working capital on profitability indicators. Further studies concerning a more detailed analysis of the influence of net working capital on corporate costs are difficult to be found. The present research has been conducted on medium-sized companies located in the Czech Republic and manufacturing machinery and equipment. The obtained results suggest the most suitable area of focus for optimization of working capital in relation to costs for the types of companies defined above.

  1. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... a value of 2, implying a constant maximum daily chewing time. The intercept NEI0 in the regression of NEI on CINE may be interpreted as metabolic net energy intake capacity of the cows fed without physical constraints on intake. Based on experimental data, the maximum chewing time was estimated as 1...

  2. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  3. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    Science.gov (United States)

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  4. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  5. THE COSTS OF ENERGY SUPPLY SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.; Weisser, D.; Howells, M.

    2007-07-01

    In general, increasing a country's energy supply security does not come for free. It costs money to build up a strategic reserve, to increase supply diversity or even to accelerate energy efficiency improvements. Nor are all investments in increasing energy supply security cost effective, even if the shocks they are designed to insure against can be predicted with 100% accuracy. The first half of the paper surveys different definitions and strategies associated with the concept of energy supply security, and compares current initiatives to establish an 'assured supply of nuclear fuel' to the International Energy Agency's (IEA's) system of strategic national oil reserves. The second half of the paper presents results from several case studies of the costs and effectiveness of selected energy supply security policies. One case study examines alternative strategies for Lithuania following the scheduled closure of the Ignalina-2 nuclear reactor in 2009. The second case study examines, for countries with different energy resources and demand structures, the effectiveness of a policy to increase supply diversity by expanding renewable energy supplies. (auth)

  6. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  7. Energy Prices and Internal Costs in Croatian Energy System Restructuring

    International Nuclear Information System (INIS)

    Potocnik, V. , Magdic, M.

    1995-01-01

    After social and political changes in 1990, energy prices in Croatia have been getting closer to the West European averages, faster than in the most European countries in transition. The energy prices for industry are almost at the West European level, while the energy prices of electricity and natural gas for households and those of the gasoline are well behind. If the population purchasing power parity (PPP) is taken into account, these relations change. While the internalization of external energy costs is under way in the developed world, it has not practically started yet in Croatia. The Croatian energy system restructuring shall require gradual adjustment of energy prices, together with multistage internalization of external energy costs. (author). 6 refs., 3 tabs., 2 figs

  8. 24 CFR 1000.420 - May grants made by HUD under section 603 of NAHASDA be used to pay net interest costs incurred...

    Science.gov (United States)

    2010-04-01

    ... section 603 of NAHASDA be used to pay net interest costs incurred when issuing notes or other obligations... Activities § 1000.420 May grants made by HUD under section 603 of NAHASDA be used to pay net interest costs incurred when issuing notes or other obligations? Yes. Other costs that can be paid using grant funds...

  9. Quantifying the costs and benefits of energy

    International Nuclear Information System (INIS)

    Lindell, B.

    1975-06-01

    A number of principles which have been developed for cost-benefit assessments in the radiation field are applied to the more general cost-benefit assessment of energy production. Sources of energy may be assessed in relation to a reference practice. If this is done for one and the same electricity production, the main objective is to assess detriments in comparable terms. Detriment rates may be integrated in space and time and might also be expressed in equivalent monetary units. Although there are several practical limitations to any theoretical treatment of the problem, the basic principles may form a useful background to more realistic although more complicated approaches to the task. (author)

  10. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  11. Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy

    Science.gov (United States)

    ;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk

  12. Nuclear energy: the real cost. A special report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, K.; Marshall, R.; Sweet, C.; Prior, M.; Welsh, I.; Bunyard, P.; Goldsmith, E.; Hildyard, N.; Jeffery, J.W. (Committee for the Study of the Economics of Nuclear Electricity, Camelford (UK))

    1981-12-01

    This report on the discussions within a small group of academics falls under the headings: chairman's foreword; summary and recommendations; the government's nuclear power programme and its implications; the CEGB's planning record; the past performance of Britain's nuclear power stations - a guide for the future (query); nuclear power -early uncertainties; historic costs - 'the fraud inherent in all inflationary finance'; current cost accounting; fuel costs - coal stays steady, nuclear rises; net effective cost and the rationale for nuclear power; reinterpreting net effective costs; other considerations; conclusions and recommendations; references.

  13. Optimizing Data Centre Energy and Environmental Costs

    Science.gov (United States)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  14. Achieving informed decision-making for net zero energy buildings design using building performance simulation tools

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the

  15. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

  16. Net-Zero Energy Home Grows Up: Lessons and Puzzles from 10 Years of Data; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany; Earle, Lieko; Christensen, Craig; Norton, Paul

    2016-05-17

    In 2005, Habitat for Humanity of Metro Denver, with support from NREL and other partners, built one of the first homes in the US to achieve net-zero energy based on monitored data. A family of three moved into the house when it was completed and lives there still. The home has been monitored continuously for the past ten years. Although PV production has remained steady, net energy performance has varied each year. The home was a net producer of energy annually in each of the first three years and in the ninth year, but not in years four through eight. Over the years, the PV system provided between 124% and 64% of the home source energy use. Electricity use in the home increased steadily during the first eight years, even though no significant new appliance was introduced into the house, such as a window air conditioner. Miscellaneous electric loads and space heating, both strongly dependent on occupant behavior, appear to be primarily responsible for the observed increase in energy use. An interesting aspect of this case study is how, even within a single family, natural changes in occupant lifestyles over time (e.g., kids growing up, schedules changing) can substantially impact the overall energy intensity of a home. Data from the last ten years will be explored for lessons learned that can improve the way we design low-load homes without sacrificing comfort or convenience for the occupants, and how we can make realistic predictions of long-term energy performance.

  17. The cost of domestic energy prices to Saudi Arabia

    International Nuclear Information System (INIS)

    Alyousef, Yousef; Stevens, Paul

    2011-01-01

    The issue of subsidies on domestic energy prices has moved up the policy agenda, most recently as a result of the G20 commitment in September 2009 to phase out such subsidies. However, what constitutes a 'subsidy' is complex and controversial. The IEA in its last World Energy Outlook claimed that Saudi Arabia was second in the world in terms of its levels of subsidy on domestic energy prices. However, because Saudi Arabia is a price maker in the international oil market, the methodology used by the IEA is seriously flawed. This paper explains the problems with the methodology for computing subsidies and explains the correct method in the case of Saudi Arabia. It then attempts to measure the levels of subsidy in Saudi Arabia using this methodology. However, while it converts the IEA's 'subsidy' of $23 billion into a net 'profit' of $5.7 billion, it goes on to point out that the current low price regime is causing problems for Saudi Arabia. - Highlights: → How to define energy subsidies in the context of Saudi Arabia as the price maker for international oil prices? → How far do the low domestic energy price in Saudi Arabia represent subsidized prices? → What are the costs and benefits of low/subsidized domestic energy prices in Saudi Arabia? → What policy options are available to offset the very poor record of energy efficiency in Saudi Arabia?

  18. Energy system analysis of a pilot net-zero exergy district

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2014-01-01

    Highlights: • Östra Sala backe is analyzed as a pilot district for the net-zero exergy target. • An analysis tool is developed for proposing an energy system for Östra Sala backe. • A total of 8 different measures are included and integrated in the energy system. • The exergy produced on-site is 49.7 GW h, the annual exergy consumed is 54.3 GW h. • The average value of the level of exergy match in the supply and demand is 0.84. - Abstract: The Rational Exergy Management Model (REMM) provides an analytical model to curb primary energy spending and CO 2 emissions by means of considering the level of match between the grade/quality of energy resources (exergy) on the supply and demand sides. This model is useful for developing forward-looking concepts with an energy systems perspective. One concept is net-zero exergy districts, which produce as much energy at the same grade or quality as consumed on an annual basis. This paper analyzes the district of Östra Sala backe in Uppsala Municipality in Sweden as a pilot, near net-zero exergy district. The district is planned to host 20,000 people at the end of four phases. The measures that are considered include an extension of the combined heat and power based district heating and cooling network, heat pumps driven on renewable energy, district heating driven white goods, smart home automation, efficient lighting, and bioelectricity driven public transport. A REMM Analysis Tool for net-zero exergy districts is developed and used to analyze 5 scenarios based on a Net-Zero Exergy District Option Index. According to the results, a pilot concept for the first phase of the project is proposed. This integrates a mix of 8 measures considering an annual electricity load of 46.0 GW h e and annual thermal load of 67.0 GW h t . The exergy that is produced on-site with renewable energy sources is 49.7 GW h and the annual exergy consumed is 54.3 GW h. The average value of the level of match between the demand and supply of

  19. ParkinsonNet: A Low-Cost Health Care Innovation With A Systems Approach From The Netherlands

    NARCIS (Netherlands)

    Bloem, B.R.; Rompen, A.F.M.; Vries, N.M. de; Klink, A.; Munneke, M.; Jeurissen, P.P.

    2017-01-01

    ParkinsonNet, a low-cost innovation to optimize care for patients with Parkinson disease, was developed in 2004 as a network of physical therapists in several regions in the Netherlands. Since that time, the network has achieved full national reach, with 70 regional networks and around 3,000

  20. ParkinsonNet: A Low-Cost Health Care Innovation With A Systems Approach From The Netherlands.

    Science.gov (United States)

    Bloem, Bas R; Rompen, Lonneke; Vries, Nienke M de; Klink, Ab; Munneke, Marten; Jeurissen, Patrick

    2017-11-01

    ParkinsonNet, a low-cost innovation to optimize care for patients with Parkinson disease, was developed in 2004 as a network of physical therapists in several regions in the Netherlands. Since that time, the network has achieved full national reach, with 70 regional networks and around 3,000 specifically trained professionals from 12 disciplines. Key elements include the empowerment of professionals who are highly trained and specialized in Parkinson disease, the empowerment of patients by education and consultation, and the empowerment of integrated multidisciplinary teams to better address and manage the disease. Studies have found that the ParkinsonNet approach leads to outcomes that are at least as good as, if not better than, outcomes from usual care. One study found a 50 percent reduction in hip fractures and fewer inpatient admissions. Other studies suggest that ParkinsonNet leads to modest but important cost savings (at least US$439 per patient annually). These cost savings outweigh the costs of building and maintaining the network. Because of ParkinsonNet's success, the program has now spread to several other countries and serves as a model of a successful and scalable frugal innovation.

  1. The GroupHouseNet COST Action: exploiting European synergy to reduce feather pecking in laying hens

    DEFF Research Database (Denmark)

    Rodenburg, T.B.; Berk, J; Dimitrov, I.

    2017-01-01

    The COST Action GroupHouseNet focuses on the reduction of damaging behaviour in laying hens and pigs, benefiting from the fact that there are many similarities in causation and solutions for feather pecking and tail biting. The research in the network focuses on three main topics, addressed by th...

  2. Fiscal 1995 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, besides investigation of a pilot plant of phase 2, the WE-NET image as a whole was studied. Under subtask 2, technical information was exchanged at an international symposium and a long-term vision of the international network was discussed. Under subtask 3, for the evaluation of the effect of hydrogen energy introduction on the global level, national level, and city level, simulation models were discussed and improved. Under subtask 4, tests and studies were made concerning electrode bonding methods. Under subtask 5, the Neon Brayton cycle process was surveyed and studied as a hydrogen liquefaction cycle. Under subtasks 6-9, furthermore, surveys and studies were made about techniques relating to low-temperature substances, hydrogen energy, hydrogen combustion turbines, and so forth. (NEDO)

  3. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  4. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  5. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  6. The hidden costs of nuclear energy

    International Nuclear Information System (INIS)

    Sweet, C.

    1978-01-01

    A lynch pin of the pro-nuclear argument is that atomic energy provides cheap electricity. Many are sceptical of such claims, realising that a lot of figures have been omitted from the accounting - the cost of R and D, of dismantling the obsolete stations and of waste management - but having no access to all the figures, such scepticism has remained little more than a hunch. Using conventional economic accounting it is shown that nuclear power must be considerably more costly than has ever been admitted by any of the authorities. The CEGB claims that reprocessing amounts to no more than 8 per cent of the total costs of nuclear generated electricity. According to the present author the costs are 20 per cent - and that 20 per cent is of a much higher figure. (author)

  7. COST-EFFECTIVE APPROACH TO ESTIMATE UNREPORTED DATA: REBUILDING HISTORY OF LIFT-NET FISHING IN KWANDANG WATERS

    Directory of Open Access Journals (Sweden)

    Andhika Prima Prasetyo

    2014-12-01

    Full Text Available This paper aims to develop cost-effective approach regarding the estimation unreported annual catch data of lift-net fishery using Google Earth imagery. Lift net fishery is one of the main fishing activities of coastal community in Kwandang Bay, it has been faced problem of uncertain fisheries status due to limited recorded data. Combination of a Monte Carlo procedure was applied by involving couple of assumptions on parameters such as estimate growth rate of the total number of lift-net per years (10%, day at sea per unit per month (21 days and operated lift-net per month (50% and 80%. The results showed that 101 units of lift-nets were found around Kwandang waters based on Google Earth imagery recorded in October, 7th 2010, and this were used as a benchmark of calculation. This prediction was 28 units higher than official data from North Gorontalo District of Marine Affairs and Fisheries Services (DKP Gorontalo Utara. Compared with capture fisheries statistics issued by Kwandang CFP, the estimated lift-net catches based on two-scenarios represent additional catches of 46 % and 86 %. These results suggested and could be used as a correction index to improve the reliability of Kwandang District officially reported fisheries statistics as a baseline to develop a local common fisheries policy.

  8. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  9. Fiscal 1996 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development was performed for the WE-NET (World Energy Network) project which aims to carry out hydrogen production, transportation, and supply to consumers, by the use of renewable energy. Under subtask 1, the whole WE-NET project was subjected to evaluation, which included coordination between the respective tasks. Under subtask 2, information exchange and research cooperation were carried out with research institutes overseas. Under subtask 3, a conceptual design was prepared of a total system using ammonia as the medium for hydrogen transportation, accident data were collected and screened, and safety measures and evaluation techniques were developed and improved. Under subtask 4, the hot press method and the electroless plating method were selected as better electrode bonding methods. Under subtask 5, hydrogen liquefaction cycle processes, liquid hydrogen tankers, storage facilities, etc., were studied. Under subtasks 6-9, furthermore, investigations were conducted about low-temperature substance technology, hydrogen energy, hydrogen combustion turbine, etc. (NEDO)

  10. Cycling efficiency and energy cost of walking in young and older adults.

    Science.gov (United States)

    Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S

    2018-02-01

    To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P 60 yr, net Cw was significantly correlated with age ( R 2  = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.

  11. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy......, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1...

  12. Renewable energy: Externality costs as market barriers

    International Nuclear Information System (INIS)

    Owen, Anthony D.

    2006-01-01

    This paper addresses the impact of environmentally based market failure constraints on the adoption of renewable energy technologies through the quantification in financial terms of the externalities of electric power generation, for a range of alternative commercial and almost-commercial technologies. It is shown that estimates of damage costs resulting from combustion of fossil fuels, if internalised into the price of the resulting output of electricity, could lead to a number of renewable technologies being financially competitive with generation from coal plants. However, combined cycle natural gas technology would have a significant financial advantage over both coal and renewables under current technology options and market conditions. On the basis of cost projections made under the assumption of mature technologies and the existence of economies of scale, renewable technologies would possess a significant social cost advantage if the externalities of power production were to be 'internalised'. Incorporating environmental externalities explicitly into the electricity tariff today would serve to hasten this transition process. (author)

  13. Specific net present value: an improved method for assessing modularisation costs in water services with growing demand.

    Science.gov (United States)

    Maurer, M

    2009-05-01

    A specific net present value (SNPV) approach is introduced as a criterion in economic engineering decisions. The SNPV expresses average costs, including the growth rate and plant utilisation over the planning horizon, factors that are excluded from a standard net present value approach. The use of SNPV favours alternatives that are cheaper per service unit and are therefore closer to the costs that a user has to cover. It also shows that demand growth has a similar influence on average costs as an economy of scale. In a high growth scenario, solutions providing less idle capacity can have higher present value costs and still be economically favourable. The SNPV approach is applied in two examples to calculate acceptable additional costs for modularisation and comparable costs for on-site treatment (OST) as an extreme form of modularisation. The calculations show that: (i) the SNPV approach is suitable for quantifying the comparable costs of an OST system in a different scenario; (ii) small systems with projected high demand growth rates and high real interest rates are the most probable entry market for OST water treatment systems; (iii) operating expenses are currently the main economic weakness of membrane-based wastewater OST systems; and (iv) when high growth in demand is expected, up to 100% can be additionally invested in modularisation and staging the expansion of a treatment plant.

  14. Russian energy prices, taxes and costs 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Russian energy industry may be the country's most promising exporter, but it is struggling to free itself from the heavy regulation and economic distortions inherited from the Soviet era. This analysis examines Russian price and tax policies as well as production costs in 1993, and their effect on supply and demand in the oil, coal, gas and electricity sectors. The study underscores the broad consensus among both Western and Russian experts that primary energy prices should be lifted to world levels. It offers a framework for addressing the great question about how fast this should be done in a country undergoing a tremendous social and political transformation

  15. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel

    2017-03-15

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  16. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  17. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  18. The energy costs of crisis for Italian economy

    International Nuclear Information System (INIS)

    Tomasini, S.

    2008-01-01

    The dramatic fluctuations recorded by oil price over the last two years have refreshes the debate on the costs for economies, as the Italian one, that are net oil importer. With some econometric models such costs are estimated. Future perspectives are discussed. [it

  19. Combining Costs and Benefits of Animal Activities to Assess Net Yield Outcomes in Apple Orchards.

    Science.gov (United States)

    Saunders, Manu E; Luck, Gary W

    2016-01-01

    Diverse animal communities influence ecosystem function in agroecosystems through positive and negative plant-animal interactions. Yet, past research has largely failed to examine multiple interactions that can have opposing impacts on agricultural production in a given context. We collected data on arthropod communities and yield quality and quantity parameters (fruit set, yield loss and net outcomes) in three major apple-growing regions in south-eastern Australia. We quantified the net yield outcome (accounting for positive and negative interactions) of multiple animal activities (pollination, fruit damage, biological control) across the entire growing season on netted branches, which excluded vertebrate predators of arthropods, and open branches. Net outcome was calculated as the number of undamaged fruit at harvest as a proportion of the number of blossoms (i.e., potential fruit yield). Vertebrate exclusion resulted in lower levels of fruit set and higher levels of arthropod damage to apples, but did not affect net outcomes. Yield quality and quantity parameters (fruit set, yield loss, net outcomes) were not directly associated with arthropod functional groups. Model variance and significant differences between the ratio of pest to beneficial arthropods between regions indicated that complex relationships between environmental factors and multiple animal interactions have a combined effect on yield. Our results show that focusing on a single crop stage, species group or ecosystem function/service can overlook important complexity in ecological processes within the system. Accounting for this complexity and quantifying the net outcome of ecological interactions within the system, is more informative for research and management of biodiversity and ecosystem services in agricultural landscapes.

  20. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carey W. King

    2015-11-01

    Full Text Available I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date. This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs. Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.

  1. Windows: Win/Win? or when are windows net energy sources?

    Energy Technology Data Exchange (ETDEWEB)

    Moller, S.K.; Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1994-12-31

    The energy balance of domestic glazing is quantified by using program CHEETAH to examine the effects of orientation, U-value, shading coefficient, overhangs, heating operation (times and temperature), curtain U-value, climate, and building thermal mass. The results are presented graphically, allowing the benefit of increasingly glazing area to be assessed quickly. It is shown that unfavourable combinations of these factors can lead to glazing that is a net loser of energy, even when it is facing north. (author). 1 tab., 17 figs., 6 refs.

  2. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda

    Directory of Open Access Journals (Sweden)

    Strachan Daniel

    2010-04-01

    Full Text Available Abstract Background In Uganda, long-lasting insecticidal nets (LLIN have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Methods Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY. These effects were calculated for the total number of LLINs delivered and for those retained and used. Results After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja and 99% (ANC Adjumani were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja. Economic cost for ANC distribution were considerably higher (USD 2.27 compared to campaign costs (USD 1.23 in Adjumani. Conclusions Targeted campaigns and routine ANC

  3. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda.

    Science.gov (United States)

    Kolaczinski, Jan H; Kolaczinski, Kate; Kyabayinze, Daniel; Strachan, Daniel; Temperley, Matilda; Wijayanandana, Nayantara; Kilian, Albert

    2010-04-20

    In Uganda, long-lasting insecticidal nets (LLIN) have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC) services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY). These effects were calculated for the total number of LLINs delivered and for those retained and used. After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja) and 99% (ANC Adjumani) were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja). Economic cost for ANC distribution were considerably higher (USD 2.27) compared to campaign costs (USD 1.23) in Adjumani. Targeted campaigns and routine ANC services can both achieve high LLIN retention and use among

  4. Net modelling of energy mix among European Countries: A proposal for ruling new scenarios

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2012-01-01

    European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries. -- Highlights: ► Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. ► Panel data from 1996 to 2008 as part of a network of exchanges was considered from Eurostat official database. ► The European import/export energy flows modelled as a network with Small-World phenomena, interpreting the evolution over the years. ► Interesting behavioural features as outcome derived, as shown for the case example of the Germany.

  5. Reconciling uncertain costs and benefits in bayes nets for invasive species management

    Science.gov (United States)

    Burgman, M.A.; Wintle, B.A.; Thompson, C.A.; Moilanen, A.; Runge, M.C.; Ben-Haim, Y.

    2010-01-01

    Bayes nets are used increasingly to characterize environmental systems and formalize probabilistic reasoning to support decision making. These networks treat probabilities as exact quantities. Sensitivity analysis can be used to evaluate the importance of assumptions and parameter estimates. Here, we outline an application of info-gap theory to Bayes nets that evaluates the sensitivity of decisions to possibly large errors in the underlying probability estimates and utilities. We apply it to an example of management and eradication of Red Imported Fire Ants in Southern Queensland, Australia and show how changes in management decisions can be justified when uncertainty is considered. ?? 2009 Society for Risk Analysis.

  6. Temporal Dynamics of Sensorimotor Networks in Effort-Based Cost-Benefit Valuation: Early Emergence and Late Net Value Integration.

    Science.gov (United States)

    Harris, Alison; Lim, Seung-Lark

    2016-07-06

    Although physical effort can impose significant costs on decision-making, when and how effort cost information is incorporated into choice remains contested, reflecting a larger debate over the role of sensorimotor networks in specifying behavior. Serial information processing models, in which motor circuits simply implement the output of cognitive systems, hypothesize that effort cost factors into decisions relatively late, via integration with stimulus values into net (combined) value signals in dorsomedial frontal cortex (dmFC). In contrast, ethology-inspired approaches suggest a more active role for the dorsal sensorimotor stream, with effort cost signals emerging rapidly after stimulus onset. Here we investigated the time course of effort cost integration using event-related potentials in hungry human subjects while they made decisions about expending physical effort for appetitive foods. Consistent with the ethological perspective, we found that effort cost was represented from as early as 100-250 ms after stimulus onset, localized to dorsal sensorimotor regions including middle cingulate, somatosensory, and motor/premotor cortices. However, examining the same data time-locked to motor output revealed net value signals combining stimulus value and effort cost approximately -400 ms before response, originating from sensorimotor areas including dmFC, precuneus, and posterior parietal cortex. Granger causal connectivity analysis of the motor effector signal in the time leading to response showed interactions between these sensorimotor regions and ventrolateral prefrontal cortex, a structure associated with adjusting behavior-response mappings. These results suggest that rapid activation of sensorimotor regions interacts with cognitive valuation systems, producing a net value signal reflecting both physical effort and reward contingencies. Although physical effort imposes a cost on choice, when and how effort cost influences neural correlates of decision

  7. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    Science.gov (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  8. Responses in live weight change to net energy intake in dairy cows

    DEFF Research Database (Denmark)

    Jensen, Charlotte; Østergaard, Søren; Bertilsson, Jan

    2015-01-01

    The objective of this analysis was to estimate the effect of increased energy intake on daily live weight changes during the first 100 days of lactation of primiparous and multiparous cows. A data set with 78 observations (treatment means) was compiled from 6 production trials from Denmark, Norway...... or multiparous. Feed ration energy values were recalculated by use of NorFor to obtain consistent energy expression in all trials as opposed to the varying feed evaluation systems used in original analysis of trials. Regression analysis with linear and quadratic effects were performed on live weight...... change were made by linear mixed effects model with trial as random factor. For both primiparous and multiparous cows there was an increasing curvilinear response at a decreasing rate to increased net energy intake and the daily live weight change at day 30 was negative and at day 90 it was positive...

  9. Cost of supplying energy from New Zealand resources

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Robert G.

    1977-10-15

    The kinds of costs which face the community when a power project is promoted are broadly discussed. Sometimes, costs such as social, economic, and environmental impacts do not appear often in budgetary form. The growth of public participation is discussed. Components (investigation costs, development costs, distribution costs, social costs, environmental costs, etc.) which contribute to the cost of energy production and supply are examined in some detail.

  10. Costs and benefits of individuals conceived after IVF : a net tax evaluation in The Netherlands

    NARCIS (Netherlands)

    Moolenaar, L. M.; Connolly, M.; Huisman, B.; Postma, M. J.; Hompes, P. G. A.; van der Veen, F.; Mol, B. W. J.

    This study evaluated the lifetime future net tax revenues from individuals conceived after IVF relative to those naturally conceived. A model based on the method of generational accounting was developed to evaluate investments in IVF. Calculations were based on average investments paid and received

  11. Costs and benefits of individuals conceived after IVF: a net tax evaluation in The Netherlands

    NARCIS (Netherlands)

    Moolenaar, L. M.; Connolly, M.; Huisman, B.; Postma, M. J.; Hompes, P. G. A.; van der Veen, F.; Mol, B. W. J.

    2014-01-01

    This study evaluated the lifetime future net tax revenues from individuals conceived after IVF relative to those naturally conceived. A model based on the method of generational accounting was developed to evaluate investments in IVF. Calculations were based on average investments paid and received

  12. Energy and life-cycle cost analysis of a six-story office building

    Science.gov (United States)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  13. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  14. 76 FR 64931 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-10-19

    ...-0046] Building Energy Codes Cost Analysis AGENCY: Office of Energy Efficiency and Renewable Energy... reopening of the time period for submitting comments on the request for information on Building Energy Codes... the request for information on Building Energy Code Cost Analysis and provide docket number EERE-2011...

  15. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  16. Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2007-01-01

    The most important theme in this study is to obtain equations based on economic indicators (gross national product-GNP and gross domestic product-GDP) and population increase to predict the net energy consumption of Turkey using artificial neural networks (ANNs) in order to determine future level of the energy consumption and make correct investments in Turkey. In this study, three different models were used in order to train the ANN. In one of them (Model 1), energy indicators such as installed capacity, generation, energy import and energy export, in second (Model 2), GNP was used and in the third (Model 3), GDP was used as the input layer of the network. The net energy consumption (NEC) is in the output layer for all models. In order to train the neural network, economic and energy data for last 37 years (1968-2005) are used in network for all models. The aim of used different models is to demonstrate the effect of economic indicators on the estimation of NEC. The maximum mean absolute percentage error (MAPE) was found to be 2.322732, 1.110525 and 1.122048 for Models 1, 2 and 3, respectively. R 2 values were obtained as 0.999444, 0.999903 and 0.999903 for training data of Models 1, 2 and 3, respectively. The ANN approach shows greater accuracy for evaluating NEC based on economic indicators. Based on the outputs of the study, the ANN model can be used to estimate the NEC from the country's population and economic indicators with high confidence for planing future projections

  17. Transaction costs of energy efficiency policy instruments

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis [International Inst. for Industrial Environmental Economics, Lund Univ. (Sweden)

    2007-07-01

    This paper identifies the nature and scale of transaction costs (TCs) under different policy instruments aimed to increase energy efficiency. It analyses three cases: a) GHG-driven initiatives, b) tradable 'White Certificate' (TWC) schemes -taking the Energy Efficiency Commitment in Great Britain as a case study-, and c) energy efficiency audits given by grid companies in Denmark. The analysis focuses on TCs borne by project developers or obliged parties under these initiatives. Several sources of TCs are considered, such as search for information, persuasion of customers, negotiation with business partners, and measurement and verification (M and V) activities. Information has been obtained through a literature review, interviews with stakeholders and questionnaires. Some similarities were found as far as the nature of TCs is concerned. Relevant sources of TCs appear to be the search for information (for both potential measures and beneficiaries), negotiation and contract agreements with third parties, follow-up of measures, M and V activities and due accreditation of savings. The scale of TCs differs to a large extent, ranging from 5 % to 36 % of total audit/project costs. Figures must be taken with caution due to a number of specific factors driving their order of magnitude, including levels of uncertainty and the TCs accounting problem. Indications of economies of scale were only found for the case of GHG policy initiatives. In all, estimations are very case-specific and cannot be comparable. It is concluded that a number of endogenous and exogenous determinants affect the nature and scale of TCs for the analysed cases.

  18. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    Science.gov (United States)

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy , solar heating (and cooling), and...financial evaluation of all projects. The costs of natural gas, alternative energy technology, alter- native fuels and the impact of greenhouse gas...distribution is unlimited. 1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17-22, 2010 Phoenix

  19. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  20. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  1. Assessing Patient Activation among High-Need, High-Cost Patients in Urban Safety Net Care Settings.

    Science.gov (United States)

    Napoles, Tessa M; Burke, Nancy J; Shim, Janet K; Davis, Elizabeth; Moskowitz, David; Yen, Irene H

    2017-12-01

    We sought to examine the literature using the Patient Activation Measure (PAM) or the Patient Enablement Instrument (PEI) with high-need, high-cost (HNHC) patients receiving care in urban safety net settings. Urban safety net care management programs serve low-income, racially/ethnically diverse patients living with multiple chronic conditions. Although many care management programs track patient progress with the PAM or the PEI, it is not clear whether the PAM or the PEI is an effective and appropriate tool for HNHC patients receiving care in urban safety net settings in the United States. We searched PubMed, EMBASE, Web of Science, and PsycINFO for articles published between 2004 and 2015 that used the PAM and between 1998 and 2015 that used the PEI. The search was limited to English-language articles conducted in the United States and published in peer-reviewed journals. To assess the utility of the PAM and the PEI in urban safety net care settings, we defined a HNHC patient sample as racially/ethnically diverse, low socioeconomic status (SES), and multimorbid. One hundred fourteen articles used the PAM. All articles using the PEI were conducted outside the U.S. and therefore were excluded. Nine PAM studies (8%) included participants similar to those receiving care in urban safety net settings, three of which were longitudinal. Two of the three longitudinal studies reported positive changes following interventions. Our results indicate that research on patient activation is not commonly conducted on racially and ethnically diverse, low SES, and multimorbid patients; therefore, there are few opportunities to assess the appropriateness of the PAM in such populations. Investigators expressed concerns with the potential unreliability and inappropriate nature of the PAM on multimorbid, older, and low-literacy patients. Thus, the PAM may not be able to accurately assess patient progress among HNHC patients receiving care in urban safety net settings. Assessing

  2. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  3. Costs and benefits of relaunching nuclear energy in Italy

    OpenAIRE

    Ivan Faiella; Luciano Lavecchia

    2012-01-01

    This paper supplies elements for assessing the costs and benefits of electronuclear energy in order to pursue three objectives: security of supply, cost reduction, and environmental sustainability. The study reached the following conclusions: 1) the use of nuclear energy increases the diversification of the energy mix and of energy suppliers, raising energy security levels, but it does not reduce Italy�s dependence on foreign energy; 2) the use of nuclear energy would not imply a reduction ...

  4. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    Science.gov (United States)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  5. Strategies for net cost reductions with the expanded role and expertise of anesthesiologists in the perioperative surgical home.

    Science.gov (United States)

    Dexter, Franklin; Wachtel, Ruth E

    2014-05-01

    The Perioperative Surgical Home is a model adopted by the American Society of Anesthesiologists to increase quality and patient safety and to decrease costs. This Special Article is about the latter topic. Using narrative review, we show that there are two principal opportunities for net cost reduction. One opportunity is to reduce unnecessary interventions that do not have potential to benefit patients (e.g., preoperative laboratory studies in healthy patients undergoing low-risk surgery and use of substantial fresh gas flows with volatile anesthetics). The other opportunity is to optimize staff scheduling, case scheduling, and staff assignment. These two are the same as the principal ways that a positive return on investment can be achieved from use of an anesthesia information management system. Three other opportunities are much less likely to achieve as large (if any) net cost reduction among all patients but may at some hospitals. These are to reduce cancellations, operating room times, and/or hospital postoperative lengths of stay.

  6. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Bergey, D. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  7. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  8. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    International Nuclear Information System (INIS)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2017-01-01

    Highlights: • Using ethanol in subcritical thermodynamic conditions, without catalysts. • The net energy ratio-NER identifies opportunities for industrial application. • The presence of water and free fatty acids improved the TG conversion. • Transesterification reactions of animal fat, soybean and palm oils. - Abstract: Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. These results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.

  9. Energy Consumption and Saving Analysis for Laser Engineered Net Shaping of Metal Powders

    Directory of Open Access Journals (Sweden)

    Zhichao Liu

    2016-09-01

    Full Text Available With the increasing awareness of environmental protection and sustainable manufacturing, the environmental impact of laser additive manufacturing (LAM technology has been attracting more and more attention. Aiming to quantitatively analyze the energy consumption and extract possible ways to save energy during the LAM process, this investigation studies the effects of input variables including laser power, scanning speed, and powder feed rate on the overall energy consumption during the laser deposition processes. Considering microhardness as a standard quality, the energy consumption of unit deposition volume (ECUDV, in J/mm3 is proposed as a measure for the average applied energy of the fabricated metal part. The potential energy-saving benefits of the ultrasonic vibration–assisted laser engineering net shaping (LENS process are also examined in this paper. The experimental results suggest that the theoretical and actual values of the energy consumption present different trends along with the same input variables. It is possible to reduce the energy consumption and, at the same time, maintain a good part quality and the optimal combination of the parameters referring to Inconel 718 as a material is laser power of 300 W, scanning speed of 8.47 mm/s and powder feed rate of 4 rpm. When the geometry shaping and microhardness are selected as evaluating criterions, American Iron and Steel Institute (AISI 4140 powder will cause the largest energy consumption per unit volume. The ultrasonic vibration–assisted LENS process cannot only improve the clad quality, but can also decrease the energy consumption to a considerable extent.

  10. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  11. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  12. Photosynthetic Energy Storage for the Built Environment: Modeling Energy Generation and Storage for Net-Zero Analysis

    Science.gov (United States)

    Lichter-Marck, Eli Morris

    There is a growing need to address the energy demand of the building sector with non-polluting, renewable energy sources. The Net Zero Energy Building (NZEB) mandate seeks to reduce the impact of building sector energy consumption by encouraging on-site energy generation as a way to offset building loads. However, current approaches to designing on-site generation fail to adequately match the fluctuating load schedules of the built environment. As a result, buildings produce highly variable and often-unpredictable energy import/export patterns that create stress on energy grids and increase building dependence on primary energy resources. This research investigates the potential of integrating emerging photo-electrochemical (PEC) technologies into on-site generation systems as a way to enable buildings to take a more active role in collecting, storing and deploying energy resources according to their own demand schedules. These artificially photosynthetic systems have the potential to significantly reduce variability in hour-to-hour and day-to-day building loads by introducing high-capacity solar-hydrogen into the built environment context. The Building Integrated Artificial Photosynthesis (BIAP) simulation framework presented here tests the impact of hydrogen based energy storage on NZEB performance metrics with the goal of developing a methodology that makes on-site energy generation more effective at alleviating excessive energy consumption in the building sector. In addition, as a design performance framework, the BIAP framework helps guide how material selection and scale up of device design might tie photo-electrochemical devices into parallel building systems to take full advantage of the potential outputs of photosynthetic building systems.

  13. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain

    International Nuclear Information System (INIS)

    López-Peña, Álvaro; Pérez-Arriaga, Ignacio; Linares, Pedro

    2012-01-01

    While support instruments have succeeded to largely deploy renewables during the 1996–2008 period, little attention has been paid to energy efficiency measures, resulting in a high energy intensity and large growth of energy demand. Energy-related CO 2 emissions have increased significantly. At the same time, important investments in combined cycle gas turbines have taken place. This paper analyses whether, from a cost minimization viewpoint, renewable support has been the best policy for reducing emissions, when compared to the promotion of energy efficiency in sectors such as transportation or buildings. We use a model of the Spanish energy sector to examine its evolution in the time period considered under different policies. It is a bottom-up, static, partial equilibrium, linear programming model of the complete Spanish energy system. We conclude that demand side management (DSM) clearly dominates renewable energy (RE) support if the reduction of emissions at minimum cost is the only concern. We also quantify the savings that could have been achieved: a total of €5 billion per year, mainly in RE subsidies and in smaller costs of meeting the reduced demand (net of DSM implementation cost). - Highlights: ► Energy efficiency is cheaper than renewables for reducing carbon emissions. ► Energy efficiency measures could have saved more than €5 billion per year in Spain. ► Savings could have been bigger without overcapacity in gas combined cycles.

  14. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  15. Energy Behavior Change and Army Net Zero Energy; Gaps in the Army’s Approach to Changing Energy Behavior

    Science.gov (United States)

    2014-06-13

    efficient technologies, the next step is investigating energy recovery and cogeneration for economic feasibility. Lastly, meet remaining energy loads...by energy efficiency, then energy recovery and cogeneration technologies and last filling the remaining energy requirement with renewable energy ...access to sufficient energy supplies, and reduced adverse impacts on the environment (Army Senior Energy Council 2009, 4). In order to meet these goals

  16. Health impact and cost-effectiveness of a private sector bed net distribution: experimental evidence from Zambia.

    Science.gov (United States)

    Sedlmayr, Richard; Fink, Günther; Miller, John M; Earle, Duncan; Steketee, Richard W

    2013-03-18

    Relatively few programmes have attempted to actively engage the private sector in national malaria control efforts. This paper evaluates the health impact of a large-scale distribution of insecticide-treated nets (ITNs) conducted in partnership with a Zambian agribusiness, and its cost-effectiveness from the perspective of the National Malaria Control Programme (NMCP). The study was designed as a cluster-randomized controlled trial. A list of 81,597 cotton farmers was obtained from Dunavant, a contract farming company in Zambia's cotton sector, in December 2010. 39,963 (49%) were randomly selected to obtain one ITN each. Follow-up interviews were conducted with 438 farmers in the treatment and 458 farmers in the control group in June and July 2011. Treatment and control households were compared with respect to bed net ownership, bed net usage, self-reported fever, and self-reported confirmed malaria. Cost data was collected throughout the programme. The distribution effectively reached target beneficiaries, with approximately 95% of households in the treatment group reporting that they had received an ITN through the programme. The average increase in the fraction of household members sleeping under an ITN the night prior to the interview was 14.6 percentage points (p-value US$ per ITN to Zambia's NMCP. The results illustrate that existing private sector networks can efficiently control malaria in remote rural regions. The intra-household allocation of ITNs distributed through this channel was comparable to that of ITNs received from other sources, and the health impact remained substantial.

  17. Estimation of cost and value of energy from wind turbines

    International Nuclear Information System (INIS)

    Tande, J.O.; Fransden, S.

    1995-01-01

    The International Energy Agency expert group on recommended practices for wind turbine testing and evaluation is finalizing a second edition of the E stimation of cost of energy from wind energy conversion systems . This paper summarizes those recommendations. Further, the value of wind energy in terms of the associated savings is discussed, and a case study is undertaken to illustrate wind energy cost/benefit analyses. The paper concludes that while the recommended practices on cost estimation may be useful in connection with wind energy feasibility studies there is still a need for further international agreement upon guidelines on how to assess wind energy benefits. (author)

  18. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  19. Net Energy Payback and CO2 Emissions from Three Midwestern Wind Farms: An Update

    International Nuclear Information System (INIS)

    White, Scott W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO 2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO 2 analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO 2 emissions, in tonnes of CO 2 per GW e h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively

  20. Net energy payback and CO2 emissions from three midwestern wind farms: An update

    Science.gov (United States)

    White, S.W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.

  1. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Netrakanti, P.K.; Mishra, D.K.; Mohanty, A.K.; Mohanty, B.

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider facility has reported results for the cumulants and their ratios from the net-proton distributions upto the fourth order cumulants at various collision energies. These measurements were carried to look for the signatures of the possible critical point (CP) in the phase diagram for a system undertaking strong interactions. The results show an intriguing dependence of the cumulant ratios C 3 /C 2 and C 4 /C 2 as a function of beam energy. The beam energy dependence appears to be non-monotonic in nature. However the experiment also reports that the energy dependence is observed to be consistent with expectation from an approach based on the independent production of proton and anti-protons in the collisions. In this paper we emphasize the need to have a proper baseline for appropriate interpretation of the cumulant measurements and argue that the comparison to independent production approach needs to be done with extreme caution

  2. Chapter 21: Estimating Net Savings - Common Practices. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Violette, Daniel M. [Navigant, Boulder, CO (United States); Rathbun, Pamela [Tetra Tech, Madison, WI (United States)

    2017-11-02

    This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM and V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to a program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings but does not prescribe methods.

  3. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  4. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  5. Higher moments of net kaon multiplicity distributions at RHIC energies for the search of QCD Critical Point at STAR

    Directory of Open Access Journals (Sweden)

    Sarkar Amal

    2013-11-01

    Full Text Available In this paper we report the measurements of the various moments mean (M, standard deviation (σ skewness (S and kurtosis (κ of the net-Kaon multiplicity distribution at midrapidity from Au+Au collisions at √sNN = 7.7 to 200 GeV in the STAR experiment at RHIC in an effort to locate the critical point in the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as also to the correlation length of the system. A non-monotonic behavior of these variable indicate the presence of the critical point. In this work we also present the moments products Sσ, κσ2 of net-Kaon multiplicity distribution as a function of collision centrality and energies. The energy and the centrality dependence of higher moments of net-Kaons and their products have been compared with it0s Poisson expectation and with simulations from AMPT which does not include the critical point. From the measurement at all seven available beam energies, we find no evidence for a critical point in the QCD phase diagram for √sNN below 200 GeV.

  6. Design of advanced solar homes aimed at net-zero annual energy consumption in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, Andreas

    2010-09-15

    This paper overviews the design of three sustainable low or net-zero energy solar homes in Canada. The major features of the houses are: 1. direct gain passive solar design that emphasizes utilization of distributed thermal mass in the equatorial-facing part of the ground floor; 2. a building-integrated photovoltaic-thermal system (BIPV/T); 3. a two-stage ground-source heat pump used to heat/cool air in the house or an air source heat pump using BIPV/T air as the source to heat a storage tank; 4. a floor heating system integrated in the floor mass of the direct gain zone; 5. a multizone programmable thermostat.

  7. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, L.M.; Markussen, B.; Nielsen, N.I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows......, and disturbance, across and within experiments on independent data from 19 experiments including 812 primi- and multiparous lactating dairy cows of different breeds fed 80 different diets ad libitum. The NEI model predicted NEI with an MSPE of 8% of observed, and across the 19 experiments the error central...

  8. System of failures diagnosis for energy transmission systems, using Petri nets

    International Nuclear Information System (INIS)

    Zapata, German; Grisales, John Faber; Gomez, Juan Camilo; Quintero Henao, Luis Fernando

    2005-01-01

    An expert system of second generation was used integrating the inverse Petri nets (RPN) and the systems based on rules (rule-based system) for the accomplishment of a program in Visual Basic that helps in the obtaining of an opportune and fast analysis of transmission of energy at the time of happening a fault in anymore of its components (line or bus). The program is proven in a portion of system IEEE -118 standard bus test system, in which two extracted cases of literature are developed and are the obtained results. Finally tests realized with the method developed in the laboratory of machines of the national university of Colombia, Medellin campus, simulating a system of transmission with two lines and two buses

  9. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  10. WE-NET. Substask 4. Development of hydrogen production technologies; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work), researches were conducted aiming at the establishment of a hydrogen production technology through electrolysis of polymer electrolyte solution. In fiscal 1998, element technologies were developed for the development of high-efficiency/large-capacity water electrolyzing plants using electrodeless deposition and hot pressing, research and investigation of optimum operating conditions were conducted, and a service plant conceptual design and a polymer electrolytic membrane were developed. In addition, literature was searched for the current state of ion exchange membranes and water electrolysis, both indispensable for the hydrogen production technology discussed in this paper. In the field of lamination of large cells (electrode surface:2500cm{sup 2}), an excellent energy efficiency level exceeding 90% set as the target for a large laminated cell performance test was achieved - 92.6% by electrodeless deposition and 94.4% by hot pressing. As for polymer membranes capable of resisting high temperatures, a membrane with an ionic conductivity of 0.066S/cm at 200 degrees C was newly developed. (NEDO)

  11. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  12. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    Science.gov (United States)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  13. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Belzer, David B.; Richman, Eric E.; Winiarski, David W.

    2002-09-07

    The state of Iowa is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

  14. Draft Submission; Social Cost of Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  15. Outlook for costs by energy source

    International Nuclear Information System (INIS)

    Williams, L.J.; Fortune, J.; Booras, G.

    1994-01-01

    This paper will develop information useful for evaluation future cost trends for generation technology choices within the US electric utility industry. The major forces influencing costs are: environmental constraints and other regulatory requirements, technology choice and future improvements, fuel market and other economic conditions. (TEC). 11 refs., 10 figs

  16. Beyond its cost, the value of maintenance: An analytical framework for capturing its net present value

    International Nuclear Information System (INIS)

    Marais, Karen B.; Saleh, Joseph H.

    2009-01-01

    Maintenance planning and activities have grown dramatically in importance across many industries and are increasingly recognized as drivers of competitiveness if managed appropriately. Correlated with this observation is the proliferation of maintenance optimization techniques in the technical literature. But while all these models deal with the cost of maintenance (as an objective function or a constraint), only a handful addresses the notion of value of maintenance, and seldom in an analytical or quantitative way. In this paper, we propose that maintenance has intrinsic value and argue that existing cost-centric models ignore an important dimension of maintenance, namely its value, and in so doing, they can lead to sub-optimal maintenance strategies. We develop a framework for capturing and quantifying the value of maintenance activities. Our framework is based on four key components. First, we consider systems that deteriorate stochastically and exhibit multi-state failures, and model their state evolution using Markov chains and directed graphs. Second, we consider that the system provides a flow of service per unit time. This flow in turn is 'priced' and a discounted cash flow is calculated resulting in a present value (PV) for each branch of the graph-or 'value trajectory' of the system. Third as the system ages or deteriorates, it migrates towards lower PV branches of the graph, or lower value trajectories. Fourth, we conceptualize maintenance as an operator (in a mathematical sense) that raises the system to a higher PV branch in the graph. We refer to the value of maintenance as the incremental PV between the pre- and post-maintenance branches of the graphs minus the cost of maintenance. The framework presented here offers rich possibilities for future work in benchmarking existing maintenance strategies based on their value implications, and in deriving new maintenance strategies that are 'value-optimized.'

  17. Estimating the net electricity energy generation and demand using the ant colony optimization approach. Case of Turkey

    International Nuclear Information System (INIS)

    Toksari, M. Duran

    2009-01-01

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear A COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic A COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)

  18. Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Exporting Countries.

    OpenAIRE

    Kahia, Montassar; Ben Aissa, Mohamed Safouane

    2014-01-01

    This study investigate the relationship between renewable and non-renewable energy consumption and economic growth in a sample of 13 MENA Net Oil Exporting Countries covering the period 1980–2012 within a multivariate panel framework. The Pedroni (1999, 2004), Kao (1999) as well as the Westerlund (2007) panel cointegration tests indicate that there is a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital ...

  19. Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Importing Countries

    OpenAIRE

    Kahia, Montassar; Ben Aissa, Mohamed Safouane

    2014-01-01

    In this paper, we use panel cointegration techniques to explore the relationship between renewable and non-renewable energy consumption and economic growth in a sample of 11 MENA Net Oil Importing Countries covering the period 1980–2012. The Pedroni (1999, 2004), Kao(1999) as well as Westerlund(2007) panel cointegration tests indicate that there is a long-run equilibrium relationship between real GDP, renewable energy consumption, non-renewable energy consumption, real gross fixed capital for...

  20. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  1. 1999 annual summary report on results. International clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the international clean network (WE-NET) which aims at producing hydrogen by using renewable energy, converting it in a form suitable for transportation and supplying the hydrogen to places of quantity consumption of energy. The FY 1999 results were summed up. In the system evaluation, study was made on sodium carbonate electrolysis by-producing hydrogen, the supply amount by coke oven by-producing hydrogen and the economical efficiency, etc. As to the safety, study was made on the design of hydrogen supply stand model. Concerning the power generation technology, study was conducted on element technologies of injection valve, exhaust gas condenser, gas/liquid separator, etc. Relating to the hydrogen fueled vehicle system, the shock destructive testing, etc. were conducted on the hydrogen tank and hydrogen storage alloys. Besides, a lot of R and D were carried out of pure water use solid polymer fuel cells, hydrogen stand, hydrogen production technology, hydrogen transportation/storage technology, low temperature materials, transportation/storage using hydrogen storage alloys, innovative advanced technology, etc. (NEDO)

  2. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  3. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation

    International Nuclear Information System (INIS)

    Jones, Christopher; Gilbert, Paul; Raugei, Marco; Mander, Sarah; Leccisi, Enrica

    2017-01-01

    Increasing distributed renewable electricity generation is one of a number of technology pathways available to policy makers to meet environmental and other sustainability goals. Determining the efficacy of such a pathway for a national electricity system implies evaluating whole system change in future scenarios. Life cycle assessment (LCA) and net energy analysis (NEA) are two methodologies suitable for prospective and consequential analysis of energy performance and associated impacts. This paper discusses the benefits and limitations of prospective and consequential LCA and NEA analysis of distributed generation. It concludes that a combined LCA and NEA approach is a valuable tool for decision makers if a number of recommendations are addressed. Static and dynamic temporal allocation are both needed for a fair comparison of distributed renewables with thermal power stations to account for their different impact profiles over time. The trade-offs between comprehensiveness and uncertainty in consequential analysis should be acknowledged, with system boundary expansion and system simulation models limited to those clearly justified by the research goal. The results of this approach are explorative, rather than for accounting purposes; this interpretive remit, and the assumptions in scenarios and system models on which results are contingent, must be clear to end users. - Highlights: • A common LCA and NEA framework for prospective, consequential analysis is discussed. • Approach to combined LCA and NEA of distributed generation scenarios is proposed. • Static and dynamic temporal allocation needed to assess distributed generation uptake.

  4. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  5. 76 FR 57982 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page...-23236 Filed 9-16-11; 8:45 am] BILLING CODE 1505-01-P ...

  6. The effects of rising energy costs and transportation mode mix on forest fuel procurement costs

    International Nuclear Information System (INIS)

    Rauch, Peter; Gronalt, Manfred

    2011-01-01

    Since fossil fuels have been broadly recognized as a non-renewable energy source that threatens the climate, sustainable and CO 2 neutral energy sources - such as forest fuels - are being promoted in Europe, instead. With the expeditiously growing forest fuel demand, the strategic problem of how to design a cost-efficient distribution network has evolved. This paper presents an MILP model, comprising decisions on modes of transportation and spatial arrangement of terminals, in order to design a forest fuel supply network for Austria. The MILP model is used to evaluate the impacts of rising energy costs on procurement sources, transport mix and procurement costs on a national scale, based on the example of Austria. A 20% increase of energy costs results in a procurement cost increase of 7%, and another 20% increase of energy costs would have similar results. While domestic waterways become more important as a result of the first energy cost increase, rail only does so after the second. One way to decrease procurement costs would be to reduce the share of empty trips with truck and trailer. Reducing this share by 10% decreases the average procurement costs by up to 20%. Routing influences the modal split considerably, and the truck transport share increases from 86% to 97%, accordingly. Increasing forest fuel imports by large CHPs lowers domestic competition and also enables smaller plants to cut their procurement costs. Rising forest fuel imports via ship will not significantly decrease domestic market shares, but they will reduce procurement costs considerably. (author)

  7. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    Nitsch, J.; Langniss, O.

    1997-01-01

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products [de

  8. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    International Nuclear Information System (INIS)

    Custer, W.R. Jr.; Messick, C.D.

    1996-01-01

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies

  9. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  10. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    CEDREN (Centre for Environmental Design of Renewable Energy) is founded by The Research Council of Norway and energy companies and is one of eight centres that were part of the scheme Centre for Environment-friendly Energy Research (FME) when the scheme was launched in 2009. The main objective of CEDREN is to develop and communicate design solutions for transforming renewable energy sources to the desired energy products, and at the same time address the environmental and societal challenges at local, regional, national and global levels. CEDREN's board initiated in 2011 a pilot project on the topics 'Energy Pay-back Ratio (EPR)', 'Ecosystem services' and 'multi-criteria analysis (MCA)' in order to investigate the possible use of these concepts/indices in the management of regulated river basins and as tools to benchmark strategies for the development of energy projects/resources. The energy indicator part (documented in this report) has aimed at reviewing the applicability of different energy efficiency indicators, as such, in the strategic management and development of energy resources, and to compare and benchmark technologies for production of electricity. The main findings from this pilot study is also reported in a policy memo (in Norwegian), that is available at www.cedren.no. The work carried out in this project will be continued in the succeeding research project EcoManage, which was granted by the Research Council of Norway's RENERGI programme in December 2011. Energy indicators: Several energy indicators for extraction and delivery of an energy product (e.g. transport fuel, heat, electricity etc.) exist today. The main objective of such indicators is to give information about the energy efficiency of the needed extraction and transforming processes throughout the value chain related to the delivered energy product. In this project the indicators Energy Payback Ratio (EPR), Net Energy Ration (NER) and Cumulative

  11. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  13. Net-Energy Analysis of Integrated Food and Bioenergy Systems Exemplified by a Model of a Self-Sufficient System of Dairy Farms

    International Nuclear Information System (INIS)

    Markussen, Mads Ville; Pugesgaard, Siri; Oleskowicz-Popiel, Piotr; Schmidt, Jens Ejbye; Østergård, Hanne

    2015-01-01

    Agriculture is expected to contribute in substituting of fossil fuels in the future. This constitutes a paradox as agriculture depends heavily on fossil energy for providing fuel, fodder, nutrients, and machinery. The aim of this paper is to investigate whether organic agriculture is capable of providing both food and surplus energy to the society as evaluated from a model study. We evaluated bioenergy technologies in a Danish dairy-farming context in four different scenarios: (1) vegetable oil based on oilseed rape, (2) biogas based on cattle manure and grass-clover lays, (3) bioethanol from rye grain and whey, and (4) a combination of (1) and (2). When assessing the energetic net-contribution to society from bioenergy systems, two types of problems arise: how to aggregate non-equivalent types of energy services and how to account for non-equivalent types of inputs and coproducts from the farming? To avoid the first type, the net output of liquid fuels, electricity, useful heat, and food were calculated separately. Furthermore, to avoid the second type, all scenarios were designed to provide self-sufficiency with fodder and fertilizer and to utilize coproducts within the system. This approach resulted in a transparent assessment of the net-contribution to society, which is easy to interpret. We conclude that if 20% of land is used for energy crops, farm-gate energy self-sufficiency can be achieved at the cost of 17% reduction in amount of food produced. These results demonstrate the strong limitations for (organic) agriculture in providing both food and surplus energy.

  14. Net-Energy Analysis of Integrated Food and Bioenergy Systems Exemplified by a Model of a Self-Sufficient System of Dairy Farms

    Energy Technology Data Exchange (ETDEWEB)

    Markussen, Mads Ville [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby (Denmark); Pugesgaard, Siri [Department of Agroecology, Aarhus University, Tjele (Denmark); Oleskowicz-Popiel, Piotr; Schmidt, Jens Ejbye; Østergård, Hanne, E-mail: haqs@kt.dtu.dk [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby (Denmark)

    2015-11-25

    Agriculture is expected to contribute in substituting of fossil fuels in the future. This constitutes a paradox as agriculture depends heavily on fossil energy for providing fuel, fodder, nutrients, and machinery. The aim of this paper is to investigate whether organic agriculture is capable of providing both food and surplus energy to the society as evaluated from a model study. We evaluated bioenergy technologies in a Danish dairy-farming context in four different scenarios: (1) vegetable oil based on oilseed rape, (2) biogas based on cattle manure and grass-clover lays, (3) bioethanol from rye grain and whey, and (4) a combination of (1) and (2). When assessing the energetic net-contribution to society from bioenergy systems, two types of problems arise: how to aggregate non-equivalent types of energy services and how to account for non-equivalent types of inputs and coproducts from the farming? To avoid the first type, the net output of liquid fuels, electricity, useful heat, and food were calculated separately. Furthermore, to avoid the second type, all scenarios were designed to provide self-sufficiency with fodder and fertilizer and to utilize coproducts within the system. This approach resulted in a transparent assessment of the net-contribution to society, which is easy to interpret. We conclude that if 20% of land is used for energy crops, farm-gate energy self-sufficiency can be achieved at the cost of 17% reduction in amount of food produced. These results demonstrate the strong limitations for (organic) agriculture in providing both food and surplus energy.

  15. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  16. Negawatt / Negatep, the cost of energy transition

    International Nuclear Information System (INIS)

    Acket, Claude; Bacher, Pierre

    2013-01-01

    Within the debate on energy transition, the Negawatt scenario predicts a strong decrease of final consumption and the end of the nuclear, whereas the Negatep scenario predicts a moderate decrease of consumption, more nuclear energy to face the challenges of low-carbon energy. Independently of the technical feasibility and social acceptance of these both opposite scenarios, this study proposes a comparative economic assessment for each expense and saving of these scenarios in different sectors (housing insulation, infrastructure works for transports, renewable heat, non-intermittent and intermittent energy, nuclear energy, biomass-based fuels, and fossil fuels). This comparison is based on two reference evolutions: a status quo (the energy situation remains the same) and 'business as usual' (growth continuity). Negawatt appears to be less expensive, but would imply a socially dangerous deterioration

  17. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Achieving a Net Zero Energy Retrofit - In a humid, temperate climate: Lessons from the University of Hawai'i at Manoa

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-06-01

    The University of Hawaii at Manoa (UHM) partnered with the US Department of Energy (DOE) to develop and implement solutions to retrofit exiting buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Kuykendall Hall, located on the UHM campus in Honolulu, was the focus of a CBP analysis and design collaboration among the University of Hawai’i, their consultants, and Lawrence Berkeley National Laboratory (LBNL). Kuykendall Hall consists of two 1960s-era wings – a four-story wing containing classrooms, and a seven-story tower containing offices – with a total floor area of approximately 76,000 square feet (ft2). The retrofit design, which uses local prevailing winds to aid ventilation and cooling and incorporates envelope and lighting elements that reduce the need for cooling, was initially on track to use about 50% less energy than the current building, exceeding the CBP’s 30% savings goal. With the addition of building-mounted solar electric panels, the retrofitted building is projected to achieve net-zero annual energy use. Achieving net-zero energy addressed an emerging challenge to the university – how to lower energy usage and reduce dependence on imported fossil fuel in the face of already-high energy prices that are forecast to double by 2040. Not only will the retrofit dramatically reduce Kuykendall Hall’s annual energy costs, but the project lays the groundwork for new campus policies and processes and low-energy design approaches and is building a campus knowledge base on low-energy practices. This project is a model of integrated design and building delivery that will be replicated in future projects on the campus.

  19. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  20. Economics of solar energy: Short term costing

    Science.gov (United States)

    Klee, H.

    The solar economics based on life cycle costs are refuted as both imaginary and irrelevant. It is argued that predicting rates of inflation and fuel escalation, expected life, maintenance costs, and legislation over the next ten to twenty years is pure guesswork. Furthermore, given the high mobility level of the U.S. population, the average consumer is skeptical of long run arguments which will pay returns only to the next owners. In the short term cost analysis, the house is sold prior to the end of the expected life of the system. The cash flow of the seller and buyer are considered. All the relevant factors, including the federal tax credit and the added value of the house because of the solar system are included.

  1. Lowering operation costs by energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, W; Hausmann, H; Hausmann, K H

    1976-01-01

    Heat recovery and the heat sources available as well as possible applications of the heat recovered are discussed. Groundwater, shower water and waste air are considered as energy sources. Energy recovery by means of finned-tube systems and the heat pump, and economic aspects of the techniques are described.

  2. Low cost energy in Canada: The view from downstream

    International Nuclear Information System (INIS)

    Irving, K.

    1993-01-01

    The key cost determinants of energy in Canada are analyzed and recommendations are made to ensure the competitiveness of Canadian energy costs and energy-consuming industries in the North American and world markets. Oil supplies 45% of world energy and has a key role in determining prices of all other energy forms since it serves as an incremental source of energy: its consumption changes according to economic growth, changes in weather patterns, and other factors. North America currently accounts for about a third of world oil consumption. North American oil demand is expected to remain flat over the next few decades. As Canada only produces ca 3% of world oil supply, it cannot determine oil prices. However, with an efficient downstream industry, Canada can influence the end-user price of energy. The cost structure of refined products in Canada is analyzed. The cost of raw materials is the single biggest determinant of the final product cost, followed by taxes, operating costs, and profit margin. For gasoline in Ontario, taxes account for half the retail cost, crude oil prices ca 30%, and refining costs ca 4%. Refining costs comprise about two thirds labor costs and one third energy costs. Refiner margins have not exceeded 2 cents/l since 1981, creating reluctance to invest in the refining sector. By 1994, some 200,000 bbl/d of refining capacity is expected to be shut down in Canada. Compared to refineries in the USA, Canadian refineries are smaller and have a much lower capacity to upgrade residual fuel oil to light products. Future challenges to the industry include a projected need for $5 billion in investment, largely to fund new environmental initiatives. Such an investment cannot be met through current industry profits. 12 figs., 3 tabs

  3. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  4. A Governance Perspective on Net Zero Energy Building Niche Development in India: The Case of New Delhi

    NARCIS (Netherlands)

    Jain, Mansi; Hoppe, T.; Bressers, Hans

    2017-01-01

    The net zero-energy building (NZEB) concept has recently gained prominence worldwide. Large scale adoption and implementation of NZEBs would potentially contribute greatly to greening of the building sector. However, it is still at a nascent stage of niche formation. This paper aims to assess the

  5. A governance perspective on net zero energy building niche development in India : The case of New Delhi

    NARCIS (Netherlands)

    Jain, Mansi; Hoppe, Thomas; Bressers, Hans

    2017-01-01

    The net zero-energy building (NZEB) concept has recently gained prominence worldwide. Large scale adoption and implementation of NZEBs would potentially contribute greatly to greening of the building sector. However, it is still at a nascent stage of niche formation. This paper aims to assess the

  6. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  7. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  8. The analysis of security cost for different energy sources

    International Nuclear Information System (INIS)

    Jun, Eunju; Kim, Wonjoon; Chang, Soon Heung

    2009-01-01

    Global concerns for the security of energy have steadily been on the increase and are expected to become a major issue over the next few decades. Urgent policy response is thus essential. However, little attempt has been made at defining both energy security and energy metrics. In this study, we provide such metrics and apply them to four major energy sources in the Korean electricity market: coal, oil, liquefied natural gas, and nuclear. In our approach, we measure the cost of energy security in terms of supply disruption and price volatility, and we consider the degree of concentration in energy supply and demand using the Hirschman-Herfindahl index (HHI). Due to its balanced fuel supply and demand, relatively stable price, and high abundance, we find nuclear energy to be the most competitive energy source in terms of energy security in the Korean electricity market. LNG, on the other hand, was found to have the highest cost in term of energy security due to its high concentration in supply and demand, and its high price volatility. In addition, in terms of cost, we find that economic security dominates supply security, and as such, it is the main factor in the total security cost. Within the confines of concern for global energy security, our study both broadens our understanding of energy security and enables a strategic approach in the portfolio management of energy consumption.

  9. Applying the net-benefit framework for analyzing and presenting cost-effectiveness analysis of a maternal and newborn health intervention.

    Directory of Open Access Journals (Sweden)

    Sennen Hounton

    Full Text Available BACKGROUND: Coverage of maternal and newborn health (MNH interventions is often influenced by important determinants and decision makers are often concerned with equity issues. The net-benefit framework developed and applied alongside clinical trials and in pharmacoeconomics offers the potential for exploring how cost-effectiveness of MNH interventions varies at the margin by important covariates as well as for handling uncertainties around the ICER estimate. AIM: We applied the net-benefit framework to analyze cost-effectiveness of the Skilled Care Initiative and assessed relative advantages over a standard computation of incremental cost effectiveness ratios. METHODS: Household and facility surveys were carried out from January to July 2006 in Ouargaye district (where the Skilled Care Initiative was implemented and Diapaga (comparison site district in Burkina Faso. Pregnancy-related and perinatal mortality were retrospectively assessed and data were collected on place of delivery, education, asset ownership, place, and distance to health facilities, costs borne by households for institutional delivery, and cost of standard provision of maternal care. Descriptive and regression analyses were performed. RESULTS: There was a 30% increase in institutional births in the intervention district compared to 10% increase in comparison district, and a significant reduction of perinatal mortality rates (OR 0.75, CI 0.70-0.80 in intervention district. The incremental cost for achieving one additional institutional delivery in Ouargaye district compared to Diapaga district was estimated to be 170 international dollars and varied significantly by covariates. However, the joint probability distribution (net-benefit framework of the effectiveness measure (institutional delivery, the cost data and covariates indicated distance to health facilities as the single most important determinant of the cost-effectiveness analysis with implications for policy making

  10. Clean energy deployment: addressing financing cost

    International Nuclear Information System (INIS)

    Ameli, Nadia; Kammen, Daniel M

    2012-01-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low–middle income range facing financial constraints. (letter)

  11. Costly waiting for the future gas energy

    International Nuclear Information System (INIS)

    1999-01-01

    The article discusses solutions while waiting for the pollution free gas power plant and points out that Norway will have to import Danish power from coal and Swedish nuclear energy for a long time yet. Various future scenarios are mentioned

  12. Clean energy deployment: addressing financing cost

    Science.gov (United States)

    Ameli, Nadia; Kammen, Daniel M.

    2012-09-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low-middle income range facing financial constraints.

  13. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  14. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  15. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  16. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  17. Costs and advantages of nuclear energy

    International Nuclear Information System (INIS)

    Almoguera, R.

    2006-01-01

    Recent studies on nuclear energy competitiveness show that considering only the economics this option is the most economic one to generate the base load electricity in most of the countries which do not have plenty of alternative fuels, being this advantage both for the actual prices formation and for their stability on the long term. Should we add the strategic and environmental benefits linked to: Kioto emissions limits, short and long term supply security, national wealth increase due to quality and price of the supply and enhancement of related enterprises, the goodness of nuclear energy to supply a significant share of the electricity demand in most of the countries is evident. For the investors to make decisions for this option, some conditions have to be assured: regulatory stability, favourable national energy policy and expectation for the future, predictable and proven licensing process and expectation for moderate interest rates in the long term. (Author)

  18. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  19. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  20. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  1. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  2. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A [Harvard Inst. for International Development, Cambridge, MA (United States)

    1996-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  3. The avoided external costs of using wind energy

    International Nuclear Information System (INIS)

    Markandya, A.

    1995-01-01

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  4. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A. [Harvard Inst. for International Development, Cambridge, MA (United States)

    1995-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  5. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  6. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  7. Personnel decisions: cost benefits and opportunities for the energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Janz, T J

    1982-09-01

    This article reviews current practice in personnel decision making in the energy industry, outlining the conditions under which it developed. Changes in today's environment are noted and the utility equation is introduced as an aid to understanding the dollar impacts of these changes. Recent developments that make it possible to tally up the dollar benefits of alternative recruitment and selection programs are explained. Results of utility analyses for the job of roughneck on an oil rig, clerk-typist and assistant buyer are presented. The discussion points to human resource investments likely to have high net benefits and favorable return on investment for the energy industry.

  8. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  9. Marine energies. Industries are hunting costs

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2015-01-01

    While a map locates various offshore hydro-kinetic energy projects at the vicinity of Scottish and French coasts, offshore wind farms (North Sea and Mediterranean sea) and also temperature differential marine plant in Martinique, this article discusses the technical and therefore economic challenges faced by the development of marine energies. They are related to the marine environment (wind, swell, currents). These strength requirements concern hydro-kinetic machines as well as floating wind turbines which must be balanced to resist to wind and swell (the Nenuphar project is evoked). Issues of performance and efficiency are present in the Nemo project in Martinique which exploits a rather small temperature differential. Other technological challenges concern the transport of this offshore production of electricity to the ground while reducing losses. For all these aspects, the article mentions the main French actors, notably DCNS, Alstom, and the start-up MPrime Innovation

  10. The geothermal energy for an ecological and low cost heating

    International Nuclear Information System (INIS)

    Mariet, C.

    2006-01-01

    The geothermal energy concerned by this paper is those of the first layers off the soil, still about 100 m. The main principles of the operating, the cost and some realizations are presented. (A.L.B.)

  11. Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan Thi; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    Since 2001, in order to enhance ethanol's cost competitiveness with gasoline, the Thai government has approved the exemption of excise tax imposed on ethanol, controlling the retail price of gasohol (a mixture of ethanol and gasoline at a ratio of 1:9) to be less than that of octane 95 gasoline, within a range not exceeding 1.5 baht a litre. The policy to promote ethanol for transport is being supported by its positive effects on energy security and climate change mitigation. An analysis of energy, greenhouse gas (GHG) balances and GHG abatement cost was done to evaluate fuel ethanol produced from cassava in Thailand. Positive energy balance of 22.4 MJ/L and net avoided GHG emission of 1.6 kg CO 2 eq./L found for cassava-based ethanol (CE) proved that it would be a good substitute for gasoline, effective in fossil energy saving and GHG reduction. With a GHG abatement cost of US$99 per tonne of CO 2 , CE is rather less cost effective than the many other climate strategies relevant to Thailand in the short term. Opportunities for improvements are discussed to make CE a reasonable option for national climate policy

  12. Quality studies of the energy in the electric net of the gathering warehouse of reusable parts and contaminate oils of the nuclear power plant Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J.

    2012-10-01

    In the industry exist the high costs by faults of electronic and electric equipment s, due to during the design process, installation, tests and operation of these equipment s, is not had appropriate detection equipment to carry out quality studies of the energy. These studies give an important support to know that occurs in an electric net, the cause of the anomalous behavior of the equipment s and this way to avoid the expensive faults carrying out necessary engineering adaptations in an electric net. The elements of the electricity that are determined are the tension, current and frequency that are inside acceptable operational parameters that facilitate the operation and constant operation of the equipment s, free of interruptions and failures. The application of the quality studies of the energy is growing little by little in Mexico for the problems solution in the equipment s. This field is also developing new techniques and technologies integrated in the equipment s for its monitoring detection and protection. The present work offers the results of the first Quality Study of the Energy in the nuclear power plant of Laguna Verde to solve the problem in the gathering warehouse of reusable parts and contaminate oils, in which the failure of the two radiation monitors of the gassy effluent of ventilation HVAC of the warehouse took place. (Author)

  13. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2008-12-01

    To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.

  14. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  15. Marginal costs and co-benefits of energy efficiency investments

    International Nuclear Information System (INIS)

    Jakob, Martin

    2006-01-01

    Key elements of present investment decision-making regarding energy efficiency of new buildings and the refurbishment of existing buildings are the marginal costs of energy efficiency measures and incomplete knowledge of investors and architects about pricing, co-benefits and new technologies. This paper reports on a recently completed empirical study for the Swiss residential sector. It empirically quantifies the marginal costs of energy efficiency investments (i.e. additional insulation, improved window systems, ventilation and heating systems and architectural concepts). For the private sector, first results on the economic valuation of co-benefits such as improved comfort of living, improved indoor air quality, better protection against external noise, etc. may amount to the same order of magnitude as the energy-related benefits are given. The cost-benefit analysis includes newly developed technologies that show large variations in prices due to pioneer market pricing, add-on of learning costs and risk components of the installers. Based on new empirical data on the present cost-situation and past techno-economic progress, the potential of future cost reduction was estimated applying the experience curve concept. The paper shows, for the first time, co-benefits and cost dynamics of energy efficiency investments, of which decision makers in the real estate sector, politics and administrations are scarcely aware

  16. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  17. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  18. Energy Costs of Energy Savings in Buildings: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Rousse

    2012-08-01

    Full Text Available It is often claimed that the cheapest energy is the one you do not need to produce. Nevertheless, this claim could somehow be unsubstantiated. In this article, the authors try to shed some light on this issue by using the concept of energy return on investment (EROI as a yardstick. This choice brings semantic issues because in this paper the EROI is used in a different context than that of energy production. Indeed, while watts and negawatts share the same physical unit, they are not the same object, which brings some ambiguities in the interpretation of EROI. These are cleared by a refined definition of EROI and an adapted nomenclature. This review studies the research in the energy efficiency of building operation, which is one of the most investigated topics in energy efficiency. This study focuses on the impact of insulation and high efficiency windows as means to exemplify the concepts that are introduced. These results were normalized for climate, life time of the building, and construction material. In many cases, energy efficiency measures imply a very high EROI. Nevertheless, in some circumstances, this is not the case and it might be more profitable to produce the required energy than to try to save it.

  19. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  20. Energy efficient selective reforming of hydrocarbons. ERA-NET Bioenergy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, J.

    2010-07-15

    The research project 'Energy efficient selective reforming of hydrocarbons', funded by the Swedish and Energinet.dk Agency has now reached its end. The report is an overview of the work. Details of the work within the different areas can be found in the reports from each part. In this project, an innovative method for tar removal and reformation of hydrocarbons was investigated: Chemical Looping Reforming (CLR). This gas treatment has the potential to be economically competitive, reliable and environmentally friendly (due to higher energy efficiency, amongst others). The aim of the CLR is to 1) eliminate downstream problems with tar 2) simplify the energy recovery from the hot product gas 3) selectively save lighter hydrocarbons for the production of synthetic natural gas (SNG). A guarantor for the outcome of the project is the engagement of Goeteborg Energi, which has a commitment to build a 20 MW output SNG plant by 2012. DTU (Danish Technical University) is responsible for carrying out the laboratorial part, where different oxygen carriers for the CLR have been considering their capability of selectively reforming hydrocarbons. The conclusion was that, of the four carriers tested, the Mn and Ni40 was the most promising. CUT (Chalmers University of Technology) has installed a 600 W CLR unit connected to a slipstream from the gasifier. During the firing season 2010 the CLR has been tested with raw gas for 36 hours and the results so far show that the equipment works as intended and that it can reduce the amount of tars substantially. GE (Goeteborg Energi AB) together with SEP (Scandinavian Energy Project AB) and CUT have studied the integration of a methane production plant to an existing boiler. The main focus of the study has been the gasifier and the CLR. The integration of a 100 MW methane production plant is estimated to cost 1.3-2.4 billion SEK. The different work packages have altogether shown that a CLR is a possible solution to the tar problem

  1. Costs of renewable energies in France. Release 2016

    International Nuclear Information System (INIS)

    Guillerminet, Marie-Laure; Marchal, David; Gerson, Raphael; Berrou, Yolene; Grouzard, Patrice

    2016-12-01

    For each renewable energy, this study reports the assessment of the range of the theoretical variation of costs with respect to the most important parameters of the concerned sector. Low range notably corresponds to particularly favourable financing modalities added to a good field quality and to low investment costs. At the opposite, the capital cost is particularly high for high ranges. Thus, after a presentation of the adopted methodology, the report addresses the costs of electric power generation for on-shore wind energy, offshore wind energy, sea hydraulics, photovoltaic, thermodynamic solar, and geothermal energy. The next part addresses heat production costs in the case of individuals (biomass, individual thermal solar, individual heat pumps) and of collective housing and office and industrial buildings (collective biomass with or without heat network, industrial biomass, thermal solar in collective housing of in network, collective geothermal heat pumps, deep geothermal energy). The fourth chapter addresses the cost of power and heat production by co-generation (biomass co-generation, methanization). Appendices provide computation hypotheses, and reference data

  2. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  3. Energy costs and society: the high price of future energy

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A J

    1976-06-01

    Society will not be able to afford nonfossil fuel energy in the future without a major restructuring of industrial activity, involving a complete rethinking of the basis of our present social and economic establishment. This restructuring must be combined with the evident necessity of policies of population restriction and controls in the form of international allocation of the dwindling supply of raw materials, including fossil (and, in future, nonfossil) primary energy. Only by such means, and by adopting a very low-growth future, can some moderate degree of standard of living be expected to be perpetuated for at least a few generations in the industrialized countries, especially in the case of those that are major energy importers at present. This type of future will also be of more help to the third world than one involving the now impossible ideal of a spiraling energy growth rate. The society which, on an optimistic view, will emerge toward the end of the fossil fuel era, will be supplied with abundant, though efficiently applied, energy, and will survive with natural products and by economizing its recylced mineral resources. The approach to this goal will require political leadership, serious education of the public, and a real population policy, all on a world-wide scale. (Conclusions)

  4. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  5. A compilation of energy costs of physical activities.

    Science.gov (United States)

    Vaz, Mario; Karaolis, Nadine; Draper, Alizon; Shetty, Prakash

    2005-10-01

    There were two objectives: first, to review the existing data on energy costs of specified activities in the light of the recommendations made by the Joint Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) Expert Consultation of 1985. Second, to compile existing data on the energy costs of physical activities for an updated annexure of the current Expert Consultation on Energy and Protein Requirements. Electronic and manual search of the literature (predominantly English) to obtain published data on the energy costs of physical activities. The majority of the data prior to 1955 were obtained using an earlier compilation of Passmore and Durnin. Energy costs were expressed as physical activity ratio (PAR); the energy cost of the activity divided by either the measured or predicted basal metabolic rate (BMR). The compilation provides PARs for an expanded range of activities that include general personal activities, transport, domestic chores, occupational activities, sports and other recreational activities for men and women, separately, where available. The present compilation is largely in agreement with the 1985 compilation, for activities that are common to both compilations. The present compilation has been based on the need to provide data on adults for a wide spectrum of human activity. There are, however, lacunae in the available data for many activities, between genders, across age groups and in various physiological states.

  6. THE COSTS OF THE ELECTRICAL ENERGY IN THE ALUMINIUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cilianu Marian

    2012-07-01

    Full Text Available The economic crisis has given the opportunity to reconsider the use of resources, so the subject of competitive advantage has become actual. In the aluminium industry the cost of electrical energy is critical not only for competitive reasons but for the mere existence and performance of numerous production facilities . Several ways of resisting the pressure of high energy costs have been experimented the most promising being those based on different forms of public-private partnership/co-operation. In many countries the big industrial producers benefit from a special treatment concerning the energy acquisition and are supported by the government in order to remain competitive.

  7. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  8. The digestible energy, metabolizable energy, and net energy content of dietary fat sources in thirteen- and fifty-kilogram pigs.

    Science.gov (United States)

    Kellner, T A; Patience, J F

    2017-09-01

    The objective was to determine the energy concentration of a diverse array of dietary fat sources and, from these data, develop regression equations that explain differences based on chemical composition. A total of 120 Genetiporc 6.0 × Genetiporc F25 (PIC, Inc., Hendersonville, TN) individually housed barrows were studied for 56 d. These barrows (initial BW of 9.9 ± 0.6 kg) were randomly allotted to 1 of 15 dietary treatments. Each experimental diet included 95% of a corn-soybean meal basal diet plus 5% either corn starch or 1 of 14 dietary fat sources. The 14 dietary fat sources (animal-vegetable blend, canola oil, choice white grease source A, choice white grease source B, coconut oil, corn oil source A, corn oil source B, fish oil, flaxseed oil, palm oil, poultry fat, soybean oil source A, soybean oil source B, and tallow) were selected to provide a diverse and robust range of unsaturated fatty acid:SFA ratios (U:S). Pigs were limit-fed experimental diets from d 0 to 10 and from d 46 to 56, providing a 7-d adaption for fecal collection on d 7 to 10 (13 kg BW) and d 53 to 56 (50 kg BW). At 13 kg BW, the average energy content of the 14 sources was 8.42 Mcal DE/kg, 8.26 Mcal ME/kg, and 7.27 Mcal NE/kg. At 50 kg BW, the average energy content was 8.45 Mcal DE/kg, 8.28 Mcal ME/kg, and 7.29 Mcal NE/kg. At 13 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 9.363 + [0.097 × (FFA, %)] - [0.016 × omega-6:omega-3 fatty acids ratio] - [1.240 × (arachidic acid, %)] - [5.054 × (insoluble impurities, %)] + [0.014 × (palmitic acid, %)] ( = 0.008, = 0.82). At 50 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 8.357 + [0.189 × U:S] - [0.195 × (FFA, %)] - [6.768 × (behenic acid, %)] + [0.024 × (PUFA, %)] ( = 0.002, = 0.81). In summary, the chemical composition of dietary fat explained a large degree of the variation observed in the energy content of dietary fat sources at both 13 and 50 kg BW.

  9. Starship Sails Propelled by Cost-Optimized Directed Energy

    Science.gov (United States)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  10. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  11. Annual meeting on nuclear technology '96. Technical session: Energy costs

    International Nuclear Information System (INIS)

    1996-08-01

    The two papers of this session deal with the costs of two different energy generation systems, one is based on photovoltaic energy conversion, and the other is the nuclear fuel cycle and nuclear energy generation. The author shows that the costs of these two energy systems in Germany are much more governed by decisions taken in the political domain than is the case in other countries. Although German science and technology in these two engineering fields hold a top rank worldwide, the high costs that seem inevitable in Germany are expected to be a major reason why the photovoltaic industry will have to leave the country and go abroad to exploit the better chances there. (DG) [de

  12. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    Science.gov (United States)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  13. To end with the untruth on the wind energy cost

    International Nuclear Information System (INIS)

    Le Biez, V.

    2008-01-01

    In a study published by the Montaigne institute, in July 2008, Vincent Le Biez aimed to criticize the development of the wind energy and more especially its cost. Experts of the SER (Syndicat of the Renewable Energies) and the FEE (France Wind Energy ) answer, in this report, to the criticisms of V. Le Biez. Their analysis shows that the wind energy already constitutes a protection against the increase of the electrical market prices and will offer a real benefit for the collectivity in 2020. The increase of the wind energy in the world shows the trumps of this electricity production form. (A.L.B.)

  14. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  15. A net-zero building application and its role in exergy-aware local energy strategies for sustainability

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2012-01-01

    Highlights: ► Net-zero exergy targets are put forth for more energy-sufficient buildings and districts. ► A premier building that is the first LEED Platinum building in Turkey exemplifies this target. ► The building integrates low-exergy measures with PV/BIPV, CHP, GSHP, solar collectors and TES. ► Two districts in the south heating network of Stockholm are compared with this technology bundle. ► Net-zero exergy targets are related to a re-structuring of an exergy-aware energy value chain. - Abstract: Based on two case studies, this paper explores the nexus of exergy, net-zero targets, and sustainable cities as a means of analyzing the role of exergy-aware strategies at the building and district level. The first case study is a premier building in Ankara that is ready to meet the net-zero exergy target. It is also the first building in Turkey to receive the highest Platinum rating in Leadership in Energy and Environmental Design. A net-zero exergy building (NZEXB) is a building that has an annual sum of net-zero exergy transfer across the building-district boundary. This new target is made possible by lowered annual exergy consumption, (AEXC), and increased on-site production from a bundle of sustainable energy technologies. The modeled results of the building indicate that the reduced AEXC of 60 kW h/m 2 yr is met with on-site production of 62 kW h/m 2 yr. On-site production includes PV and building integrated PV, a micro-wind turbine, combined heat and power, GSHP, and solar collectors. Diversified thermal energy storage tanks further facilitate the exergy supply to meet with the exergy demand. The results of this case study provide key lessons to structure an energy value chain that is more aware of exergy, which are up-scalable to the district level when the bundle of sustainable energy technologies is zoomed out across a larger spatial area. These key lessons are then compared with the second case study of two districts in the south heating network

  16. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  17. Impacts of optimum cost effective energy efficiency standards

    International Nuclear Information System (INIS)

    Brancic, A.B.; Peters, J.S.; Arch, M.

    1991-01-01

    Building Codes are increasingly required to be responsive to social and economic policy concerns. In 1990 the State of Connecticut passes An Act Concerning Global Warming, Public Act 90-219, which mandates the revision of the state building code to require that buildings and building elements be designed to provide optimum cost-effective energy efficiency over the useful life of the building. Further, such revision must meet the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1 - 1989. As the largest electric energy supplier in Connecticut, Northeast Utilities (NU) sponsored a pilot study of the cost effectiveness of alternative building code standards for commercial construction. This paper reports on this study which analyzed design and construction means, building elements, incremental construction costs, and energy savings to determine the optimum cost-effective building code standard. Findings are that ASHRAE 90.1 results in 21% energy savings and alternative standards above it result in significant additional savings. Benefit/cost analysis showed that both are cost effective

  18. Investigation of the impact of using thermal mass with the net zero energy town house in Toronto using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Tse, H.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-07-01

    Since buildings in Canada account for 30 per cent of the country's total energy consumption, it has become necessary to find ways to reduce the overall energy use in buildings. Heating and cooling loads in buildings can be effectively reduced by using the thermal mass incorporated into the building envelope, particularly in climates where a large daily temperature fluctuations exist. Thermal mass is defined as any building material that has a high heat storage capacity that can be integrated into the structural fabric of the building to use the passive solar energy for heating or cooling purposes. Concrete slabs, bricks and ceramic blocks are some of the commonly used materials. This study analyzed the impact of using thermal mass with a highly insulated building envelope such as that used in Low Energy or Net Zero housing. In particular, TRNSYS was used to simulate a Net Zero Energy Town House located in Toronto, in which a ground source heat pump was integrated with an infloor radiant heating system. The simulation revealed that for colder climates such as in Canada, thermal mass can replace some of the insulation while still providing excellent results in terms of the reductions in daily indoor temperature fluctuations. The impact of thermal mass during the winter was more significant when compared with summer, possibly because of the unique construction and orientation of the Net Zero Energy House. The optimum thickness of the concrete slab was determined to be 6 inches for the winter season and 4 inches for summer. The optimum location for the thermal mass was found to be right next to the gypsum wallboard that forms the interior part of the wall. 12 refs., 1 tab., 11 figs.

  19. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    Science.gov (United States)

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  1. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  2. Interim monitoring of cost dynamics for publicly supported energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F. [La Follette School of Public Affairs, University of Wisconsin, 1225 Observatory Drive, Madison, WI 53706 (United States)]|[Nelson Institute for Environmental Studies, University of Wisconsin, Madison, WI 53726 (United States)

    2009-03-15

    The combination of substantial public funding of nascent energy technologies and recent increases in the costs of those that have been most heavily supported has raised questions about whether policy makers should sustain, alter, enhance, or terminate such programs. This paper uses experience curves for photovoltaics (PV) and wind to (1) estimate ranges of costs for these public programs and (2) introduce new ways of evaluating recent cost dynamics. For both technology cases, the estimated costs of the subsidies required to reach targets are sensitive to the choice of time period on which cost projections are based. The variation in the discounted social cost of subsidies exceeds an order of magnitude. Vigilance is required to avoid the very expensive outcomes contained within these distributions of social costs. Two measures of the significance of recent deviations are introduced. Both indicate that wind costs are within the expected range of prior forecasts but that PV costs are not. The magnitude of the public funds involved in these programs heightens the need for better analytical tools with which to monitor and evaluate cost dynamics. (author)

  3. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  4. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  5. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  6. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  7. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  8. Replacement Energy Cost Analysis Package (RECAP): User's guide. Revision 1

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Willing, D.L.

    1994-07-01

    A microcomputer program called the Replacement Energy Cost Analysis Package (RECAP) has been developed to assist the US Nuclear Regulatory Commission (NRC) in determining the replacement energy costs associated with short-term shutdowns or deratings of one or more nuclear reactors. The calculations are based on the seasonal, unit-specific cost estimates for 1993--1996 previously published in NRC Report NUREG/CR--4012, Vol. 3 (1992), for all 112 US reactors. Because the RECAP program is menu-driven, the user can define specific case studies in terms of such parameters as the units to be included, the length and timing of the shutdown or derating period, the unit capacity factors, and the reference year for reporting cost results. In addition to simultaneous shutdown cases, more complicated situations, such as overlapping shutdown periods or shutdowns that occur in different years, can be examined through the use of a present-worth calculation option

  9. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  10. Energy balance, carbon emissions, and costs of sortyard debris disposal

    International Nuclear Information System (INIS)

    MacDonald, A.J.

    2001-01-01

    The Forest Engineering Research Institute of Canada (FERIC), with funding from Natural Resources Canada, conducted this study to determine the main environmental and energy use issues regarding the landfilling, burning or processing of dryland sortyard debris accumulated in the wood products industry. The wood residues that are generated when logs are processed, sorted and remanufactured, have traditionally been burned or landfilled. This is no longer appropriate. Converting the large woody debris into usable products such as hog fuel or compost requires grinding, smashing or chipping into small pieces to facilitate transportation. In order to make smart decisions about alternative methods of handling sortyard debris, information is needed about the comparative amount of fuel used and carbon dioxide produced. This study compared the treatment alternatives with respect to fuel consumption, net energy balance, carbon dioxide emissions and environmental impact. Recommendations were then presented for the treatment of debris from the point of view of net energy balance and environmental impact. Life cycle techniques were used to determine the environmental impact of alternatives for managing sortyard debris. It was determined that wood wastes are valuable as hog fuel for power generation. Burning hog fuel to recover its energy offsets the need to supply energy from other sources such as natural gas. This reduces the total carbon emissions by the amount of debris that would have been burned as waste. Annual carbon emissions can be reduced by nearly half by switching from a maximize burn strategy to a maximize hog strategy that combines composting of fine materials. 2 refs., 1 tab., 1 fig

  11. Optimal Power Cost Management Using Stored Energy in Data Centers

    OpenAIRE

    Urgaonkar, Rahul; Urgaonkar, Bhuvan; Neely, Michael J.; Sivasubramaniam, Anand

    2011-01-01

    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically ...

  12. Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Greta Vallero

    2018-03-01

    Full Text Available Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required.

  13. Marginal costs for intensified energy-efficiency measures

    International Nuclear Information System (INIS)

    Jakob, J.; Jochem, E.; Christen, K.

    2002-01-01

    The costs and benefits of investments in measures designed to improve the energy efficiency of residential buildings (in particular investments in heat insulation) were calculated as a function of increasing energy efficiency for new and renovated buildings and for single-family homes and apartment buildings. These investments in measures to improve efficiency mostly involve with the building envelope and ventilation systems and aim to successively reduce the space-heating needs of the buildings. The measures range from present-day building and renovation methods through to the 'Minergie' and 'Passive House' ('Minergie-P' in Switzerland) standards for low and very-low energy consumption buildings. Cost-benefit ratios were determined for individual building components, individual building concepts and for the whole of Switzerland, using both the average-cost as well as the pure marginal-cost methods (energy-economics level). The collection of empirical data (especially on costs) was an integral and important part of the project. The marginal costs were then compared with the benefits arising from the costs for space heating that were avoided, and, using a few typical cases as examples, with the so-called co-benefits, which are to be implemented in part by private persons and companies. For their quantification, methods were developed and used in case studies; in addition, avoided external costs are also considered. The marginal costs were also calculated for periods of time in the future, whereby they were made dynamic, according to their share of innovation, using the learning-curve method (learning and scaling effects). As far as the findings are concerned, there can be no doubt that the potential to be opened up for increasing energy efficiency using heat insulation measures is high, both for renovations and new construction work. A large portion of this potential is already economically viable and even more so when the possible risks of energy price increases

  14. A model for energy pricing with stochastic emission costs

    International Nuclear Information System (INIS)

    Elliott, Robert J.; Lyle, Matthew R.; Miao, Hong

    2010-01-01

    We use a supply-demand approach to value energy products exposed to emission cost uncertainty. We find closed form solutions for a number of popularly traded energy derivatives such as: forwards, European call options written on spot prices and European Call options written on forward contracts. Our modeling approach is to first construct noisy supply and demand processes and then equate them to find an equilibrium price. This approach is very general while still allowing for sensitivity analysis within a valuation setting. Our assumption is that, in the presence of emission costs, traditional supply growth will slow down causing output prices of energy products to become more costly over time. However, emission costs do not immediately cause output price appreciation, but instead expose individual projects, particularly those with high emission outputs, to much more extreme risks through the cost side of their profit stream. Our results have implications for hedging and pricing for producers operating in areas facing a stochastic emission cost environment. (author)

  15. On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors

    NARCIS (Netherlands)

    Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass

  16. Excess heat production of future net zero energy buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    2012-01-01

    Denmark’s long-term energy goal is to develop an energy system solely based on renewable energy sources by 2050. To reach this goal, energy savings in buildings is essential. Therefore, the focus on energy efficient measures in buildings and netzeroenergybuildings (NZEBs) has increased. Most...

  17. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  18. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  19. The environmental costs of wind energy in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Linares Llamas, P [CIEMAT-IEE, Madrid (Spain)

    1996-12-31

    This article summarizes the assessment of the environmental costs of the wind fuel cycle in Spain. It has been carried out within the ExternE project of the European Commission, and so it has been done following a site-, technology-specific methodology. The main impacts identified have been noise, and the loss of visual amenity. As a result some values for the external costs of wind energy have been obtained, which have shown to be much lower than those of conventional fuel cycles. It is also important to note that careful planning would avoid most of these costs. (author)

  20. The environmental costs of wind energy in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Linares Llamas, P. [CIEMAT-IEE, Madrid (Spain)

    1995-12-31

    This article summarizes the assessment of the environmental costs of the wind fuel cycle in Spain. It has been carried out within the ExternE project of the European Commission, and so it has been done following a site-, technology-specific methodology. The main impacts identified have been noise, and the loss of visual amenity. As a result some values for the external costs of wind energy have been obtained, which have shown to be much lower than those of conventional fuel cycles. It is also important to note that careful planning would avoid most of these costs. (author)

  1. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  2. Nuclear energy: the cost of opting-out

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article discusses the results of a study made on the financial and ecological costs that would be incurred if Switzerland opted out of the use of nuclear energy. Figures are quoted for the costs if two Swiss popular initiatives on the subject of opting out of nuclear energy were accepted in voting. The disadvantages offered by the alternatives such as combined gas and steam-turbine power plant, photovoltaics and wind power are quoted. Possible negative effects of opting out on the Swiss economy are looked at and the political aspects of renewing operational permits for nuclear power stations are discussed

  3. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels...... of minimum energy performance requirements. In addition to the summary report released in August 2011, the full detailed report on this study is now also made available, just as the EC is about to publish its proposed Regulation for MS to apply in their process to update national building requirements....

  4. Fair Division of Costs in Green Energy Markets

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Kronborg, Dorte; Smilgins, Aleksandrs

    2017-01-01

    This paper considers cost allocation in networks where agents are characterized by stochastic demand and supply of a non-storable good, e.g. green energy. The grid itself creates possibilities of exchanging energy between agents and we propose to allocate common costs in proportion to the economi...... gain of being part of the grid. Our model includes a set of fundamental requirements for the associated trading platform. In particular, it is argued that a suitable mechanism deviates from a traditional market. The approach is illustrated by simulations....

  5. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 79, č. 2 (2009), 024906/1-024906/14 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : NET CHARGE * DYNAMICAL FLUCTUATIONS * HEAVY-ION COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  6. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  7. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Science.gov (United States)

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  8. A Cost Analysis of Hospitalizations for Infections Related to Injection Drug Use at a County Safety-Net Hospital in Miami, Florida

    OpenAIRE

    Tookes, Hansel; Diaz, Chanelle; Li, Hua; Khalid, Rafi; Doblecki-Lewis, Susanne

    2015-01-01

    Background Infections related to injection drug use are common. Harm reduction strategies such as syringe exchange programs and skin care clinics aim to prevent these infections in injection drug users (IDUs). Syringe exchange programs are currently prohibited by law in Florida. The goal of this study was to estimate the mortality and cost of injection drug use-related bacterial infections over a 12-month period to the county safety-net hospital in Miami, Florida. Additionally, the prevalence...

  9. In Brief: Hidden environment and health costs of energy

    Science.gov (United States)

    Showstack, Randy

    2009-10-01

    The hidden costs of energy production and use in the United States amounted to an estimated $120 billion in 2005, according to a 19 October report by the U.S. National Research Council. The report, “Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use,” examines hidden costs, including the cost of air pollution damage to human health, which are not reflected in market prices of energy sources, electricity, or gasoline. The report found that in 2005, the total annual external damages from sulfur dioxide, nitrogen oxides, and particulate matter created by coal-burning power plants that produced 95% of the nation's coal-generated electricity were about $62 billion, with nonclimate damages averaging about 3.2 cents for every kilowatt-hour of energy produced. It is estimated that by 2030, nonclimate damages will fall to 1.7 cents per kilowatt-hour. The 2030 figure assumes that new policies already slated for implementation are put in place.

  10. Heart rate profiles and energy cost of locomotion during cross-country skiing races.

    Science.gov (United States)

    Mognoni, P; Rossi, G; Gastaldelli, F; Canclini, A; Cotelli, F

    2001-07-01

    The purpose of this study was to compare heart rate responses and speed in two cross-country skiing races, which were run by seven male and seven female subjects by using classic and free style. Heart rates and skiing velocities were analyzed over flat, uphill and downhill sections, which were run from one to three times. Heart rates were higher in uphill sections than in flat sections; a steady-state heart rate was never reached in the downhill section. When the same uphill section was repeated, the heart rate tended to increase but the speed to decrease. Oxygen uptake (VO2) was calculated from heart rate:VO2 ratio, measured during uphill walking with the aid of poles. The mean (SD) energy cost of locomotion (i.e., the ratio between net VO2 and speed) was 162.1 (9.4) ml.km(-1).kg(-1) and 147.7 (7.1) ml.km(-1).kg(-1) when male subjects ran the flat section after first downhill by using classic and free style, respectively. Females had lower values for VO2 and speed, but similar energy costs. In general, the variability of the energy cost of locomotion in skiers of a similar competitive level is of the same order as that found in uphill walking on a treadmill.

  11. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  12. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  13. The German energy transition. Design, implementeation, cost and lessons

    Energy Technology Data Exchange (ETDEWEB)

    Unnerstall, Thomas

    2017-07-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO{sub 2} emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  14. The German energy transition. Design, implementeation, cost and lessons

    International Nuclear Information System (INIS)

    Unnerstall, Thomas

    2017-01-01

    The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO 2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.

  15. Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries

    International Nuclear Information System (INIS)

    Ramírez, F. Javier; Honrubia-Escribano, A.; Gómez-Lázaro, E.; Pham, Duc T.

    2017-01-01

    In the last fifteen years, Europe has been involved in the major development of photovoltaic (PV) solar energy. The Kyoto Protocol requirements and the European Union (EU) directives to promote the use of renewable energy sources (RES) together with environmental policies introduced for the development and use of alternative energies have generated a large number of market opportunities for this sector. Differences in the application of energy policies have caused significant imbalances in electricity systems and distortion of electricity prices. The main concern of governments is to define the support schemes to be used and how to combine them in the most profitable manner. The aim of this paper is to provide a comparative cost-effectiveness assessment using feed-in tariffs (FiT) and net-metering (NM) schemes in some representative EU countries. The authors have developed an economic model to evaluate the profitability of PV projects combining these support schemes. Results show not only the circumstances under which solar energy is economically profitable, but also the kind of PV systems, locations, minimum levels of tariff prices and specific combination of support schemes that should be promoted. - Highlights: • Comparative cost-effectiveness assessment combining FiT and NM support schemes. • A minimum FiT is proposed in addition to traditional financial performance indicators. • Results show the specific combinations of support schemes that should be promoted. • This work can aid efficient energy policy making. • Model could be applied to other types of RES projects and other geographical areas.

  16. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  17. Assessing energy supply security: Outage costs in private households

    International Nuclear Information System (INIS)

    Praktiknjo, Aaron J.; Hähnel, Alexander; Erdmann, Georg

    2011-01-01

    The objective of this paper is to contribute to the topic of energy supply security by proposing a Monte Carlo-based and a survey based model to analyze the costs of power interruptions. Outage cost estimations are particularly important when deciding on investments to improve supply security (e.g. additional transmission lines) in order to compare costs to benefits. But also other policy decisions on measures that have direct or indirect consequences for the supply security (e.g. a phasing out of nuclear energy) need to be based on results from outage cost estimations. The main focus of this paper lies with residential consumers, but the model is applied to commercial, industrial and governmental consumers as well. There are limited studies that have approached the problem of evaluating outage cost. When comparing the results of these studies, they often display a high degree of diversification. As consumers have different needs and dependencies towards the supply of electricity because of varying circumstances and preferences, a great diversity in outage cost is a logical consequence. To take the high degree of uncertainties into account, a Monte Carlo simulation was conducted in this study for the case of private households in Germany. - Highlights: ► A macroeconomic model to assess outage cost is proposed. ► Possibilities for substitution are considered by analyzing individual preferences for the time-use. ► Uncertainties are taken into account by using a Monte Carlo simulation. ► This study reveals the distribution of outage costs to different electricity consumers. ► Implications for energy policy decisions are discussed.

  18. Redesign of a Rural Building in a Heritage Site in Italy: Towards the Net Zero Energy Target

    Directory of Open Access Journals (Sweden)

    Maurizio Cellura

    2017-07-01

    Full Text Available In order to achieve the ambitious objective of decarbonising the economy, it is mandatory, especially in Europe and in Italy, to include the retrofitting of existing buildings. In a country where a large share of existing buildings have heritage value, it is important to design effective retrofit solutions also in historical buildings. In this context, the paper describes the experience of re-design of an existing rural building located in Sicily, inside the ancient Greeks' “Valley of the Temples”. An energy audit was performed on the building, and its energy uses were thoroughly investigated. A building model was developed in the TRNSYS environment and its performances validated. The validated model was used for redesign studies aimed towards the achievement of the Net Zero Energy Building target. The best performing solutions to be applied to a case study like the Sanfilippo House were those regarding the management of the building, as in the case of the natural ventilation and the energy systems setpoints, that would allow a large impact (up to 10% reductions in energy uses on the energy performances of the building with no invasiveness, and those with very limited invasiveness and high impact on the energy efficiency of the building, as in the lighting scenario (up to 30% energy uses reduction. The most invasive actions can only be justified in the case of high energy savings, as in the case of the insulation of the roof, otherwise they should be disregarded.

  19. Reducing the energy penalty costs of postcombustion CCS systems with amine-storage.

    Science.gov (United States)

    Patiño-Echeverri, Dalia; Hoppock, David C

    2012-01-17

    Carbon capture and storage (CCS) can significantly reduce the amount of CO(2) emitted from coal-fired power plants but its operation significantly reduces the plant's net electrical output and decreases profits, especially during times of high electricity prices. An amine-based CCS system can be modified adding amine-storage to allow postponing 92% of all its energy consumption to times of lower electricity prices, and in this way has the potential to effectively reduce the cost of CO(2) capture by reducing the costs of the forgone electricity sales. However adding amine-storage to a CCS system implies a significant capital cost that will be outweighed by the price-arbitrage revenue only if the difference between low and high electricity prices is substantial. In this paper we find a threshold for the variability in electricity prices that make the benefits from electricity price arbitrage outweigh the capital costs of amine-storage. We then look at wholesale electricity markets in the Eastern Interconnect of the United States to determine profitability of amine-storage systems in this region. Using hourly electricity price data from years 2007 and 2008 we find that amine storage may be cost-effective in areas with high price variability.

  20. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  1. Cost-covering remuneration - wind and solar energy skinned

    International Nuclear Information System (INIS)

    Niederhaeusern, A.

    2008-01-01

    In this article, the details of Switzerland's cost-covering remuneration scheme for electrical energy from renewable resources are discussed. Several experts from the renewable energies area express their opinions on the scheme's tariffs for the remuneration of electrical energy fed into the public mains. Wind energy is quoted as being 'skinned', with a lower tariff than before and solar energy is quoted as being promoted 'with the hand brake still on'. Geothermal energy and power from biomass power stations is quoted as being 'undamaged' by the new remuneration system. In general, the opinion is expressed that small investors and producers have, once more, been put at a disadvantage. The situation in Switzerland is briefly compared with that in Germany, France, Spain and Italy. An overview of the tariffs is presented in tabular form

  2. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  3. Cost-benefit analysis of retrofit of high-intensity discharge factory lighting with energy-saving alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.J. [Alabama Industrial Assessment Center, The University of Alabama, 1530 W. Tremont St, Allentown, PA 18102 (United States); Woodbury, K.A. [Alabama Industrial Assessment Center, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487-0276 (United States)

    2013-05-15

    Due to increased concern about overall energy costs and the appearance of efficient and inexpensive lighting system alternatives, factories and plants with high-intensity discharge (HID) lighting are forced to consider retrofit with more modern, energy-efficient lighting. The decision is complicated from an economic perspective, and there is a lack of information readily available on the topic. This study provides an analysis of the replacement by retrofit of common probe-start metal halide and high-pressure sodium industrial lighting systems. Retrofit options considered include the more recent pulse-start metal halide lamps and a range of T5 high output and T8 fluorescent lamp configurations. Recent data on lighting system pricing, labor and energy costs, and time required for tasks are reported. The results generated include savings, payback period, and net present value for many retrofit options, as well as the change in energy consumption, carbon footprint, and lumen output for each retrofit. Effects of varying rate of return and daily duration of operation are considered. Based on change in lumen output, payback period, net present value, and comparison of lighting quality, one or two options are recommended from the overall retrofit options considered. A fluorescent retrofit is recommended for each of the HID initial scenarios considered. The payback period is no more than 3 years in any recommended case. The focus of this study is on the potential energy and cost savings, and some proposed solutions may, or may not, be acceptable due to lack of illuminance uniformity.

  4. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  5. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  6. Electrostatic direct energy converter performance and cost scaling laws

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1977-08-01

    This study is concerned with electrostatic type direct energy converters for direct recovery of a large fraction of the plasma ion energy from fusion reactors. Simplified equations are presented for each of the important loss mechanisms in both single-stage direct converters and multistage ''Venetian Blind'' type direct converters. These equations can be used to estimate the efficiency and electric power output of the direct converter subsystem. Scaling relations for the cost of each major component in the direct converter subsystem are also given; these include the vacuum tank, direct converter modules, the DC power conditioning equipment, cryogenic vacuum pumping system and the thermal bottoming plant. The performance and cost scaling laws have been developed primarily for use in overall fusion power plant systems codes. However, to illustrate their utility, cost-effectiveness studies of two specific reference direct converter designs are presented in terms of the specific capital costs (i.e., the capital cost per unit electric power produced) for the Direct Converter Subsystem alone. Some examples of design improvements which can significantly reduce the specific capital costs of the Direct Converter Subsystem are also given

  7. Energy Cost Optimization in a Water Supply System Case Study

    Directory of Open Access Journals (Sweden)

    Daniel F. Moreira

    2013-01-01

    Full Text Available The majority of the life cycle costs (LCC of a pump are related to the energy spent in pumping, with the rest being related to the purchase and maintenance of the equipment. Any optimizations in the energy efficiency of the pumps result in a considerable reduction of the total operational cost. The Fátima water supply system in Portugal was analyzed in order to minimize its operational energy costs. Different pump characteristic curves were analyzed and modeled in order to achieve the most efficient operation point. To determine the best daily pumping operational scheduling pattern, genetic algorithm (GA optimization embedded in the modeling software was considered in contrast with a manual override (MO approach. The main goal was to determine which pumps and what daily scheduling allowed the best economical solution. At the end of the analysis it was possible to reduce the original daily energy costs by 43.7%. This was achieved by introducing more appropriate pumps and by intelligent programming of their operation. Given the heuristic nature of GAs, different approaches were employed and the most common errors were pinpointed, whereby this investigation can be used as a reference for similar future developments.

  8. Evaluation of energy and cost savings in mobile Cloud RAN

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Christiansen, Henrik Lehrmann; Berger, Michael Stübert

    2013-01-01

    , is sub optimal, comparing to a novel, cloud based architecture called Cloud Radio Access Network (C-RAN). In C-RAN a group of cells shares processing resources, and hence benefit from statistical multiplexing gain is expected. In this paper, the energy and cost savings in C-RAN are evaluated numerically...

  9. Cost and benefit of renewable energy in the European Union

    NARCIS (Netherlands)

    Krozer, Yoram

    2013-01-01

    An assessment is made as to whether renewable energy use for electricity generation in the EU was beneficial throughout the cycle of high and low oil prices. Costs and benefits are calculated with the EU statistics for the period of low oil prices 1998–2002 and high oil prices 2003–2009. The share

  10. Unravelling historical cost developments of offshore wind energy in Europe

    NARCIS (Netherlands)

    Voormolen, J. A.; Junginger, H. M.; van Sark, W. G J H M

    2016-01-01

    This paper aims to provide insights in the cost developments of offshore wind energy in Europe. This is done by analysing 46 operational offshore wind farms commissioned after 2000. An increase of the Capital Expenditures (CAPEX) is found that is linked to the distance to shore and depth of more

  11. Renewable energies in the transport sector: Costs and possibilities

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2007-01-01

    Alternative fuels based on renewable energy sources, such as biodiesel, bioethanol and hydrogen from RES, have potential to reduce greenhouse gas emissions, climate change, to increase supply security and energy diversity. Transition from a fossil fuels based transport to future sustainable and clean transport is a long term and cost intensive process, especially for hydrogen use in transport. Hydrogen infrastructure is missing and most of hydrogen technologies are still at developing stage.This paper examines the economics of biofuels (bioethanol and biodiesel) and hydrogen production from renewable energy sources. The current and future costs of alternative fuels as well as the costs of the provided energy services are analysed in a dynamic framework till the year 2050. The goal is to identify the market chance of alternative fuels in a long term (till 2050). A rapid increase of fuel cell vehicles with hydrogen on the market is not expected before 2030, mainly because the costs of the fuel cells are still very high and because their efficiency, as well as the travelling range, is rather moderate.However, the use of alternative fuels in transport sector is very dependent on the political will. If political preferences, like e.g. zero-emission-vehicles, gain strong relevance this new fuels could accelerate its market penetration significantly

  12. Promoting a low cost energy future in Africa

    African Journals Online (AJOL)

    Robert Kirchner

    confidence of financial institutions and investors in RETs. The publication of a national solar and wind atlas, for example, informs potential investors about suitable areas and reduces the costs for feasibility studies (Renewable. Energy Ventures, 2012). Due to a lack of knowledge and project experience with RETs, obtaining ...

  13. Evaluation of the Water Scarcity Energy Cost for Users

    Directory of Open Access Journals (Sweden)

    Chiara M. Fontanazza

    2013-01-01

    Full Text Available In systems experiencing water scarcity and consequent intermittent supply, users often adopt private tanks that collect water during service periods and supply users when the service is not available. The tank may be fed by gravity or by private pumping stations depending on the network pressure level. Once water resources are collected, the tank can supply users by gravity if it is located on the rooftop or by additional pumping if underground. Private tanks thus increase the energy cost of the water supply service for users by introducing several small pumping structures inside the network. The present paper aims to evaluate this users’ energy cost for different private tank configurations. A real case study was analysed, and the results showed that intermittent distribution causes inequalities not only in users’ access to water resource but also costs that users have to bear to have access to water.

  14. A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings

    International Nuclear Information System (INIS)

    Garshasbi, Samira; Kurnitski, Jarek; Mohammadi, Yousef

    2016-01-01

    Graphical abstract: The energy consumption and renewable generation in a cluster of NZEBs are modeled by a novel hybrid Genetic Algorithm and Monte Carlo simulation approach and used for the prediction of instantaneous and cumulative net energy balances and hourly amount of energy taken from and supplied to the central energy grid. - Highlights: • Hourly energy consumption and generation by a cluster of NZEBs was simulated. • Genetic Algorithm and Monte Carlo simulation approach were employed. • Dampening effect of energy used by a cluster of buildings was demonstrated. • Hourly amount of energy taken from and supplied to the grid was simulated. • Results showed that NZEB cluster was 63.5% grid dependant on annual bases. - Abstract: Employing a hybrid Genetic Algorithm (GA) and Monte Carlo (MC) simulation approach, energy consumption and renewable energy generation in a cluster of Net Zero Energy Buildings (NZEBs) was thoroughly investigated with hourly simulation. Moreover, the cumulative energy consumption and generation of the whole cluster and each individual building within the simulation space were accurately monitored and reported. The results indicate that the developed simulation algorithm is able to predict the total instantaneous and cumulative amount of energy taken from and supplied to the central energy grid over any time period. During the course of simulation, about 60–100% of total daily generated renewable energy was consumed by NZEBs and up to 40% of that was fed back into the central energy grid as surplus energy. The minimum grid dependency of the cluster was observed in June and July where 11.2% and 9.9% of the required electricity was supplied from the central energy grid, respectively. On the other hand, the NZEB cluster was strongly grid dependant in January and December by importing 70.7% and 76.1% of its required energy demand via the central energy grid, in the order given. Simulation results revealed that the cluster was 63

  15. Energy transition. A complete view on costs, performance, flexibility and prices of energies - Journal nr 11

    International Nuclear Information System (INIS)

    Boncorps, Jean-Claude; Larzilliere, Marc; Bomo, Nicole; Bruder, Michel; Buscailhon, Jean-Marie; Cappe, Daniel; DobiaS, Georges; Fregere, Jean-Pierre; Garipuy, Yves; Hougueres, Gerard; Martin, Jean-Loup; Mollard, Dominique; Moncomble, Jean-Eudes; Wiltz, Bruno; Roudier, Jacques

    2013-02-01

    This publication aims at proposing information on the issues of energy prices, of energy production costs and of energy delivery costs, and at showing their complexity while clearing up some wrong ideas about them. After an introduction on the addressed problematic, on information sources and on uncertainties, the authors give a general overview of the definitions of a cost, of a price, of primary, secondary and final energies, of user diversity and energy demand variation in time, of energy production variations in time, and present energy taxing in France and in the European Union, the CO 2 market, and energy savings in France in various sectors (transports, buildings, industry). Then, they address the various primary energies (coal, oil, natural gas, biomass, geothermal heat, thermal solar) and secondary energies (nuclear, hydroelectricity, ground-based wind energy, renewable sea energies, geothermal electricity, electricity grids, heat networks and co-generation) and discuss for each or some of them issues like: world market, costs and pricing, perspectives, resources and constraints, technologies

  16. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  17. Energy cost of swimming of elite long-distance swimmers.

    Science.gov (United States)

    Zamparo, P; Bonifazi, M; Faina, M; Milan, A; Sardella, F; Schena, F; Capelli, C

    2005-08-01

    The aim of this study was: (1) to assess the energy cost of swimming (C(s), kJ km(-1)) in a group of male (n = 5) and female (n = 5) elite swimmers specialised in long-distance competitions; (2) to evaluate the possible effect of a 2-km trial on the absolute value of C(s). C(s) was assessed during three consecutive 400-m trials covered in a 50-m pool at increasing speeds (v1, v2, v3). After these experiments the subjects swam a 2-km trial at the 10-km race speed (v2km) after which the three 400-m trials were repeated at the same speed as before (v5 = v1, v6 = v2, v7 = v3). C(s) was calculated by dividing the net oxygen uptake at steady state VO2ss by the corresponding average speed (v, m s(-1)). VO2ss was estimated by using back extrapolation technique from breath-to-breath VO2 recorded during the first 30 s of recovery after each test. C(s) increased (from 0.69 kJ m(-1) to 1.27 kJ m(-1)) as a function of v (from 1.29 m s(-1) to 1.50 m s(-1)), its values being comparable to those measured in elite short distance swimmers at similar speeds. In both groups of subjects the speed maintained during the 2-km trial (v2km) was on the average only 1.2% faster than of v2 and v6 (P>0.05), whereas C(s) assessed at the end of the 2-km trial (v2km) turned out to be 21 +/- 26% larger than that assessed at v2 and v6 (P<0.05); the average stroke frequency (SF, cycles min(-1)) during the 2-km trial turned to be about 6% (P<0.05) faster than that assessed at v2 and v6. At v5, C(s) turned out to be 19 +/- 9% (P<0.05) and 22 +/- 27% (0.1 < P = 0.05) larger than at v1 in male and female subjects (respectively). SF was significantly faster (P<0.05, in male subjects) and the distance per stroke (Ds = v/SF) significantly shorter (P<0.05) in female subjects at v5 and v6 than at v1 and v2. These data suggest that the increase of C(s) found after the 2-km trial was likely related to a decrease in propelling efficiency, since the latter is related to the distance per stroke.

  18. Renewable energy sources cost benefit analysis and prospects for Italy

    International Nuclear Information System (INIS)

    Ariemma, A.; Montanino, G.

    1992-01-01

    In light of Italy's over-dependency on imported oil, and due to this nation's commitment to the pursuit of the strict environmental protection policies of the European Communities, ENEL (the Italian National Electricity Board) has become actively involved in research efforts aimed at the commercialization of renewable energy sources - photovoltaic, wind, biomass, and mini-hydraulic. Through the use of energy production cost estimates based on current and near- future levels of technological advancement, this paper assesses prospects for the different sources. The advantages and disadvantages of each source in its use as a suitable complementary energy supply satisfying specific sets of constraints regarding siting, weather, capital and operating costs, maintenance, etc., are pointed out. In comparing the various alternatives, the paper also considers environmental benefits and commercialization feasibility in terms of time and outlay

  19. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  20. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    National Research Council Canada - National Science Library

    2008-01-01

    .... greenhouse gas emissions (GHGs). If current trends continue, buildings worldwide will become the top energy consumers by 2025, and are likely to use as much energy as industry and transportation combined by 2050...

  1. How to Define Nearly Net Zero Energy Buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    2011-01-01

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member State to define what these for them exactly constitute. In the definition, local conditions are to be obviously taken into account, but the uniform methodology can be used in all......This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...

  2. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  4. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  5. Energy wood resources availability and delivery cost in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, Yuri; Karjalainen, Timo [Finnish Forest Research Inst., Joensuu (Finland)], E-mail: yuri.gerasimov@metla.fi

    2013-10-01

    Availability of solid by-products from wood harvesting and mechanical wood processing was estimated as sources for energy production based on recent actual harvesting, sawmill, and plywood production in Northwest Russia at 30 million m{sup 3}. Nearly 70% of the energy wood, 20 million m{sup 3}, was from harvesting, consisting of non-industrial round wood, unused branches and tops, defective wood resulting from logging, and spruce stumps removed after final felling. Over 30%, 10 million m{sup 3}, of the available volume was from sawmills and plywood mills, i.e. wood chips, sawdust, and bark. Due to current low utilization of energy wood for bioenergy in Northwest Russia, delivery cost of energy wood to the potential border-crossing points in Finland was analyzed for three means of transport: railways, roadways, and waterways. Nearly 28 million m{sup 3} of the energy wood could be transported by railways and 2 million m{sup 3} by roadways and waterways. The costs were lowest by roadways from the nearby border areas (10-15 Euro/m{sup 3} for wood processing by-products and 16-22 Euro/m{sup 3} for forest chips). The costs by railways varied from 12 to 27 Euro/m{sup 3} on shorter distances to 47-58 Euro/m{sup 3} on longer distances. Waterway transportation was the most expensive, about 28-48 Euro/m{sup 3}. It should be emphasized that we have estimated availability and delivery costs of energy wood, not prices which are defined by the market based on supply and demand.

  6. Transaction costs of Tradable White Certificate schemes: The Energy Efficiency Commitment as case study

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis [International Institute for Industrial Environmental Economics at Lund University, Lund (Sweden)

    2007-08-15

    This paper analyses the nature and scale of transaction costs (TCs) borne by obliged parties under a ''Tradable White Certificate'' (TWC) scheme. Taking the first phase of the Energy Efficiency Commitment (EEC1) in Great Britain as a case study, several sources of TCs were considered, such as search for information, persuasion of customers, negotiation with business partners, and measurement and verification activities. Information was obtained through interviews and a questionnaire distributed to obliged parties. Results show that the most significant sources of TCs were related to search for information, persuading customers and negotiating with managing agents/contractors to implement energy efficiency measures. Perceived high TCs related to contract negotiation and liability risks slightly reduced the low trading level. The scale of TCs was estimated to be around 10% and 30% of total investments costs for the lighting and insulation segments, respectively. The results indicate that, despite the presence and scale of TCs, the EEC1 scheme generated energy savings that yielded net societal benefits. Estimated financial benefits range from 0.6 to 6 p/kWh for insulation and lighting savings, respectively. When avoided external costs due to electricity savings are included, estimated economic benefits range from 3 to 8 p/kWh. Several lessons from the EEC1 can be drawn for TWC schemes. Among others, it is found that informative policy instruments to raise awareness among end-users are critical if a TWC scheme is to deliver cost-effective energy savings. In all, the nature and scale of TCs under TWC schemes will differ because of a number of endogenous and exogenous determinants. (author)

  7. Transaction costs of Tradable White Certificate schemes: The Energy Efficiency Commitment as case study

    International Nuclear Information System (INIS)

    Mundaca, Luis

    2007-01-01

    This paper analyses the nature and scale of transaction costs (TCs) borne by obliged parties under a 'Tradable White Certificate' (TWC) scheme. Taking the first phase of the Energy Efficiency Commitment (EEC1) in Great Britain as a case study, several sources of TCs were considered, such as search for information, persuasion of customers, negotiation with business partners, and measurement and verification activities. Information was obtained through interviews and a questionnaire distributed to obliged parties. Results show that the most significant sources of TCs were related to search for information, persuading customers and negotiating with managing agents/contractors to implement energy efficiency measures. Perceived high TCs related to contract negotiation and liability risks slightly reduced the low trading level. The scale of TCs was estimated to be around 10% and 30% of total investments costs for the lighting and insulation segments, respectively. The results indicate that, despite the presence and scale of TCs, the EEC1 scheme generated energy savings that yielded net societal benefits. Estimated financial benefits range from 0.6 to 6 p/kWh for insulation and lighting savings, respectively. When avoided external costs due to electricity savings are included, estimated economic benefits range from 3 to 8 p/kWh. Several lessons from the EEC1 can be drawn for TWC schemes. Among others, it is found that informative policy instruments to raise awareness among end-users are critical if a TWC scheme is to deliver cost-effective energy savings. In all, the nature and scale of TCs under TWC schemes will differ because of a number of endogenous and exogenous determinants

  8. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  9. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-03-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy.

  10. Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

    2010-12-01

    The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

  11. Site specific optimization of wind turbines energy cost: Iterative approach

    International Nuclear Information System (INIS)

    Rezaei Mirghaed, Mohammad; Roshandel, Ramin

    2013-01-01

    Highlights: • Optimization model of wind turbine parameters plus rectangular farm layout is developed. • Results show that levelized cost for single turbine fluctuates between 46.6 and 54.5 $/MW h. • Modeling results for two specific farms reported optimal sizing and farm layout. • Results show that levelized cost of the wind farms fluctuates between 45.8 and 67.2 $/MW h. - Abstract: The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum configurations and sizing for a single turbine with minimum levelized cost of electricity are presented. The optimal cost of energy for one turbine is calculated about 46.7, 54.5 and 46.6 dollars per MW h in the studied sites, respectively. In addition, optimal size of turbines, annual electricity production, capital cost, and wind farm layout for two different rectangular and square shaped farms in the proposed areas have been recognized. According to the results, optimal system configuration corresponds to minimum levelized cost of electricity about 45.8 to 67.2 dollars per MW h in the studied wind farms

  12. The energy cost of water independence: the case of Singapore.

    Science.gov (United States)

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  14. On Productions of Net-Baryons in Central Au-Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ya-Hui Chen

    2015-01-01

    Full Text Available The transverse momentum and rapidity distributions of net-baryons (baryons minus antibaryons produced in central gold-gold (Au-Au collisions at 62.4 and 200 GeV are analyzed in the framework of a multisource thermal model. Each source in the model is described by the Tsallis statistics to extract the effective temperature and entropy index from the transverse momentum distribution. The two parameters are used as input to describe the rapidity distribution and to extract the rapidity shift and contribution ratio. Then, the four types of parameters are used to structure some scatter plots of the considered particles in some three-dimensional (3D spaces at the stage of kinetic freeze-out, which are expected to show different characteristics for different particles and processes. The related methodology can be used in the analyses of particle production and event holography, which are useful for us to better understand the interacting mechanisms.

  15. How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?

    Directory of Open Access Journals (Sweden)

    David Bryngelsson

    2017-02-01

    Full Text Available We investigate how different global dietary scenarios affect the constraints on, and costs of, transforming the energy system to reach a global temperature stabilization limit of 2 °C above the pre-industrial level. A global food and agriculture model, World Food Supply Model (WOFSUM, is used to create three dietary scenarios and to calculate the CH4 and N2O emissions resulting from their respective food-supply chains. The diets are: (i a reference diet based on current trends; (ii a diet with high (reference-level meat consumption, but without ruminant products (i.e., no beef, lamb, or dairy, only pork and poultry; and (iii a vegan diet. The estimated CH4 and N2O emissions from food production are fed into a coupled energy and climate-system optimization model to quantify the energy system implications of the different dietary scenarios, given a 2 °C target. The results indicate that a phase-out of ruminant products substantially increases the emission space for CO2 by about 250 GtC which reduces the necessary pace of the energy system transition and cuts the net present value energy-system mitigation costs by 25%, for staying below 2 °C. Importantly, the additional cost savings with a vegan diet––beyond those achieved with a phase-out of ruminant products––are marginal (only one additional percentage point. This means that a general reduction of meat consumption is a far less effective strategy for meeting the 2 °C target than a reduction of beef and dairy consumption.

  16. The net employment impact of energy transition in France: An input-output analysis of the 'negaWatt' scenario

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2013-04-01

    We study the impact on employment in France of the implementation of the energy transition scenario built by negaWatt (2011), which provides a massive development of energy savings (through measures of sufficiency and energy efficiency) and renewable energy between 2012 and 2050. Compared to 2010, this scenario results in a halving of CO 2 emissions from energy sources in France in 2030 and a division by 16 in 2050, without capture and storage of CO 2 , without implementation of new nuclear power plant and closing existing plants after 40 years of operation at maximum. We calculate the effect on employment of the implementation of this scenario compared to a baseline scenario that extends recent developments and considers the policies already decided. The method used to calculate the effect on employment of each scenario is to calculate the cost of the main technical and organizational options used, to allocate these costs among the 118 branches of the French economy and multiply these costs by the employment content of each branch. The latter is estimated by input-output analysis, which enables the recording of jobs generated by the production of all inputs. One of two scenarios being more expensive than the other, one must take into account the negative effect on employment of funding such costs. For this, it is assumed that this additional cost is borne by households and that they decrease their consumption accordingly by the same amount. This avoids biasing the results in favour of the most expensive scenario. The implementation of negaWatt scenario leads to a positive effect on employment, on the order of 240 000 full-time equivalent jobs in 2020 and 630,000 in 2030. We study the sensitivity of results to assumptions on prices of imported energy, the evolution of labour productivity, the distribution of costs between households and governments, and finally the consumption-savings decision. The effect on employment is largely positive in all cases. (author)

  17. Energy saving and cost saving cooling; Energie und Kosten sparende Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Klaus W. [Architektur- und Fachpressebuero Klaus W. Koenig, Ueberlingen (Germany)

    2012-07-01

    In the case of cost reduction, energy conservation and resource savings, rain water is an ideal medium offering more advantages in comparison to the cooling with drinking water. There are no fees for the drinking water and drainage of rain water. It is not necessary to soften rain water so that further operational costs for the treatment and drainage of waste water can be saved. The avoidance of the related material flows and necessary energy is a practiced environmental protection and climate protection.

  18. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  19. Integration of net zero energy building with smart grid to improve regional electrification ratio towards sustainable development

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu

    2017-12-01

    Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.

  20. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-09-30

    Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE

  1. LTE UE Energy Saving by Applying Carrier Aggregation in a HetNet Scenario

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Wang, Hua; Mogensen, Preben

    2013-01-01

    In this work it is examined if downlink Carrier Aggregation (CA) can be used to save UE energy. A dual-receiver LTE release 10 UE is compared with a single-receiver LTE release 8 UE. The models are based on scaling of an existing LTE release 8 UE power model. The energy consumption of the UEs...... is examined in a Heterogeneous Network scenario consisting of macro and small cells. The unexpected conclusion is that CA UEs can save energy, compared to LTE release 8 UEs, if they, depending on cell load, experience a throughput gain of 20%. However if the UE throughput is unaltered the energy consumption...

  2. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded

  3. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  5. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  6. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining

    Science.gov (United States)

    J.Y. Zhu; X.S. Zhuang

    2012-01-01

    There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process...

  7. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.

  8. Energy costs of catfish space use as determined by biotelemetry.

    Directory of Open Access Journals (Sweden)

    Ondřej Slavík

    Full Text Available Animals use dispersed resources within their home range (HR during regular day-to-day activities. The high-quality area intensively used by an individual, where critical resources are concentrated, has been designated as the core area (CA. This study aimed to describe how animals utilize energy in the HR and CA assuming that changes would occur according to the size of the used areas. We observed energetic costs of space use in the largest European freshwater predator catfish, Silurus glanis, using physiological sensors. Catfish consumed significantly more energy within the CA compared to the rest of the HR area. In addition, energetic costs of space use within a large area were lower. These results generally indicate that utilization of larger areas is related to less demanding activities, such as patrolling and searching for new resources and mates. In contrast, fish occurrence in small areas appears to be related to energetically demanding use of spatially limited resources.

  9. Low-Cost energy contraption design using playground seesaw

    Science.gov (United States)

    Banlawe, I. A. P.; Acosta, N. J. E. L.

    2017-05-01

    The study was conducted at Western Philippines University, San Juan, Aborlan, Palawan. The study used the mechanical motion of playground seesaw as a means to produce electrical energy. The study aimed to design a low-cost prototype energy contraption using playground seesaw using locally available and recycled materials, to measure the voltage, current and power outputs produced at different situations and estimate the cost of the prototype. Using principle of pneumatics, two hand air pumps were employed on the two end sides of the playground seesaw and the mechanical motion of the seesaw up and down produces air that is used to rotate a DC motor to produce electrical energy. This electricity can be utilized for powering basic or low-power appliances. There were two trials of testing, each trial tests the different pressure level of the air tank and tests the opening of on-off valve (Full open and half open) when the compressed air was released. Results showed that all pressure level at full open produced significantly higher voltage, than the half open. However, the mean values of the current and power produced in all pressure level at full and half open have negligible variation. These results signify that the energy contraption using playground seesaw is an alternative viable source of electrical energy in the playgrounds, parks and other places and can be used as an auxiliary or back-up source for electricity.

  10. Liberalising energy markets: Cost management using measurement data

    International Nuclear Information System (INIS)

    Girsberger, H.

    2000-01-01

    This article looks at the various factors involved in assuring good cost management and customer relations in the liberalised energy market such as price levels, additional services and added value for the customer. The additional information required by the utilities to be able to implement such customer-oriented strategies is considered and ways of collecting and processing the data on energy consumption, customer profiles and trends are described. The further analysis of the data and the compilation of reports for management, marketing, engineering and quality assurance departments are discussed, as are the information technology and equipment interfaces required to do this

  11. The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners.

    Science.gov (United States)

    Shaw, Andrew J; Ingham, Stephen A; Fudge, Barry W; Folland, Jonathan P

    2013-12-01

    This study assessed the between-test reliability of oxygen cost (OC) and energy cost (EC) in distance runners, and contrasted it with the smallest worthwhile change (SWC) of these measures. OC and EC displayed similar levels of within-subject variation (typical error < 3.85%). However, the typical error (2.75% vs 2.74%) was greater than the SWC (1.38% vs 1.71%) for both OC and EC, respectively, indicating insufficient sensitivity to confidently detect small, but meaningful, changes in OC and EC.

  12. Energy assessments

    International Nuclear Information System (INIS)

    Unruh, T.D.

    1998-01-01

    Energy industry initiatives during the 1970s and during the 1990s are compared. During the 1970s, the objective was to reduce energy consumption and to reduce dependency on foreign fuel. Today, the emphasis is on reducing energy costs and to improve net operating income. The challenges posed by the drive to reduce energy costs are discussed. As a tool in the drive to reduce energy cost, the energy assessment process was described. The process entails a detailed analysis of energy consumption, an investigation of energy rates and an assessment of site conditions and equipment, with a view towards an optimum combination that will lead to energy cost reductions

  13. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  14. Successfully Implementing Net-Zero Energy Policy through the Air Force Military Construction Program

    Science.gov (United States)

    2013-03-01

    source, it is necessary to use site-to-source multipliers to account for the prime energy required to transport , produce, and deliver the power...ensure that the roof structure is sufficient. See the American Society of Civil Engineers ( ASCE ) international building code 7-05 for the method of...strip of shading (lightning rods, antennas , etc.) can limit the current of the entire array. Find out what the energy production of the proposed

  15. Socio-economic and Engineering Assessments of Renewable Energy Cost Reduction Potential

    Science.gov (United States)

    Seel, Joachim

    This dissertation combines three perspectives on the potential of cost reductions of renewable energy--a relevant topic, as high energy costs have traditionally been cited as major reason to vindicate developments of fossil fuel and nuclear power plants, and to justify financial support mechanisms and special incentives for renewable energy generators. First, I highlight the role of market and policy drivers in an international comparison of upfront capital expenses of residential photovoltaic systems in Germany and the United States that result in price differences of a factor of two and suggest cost reduction opportunities. In a second article I examine engineering approaches and siting considerations of large-scale photovoltaic projects in the United States that enable substantial system performance increases and allow thus for lower energy costs on a levelized basis. Finally, I investigate future cost reduction options of wind energy, ranging from capital expenses, operating expenses, and performance over a project's lifetime to financing costs. The assessment shows both substantial further cost decline potential for mature technologies like land-based turbines, nascent technologies like fixed-bottom offshore turbines, and experimental technologies like floating offshore turbines. The following paragraphs summarize each analysis: International upfront capital cost comparison of residential solar systems: Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany in 2012. This price discrepancy stems primarily from differences in non-hardware or "soft" costs between the two countries, of which only 35% be explained by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect granular data on PV soft costs in Germany, and the results are compared to those of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in

  16. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Conceptual design of the total system; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Zentai system gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on the conceptual design of the total system for the WE-NET project in 1996. Basic conditions are as follows: solid polymer water electrolysis, hydrogen combustion turbine power generation, hydrogen transport/storage through ammonia medium, power generation scale of 1000-4000MW (2-5 yen/kWh), and transport distance of 5000-20000km between supply and consumption places. The system efficiency was estimated to be 68% and 23% at an ammonia arrival time and power sending end, respectively, and it was dependent on a transport distance, while no power generation scale. The power cost was estimated to be 7 yen/Mcal and 33 yen/kWh, respectively. The system efficiency at a sending end was lower by 15% and 2% than that of the liquid hydrogen and methanol system, while the power cost was higher by 0 and 8 yen/kWh, respectively. It was necessary for loss reduction of this ammonia system to develop a new high-efficiency ammonia synthesis process, and hydrogen separation (decomposition/refining) process. 80 figs., 52 tabs.

  17. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility

    International Nuclear Information System (INIS)

    Babson, David M.; Bellman, Karen; Prakash, Shaurya; Fennell, Donna E.

    2013-01-01

    During anaerobic digestion, organic matter is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia is recycled as a fertilizer or removed via nitrification–denitrification in treatment systems; alternatively it could be recovered and catalytically converted to hydrogen, thus supplying additional fuel. To provide a basis for further investigation, a theoretical energy balance for a model system that incorporates anaerobic digestion, ammonia separation and recovery, and conversion of the ammonia to hydrogen is reported. The model Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system energy demands including heating, pumping, mixing, and ammonia reforming were subtracted from the total energy output from methane and hydrogen to create an overall energy balance. The energy balance was examined for the ADBH system operating with a fixed feedstock loading rate with C:N ratios (gC/gN) ranging from 136 to 3 which imposed corresponding total ammonia nitrogen (TAN) concentrations of 20–10,000 mg/L. Normalizing total energy potential to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH system than from anaerobic digestion generating only methane. Decreasing the C:N ratio increased the methane content of the biogas comprising primarily methane to >80% and increased the ammonia stripping energy demand. The system required 23–34% of the total energy generated as parasitic losses with no energy integration, but when internally produced heat and pressure differentials were recovered, parasitic losses were reduced to between 8 and 17%. -- Highlights: •Modeled an integrated Anaerobic Digestion-Bioammonia to Hydrogen (ADBH) system. •Demonstrated positive net energy produced over a range of conditions by ADBH. •Demonstrated significant advantages of dual fuel recovery for energy gain by >20%. •Suggested system design considerations for energy recovery with

  18. The “cost of not doing” energy planning: The Spanish energy bubble

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2016-01-01

    The Spanish power generation sector is facing dire problems: generation overcapacity, various tariff hikes over recent years, uncertainty over the financial viability of many power plants and a regulatory framework that lacks stability. This situation is the consequence of both poor energy policies and the economic crisis in the late 2000s and early 2010s. In this paper we analyze the following three points from an energy planning perspective: how the country has arrived at this situation; whether other alternatives would have been possible through adequate planning; and the quantitative benefits that would have been accrued from such planning. We do so by developing a LEAP model, and building three scenarios that allow to segregate the costs of the economic crisis from the costs of the lack of planning. We find that appropriate energy planning could have reduced investments in the Spanish power sector by 2010€28.6 billion without compromising on performance in terms of sustainability or energy security, while improving affordability. The main causes of these surplus investments were two supply bubbles: those of gas combined cycles and of solar technologies. The results of this work highlight the value of rigorous, quantitative energy planning, and the high costs of not doing it. - Highlights: • We analyze the costs of the lack of quantitative planning for energy-policy making. • We separate the costs of the economic crisis in Spain from the cost of not planning. • We find the “cost of not doing” energy planning to be 28.6 billion 2010EUR.

  19. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  20. Cost-benefit analysis: introducing energy efficient and renewable energy appliances in Lebanese households

    Energy Technology Data Exchange (ETDEWEB)

    Ruble, Isabella [American University of Beirut, Department of Economics (Lebanon)], E-mail: economics.ir@gmail.com

    2011-07-01

    In Lebanon, neglect of the electricity sector has led to a serious shortage in installed capacity. Recently, the government of Lebanon declared its intention to raise the share of renewable energy (RE) year by year in order to reduce energy consumption. This paper gave a cost-benefit analysis and reviewed the replacement of five major traditional household appliances with their energy efficient (EE) or renewable energy counterparts. This initiative would mostly be felt in three main areas: electricity consumption, consumer costs, and government expenditure. There is a strong possibility that the electricity demand of the 1.2 million Lebanese households can be reduced by introduction of these EE household appliances. Benefits would also accrue to the government in the form of avoided subsidies and reduced need for installed capacity. This paper finds that the benefits to be expected from these policy recommendations largely outweigh the costs.

  1. Energy cost of ambulation in healthy and disabled Filipino children.

    Science.gov (United States)

    Luna-Reyes, O B; Reyes, T M; So, F Y; Matti, B M; Lardizabal, A A

    1988-11-01

    The energy expenditures (Ee) for locomotion by nondisabled and disabled Filipino children aged 7 to 13 were determined and compared using indirect calorimetry. Forty-one controls (20 boys and 21 girls) ambulated at a comfortable pace; 16 children (eight boys and eight girls) with lower extremity poliomyelitis of varying severity ambulated by (1) wheelchair propulsion, (2) bilateral axillary crutches, (3) unilateral lower extremity ankle-foot orthoses or knee-ankle-foot orthoses, and (4) unassisted. Disabled children, regardless of their mode of ambulation, had to expend significantly more energy to ambulate than normal children (p less than 0.05). Wheelchair propulsion cost 16% more energy than the normal gait; crutch ambulation cost 41% more than the control. Children using unilateral braces sacrificed speed to attain near-normal Ee. When they ambulated without orthoses, their Ee increased by 109% over the control. In ascending order, the least energy was expanded by normal ambulation followed by disabled ambulation with unilateral brace, disabled propelling a wheelchair, disabled ambulation with bilateral axillary crutches, and disabled ambulation without brace. Efficiency of locomotion was reflected in the values obtained for Ee in terms of kcal x 10(-3)/kg/m, as demonstrated by the lower Ee but slower ambulation of children with braces, as compared to the nondisabled children.

  2. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-17

    In 2011, energy used by federal buildings cost approximately $7 billion. Reducing federal energy use could help address several important national policy goals, including: (1) increased energy security; (2) lowered emissions of greenhouse gases and other air pollutants; (3) increased return on taxpayer dollars; and (4) increased private sector innovation in energy efficient technologies. This report estimates the impact of efficient product procurement on reducing the amount of wasted energy (and, therefore, wasted money) associated with federal buildings, as well as on reducing the needless greenhouse gas emissions associated with these buildings.

  3. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  4. The costs and profitability of heat-energy entrepreneurship

    International Nuclear Information System (INIS)

    Solmio, H.

    1998-01-01

    Heat-energy entrepreneurs are responsible for the supply of fuel to and the labour input required by heating of buildings in their locality. An individual heat-energy entrepreneur or a consortium of them, a company or a co-operative is paid for the work according to the amount of heat-energy produced. In Finland there are about 50 operational heating targets and about 100 in planning stage. TTS-Institute has studied the activities of heat-energy entrepreneurs since 1993 in connection with research projects included in the national Bioenergy research programme. This study covered 10 heating plants with capacities 60 - 1000 kW, two of which are district heating plants. Five of the targets (60 - 370 kW) were included in the previous heat-energy entrepreneurs follow-up study conducted in 1993 - 1995 and five (80 - 1000 kW) were new. The main fuel used in all the targets was wood chips with light fuel oil reserve or auxiliary fuel. All but one of the entrepreneurs, supplying these heating targets located in Central and Southern Finland, are farmers, who procure the fuelwood and take care of heating and its supervision. Transportation of wood chips, topping up of the silo and heating work and working path consumed 0.12-0.78 h of time/MWh. When compared to the five study targets' follow-up results of the years 1993 - 1995, the results of the present study show reduction in labour consumption on part of the heat-energy entrepreneurs in all these targets. Profit margins of the entrepreneurs supplying heating energy were 73 - 132 FIM/h (excluding the interest on the equipment acquisition (agricultural tractor and associated equipment), and insurance and storage costs). When these costs were also taken into account, the resulting profit margin was 71 - 127 FIM/h. The margin included the entrepreneurs' earnings incl. monitoring of the heating plant, social security costs connected to earnings and entrepreneur's risk. When compared to the previous follow-up study, also the

  5. Impact of Financial Structure on the Cost of Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  6. Economic costs and benefits of the renewable energy sources

    International Nuclear Information System (INIS)

    De Leo, G. A.

    2001-01-01

    In this work it has been analysed the potential diffusion of renewable energy sources and co-generation in the Italian market on the basis of the level of maturation of the different technologies, predicted market growth and environmental impacts associated to them. A sensitivity analysis on external costs generated by global climate changes has allowed everybody to assess how possible errors in estimating the potential impact of greenhouse gasses can affect the estimate of the economic performances of different scenarios of energetic development. On the basis of these considerations, it can be outlined a potential doubling of energy production by renewable energies in the next 10 years, with specific reference of small hydroelectric, biogass and eolic power plants [it

  7. Net fossil energy savings for alternative mixes in various electric supply systems

    International Nuclear Information System (INIS)

    Essam, P.; Stocks, K.J.

    1978-11-01

    The actual and projected electric power station building programs of several countries and regions have been examined to determine what effect the introduction of nuclear power has on fossil fuel usage by the electricity system. It was found that (1) nuclear power leads directly to savings in fossil fuel usage, a larger nuclear component leading to larger savings; (2) individual nuclear stations rapidly wipe out the energy 'debt' incurred during building; and (3) the relatively short periods of consolidation in the early stages of a nation's building program usually prevent the nuclear component from going into energy 'debt'. Assessments of the energy requirements to build and run various types of power station have been made from the available literature

  8. Evaluation of the net energy value of glucose (cerelose) and maize starch in diets for rainbow trout (Salmo gairdneri).

    Science.gov (United States)

    Hilton, J W; Atkinson, J L; Slinger, S J

    1987-11-01

    1. Quadruplicate groups of rainbow trout (Salmo gairdneri) (mean body-weight 24.9 g) were reared on six dietary treatments (practical-type diets) in a modified paired-feeding experiment for 12 weeks at 15 degrees to determine the net energy (NE) value of starch and glucose to rainbow trout. 2. Three test diets were prepared to contain (g/kg): 0 supplemented carbohydrate (diet 1), 250 maize starch (diet 2) and 250 glucose (diet 3) and were given ad lib. to the trout with the feeding rate of the glucose- and starch-fed groups being monitored after each feeding. The remaining three treatments involved controlled feeding of the trout with diet 1 at 75% of the feed intake of trout reared on diets 2 and 3, so as to provide the same levels of protein and lipids without carbohydrate, and with diet 2 at 100% of the feed intake of trout reared on diet 3. 3. The difference in the final carcass energy of the ad lib.-fed group and the respective controlled-fed group divided by the amount of dietary glucose or starch energy consumed by the trout is the NE value for that carbohydrate. 4. The determined NE value of glucose was 3.99 kJ/g and starch 2.17 kJ/g, which is 24.6 and 12.6% respectively of the gross energy values of these carbohydrates in rainbow trout. 5. The results indicate that digestible energy and calculated metabolizable energy values for carbohydrates in rainbow trout overestimate the utilizable energy content of the diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [ORNL; Gandy, David [Electric Power Research Institute (EPRI); Lannom, Robert [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test valve

  10. Higher energy: is it necessary, is it worth the cost for radiation oncology?

    Science.gov (United States)

    Das, I J; Kase, K R

    1992-01-01

    The physical characteristics of the interactions of megavoltage photons and electrons with matter provide distinct advantages, relative to low-energy (orthovoltage) x rays, that lead to better radiation dose distributions in patients. Use of these high-energy radiations has resulted in better patient care, which has been reflected in improved radiation treatment outcome in recent years. But, as the desire for higher energy radiation beams increases, it becomes important to determine whether the physical characteristics that make megavoltage beams beneficial continue to provide a net advantage. It is demonstrated that, in fact, there is an energy range from 4 to 15 MV for photons and 4 to 20 MeV for electrons that is optimally suited for the treatment of cancer in humans. Radiation beams that exceed these maximum energies were found to add no advantage. This is because the costs (price of unit, installation, maintenance, shielding for neutron and photons) are not justified by either improved physical characteristics of the radiation (penetration, skin sparing, dose distribution) or treatment outcome. In fact, for photon beams some physical characteristics result in less desirable dose distributions, less accurate dosimetry, and increased safety problems as the energy increases for example, increasingly diffuse beam edges, loss of electron equilibrium, uncertainty in dose perturbations at interfaces, increased neutron contamination, and potential for higher personnel dose. The special features that make electron beams useful at lower energies, for example, skin sparing and small penetration, are lost at high energies. These physical factors are analyzed together with the economic factors related to radiation therapy patient care using megavoltage beams.

  11. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  12. From costs to prices: economic analysis of photovoltaic energy and services

    International Nuclear Information System (INIS)

    Chabot, Bernard

    1998-01-01

    A global economic analysis methodology is proposed in order to simplify the cost and the profitability assessment of energy and services delivered by photovoltaic (PV) systems. As examples, equations and graphic tools derived from this methodology give directly the overall discounted costs (ODC) of electricity delivered by grid-connected PV power plants and the ODC of water delivered by a stand-alone PV pumping system. The main criteria used for profitability analysis of PV projects are reviewed: net present value, internal rate of return and profitability index (PI). A simple method with associated equations and graphic tools is presented in order to assess the profitability of PV projects from their PI. Examples of profitability analysis of present and future grid-connected PV power plants built and operated by an independent power producers are presented and discussed, together with examples of stand-alone PV water pumping systems operated by the local community in developing countries. In both cases, equations and specific graphic tools are presented. Specific graphs can be used with different monetary units, different sizes and different investment costs of PV projects. (Author)

  13. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  14. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  15. Climate impacts on the cost of solar energy

    International Nuclear Information System (INIS)

    Flowers, Mallory E.; Smith, Matthew K.; Parsekian, Ara W.; Boyuk, Dmitriy S.; McGrath, Jenna K.; Yates, Luke

    2016-01-01

    Photovoltaic (PV) Levelized Cost of Energy (LCOE) estimates are widely utilized by decision makers to predict the long-term cost and benefits of solar PV installations, but fail to consider local climate, which impacts PV panel lifetime and performance. Specific types of solar PV panels are known to respond to climate factors differently. Mono-, poly-, and amorphous-silicon (Si) PV technologies are known to exhibit varying degradation rates and instantaneous power losses as a function of operating temperature, humidity, thermal cycling, and panel soiling. We formulate an extended LCOE calculation, which considers PV module performance and lifespan as a function of local climate. The LCOE is then calculated for crystalline and amorphous Si PV technologies across several climates. Finally, we assess the impact of various policy incentives on reducing the firm's cost of solar deployment when controlling for climate. This assessment is the first to quantify tradeoffs between technologies, geographies, and policies in a unified manner. Results suggest crystalline Si solar panels as the most promising candidate for commercial-scale PV systems due to their low degradation rates compared to amorphous technologies. Across technologies, we note the strong ability of investment subsidies in removing uncertainty and reducing the LCOE, compared to production incentives. - Highlights: •We integrate local climate into the Levelized Cost of photovoltaic technology. •Climate dictates panel degradation rates and the impact of temperature on efficiency. •We compare LCOE under policy scenarios for three technologies in four U. S. states. •Degradation is highly variable, increasing costs by shortening panel life in many regions. •Incentives targeting investment are most effective at reducing solar deployment costs.

  16. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  17. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-01

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  18. Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues

    International Nuclear Information System (INIS)

    Llano-Paz, Fernando de; Martínez Fernandez, Paulino; Soares, Isabel

    2016-01-01

    The different energy sources, their costs and impacts on the environment determine the electricity production process. Energy planning must solve the existence of uncertainty through the diversification of power generation technologies portfolio. The European Union energy and environmental policy has been mainly based on promoting the security of supply, efficiency, energy savings and the promotion of Renewable Energy Sources. The recent European Commission communication “Towards an European Energy Union: A secure, sustainable, competitive and affordable energy for every European” establishes the path for the European future. This study deals with the analysis of the latest EU “Energy Union” goals through the application of Markowitz portfolio theory considering technological real assets. The EU targets are assessed under a double perspective: economic and environmental. The model concludes that implementing a high share of Renewable Energy target in the design of European Policies is not relevant: the maximization of Renewable Energy share could be achieved considering a sole Low Emissions of carbon dioxide policy. Additionally it is confirmed the need of Nuclear energy in 2030: a zero nuclear energy share in 2030 European Mix is not possible, unless the technological limits participation for Renewable Energy Sources were increased. - Highlights: • Implementing a high RES share target in European Policies could not be relevant. • Maximizing RES share could be achieved considering a sole Low Emissions policy. • The EU 2030 Nuclear energy 50% shutting down could be feasible. • Minimizing risk portfolio presents high diversification and energy security levels.

  19. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Comparative cost analysis of insecticide-treated net delivery strategies: sales supported by social marketing and free distribution through antenatal care.

    Science.gov (United States)

    De Allegri, Manuela; Marschall, Paul; Flessa, Steffen; Tiendrebéogo, Justin; Kouyaté, Bocar; Jahn, Albrecht; Müller, Olaf

    2010-01-01

    Insecticide-treated nets (ITNs) are effective in substantially reducing malaria transmission. Still, ITN coverage in sub-Saharan Africa (SSA) remains extremely low. Policy makers are concerned with identifying the most suitable delivery mechanism to achieve rapid yet sustainable increases in ITN coverage. Little is known, however, on the comparative costs of alternative ITN distribution strategies. This paper aimed to fill this gap in knowledge by developing such a comparative cost analysis, looking at the cost per ITN distributed for two alternative interventions: subsidized sales supported by social marketing and free distribution to pregnant women through antenatal care (ANC). The study was conducted in rural Burkina Faso, where the two interventions were carried out alongside one another in 2006/07. Cost information was collected prospectively to derive both a financial analysis adopting a provider's perspective and an economic analysis adopting a societal perspective. The average financial cost per ITN distributed was US$8.08 and US$7.21 for sales supported by social marketing and free distribution through ANC, respectively. The average economic cost per ITN distributed was US$4.81 for both interventions. Contrary to common belief, costs did not differ substantially between the two interventions. Due to the district's ability to rely fully on the use of existing resources, financial costs associated with free ITN distribution through ANC were in fact even lower than those associated with the social marketing campaign. This represents an encouraging finding for SSA governments and points to the possibility to invest in programmes to favour free ITN distribution through existing health facilities. Given restricted budgets, however, free distribution programmes are unlikely to be feasible.

  1. Refining cost-effectiveness analyses using the net benefit approach and econometric methods: an example from a trial of anti-depressant treatment.

    Science.gov (United States)

    Sabes-Figuera, Ramon; McCrone, Paul; Kendricks, Antony

    2013-04-01

    Economic evaluation analyses can be enhanced by employing regression methods, allowing for the identification of important sub-groups and to adjust for imperfect randomisation in clinical trials or to analyse non-randomised data. To explore the benefits of combining regression techniques and the standard Bayesian approach to refine cost-effectiveness analyses using data from randomised clinical trials. Data from a randomised trial of anti-depressant treatment were analysed and a regression model was used to explore the factors that have an impact on the net benefit (NB) statistic with the aim of using these findings to adjust the cost-effectiveness acceptability curves. Exploratory sub-samples' analyses were carried out to explore possible differences in cost-effectiveness. Results The analysis found that having suffered a previous similar depression is strongly correlated with a lower NB, independent of the outcome measure or follow-up point. In patients with previous similar depression, adding an selective serotonin reuptake inhibitors (SSRI) to supportive care for mild-to-moderate depression is probably cost-effective at the level used by the English National Institute for Health and Clinical Excellence to make recommendations. This analysis highlights the need for incorporation of econometric methods into cost-effectiveness analyses using the NB approach.

  2. Equation of costs and function objective for the optimization of the design of nets of flow of liquids to pressure

    International Nuclear Information System (INIS)

    Narvaez R, Paulo Cesar; Galeano P, Haiver

    2002-01-01

    Optimal design problem of liquid distribution systems has been viewed as the selection of pipe sizes and pumps, which will minimize overall costs, accomplishing the flow and pressure constraints. There is a set of methods for least cost design of liquids distribution networks (6). In the last years, some of them have been studied broadly: linear programming (1, 4, 5, 7], non-linear programming [8, 9], and genetic algorithms (3, 10, 13). This paper describes the development of a cost equation and the objective function for liquid distribution networks that together to the mathematical model and the solution method of the flow problem developed by Narvaez (11), were used by in a computer model that involves the application of an genetic algorithm to the problem of least cost design of liquids distribution networks

  3. 10 CFR 436.17 - Establishing energy or water cost data.

    Science.gov (United States)

    2010-01-01

    ... with § 436.14(c). (b) When energy costs begin to accrue in the base year, the present value of energy... present value of energy costs over the delay, calculated using the adjusted, modified uniform present worth factor for the period of delay, from the present value of energy costs over the study period or...

  4. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... (PCM). The ground heat exchanger acts as the heat sink and heat source for cooling and heating seasons, respectively. Free cooling enables the same cooling effect to be delivered with 8% of the energy consumption of a representative chiller. The heating and cooling needs of the house are addressed...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  5. A fuzzy levelised energy cost method for renewable energy technology assessment

    International Nuclear Information System (INIS)

    Wright, Daniel G.; Dey, Prasanta K.; Brammer, John G.

    2013-01-01

    Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. -- Highlights: •Proposes a fuzzy levelised energy cost (F-LEC) methodology to support energy project development. •Incorporates the terms and cost of project finance into the F-LEC method. •Applies the F-LEC method to an example bioenergy project development case

  6. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Morteza; Omid, Mahmoud; Akram, Asadollah [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, School of Agriculture and Natural Resources, University of Tehran, Karaj (Iran)

    2010-07-15

    The aim of this study was to determine the amount of input-output energy used in potato production and to make an economic analysis of potato production in Hamadan province, Iran. Data for the production of potatoes were collected from 100 producers by using a face to face questionnaire method. The population investigated was divided into two groups. Group I was consisted of 68 farmers (owner of machinery and high level of farming technology) and Group II of 32 farmers (non-owner of machinery and low level of farming technology). The results revealed that 153071.40 MJ ha{sup -1} energy consumed by Group I and 157151.12 MJ ha{sup -1} energy consumed by Group II. The energy ratio, energy productivity, specific energy, net energy gain and energy intensiveness were calculated. The net energy of potato production in Group I and Group II was 4110.95 MJ ha{sup -1} and -21744.67 MJ ha{sup -1}, respectively. Cost analysis showed that total cost of potato production in Groups I and II were 4784.68 and 4172.64 $ ha{sup -1}, respectively. The corresponding, benefit to cost ratio from potato production in the surveyed groups were 1.09 and 0.96, respectively. It was concluded that extension activities are needed to improve the efficiency of energy consumption in potato production. (author)

  7. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  8. Open-wheel race car driving: energy cost for pilots.

    Science.gov (United States)

    Beaune, Bruno; Durand, Sylvain; Mariot, Jean-Pierre

    2010-11-01

    The aim of this study was to evaluate the energy cost of speedway open-wheel race car driving using actimetry. Eight pilot students participated in a training session consisting of 5 successive bouts of around 30 minutes driving at steady speed on the Bugatti speedway of Le Mans (France). Energy expenditure (EE, kcal) was determined continuously by the actimetric method using the standard equation. Energy cost was estimated through physical activity ratio (PAR = EE/BMR ratio, Mets) calculation after basal metabolism rate (BMR, kcal·min-1) estimation. A 1-met PAR value was attributed to the individual BMR of each volunteer. Bout durations and EE were not significantly different between driving bouts. Mean speed was 139.94 ± 2.96 km·h-1. Physical activity ratio values ranged 4.92 ± 0.50 to 5.43 ± 0.47 Mets, corresponding to a 5.27 ± 0.47-Mets mean PAR values and a 1.21 ± 0.41 kcal·min-1 mean BMR value. These results suggest that actimetry is a simple and efficient method for EE and PAR measurements in motor sports. However, further studies are needed in the future to accurately evaluate relationships between PAR and driving intensity or between PAR and race car type.

  9. Demonstrate Energy Component of the Installation Master Plan Using Net Zero Installation Virtual Testbed

    Science.gov (United States)

    2015-09-01

    compliant GIS, usually obtained from the installation itself. NZP also includes an appropriate weather file for the location selected, using the closest...such as solar photovoltaics, solar-thermal, wind energy, biomass (wood chips, etc.), biogas , or synthetic gas need to be considered as part of the mix...have better information. In some cases, such as photovoltaics, users can obtain data from an online system and enter it into NZP. In this case, users

  10. Social costs of energy. Present status and future trends. Proceedings

    International Nuclear Information System (INIS)

    Hohmeyer, O.; Ottinger, R.L.

    1994-01-01

    The social or external costs of energy have received a high degree of internatinal attention since the publication of the first empirical results in 1988. Possible global climate change and the call for a sustainable future of mankind have put the question of social costs onto the agenda of many national and international converences like the 'Earth Summit' in Rio 1992. A scientific discussion has been sparked off, searching for the best methodoligical approaches and reliable empirical data. An overview of this discussion was given by the report on the 1st international workshop published in 1991. This book reports on the 2nd international workshop on the subject and gives a broad overview of the discussion in the 25 papers presented. It is the most comprehensive picture of this subject matter avvailable. (orig.)

  11. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  12. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    International Nuclear Information System (INIS)

    Oksay, Serhan; Iseri, Emre

    2011-01-01

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: → This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. → The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. → The paradigm shift towards renewable energy policies could provide Turkey

  13. A new energy paradigm for Turkey: A political risk-inclusive cost analysis for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oksay, Serhan, E-mail: serhano@khas.edu.t [Kadir Has University, Department of Business Administration (Turkey); Iseri, Emre, E-mail: eiseri@khas.edu.t [Kadir Has University, Department of International Relations, Cibali Campus, Kadir Has Caddesi 34083, Istanbul (Turkey)

    2011-05-15

    Implementing sustainable development policies in order to achieve economic and social development while maintaining adequate environmental protection to minimize the damage inflicted by the constantly increasing world population must be a major priority in the 21st century. While the emerging global debate on potential cost-effective responses has produced potential solutions such as cap and trade systems and/or carbon taxes as part of evolving sustainable energy/environmental policies, this kind of intellectual inquiry does not seem to be an issue among Turkish policy-making elites. This is mainly due to their miscalculation that pursuing sustainable energy policies is much more expensive in comparison to the utilization of fossil fuels such as natural gas. Nevertheless, the pegged prices of an energy sector dominated by natural gas are illusive, as both the political risks and environmental damage have not been incorporated into the current cost calculations. This paper evaluates energy policies through a lens of risk management and takes an alternative approach to calculating energy costs by factoring in political risks. This formulation reveals that the cost of traditional fossil-based energy is in fact more expensive than renewable energy. In addition to being environmentally friendly, the paradigm shift towards renewable energy policies would provide Turkey with a significant opportunity to stimulate its economy by being one of the first countries to develop green technologies and as a result this burgeoning sector would prompt job creation as well; mainly due to the externalities. - Research highlights: {yields} This paper evaluates Turkish energy policies through risk management scope and takes an alternative approach on calculating electricity costs by factoring in political risks. {yields} The cost of traditional fossil-based energy turns out to be more expensive than renewable energy. {yields} The paradigm shift towards renewable energy policies could

  14. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  15. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Science.gov (United States)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  16. Cost-effectiveness analysis of vaccinating children in Malawi with RTS,S vaccines in comparison with long-lasting insecticide-treated nets.

    Science.gov (United States)

    Seo, Mikyung Kelly; Baker, Peter; Ngo, Karen Ngoc-Lan

    2014-02-24

    New RTS,S malaria vaccines may soon be licensed, yet its cost-effectiveness is unknown. Before the widespread introduction of RTS,S vaccines, cost-effectiveness studies are needed to help inform governments in resource-poor settings about how best to prioritize between the new vaccine and existing malaria interventions. A Markov model simulated malaria progression in a hypothetical Malawian birth cohort. Parameters were based on published data. Three strategies were compared: no intervention, vaccination at one year, and long-lasting, insecticide-treated nets (LLINs) at birth. Both health service and societal perspectives were explored. Health outcomes were measured in disability-adjusted life years (DALYs) averted and costed in 2012 US$. Incremental cost-effectiveness ratios (ICERs) were calculated and extensive sensitivity analyses were conducted. Three times GDP per capita ($1,095) per DALY averted was used for a cost-effectiveness threshold, whilst one times GDP ($365) was considered 'very cost-effective'. From a societal perspective the vaccine strategy was dominant. It averted 0.11 more DALYs than LLINs and 0.372 more DALYs than the no intervention strategy per person, while costing $10.04 less than LLINs and $59.74 less than no intervention. From a health service perspective the vaccine's ICER was $145.03 per DALY averted, and thus can be considered very cost-effective. The results were robust to changes in all variables except the vaccine and LLINs' duration of efficacy. Vaccines remained cost-effective even at the lowest assumed efficacy levels of 49.6% (mild malaria) and 14.2% (severe malaria), and the highest price of $15. However, from a societal perspective, if the vaccine duration efficacy was set below 2.69 years or the LLIN duration of efficacy was greater than 4.24 years then LLINs became the more cost-effective strategy. The results