WorldWideScience

Sample records for net electrical charge

  1. Impact of fuel-dependent electricity retail charges on the value of net-metered PV applications in vertically integrated systems

    International Nuclear Information System (INIS)

    Nikolaidis, Alexandros I.; Milidonis, Andreas; Charalambous, Charalambos A.

    2015-01-01

    Retail electricity charges inevitably influence the financial rationale of using net-metered photovoltaic (PV) applications since their structure as well as their level may vary significantly over the life-cycle of a customer-sited PV generation system. This subsequently introduces a further uncertainty for a ratepayer considering a net-metered PV investment. To thoroughly comprehend this uncertainty, the paper employs a top-down approach – in vertically integrated environments – to model the volatility of partially hedged electricity charges and its subsequent impact on the value of bill savings from net-metered PV systems. Besides the utility's pricing strategy and rate structures, particular emphasis is given in modeling the fossil fuel mix component that introduces a significant source of uncertainty on electricity charges and thus on the value of bill savings of net-metered, customer-sited, PV applications. - Highlights: • A top-down approach of developing traditional electricity charges is provided. • The combined effect of pricing strategies, rate structures and fuels is examined. • Fossil fuel prices can substantially affect the net metering compensation. • A financial risk assessment for net-metered PV systems is performed

  2. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  3. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  4. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  5. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  6. Controlling the net charge on a nanoparticle optically levitated in vacuum

    Science.gov (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  7. The net charge at interfaces between insulators

    International Nuclear Information System (INIS)

    Bristowe, N C; Littlewood, P B; Artacho, Emilio

    2011-01-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO 3 over SrTiO 3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta. (viewpoint)

  8. First result of net-charge jet-correlations from STAR

    International Nuclear Information System (INIS)

    Wang, Q.

    2011-01-01

    We presented results on azimuthal correlation of net-charge with high ρ T trigger particles. It is found that the net-charge correlation shape is similar to that of total-charge. On the near-side, the net-charge and total-charge ρ T spectra have similar shape and both are harder than the inclusives. On the away-side, the correlated spectra are not much harder than the inclusives, and the net-charge/total-charge ratio increases with ρ T and is similar to the inclusive ratio. (author)

  9. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  10. Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following

    Science.gov (United States)

    Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott

    2014-12-01

    Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.

  11. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    Science.gov (United States)

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  12. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kortschot, R. J.; Bakelaar, I. A.; Erné, B. H.; Kuipers, B. W. M., E-mail: B.W.M.Kuipers@uu.nl [Van ' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2014-03-15

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10{sup −2} to 10{sup 7} Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  13. The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives

    International Nuclear Information System (INIS)

    Eid, Cherrelle; Reneses Guillén, Javier; Frías Marín, Pablo; Hakvoort, Rudi

    2014-01-01

    Net-metering is commonly known as a practice by which owners of distributed generation (DG) units may offset their electricity consumption from the grid with local generation. The increasing number of prosumers (consumers that both produce and consume electricity) with solar photovoltaic (PV) generation combined with net-metering results in reduced incomes for many network utilities worldwide. Consequently, this pushes utilities to increase charges per kW h in order to recover costs. For non-PV owners, this could result into inequality issues due to the fact that also non-PV owners have to pay higher chargers for their electricity consumed to make up for netted costs of PV-owners. In order to provide insight in those inequality issues caused by net-metering, this study presents the effects on cross-subsidies, cost recovery and policy objectives evolving from different applied netmetering and tariff designs for a residential consumer. Eventually this paper provides recommendations regarding tariffs and metering that will result in more explicit incentives for PV, instead of the current implicit incentives which are present to PV owners due to net-metering. - Highlights: • Network users are frequently charged by energy charging and fixed charging. • Net-metering with energy charging causes potential problems for DSO cost recovery. • Increasing rolling credit timeframes amplify net-metering impacts on cost recovery. • Observed capacity charging can incentivize local storage and self-consumption. • PV owners should receive direct incentives in order to avoid cross subsidization

  14. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  15. Emissions and Cost Implications of Controlled Electric Vehicle Charging in the U.S. PJM Interconnection.

    Science.gov (United States)

    Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger

    2015-05-05

    We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.

  16. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  17. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Tarnowsky, Terence J.; Westfall, Gary D.

    2013-01-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (κσ 2 and Sσ) of the net-charge and net-proton distributions in Au + Au collisions at √(s NN )=7.7–200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products κσ 2 and Sσ have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between κσ 2 and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus–nucleus collisions

  18. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    Science.gov (United States)

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  19. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management

    DEFF Research Database (Denmark)

    Li, Ruoyang; Wu, Qiuwei; Oren, Shmuel S.

    2013-01-01

    This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal...... shown that the socially optimal charging schedule can be implemented through a decentralized mechanism where loads respond autonomously to the posted DLMPs by maximizing their individual net surplus...

  20. Study Of Higher Moments Of Net-Electric Charge & Net-Proton Number Fluctuations In Pb+Pb Collisions At $\\sqrt{s_{NN}}$=2.76 TeV In ALICE At LHC

    CERN Document Server

    Behera, Nirbhay Kumar

    Lattice QCD predicts that at extreme temperature and energy density, QCD matter will undergo a phase transition from hadronic matter to partonic matter called as QGP. One of the fundamental goals of heavy ion collision experiments to map the QCD phase diagram as a function of temperature (T) and baryo-chemical potential ($\\mu_{B}$). There are many proposed experimental signatures of QGP and fluctuations study are regarded as sensitive tool for it. It is proposed that fluctuation of conserved quantities like net-charge and net-proton can be used to map the QCD phase diagram. The mean ($\\mu$), sigma ($\\sigma$), skewness (S) and kurtosis ($\\kappa$) of the distribution of net charge and net proton are believed to be sensitive probes in fluctuation analysis. It has been argued that critical phenomena are signaled with increase and divergence of correlation length. The dependence of $n^{th}$ order higher moments (cumulants, $c_{n}$) with the correlation length $\\xi$ is as $c_{n}\\sim\\xi^{2.5n-3}$. At LHC energy, the...

  1. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  2. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  3. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N., E-mail: c.richard.devore@nasa.gov [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  4. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  5. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    Science.gov (United States)

    Krishnan, M.

    2017-05-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or

  6. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  7. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    Science.gov (United States)

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  8. Charging Electric Vehicles in Smart Cities: An EVI-Pro Analysis of Columbus, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Stanley E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-09

    With the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) worked with the City of Columbus, Ohio, to develop a plan for the expansion of the region's network of charging stations to support increased adoption of plug-in electric vehicles (PEVs) in the local market. NREL's Electric Vehicle Infrastructure Projection (EVI-Pro) model was used to generate scenarios of regional charging infrastructure to support consumer PEV adoption. Results indicate that approximately 400 Level 2 plugs at multi-unit dwellings and 350 Level 2 plugs at non-residential locations are required to support Columbus' primary PEV goal of 5,300 PEVs on the road by the end of 2019. This analysis finds that while consumer demand for fast charging is expected to remain low (due to modest anticipated adoption of short-range battery electric vehicles), a minimum level of fast charging coverage across the city is required to ease consumer range anxiety concerns by providing a safety net for unexpected charging events. Sensitivity analyses around some key assumptions have also been performed; of these, consumer preference for PHEV versus BEV and for their electric driving range, ambient conditions, and availability of residential charging at multi-unit dwellings were identified as key determinants of the non-residential PEV charging infrastructure required to support PEV adoption. The results discussed in this report can be leveraged by similar U.S. cities as part of a strategy to accelerate PEV adoption in the light-duty vehicle market.

  9. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  10. Influence of kinematic cuts on the net charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Oliinychenko, Dmytro [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Steinheimer, Jan [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2016-12-15

    The higher moments of the net charge distributions, e.g. the skewness and kurtosis, are studied within an infinite hadronic matter calculation in a transport approach. By dividing the box into several parts, the volume dependence of the fluctuations is investigated. After confirming that the initial distributions follow the expectations from a binomial distribution, the influence of quantum number conservation in this case the net charge in the system on the higher moments is evaluated. For this purpose, the composition of the hadron gas is adjusted and only pions and ρ mesons are simulated to investigate the charge conservation effect. In addition, the effect of imposing kinematic cuts in momentum space is analysed. The role of resonance excitations and decays on the higher moments can also be studied within this model. This work is highly relevant to understand the experimental measurements of higher moments obtained in the RHIC beam energy scan and their comparison to lattice results and other theoretical calculations assuming infinite matter.

  11. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Zhou Jun; Xie Li

    2011-01-01

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  12. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Xie Li

    2011-01-20

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  13. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  14. S-matrix analysis of the baryon electric charge correlation

    Science.gov (United States)

    Lo, Pok Man; Friman, Bengt; Redlich, Krzysztof; Sasaki, Chihiro

    2018-03-01

    We compute the correlation of the net baryon number with the electric charge (χBQ) for an interacting hadron gas using the S-matrix formulation of statistical mechanics. The observable χBQ is particularly sensitive to the details of the pion-nucleon interaction, which are consistently incorporated in the current scheme via the empirical scattering phase shifts. Comparing to the recent lattice QCD studies in the (2 + 1)-flavor system, we find that the natural implementation of interactions and the proper treatment of resonances in the S-matrix approach lead to an improved description of the lattice data over that obtained in the hadron resonance gas model.

  15. Net charge of quark jets in (anti)neutrino interactions

    International Nuclear Information System (INIS)

    Teper, M.

    1981-01-01

    We analyse recent measurements of the net charges of quark jets in neutrino and antineutrino interactions. The data indicates that (i) the two quarks in the nucleon fragmentation region prefer to behave as a diquark rather than as a pair of independent quarks, and (ii) the struck quark does not appear to suffer any soft charge exchange of the kind that occurs when a valence quark inside a nucleon is slowed to x approx. O. (orig.)

  16. Plug-in electric vehicle (PEV) smart charging module

    Science.gov (United States)

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  17. Determination of net atomic charges in anthraquinone by means of 5-h X-ray diffraction experiment

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav

    2002-01-01

    Roč. 611, 1-3 (2002), s. 139-146 ISSN 0022-2860 R&D Projects: GA ČR GA203/99/M037 Institutional research plan: CEZ:AV0Z4050913 Keywords : net charges * net atomic charges * charge density analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.122, year: 2002

  18. Assessment of the Electrification of the Road Transport Sector on Net System Emissions

    Science.gov (United States)

    Miller, James

    As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.

  19. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  20. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

    Directory of Open Access Journals (Sweden)

    Bin Ye

    2015-11-01

    Full Text Available In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy. An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

  1. Electric Charge as a Form of Imaginary Energy

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2008-04-01

    Full Text Available Electric charge is considered as a form of imaginary energy. With this consideration, the energy of an electrically charged particle is a complex number. The real part is proportional to the mass, while the imaginary part is proportional to the electric charge. The energy of an antiparticle is given by conjugating the energy of its corresponding particle. Newton's law of gravity and Coulomb's law of electric force are classically unified into a single expression of the interaction between the complex energies of two electrically charged particles. Interaction between real energies (or masses is the gravitational force. Interaction between imaginary energies (or electric charges is the electromagnetic force. Since radiation is also a form of real energy, there are another two types of interactions between real energies: the mass-radiation interaction and the radiation-radiation interaction. Calculating the work done by the mass-radiation interaction on a photon, we can derive the Einsteinian gravitational redshift. Calculating the work done by the radiation-radiation interaction on a photon, we can obtain a radiation redshift. This study suggests the electric charge as a form of imaginary energy, so that classically unifies the gravitational and electric forces and derives the Einsteinian gravitational redshift.

  2. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  3. The electric charge of neutrinos and plasmon decay

    CERN Document Server

    Altherr, Tanguy

    1994-01-01

    By using both thermal field theory and a somewhat more intuitive method, we define the electric charge as well as the charge radius of neutrinos propagating inside a plasma. We show that electron neutrinos acquire a charge radius of order $\\sim 6.5 \\times 10^{-16}$ cm, regardless of the properties of the medium. Then, we compute the rate of plasmon decay which such an electric charge or a charge radius implies. Taking into account the relativistic effects of the degenerate electron gas, we compare our results to various approximations as well as to recent calculations and determine the regimes where the electric charge or the charge radius does mediate the decay of plasmons. Finally, we discuss the stellar limits on any anomalous charge radius of neutrinos.

  4. Optimal control of an electric vehicle’s charging schedule under electricity markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Kang, Qi

    2013-01-01

    As increasing numbers of electric vehicles (EVs) enter into the society, the charging behavior of EVs has got lots of attention due to its economical difference within the electricity market. The charging cost for EVs generally differ from each other in choosing the charging time interval (hourly...

  5. Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market

    Directory of Open Access Journals (Sweden)

    Ilham Naharudinsyah

    2018-06-01

    Full Text Available Trading on the energy market is a possible way to reduce the electricity costs of charging electric vehicles at public charging stations. In many European countries, it is possible to trade electricity until shortly before the period of delivery on so called intraday electricity markets. In the present work, the potential for reducing the electricity costs by trading on the intraday market is investigated using the example of the German market. Based on simulations, the authors reveal that by optimizing the charging schedule together with the trading on the intraday electricity market, the costs can be reduced by around 8% compared to purchasing all the required energy from the energy supplier. By allowing the charging station operator to resell the energy to the intraday electricity market, an additional cost reduction of around 1% can be achieved. Besides the potential cost savings, the impacts of the trading unit and of the lead time of the intraday electricity market on the costs are investigated. The authors reveal that the achievable electricity costs can be strongly affected by the lead time, while the trading unit has only a minor effect on the costs.

  6. Price Based Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth

    2012-01-01

    It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This pa......It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid...... method where distribution system operator (DSO) optimizes the cost of EV charging while taking substation transformer capacity into account....

  7. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  8. Prediction on the charging demand for electric vehicles in Chengdu

    Science.gov (United States)

    yun, Cai; wanquan, Zhang; wei, You; pan, Mao

    2018-03-01

    The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.

  9. Improved grid operation through power smoothing control strategies utilizing dedicated energy storage at an electric vehicle charging station

    DEFF Research Database (Denmark)

    Martinsen, Thomas; Holjevac, Ninoslav; Bremdal, Bernt A.

    2016-01-01

    project (Flex-ChEV) supported by the ERA-Net Smart Grid FP7 program. The principal asset of the proposed charging station (CS) is a dedicated Energy Storage System (ESS) to compensate for adverse effects on the grid caused by peak charging demand and which could impose severe trials for the local DSO....... Furthermore, CS of this kind could serve multiple business purposes in a smart grid. It can serve as a hub for seamless integration of local renewable and distributed energy resources, it can provide added flexibility for the local grid through different ancillary services and it can act as an efficient......This paper addresses the principal service aspects for electric vehicles (EV), as well as issues related to energy storage design, charging station integration into power system and load management issues. It builds on the research conducted in the Flexible Electric Vehicle Charging Infrastructure...

  10. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  11. Charging electric vehicles from solar energy : Power converter, charging algorithm and system design

    NARCIS (Netherlands)

    Chandra Mouli, G.R.

    2018-01-01

    Electric vehicles are only sustainable if the electricity used to charge them comes from renewable sources and not from fossil fuel based power plants. The goal of this PhD thesis is to develop a highly efficient, V2G-enabled smart charging system for electric vehicles at

  12. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  13. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  14. Conserved charge fluctuations at vanishing and non-vanishing chemical potential

    Science.gov (United States)

    Karsch, Frithjof

    2017-11-01

    Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.

  15. System and method for charging a plug-in electric vehicle

    Science.gov (United States)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.; Newhouse, Vernon L.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate the charging settings every time they charge the plug-in electric vehicle in a new location.

  16. Smart Electric Vehicle Charging Infrastructure Overview

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, Joshua; Chung, Ching-Yen; Qiu, Charlie; Chu, Peter; Gadh, Rajit

    2014-02-19

    WINSmartEV™ is a smart electric vehicle charging system that has been built and is currently in operation. It is a software and network based EV charging system designed and built around the ideas of intelligent charge scheduling, multiplexing (connecting multiple vehicles to each circuit) and flexibility. This paper gives an overview of this smart charging system with an eye toward its unique features and capabilities.

  17. Electrically charged one-and-a-half monopole solution

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming [Universiti Sains Malaysia, School of Physics, USM Penang (Malaysia)

    2014-05-15

    Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)

  18. Electrically charged one-and-a-half monopole solution

    International Nuclear Information System (INIS)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2014-01-01

    Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)

  19. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  20. Electrical Detection of Spin-to-Charge Conversion in a Topological Insulator Bi2Te3

    Science.gov (United States)

    Li, Connie H.; van't Erve, Olaf M. J.; Li, Yaoyi; Li, Lian; Jonker, Berry T.

    Spin-momentum locking in topological insulators (TIs) dictates that an unpolarized charge current creates a net spin polarization. We recently demonstrated the first electrical detection of this spontaneous polarization in a transport geometry, using a ferromagnetic (FM) / tunnel barrier contact, where the projection of the TI surface state spin on the magnetization of detector is measured as a voltage [1]. Alternatively, if spins are injected into the TI surface state system, it is distinctively associated with a unique carrier momentum, and hence should generated a charge accumulation, similar to that of inverse spin Hall effect. Here we experimentally demonstrate both effects in the same device fabricated in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface states system. This reverse measurement is an independent confirmation of spin-momentum locking in the TI surface states, and offers additional avenue for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the TI surface state spin system, an important step towards its utilization in TI-based spintronics devices. C.H. Li et al., Nat. Nanotech. 9, 218 (2014). Supported by NRL core funds and Nanoscience Institute.

  1. Electric motorcycle charging station powered by solar energy

    Science.gov (United States)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  2. Electric Vehicle Smart Charging using Dynamic Price Signal

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Pedersen, Anders Bro; Marinelli, Mattia

    2014-01-01

    , however, be resolved by using intelligent EV charging strategies, commonly referred to as ”Smart Charging”. The basic approach involves modifying the default vehicle charging scheme of ”immediate charging”, to a more optimal one that is derived from insight into the current state of the grid. This work......With yearly increases in Electric Vehicle (EV) sales, the future for electric mobility continues to brighten, and with more vehicles hitting the roads every day, the energy requirements on the grid will increase, potentially causing low-voltage distribution grid congestion. This problem can...... proposed in this paper, involves a real-time control strategy for charging the EV using a dynamic price tariff, with the objective of minimizing the charging cost. Two different charging scenario are investigated, and the results are verified by experiments on a real Electric Vehicle. Finally, the costs...

  3. Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

    International Nuclear Information System (INIS)

    Hiwatari, R.; Asaoka, Y.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2004-01-01

    This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with β N = 1.8, HH = 1.0, andf nGW 0.85 had sufficient potential to achieve the electric break-even condition (net electric power P e net = 0MW) under the following engineering conditions: machine major radius 6.5m ≤ R p ≤ 8.5m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency η e 30%, and NBI system efficiency η NBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and fη GW . ≥ 3.0 is required for P e net ∼ 600MW with fusion power P f ∼ 3000MW. On the other hand, fη GW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of T ave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs P f (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius R p ∼ 7.5m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy. (author)

  4. A review of net metering mechanism for electricity renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this work, an overview of the net metering mechanism for renewable energy sources for power generation (RES-E) systems is carried out. In particular, the net metering concept is examined with its benefits and misconceptions. Furthermore, a survey of the current operational net metering schemes in different countries in the world, such as, in Europe, USA, Canada, Thailand and Australia, is carried out. The survey indicated that there are different net metering mechanisms depending on the particularities of each country (or state in the case of USA). Especially, in Europe, only five countries are using net metering in a very simple form, such as, any amount of energy produced by the eligible RES-E technology is compensated from the energy consumed by the RES-E producer, which results to either a less overall electricity bill or to an exception in payment energy taxes. In the USA and the USA territories, any customer’s net excess generation is credited to the customer’s next electricity bill for a 12-month billing cycle at various rates or via a combination between rates. The actual type of net excess generation (NEG) credit is decided by a number of set criteria, such as the type of RES-E technology, the RES-E capacity limit, the type of customer and the type of utility. Regarding any excess credit at the end of the 12-month billing cycle, this is either granted to the utilities, or carries over indefinitely to the customer’s next electricity bill, or is reconciled annually at any rate, or provides an option to the customer to choose between the last two options.

  5. A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-08-01

    Full Text Available With the popularization of electric vehicles (EVs, the out-of-order charging behaviors of large numbers of EVs will bring new challenges to the safe and economic operation of power systems. This paper studies an optimal charging strategy for EVs. For that a typical urban zone is divided into four regions, a regional time-of-use (RTOU electricity price model is proposed to guide EVs when and where to charge considering spatial and temporal characteristics. In light of the elastic coefficient, the user response to the RTOU electricity price is analyzed, and also a bilayer optimization charging strategy including regional-layer and node-layer models is suggested to schedule the EVs. On the one hand, the regional layer model is designed to coordinate the EVs located in different time and space. On the other hand, the node layer model is built to schedule the EVs to charge in certain nodes. According to the simulations of an IEEE 33-bus distribution network, the performance of the proposed optimal charging strategy is verified. The results demonstrate that the proposed bilayer optimization strategy can effectively decrease the charging cost of users, mitigate the peak-valley load difference and the network loss. Besides, the RTOU electricity price shows better performance than the time-of-use (TOU electricity price.

  6. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  7. Geometric objects related to the potential of electric charges

    International Nuclear Information System (INIS)

    Mozrzymas, J.

    1995-01-01

    We derive explicit formulas for curvature and torsion of a line of the field of n electric charges. These formulas show that in general the torsion of a field line is not zero if n≥3. We also propose a geometric interpretation of the derived formulas. In the second part of the paper we present an outline of a new description of equipotential surfaces of two and three electric charges. In this description the golden section appears in a natural way when two electric charges are equal. This approach also relates an equipotential surface of three charges to the classic surface containing twenty seven straight lines. (author)

  8. Development of quick charging system for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Anegawa, Takafumi

    2010-09-15

    Despite low environmental impact and high energy efficiency, electric vehicles (EV) have not been widely accepted. The lack of charging infrastructure is one reason. Since lithium-ion battery has high energy density and low internal resistance that allows quick charging, the convenience of EV may be greatly improved if charging infrastructure is prepared adequately. TEPCO aims for EV spread to reduce CO2 emissions and to increase demand for electric power, and has developed quick charging system for fleet-use EV to improve the convenience of EV. And based on research results, we will propose desirable characteristics of quick charger for public use.

  9. Economic Analysis of Different Electric Vehicle Charging Scenarios

    Science.gov (United States)

    Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang

    2017-05-01

    Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.

  10. Integration between electric vehicle charging and micro-cogeneration system

    International Nuclear Information System (INIS)

    Angrisani, Giovanni; Canelli, Michele; Roselli, Carlo; Sasso, Maurizio

    2015-01-01

    Highlights: • The interaction between an MCHP system and EV charging is investigated. • A parametric analysis with respect to daily driving distance of the EV is performed. • Dynamic simulations are carried out considering two different climates. • Two EV charging strategies are analyzed to maximize the self-consumed electricity. • The impact of EVs on electric grid and economic feasibility of MCHP can be improved. - Abstract: In the near future the diffusion of plug-in electric vehicles (EVs) could play an important role in the reduction of emissions and oil dependency associated with the transport sector. However this technology could have a big impact on the electric network because EVs require a considerable amount of electricity. In order to meet the growing load due to the diffusion of EVs, the construction of new infrastructures will be required. The introduction of micro-cogeneration systems could represent a key factor in the reduction of the negative effects on the electric network related to EVs charging. The EVs are often driven during the day and recharged during the night; so the overnight charge of the EVs allows to reduce the amount of electricity exported to the grid. In this way the economic benefits associated with the introduction of micro-cogenerator system (Micro Combined Heat and Power, MCHP), that depend on the economic value of the “produced” electricity, can be improved. At the same time the impact of EVs charge on the electric network can be reduced when electricity is provided by MCHP. In this paper the interaction between an MCHP system, the EV charging and a typical semidetached house is investigated by means of dynamic simulations. The analysis is carried out in two different locations (Torino and Napoli) in order to evaluate the effects of climatic conditions on the system performance. A parametric analysis with respect to the daily driving distance of the EV is carried out in order to highlight the effect of this

  11. VT Data - Electric Charging Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Locations of Electric Charging Stations provided by the NREL national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy....

  12. Assessment of renewable energy technologies for charging electric vehicles in Canada

    International Nuclear Information System (INIS)

    Verma, Aman; Raj, Ratan; Kumar, Mayank; Ghandehariun, Samane; Kumar, Amit

    2015-01-01

    Electric vehicle charging by renewable energy can help reduce greenhouse gas emissions. This paper presents a data-intensive techno-economic model to estimate the cost of charging an electric vehicle with a battery capacity of 16 kW h for an average travel distance of 65 km from small-scale renewable electricity in various jurisdictions in Canada. Six scenarios were developed that encompass scale of operation, charging time, and type of renewable energy system. The costs of charging an electric vehicle from an off-grid wind energy system at a charging time of 8 h is 56.8–58.5 cents/km in Montreal, Quebec, and 58.5–60.0 cents/km in Ottawa, Ontario. However, on integration with a small-scale hydro, the charging costs are 9.4–11.2 cents/km in Montreal, 9.5–11.1 cents/km in Ottawa and 10.2–12.2 cents/km in Vancouver, British Columbia. The results show that electric vehicle charging from small-scale hydro energy integration is cost competitive compared charging from conventional grid electricity in all the chosen jurisdictions. Furthermore, when the electric vehicle charging time decreases from 8 to 4 h, the cost of charging increases by 83% and 11% from wind and hydro energy systems, respectively. - Highlights: • Techno-economic analysis conducted for EV charging from wind and hydro. • EV charging from hydro energy is cost competitive than from wind energy. • GHG mitigation estimated from operation of EV charged from renewable energy. • Sensitivity of key parameters on cost of charging considered

  13. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour

    International Nuclear Information System (INIS)

    Morrissey, Patrick; Weldon, Peter; O’Mahony, Margaret

    2016-01-01

    There has been a concentrated effort by European countries to increase the share of electric vehicles (EVs) and an important factor in the rollout of the associated infrastructure is an understanding of the charging behaviours of existing EV users in terms of location of charging, the quantity of energy they require, charge duration, and their preferred mode of charging. Data were available on the usage of charging infrastructure for the entire island of Ireland since the rollout of infrastructure began. This study provides an extensive analysis of this charge event data for public charging infrastructure, including data from fast charging infrastructure, and additionally a limited quantity of household data. For the household data available, it was found that EV users prefer to carry out the majority of their charging at home in the evening during the period of highest demand on the electrical grid indicating that incentivisation may be required to shift charging away from this peak grid demand period. Car park locations were the most popular location for public charging amongst EV users, and fast chargers recorded the highest usage frequencies, indicating that public fast charging infrastructure is most likely to become commercially viable in the short- to medium-term. - Highlights: • Electric vehicle users prefer to charge at home in the evening at peak demand times. • Incentivisation will be necessary to encourage home charging at other times. • Fast charging most likely to become commercially viable in short to medium term. • Priority should be given to strategic network location of fast chargers. • Of public charge point locations, car park locations were favoured by EV users.

  14. Study on Impact of Electric Vehicles Charging Models on Power Load

    Science.gov (United States)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  15. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  16. Autonomous Electrical Vehicles’ Charging Station

    OpenAIRE

    Józef Paska; Mariusz Kłos; Łukasz Rosłaniec; Rafał Bielas; Magdalena Błędzińska

    2016-01-01

    This paper presents a model of an autonomous electrical vehicles’ charging station. It consists of renewable energy sources: wind turbine system, photovoltaic cells, as well as an energy storage, load, and EV charging station. In order to optimise the operating conditions, power electronic converters were added to the system. The model was implemented in the Homer Energy programme. The first part of the paper presents the design assumptions and technological solutions. Further in the paper...

  17. Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station

    Directory of Open Access Journals (Sweden)

    Haoming Liu

    2018-04-01

    Full Text Available With the advance of battery energy technology, electric vehicles (EV are catching more and more attention. One of the influencing factors of electric vehicles large-scale application is the availability of charging stations and convenience of charging. It is important to investigate how to make reserving charging strategies and ensure electric vehicles are charged with shorter time and lower charging expense whenever charging request is proposed. This paper proposes a reserving charging decision-making model for electric vehicles that move to certain destinations and need charging services in consideration of traffic conditions and available charging resources at the charging stations. Besides, the interactive mechanism is described to show how the reserving charging system works, as well as the rolling records-based credit mechanism where extra charges from EV is considered to hedge default behavior. With the objectives of minimizing driving time and minimizing charging expenses, an optimization model with two objective functions is formulated. Then the optimizations are solved by a K shortest paths algorithm based on a weighted directed graph, where the time and distance factors are respectively treated as weights of corresponding edges of transportation networks. Case studies show the effectiveness and validity of the proposed route plan and reserving charging decision-making model.

  18. Optimal Charge control of Electric Vehicles in Electricity Markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Wu, Guang

    2011-01-01

    Environment constraints, petroleum scarcity, high price on fuel resources and recent advancements in battery technology have led to emergence of Electric Vehicles (EVs). As increasing numbers of EVs enter the electricity market, these extra loads may cause peak load and need to be properly...... controlled. In this paper, an algorithm is presented for every individual vehicles to minimize the charging cost while satisfying the vehicle owner’s requirements. The algorithm is based on a given future electricity prices and uses dynamic programming. Optimization aims to find the economically optimal...... solution for each vehicle....

  19. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    Science.gov (United States)

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  20. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  1. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  2. Aligning PEV Charging Times with Electricity Supply and Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Cabell [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-05

    Plug-in electric vehicles (PEVs) are a growing source of electricity consumption that could either exacerbate supply shortages or smooth electricity demand curves. Extensive research has explored how vehicle-grid integration (VGI) can be optimized by controlling PEV charging timing or providing vehicle-to-grid (V2G) services, such as storing energy in vehicle batteries and returning it to the grid at peak times. While much of this research has modeled charging, implementation in the real world requires a cost-effective solution that accounts for consumer behavior. To function across different contexts, several types of charging administrators and methods of control are necessary to minimize costs in the VGI context.

  3. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  4. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  5. Angular momentum of an electric charge and magnetically charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D. (California Univ., Santa Barbara (USA). Dept. of Physics); Rey, S.J. (California Univ., Santa Barbara (USA). Dept. of Physics Florida Univ., Gainesville, FL (USA). Inst. for Fundamental Theory)

    1991-03-21

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an ordinary magnetic monopole, it is known that L=eg.) The angular momentum does depend on the separation distance between the particle and the black hole; however, L->eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed. (orig.).

  6. Strategies for Charging Electric Vehicles in the Electricity Market

    Directory of Open Access Journals (Sweden)

    Nina Juul

    2015-06-01

    Full Text Available This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting a model of four alternative charging strategies. We think of them as increasing in sophistication from dumb via delayed to deterministic and stochastic model-based charging. We show that 29% of the total savings from ‘dumb’ are due to delayed charging and that substantial additional gains come charging optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming. We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.

  7. Strategies for Charging Electric Vehicles in the Electricity Market

    DEFF Research Database (Denmark)

    Juul, Nina; Pantuso, Giovanni; Iversen, Jan Emil Banning

    2015-01-01

    . We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.......This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting...... optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming...

  8. Angular momentum of an electric charge and magnetically charged black hole

    International Nuclear Information System (INIS)

    Garfinkle, D.; Rey, Soo-Jong

    1990-01-01

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an of ordinary magnetic monopole, it is known that L = eg). The angular momentum does depend on the separation distance between the particle and the black hole; however, L → eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed

  9. Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2015-01-01

    energy sources like wind in power systems. The EV batteries could be used to charge during periods of excess electricity production from wind power and reduce the charging rate or discharge on deficit of power in the grid, supporting system stability and reliability. By providing such grid services......The prospects of Electric Vehicles (EVs) in providing clean transportation and supporting renewable electricity is widely discussed in sustainable energy forums worldwide. The battery storage of EVs could be used to address the variability and unpredictability of electricity produced from renewable......, the vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results...

  10. Effects of charging and electric field on graphene functionalized with titanium

    International Nuclear Information System (INIS)

    Gürel, H Hakan; Ciraci, S

    2013-01-01

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal–insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. (paper)

  11. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    Science.gov (United States)

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  12. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 79, č. 2 (2009), 024906/1-024906/14 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : NET CHARGE * DYNAMICAL FLUCTUATIONS * HEAVY-ION COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  13. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    Science.gov (United States)

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  14. Measurement of power loss during electric vehicle charging and discharging

    International Nuclear Information System (INIS)

    Apostolaki-Iosifidou, Elpiniki; Codani, Paul; Kempton, Willett

    2017-01-01

    When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm. - Highlights: • Grid-to-battery-to-grid comprehensive power loss measurement and analysis. • No previous experimental measurements of Grid-Integrated Vehicle system power loss. • Electric vehicle loss analyzed as a factor of state of charge and charging rate. • Power loss in the building components less than 3%. • Largest losses found in Power Electronics (typical round-trip loss 20%).

  15. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    Science.gov (United States)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the

  16. Limit on the electric charge of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Capra, A., E-mail: acapra@triumf.ca; Amole, C. [York University, Department of Physics and Astronomy (Canada); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California at Berkeley, Department of Physics (United States); Bertsche, W. [University of Manchester, School of Physics and Astronomy (United Kingdom); Butler, E. [Imperial College, Centre for Cold Matter (United Kingdom); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Física (Brazil); Charlton, M.; Eriksson, S. [Swansea University, Department of Physics, College of Science (United Kingdom); Fajans, J. [University of California at Berkeley, Department of Physics (United States); Friesen, T. [University of Calgary, Department of Physics and Astronomy (Canada); Fujiwara, M. C.; Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [CERN, Physics Department (Switzerland); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Isaac, C. A. [Swansea University, Department of Physics, College of Science (United Kingdom); Jonsell, S. [Stockholm University, Department of Physics (Sweden); Kurchaninov, L. [TRIUMF (Canada); and others

    2017-11-15

    The ALPHA collaboration has successfully demonstrated the production and the confinement of cold antihydrogen, H̅. An analysis of trapping data allowed a stringent limit to be placed on the electric charge of the simplest antiatom. Charge neutrality of matter is known to a very high precision, hence a neutrality limit of H̅ provides a test of CPT invariance. The experimental technique is based on the measurement of the deflection of putatively charged H̅ in an electric field. The tendency for trapped H̅ atoms to be displaced by electrostatic fields is measured and compared to the results of a detailed simulation of H̅ dynamics in the trap. An extensive survey of the systematic errors was performed, and this work focuses on those due to the silicon vertex detector, which is the device used to determine the H̅ annihilation position. The limit obtained on the charge of the H̅ atom is Q = (−1.3 ± 1.8 ± 0.4) × 10{sup −8}, representing the first precision measurement with H̅ [1].

  17. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  18. Optimal decentralized valley-filling charging strategy for electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Kangkang; Xu, Liangfei; Ouyang, Minggao; Wang, Hewu; Lu, Languang; Li, Jianqiu; Li, Zhe

    2014-01-01

    Highlights: • An implementable charging strategy is developed for electric vehicles connected to a grid. • A two-dimensional pricing scheme is proposed to coordinate charging behaviors. • The strategy effectively works in decentralized way but achieves the systematic valley filling. • The strategy allows device-level charging autonomy, and does not require a bidirectional communication/control network. • The strategy can self-correct when confronted with adverse factors. - Abstract: Uncoordinated charging load of electric vehicles (EVs) increases the peak load of the power grid, thereby increasing the cost of electricity generation. The valley-filling charging scenario offers a cheaper alternative. This study proposes a novel decentralized valley-filling charging strategy, in which a day-ahead pricing scheme is designed by solving a minimum-cost optimization problem. The pricing scheme can be broadcasted to EV owners, and the individual charging behaviors can be indirectly coordinated. EV owners respond to the pricing scheme by autonomously optimizing their individual charge patterns. This device-level response induces a valley-filling effect in the grid at the system level. The proposed strategy offers three advantages: coordination (by the valley-filling effect), practicality (no requirement for a bidirectional communication/control network between the grid and EV owners), and autonomy (user control of EV charge patterns). The proposed strategy is validated in simulations of typical scenarios in Beijing, China. According to the results, the strategy (1) effectively achieves the valley-filling charging effect at 28% less generation cost than the uncoordinated charging strategy, (2) is robust to several potential affecters of the valley-filling effect, such as (system-level) inaccurate parameter estimation and (device-level) response capability and willingness (which cause less than 2% deviation in the minimal generation cost), and (3) is compatible with

  19. Dynamical charge fluctuation at FAIR energy

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Mukhopadhyay, Amitabha

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment to be held at the Facility for antiproton and ion research (FAIR) is being designed to investigate the baryonic matter under extreme thermodynamic conditions. The hot and dense matter produced in this experiment will be rich in baryon number. It would be worthwhile to examine how the signatures proposed for identifying and characterizing a baryon free QGP like state behave in a baryon rich environment. Event-by-event fluctuation of net electrical charge and/or baryon number is one such indicator of the formation of the QGP, used and tested in RHIC and LHC heavy-ion experiments. One starts by defining the net charge Q = (N + - N - ) and the total charge N ch = (N + + N - ) where the quantities N + and N - are respectively, the multiplicities of positively and negatively charged particles

  20. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    Science.gov (United States)

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  1. Electric Vehicle and Wireless Charging Laboratory

    Science.gov (United States)

    2018-03-23

    Wireless charging tests of electric vehicles (EV) have been conducted at the EVTC Wireless Laboratory located at the Florida Solar Energy Center, Cocoa, FL. These tests were performed to document testing protocols, evaluate standards and evaluate ope...

  2. A Review of Demand Forecast for Charging Facilities of Electric Vehicles

    Science.gov (United States)

    Jiming, Han; Lingyu, Kong; Yaqi, Shen; Ying, Li; Wenting, Xiong; Hao, Wang

    2017-05-01

    The demand forecasting of charging facilities is the basis of its planning and locating, which has important role in promoting the development of electric vehicles and alleviating the energy crisis. Firstly, this paper analyzes the influence of the charging mode, the electric vehicle population and the user’s charging habits on the demand of charging facilities; Secondly, considering these factors, the recent analysis on charging and switching equipment demand forecast is divided into two methods—forecast based on electric vehicle population and user traveling behavior. Then, the article analyzes the two methods and puts forward the advantages and disadvantages. Finally, in view of the defects of current research, combined with the current situation of the development of the city and comprehensive consideration of economic, political, environmental and other factors, this paper proposes an improved demand forecasting method which has great practicability and pertinence and lays the foundation for the plan of city electric facilities.

  3. Analysis of Electric Vehicle Charging Impact on the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zeming [Ming Hsieh Department of Electrical Engineering; Tian, Hao [Ming Hsieh Department of Electrical Engineering; Beshir, Mohammed J. [Ming Hsieh Department of Electrical Engineering; Vohra, Surendra [Los Angeles Department of Water and Power; Mazloomzadeh, Ali [Smart Utility Systems

    2016-09-24

    In order to evaluate the impact of electric vehicles (EVs) on the distribution grid and assess their potential benefits to the future smart grid, it is crucial to study the EV charging patterns and the usage charging station. Though EVs are not yet widely adopted nationwide, a valuable methodology to conduct such studies is the statistical analysis of real-world charging data. This paper presents actual EV charging behavior of 64 EVs (5 brands, 8 models) from EV users and charging stations at Los Angeles Department of Water and Power for more than one year. Twenty-four-hour EV charging load curves have been generated and studied for various load periods: daily, monthly, seasonally and yearly. Finally, the effect and impact of EV load on the California distribution network are evaluated at different EV penetration rates.

  4. Electric dipole moments of charged leptons with sterile fermions

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  5. Electric dipole moments of charged leptons with sterile fermions

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-02-26

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  6. Optimal charging schedule of an electric vehicle fleet

    DEFF Research Database (Denmark)

    Hu, Junjie; You, Shi; Østergaard, Jacob

    2011-01-01

    In this paper, we propose an approach to optimize the charging schedule of an Electric Vehicle (EV) fleet both taking into account spot price and individual EV driving requirement with the goal of minimizing charging costs. A flexible and suitable mathematic model is introduced to characterize...

  7. Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing

    International Nuclear Information System (INIS)

    Liu, Jian

    2012-01-01

    This paper estimates the charging demand of an early electric vehicle (EV) market in Beijing and proposes an assignment model to distribute charging infrastructure. It finds that each type of charging infrastructure has its limitation, and integration is needed to offer a reliable charging service. It also reveals that the service radius of fast charging stations directly influences the final distribution pattern and an infrastructure deployment strategy with short service radius for fast charging stations has relatively fewer disturbances on the power grid. Additionally, although the adoption of electric vehicles will cause an additional electrical load on the Beijing's power grid, this additional load can be accommodated by the current grid's capacity via the charging time management and the battery swap strategy. - Highlight: ► Charging posts, fast charging stations, and battery swap stations should be integrated. ► Charging posts at home parking places will take a major role in a charging network. ► A service radius of 2 km is proposed for fast charging stations deployment. ► The additional charging load from EVs can be accommodated by charging time management.

  8. The charging security study of electric vehicle charging spot based on automatic testing platform

    Science.gov (United States)

    Li, Yulan; Yang, Zhangli; Zhu, Bin; Ran, Shengyi

    2018-03-01

    With the increasing of charging spots, the testing of charging security and interoperability becomes more and more urgent and important. In this paper, an interface simulator for ac charging test is designed, the automatic testing platform for electric vehicle charging spots is set up and used to test and analyze the abnormal state during the charging process. On the platform, the charging security and interoperability of ac charging spots and IC-CPD can be checked efficiently, the test report can be generated automatically with No artificial reading error. From the test results, the main reason why the charging spot is not qualified is that the power supply cannot be cut off in the prescribed time when the charging anomaly occurs.

  9. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  10. Tribo-electric charging of dielectric solids of identical composition

    Science.gov (United States)

    Angus, John C.; Greber, Isaac

    2018-05-01

    Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.

  11. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  12. Optimal charging of electric drive vehicles in a market environment

    DEFF Research Database (Denmark)

    Kristoffersen, Trine Krogh; Capion, Karsten Emil; Meibom, Peter

    2011-01-01

    With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market...... participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear...... programming whereas a quadratic programming formulation is required when he/she has market power. A Danish case study illustrates the construction of representative driving patterns through clustering of survey data from Western Denmark and the prediction of electricity price variations through regression...

  13. Numerical Comparison of Optimal Charging Schemes for Electric Vehicles

    DEFF Research Database (Denmark)

    You, Shi; Hu, Junjie; Pedersen, Anders Bro

    2012-01-01

    of four different charging schemes, namely night charging, night charging with V2G, 24 hour charging and 24 hour charging with V2G, on the basis of real driving data and electricity price of Denmark in 2003. For all schemes, optimal charging plans with 5 minute resolution are derived through the solving...... of a mixed integer programming problem which aims to minimize the charging cost and meanwhile takes into account the users' driving needs and the practical limitations of the EV battery. In the post processing stage, the rainflow counting algorithm is implemented to assess the lifetime usage of a lithium...

  14. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  15. Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development

    Science.gov (United States)

    Song, Wang-Cheol

    Recently the smart grid has been a hot issue in the research area. The Electric Vehicle (EV) is the most important component in the Smart Grid, having a role of the battery component with high capacity. We have thought how to introduce the EV in the housing development, and for proper operation of the smart grid systems in the housing area the authentication system is essential for the individual houses. We propose an authentication system to discriminate an individual houses, so that the account management component can appropriately operate the electrical charging and billing in the housing estate. The proposed system has an architecture to integrate the charging system outside a house and the monitoring system inside a house.

  16. Connection of spin and statistics for charge--monopole composites

    International Nuclear Information System (INIS)

    Goldhaber, A.S.

    1976-01-01

    An object composed of a spinless electrically charged particle and a spinless magnetically charged particle may bear net half-integer spin, but the wave function of two such clusters must be symmetric under their interchange. Nevertheless, a careful study of the relative motion of the clusters shows that this symmetry condition implies the usual connection between spin and statistics

  17. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  18. Optimal Day-ahead Charging Scheduling of Electric Vehicles through an Aggregative Game Model

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Huang, Shaojun

    2017-01-01

    The electric vehicle (EV) market has been growing rapidly around the world. With large scale deployment of EVs in power systems, both the grid and EV owners will benefit if the flexible demand of EV charging is properly managed through the electricity market. When EV charging demand is considerable...... in a grid, it will impact spot prices in the electricity market and consequently influence the charging scheduling itself. The interaction between the spot prices and the EV demand needs to be considered in the EV charging scheduling, otherwise it will lead to a higher charging cost. A day-ahead EV charging...... scheduling based on an aggregative game model is proposed in this paper. The impacts of the EV demand on the electricity prices are formulated with the game model in the scheduling considering possible actions of other EVs. The existence and uniqueness of the pure strategy Nash equilibrium are proved...

  19. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Science.gov (United States)

    2010-07-01

    ...) After firing an electric blast from a blasting machine, the leading wires shall be immediately... 29 Labor 8 2010-07-01 2010-07-01 false Initiation of explosive charges-electric blasting. 1926.906... Use of Explosives § 1926.906 Initiation of explosive charges—electric blasting. (a) Electric blasting...

  20. Modeling and Analyzing Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Thomsen, Christian

    2016-01-01

    , such as wind turbines. To both enable a smart grid and the use of renewable energy, it is essential to know when and where an EV is plugged into the power grid and what battery capacity is available. In this paper, we present a generic spatio-temporal data-warehouse model for storing detailed information...... on all aspects of charging EVs, including integration with the electricity prices from a spot market. The proposed data warehouse is fully implemented and currently contains 2.5 years of charging data from 176 EVs. We describe the date warehouse model and the implementation including complex operations...

  1. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  2. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  3. Impact of GB transmission charging on renewable electricity generation

    International Nuclear Information System (INIS)

    2006-01-01

    The Government is committed to meeting its objective of producing 10% of UK electricity supplies from renewable sources by 2010, subject to the cost to the consumer being acceptable. It is generally believed that northern Scotland - and the Highlands and Islands in particular - will be a significant source of renewable energy in future, mostly in the form of wind power; wave and tidal energy may also be important. The National Grid Company (NGC) is responsible for formulating a cost-reflective and. non-discriminatory electricity transmission charging methodology for Great Britain (GB). This determines Transmission Network Use of System (TNUoS) tariffs, which are paid by transmission-connected generators and suppliers for the use of the high voltage transmission network. Following the publication of National Grid Company's 'GB Transmission Charging: Initial Thoughts' document on 16 December 2003, there was particular concern that the level of future Transmission Network Use of System (TNUoS) tariffs in northern Scotland might impede the achievement of the Government's 2010 target for renewable electricity supplies. That document and subsequent revisions indicate that generation TNUoS charges in northern Scotland were likely to be significantly higher than anywhere else in GB. The study attempts to quantify the effect of the proposed GB-wide TNUoS charging methodology on the future growth of renewable electricity so as to ascertain the impact on the likelihood of meeting the Government's 2010 target. (UK)

  4. Prediction of necessary public charging infrastructure of electric vehicles

    NARCIS (Netherlands)

    Van Montfort, K.; Van Der Poel, G.; Visser, J.; Van Den Hoed, R.

    2016-01-01

    In this study we developed models in order to predict the need for public charging points. These models give municipalities an insight into various environmental and consumer related factors that determine the need for public charging points for electric vehicles in the neighbourhood. These factors

  5. Safety Design for Smart Electric Vehicle Charging with Current and Multiplexing Control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-21

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the server and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.

  6. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  7. Workplace Electric Vehicle Solar Smart Charging based on Solar Irradiance Forecasting

    OpenAIRE

    Almquist, Isabelle; Lindblom, Ellen; Birging, Alfred

    2017-01-01

    The purpose of this bachelor thesis is to investigate different outcomes of the usage of photovoltaic (PV) power for electric vehicle (EV) charging adjacent to workplaces. In the investigated case, EV charging stations are assumed to be connected to photovoltaic systems as well as the electricity grid. The model used to simulate different scenarios is based on a goal of achieving constant power exchange with the grid by adjusting EV charging to a solar irradiance forecast. The model is implem...

  8. Deterministic Electrical Charge-State Initialization of Single Nitrogen-Vacancy Center in Diamond

    Directory of Open Access Journals (Sweden)

    Y. Doi

    2014-03-01

    Full Text Available Apart from applications in classical information-processing devices, the electrical control of atomic defects in solids at room temperature will have a tremendous impact on quantum devices that are based on such defects. In this study, we demonstrate the electrical manipulation of individual prominent representatives of such atomic solid-state defects, namely, the negative charge state of single nitrogen-vacancy defect centers (NV^{−} in diamond. We experimentally demonstrate, deterministic, purely electrical charge-state initialization of individual NV centers. The NV centers are placed in the intrinsic region of a p-i-n diode structure that facilitates the delivery of charge carriers to the defect for charge-state switching. The charge-state dynamics of a single NV center were investigated by time-resolved measurements and a nondestructive single-shot readout of the charge state. Fast charge-state switching rates (from negative to neutrally charged defects, which are greater than 0.72 ± 0.10  μs^{−1}, were realized. Furthermore, in no-operation mode, the realized charge states were stable for presumably much more than 0.45 s. We believe that the results obtained are useful not only for ultrafast electrical control of qubits, long T_{2} quantum memory, and quantum sensors associated with single NV centers but also for classical memory devices based on single atomic storage bits working under ambient conditions.

  9. Mobile electric vehicles online charging and discharging

    CERN Document Server

    Wang, Miao; Shen, Xuemin (Sherman)

    2016-01-01

    This book examines recent research on designing online charging and discharging strategies for mobile electric vehicles (EVs) in smart grid. First, the architecture and applications are provided. Then, the authors review the existing works on charging and discharging strategy design for EVs. Critical challenges and research problems are identified. Promising solutions are proposed to accommodate the issues of high EV mobility, vehicle range anxiety, and power systems overload. The authors investigate innovating charging and discharging potentials for mobile EVS based on real-time information collections (via VANETS and/or cellular networks) and offer the power system adjustable load management methods.  Several innovative charging/discharging strategy designs to address the challenging issues in smart grid, i.e., overload avoidance and range anxiety for individual EVs, are presented. This book presents an alternative and promising way to release the pressure of the power grid caused by peak-time EV charging ...

  10. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  11. Life cycle assessment of five batteries for electric vehicles under different charging regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rantik, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Transportation and Logistics

    1999-12-01

    Life Cycle Assessment (LCA) methodology is used in this study to assess the environmental impact of five candidate batteries for electric vehicles under different conditions of charging. The entire lifetime of a passenger electric vehicle is considered as the basis for all batteries. Five different battery systems are considered. The four of them are electrically recharged - Lead-Acid, Nickel-Cadmium, Nickel-Metal hydride and Sodium-Nickel chloride whereas one system comprises batteries that are recharged mechanically (Zinc-Air). One specific battery from these five systems is selected. The results are representative of these particular batteries and not of the battery systems to which they belong. The study includes three scenarios, the basic scenario and two fast charging scenarios. The difference between the scenarios is in the phase of the battery's use and involves the charging regimes. Consequently, the other stages of the battery's life are identical in all three scenarios. The basic scenario implies normal overnight charging is used during the entire lifetime of an electric vehicle. In the first fast charging scenario, fast charging is combined with normal charging. The second fast charging scenario involves the exclusive use of fast charging. In both fast charging scenarios the user's behaviour is considered. In this study, it is believed that it is the violation of fast charging rules, set by the battery manufacturer rather than the fast charging technique, that will be critical for the cycle life of the battery. Due to low energy efficiency of the batteries and losses in the charging procedure, the use of energy for operating the electric vehicle seems to be a major contributor to the total environmental impact of the system. Significant resource constraints may prevent mass production of certain batteries or lead to increased prices of others. Use of fast charging increases the number of batteries used during the lifetime of the electric

  12. Do the SuperKamiokande atmospheric neutrino results explain electric charge quantisation?

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.

    1998-08-01

    It is shown that the SuperKamiokande atmospheric neutrino results explain electric charge quantisation, provided that the oscillation mode is ν μ → ν τ and that the neutrino mass is of the Majorana type. It is emphasised that neutrino oscillation and neutrinoless double beta decay experiments provide important information regarding the seemingly unrelated issue of electric charge quantisation

  13. Reference architecture for interoperability testing of Electric Vehicle charging

    NARCIS (Netherlands)

    Lehfuss, F.; Nohrer, M.; Werkmany, E.; Lopezz, J.A.; Zabalaz, E.

    2015-01-01

    This paper presents a reference architecture for interoperability testing of electric vehicles as well as their support equipment with the smart grid and the e-Mobility environment. Pan-European Electric Vehicle (EV)-charging is currently problematic as there are compliance and interoperability

  14. Effects of electric field and charge distribution on nanoelectronic processes involving conducting polymers

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Correia, Helena M.G.

    2006-01-01

    The injection of charge carriers in conducting polymer layers gives rise to local electric fields which should have serious implications on the charge transport through the polymer layer. The charge distribution and the related electric field inside the ensemble of polymer molecules, with different molecular arrangements at nanoscale, determine whether or not intra-molecular charge transport takes place and the preferential direction for charge hopping between neighbouring molecules. Consequently, these factors play a significant role in the competition between current flow, charge trapping and recombination in polymer-based electronic devices. By suitable Monte Carlo calculations, we simulated the continuous injection of electrons and holes into polymer layers with different microstructures and followed their transport through those polymer networks. Results of these simulations provided a detailed picture of charge and electric field distribution in the polymer layer and allowed us to assess the consequences for current transport and recombination efficiency as well as the distribution of recombination events within the polymer film. In the steady state we found an accumulation of electrons and holes near the collecting electrodes giving rise to an internal electric field which is greater than the external applied field close to the electrodes and lower than the one in the central region of the polymer layer. We also found that a strong variation of electric field inside the polymer layer leads to an increase of recombination events in regions inside the polymer layer where the values of the internal electric field are lower

  15. Scheduling of Crude Oil Operations in Refinery without Sufficient Charging Tanks Using Petri Nets

    Directory of Open Access Journals (Sweden)

    Yan An

    2017-05-01

    Full Text Available A short-term schedule for crude oil operations in a refinery should define and sequence the activities in detail. Each activity involves both discrete-event and continuous variables. The combinatorial nature of the scheduling problem makes it difficult to solve. For such a scheduling problem, charging tanks are a type of critical resources. If the number of charging tanks is not sufficient, the scheduling problem is further complicated. This work conducts a study on the scheduling problem of crude oil operations without sufficient charging tanks. In this case, to make a refinery able to operate, a charging tank has to be in simultaneous charging and feeding to a distiller for some time, called simultaneously-charging-and-feeding (SCF mode, leading to disturbance to the oil distillation in distillers. A hybrid Petri net model is developed to describe the behavior of the system. Then, a scheduling method is proposed to find a schedule such that the SCF mode is minimally used. It is computationally efficient. An industrial case study is given to demonstrate the obtained results.

  16. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    Directory of Open Access Journals (Sweden)

    Alex N. Eberle

    2017-04-01

    Full Text Available A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp with three negative charges at the C-terminal end (overall net charge of the molecule −2 and DOTA-Gly-Tyr(P-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9 with two negative charges in the N-terminal region (net charge −1. The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range

  17. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  18. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-22

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  19. Impact of uncoordinated plug-in electric vehicle charging on residential power demand

    Science.gov (United States)

    Muratori, Matteo

    2018-03-01

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  20. Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market

    Directory of Open Access Journals (Sweden)

    Tian Wu

    2017-11-01

    Full Text Available Since the China State Grid opened the market for infrastructure construction of electric charging stations and allowed Tesla, Potevio, BAIC BJEV and other enterprises to provide their own charging stations and other infrastructure construction, the development of electric vehicles has been greatly affected. How to maintain a sustainable governance in the opened electric vehicle charging and upgraded facilities market is an important policy issues. This paper presents a monopolistic competition model for the differentiated products market and addresses several issues related to Cournot equilibrium to illustrate why the expected free market actually operates in a monopolistic competition market structure. The analytic solution of the model shows that whether the extent of firm entry is insufficient, excessive or optimum is determined by consumers’ time preference, level of production differentiation and features of cost structure, including fixed cost and marginal cost. The sensitivity analysis has been performed among the above factors and tracked some other factors which would determine the effect of the new policy issues. The main policy suggestion is that the government should optimize entry regulations and lay down the criterion of charging interface standards for charging stations to avoid the electric vehicle charging and upgraded facilities marketization process of a one-size-fits-all solution and form a monopolistic competition market.

  1. Research of Charging(Discharging Orderly and Optimizing Load Curve for Electric Vehicles Based on Dynamic Electric Price and V2G

    Directory of Open Access Journals (Sweden)

    Yang Shuai

    2016-01-01

    Full Text Available Firstly, using the Monte Carlo method and simulation analysis, this paper builds models for the behaviour of electric vehicles, the conventional charging model and the fast charging model. Secondly, this paper studies the impact that the number of electric vehicles which get access to power grid has on the daily load curve. Then, the paper put forwards a dynamic pricing mechanism of electricity, and studies how this dynamic pricing mechanism guides the electric vehicles to charge orderly. Last but not the least, the paper presents a V2G mechanism. Under this mechanism, electric vehicles can charge orderly and take part in the peak shaving. Research finds that massive electric vehicles’ access to the power grid will increase the peak-valley difference of daily load curve. Dynamic pricing mechanism and V2G mechanism can effectively lead the electric vehicles to take part in peak-shaving, and optimize the daily load curve.

  2. A Review of Control Strategy of the Large-scale of Electric Vehicles Charging and Discharging Behavior

    Science.gov (United States)

    Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying

    2017-05-01

    Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.

  3. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  4. Lessons Learned about Plug-in Electric Vehicle Charging Infrastructure from The EV Project and ChargePoint America

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John Galloway [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    This report summarizes key findings in two national plug-in electric vehicle charging infrastructure demonstrations: The EV Project and ChargePoint America. It will be published to the INL/AVTA website for the general public.

  5. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  6. Methodology for assessing electric vehicle charging infrastructure business models

    International Nuclear Information System (INIS)

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage. - Highlights: • Ecosystem is a network of actors who collaborate to create a positive business case. • Electro-mobility (electricity-powered road vehicles and ICT) is a complex ecosystem. • Methodological analysis to ensure that all actors benefit from electro-mobility. • Economic analysis of charging infrastructure deployment linked to its usage. • Comparison of EV ownership cost vs. ICE for vehicle users.

  7. Design of a Software for Calculating Isoelectric Point of a Polypeptide According to Their Net Charge Using the Graphical Programming Language LabVIEW

    Science.gov (United States)

    Tovar, Glomen

    2018-01-01

    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel…

  8. Non-abelian gauge invariant classical Lagrangian formalism for point electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.

    1978-01-01

    The classical electrodynamics of electrically charged point particles has been generalized to include non-Abelian gauge groups and to include magnetically charged point particles. In this paper these two distinct generalizations are unified into a non-Abelian gauge theory of electric and magnetic charge. Just as the electrically charged particles constitute the generalized source of the gauge fields, the magnetically charged particles constitute the generalized source of the dual fields. The resultant equations of motion are invariant to the original 'electric' non-Abelian gauge group, but, because of the absence of a corresponding 'magnetic' gauge group, there is no 'duality' symmetry between electric and magnetic quantities. However, for a class of solutions to these equations, which includes all known point electric and magnetic monopole constructions, there is shown to exist an equivalent description based on a magnetic, rather than electric, gauge group. The gauge potentials in general are singular on strings extending from the particle position to infinity, but it is shown that the observables are without string singularities, and that the theory is Lorentz invariant, provided a charge quantization condition is satisfied. This condition, deduced from a stability analysis, is necessary for the consistency of the classical non-Abelian theory, in contrast to the Abelian case, where such a condition is necessary only for the consistency of the quantum theory. It is also shown that in the classical theory the strings cannot be removed by gauge transformations, as they sometimes can be in the quantum theory. (Auth.)

  9. Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging

    International Nuclear Information System (INIS)

    Tell, R. A.; Kavet, R.; Bailey, J. R.; Halliwell, J.

    2014-01-01

    Tests conducted to date at the University of Tennessee at Chattanooga (UTC) indicate that wireless charging of the Chattanooga Area Regional Transportation Authority's (CARTA) downtown shuttle bus, currently operating with off-board battery charging technology, offers significant improvements in performance and cost. The system operates at a frequency of 20 kHz and a peak power of 60 kW. Because the system's wireless charging is expected to occur during a nominal 3-min charging period with passengers on-board, the magnetic and electric fields associated with charging were characterised at UTC's Advanced Vehicle Test Facility and compared with established human exposure limits. The two most prominent exposure limits are those published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineers (IEEE). Both organisations include limits for groups who are trained (workers in specific industries) to be aware of electromagnetic environments and their potential hazards, as well as a lower set of limits for the general public, who are assumed to lack such awareness. None of the magnetic or electric fields measured either within or outside the bus during charging exceeded either the ICNIRP or the IEEE exposure limits for the general public. (authors)

  10. Network cost in transmission and distribution of electric power

    International Nuclear Information System (INIS)

    Lindahl, A.; Naeslund, B.; Oettinger-Biberg, C.; Olander, H.; Wuolikainen, T.; Fritz, P.

    1994-01-01

    This report is divided in two parts, where part 1 treats the charges on the regional nets with special emphasis on the net owners tariffs on a deregulated market. Part 2 describes the development of the network costs in electric power distribution for the period 1991-1993. 11 figs, 33 tabs

  11. Standardization of calibration of clinic dosemeters using electric currents and charges

    International Nuclear Information System (INIS)

    Peres, Marcos Antonio de Lima

    1999-09-01

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  12. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging...

  13. Mechanism of the free charge carrier generation in the dielectric breakdown

    Science.gov (United States)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  14. Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids

    Directory of Open Access Journals (Sweden)

    Weige Zhang

    2017-01-01

    Full Text Available A novel, fully decentralized strategy to coordinate charge operation of electric vehicles is proposed in this paper. Based on stochastic switching control of on-board chargers, this strategy ensures high-efficiency charging, reduces load variations to the grid during charging periods, achieves charge completion with high probability, and accomplishes approximate “valley-filling”. Further improvements on the core strategy, including individualized power management, adaptive strategies, and battery support systems, are introduced to further reduce power fluctuation variances and to guarantee charge completion. Stochastic analysis is performed to establish the main properties of the strategies and to quantitatively show the performance improvements. Compared with the existing decentralized charging strategies, the strategies proposed in this paper can be implemented without any information exchange between grid operators and electric vehicles (EVs, resulting in a communications cost reduction. Additionally, it is shown that by using stochastic charging rules, a grid-supporting battery system with a very small energy capacity can achieve substantial reduction of EV load fluctuations with high confidence. An extensive set of simulations and case studies with real-world data are used to demonstrate the benefits of the proposed strategies.

  15. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  16. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  17. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  18. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  19. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  20. Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambiae s.s

    Science.gov (United States)

    2014-01-01

    Background Electric nets (e-nets) are used to analyse the flight behaviour of insects and have been used extensively to study the host-oriented flight of tsetse flies. Recently we adapted this tool to analyse the oviposition behaviour of gravid malaria vectors, Anopheles gambiae s.s., orienting towards aquatic habitats and traps by surrounding an artificial pond with e-nets and collecting electrocuted mosquitoes on sticky boards on the ground next to the nets. Here we study whether e-nets themselves affect the responses of gravid An. gambiae s.s.. Methods Dual-choice experiments were carried out in 80 m2 screened semi-field systems where 200 gravid An. gambiae s.s. were released each night for 12 nights per experiment. The numbers of mosquito landing on or approaching an oviposition site were studied by adding detergent to the water in an artificial pond or surrounding the pond with a square of e-nets. We also assessed whether the supporting framework of the nets or the sticky boards used to retain electrocuted mosquitoes influenced the catch. Results Two similar detergent treated ponds presented in choice tests caught an equal proportion of the mosquitoes released, whereas a pond surrounded by e-nets caught a higher proportion than an open pond (odds ratio (OR) 1.7, 95% confidence interval (CI) 1.1 - 2.7; p electric nets and the yellow boards on the approach of gravid females towards a pond suggests that the tower-like construction of the square of electric nets did not restrict the approach of females but the yellow sticky boards on the ground attract gravid females to a source of water (OR 2.7 95% CI 1.7 – 4.3; p trapping efficiency of the electric nets is increased when large yellow sticky boards are placed on the ground next to the e-nets to collect electrocuted mosquitoes, possibly because of increased visual contrast to the aquatic habitat. It is therefore important when comparing two treatments that the same trapping device is used in both. The

  1. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  2. Model of electric field-induced charge disordering in praseodymium manganites

    International Nuclear Information System (INIS)

    Lapinskas, S.; Tornau, E.E.; Semiconductor Physics Inst., Vilnius

    2001-01-01

    We propose a model for an electric field-driven transition from the ordered NaCl-type phase to the disordered phase. Such a transition might be a prototype of charge disordering transition observed in Pr 1-c Ca c MnO 3 . We assume the lattice-gas model and hopping conductivity of charge carriers. The solution of this model, performed by the Monte Carlo method, demonstrates that considerably high electric field can disorder well-ordered phases. The comparison with the data for charge disordering in Pr 1-c Ca c MnO 3 shows that required fields are much too high. We analyze the obtained results trying to determine a possible scenario for conductivity in Pr 1-c Ca c MnO 3 . (orig.)

  3. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  4. Distributed Coordination of Electric Vehicle Charging in a Community Microgrid Considering Real-Time Price

    DEFF Research Database (Denmark)

    Li, Chendan; Schaltz, Erik; Quintero, Juan Carlos Vasquez

    2016-01-01

    The predictable increasing adoption of EV by residential users imposes the necessity of Electric Vehicle charging coordination, in order to charge effectively while minimizing the impact on the grid. In this paper, a two-stage distributed coordination algorithm for electric vehicle charging...... management in a community microgrid is proposed. Each local EV charging controller is taken as an agent, which can manage the charging to achieve the optimization of the whole community by communicating in a sparse network. The proposed algorithm aims at optimizing real-time, which manages the charging...

  5. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  6. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  7. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  8. Searches for fractional electric charge on niobium samples exposed to liquid helium

    International Nuclear Information System (INIS)

    Smith, P.F.; Homer, G.J.; Lewin, J.D.; Walford, H.E.; Jones, W.G.

    1986-01-01

    Levitation measurements at room temperature described in a previous paper did not confirm the apparent fractional electric charges reported by the Stanford Group for niobium samples at liquid helium temperature. To simulate possible effects of a low-temperature environment, both niobium and steel samples have been exposed to liquid helium for periods of typically 48 h, both with and without the assistance of electric fields to extract possible fractionally charged ions. Subsequent levitation tests show no indication of fractional charge. With some additional assumptions regarding ionic mobility and surface energy, an upper limit ∝10 -2 fractional charges/g is inferred for the liquid helium itself. (orig.)

  9. Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for co-ordinated mutation of charged amino acid residues.

    Science.gov (United States)

    Desideri, A; Falconi, M; Polticelli, F; Bolognesi, M; Djinovic, K; Rotilio, G

    1992-01-05

    Equipotential lines were calculated, using the Poisson-Boltzmann equation, for six Cu,Zn superoxide dismutases with different protein electric charge and various degrees of sequence homology, namely those from ox, pig, sheep, yeast, and the isoenzymes A and B from the amphibian Xenopus laevis. The three-dimensional structures of the porcine and ovine superoxide dismutases were obtained by molecular modelling reconstruction using the structure of the highly homologous bovine enzyme as a template. The three-dimensional structure of the evolutionary distant yeast Cu,Zn superoxide dismutase was recently resolved by us, while computer-modelled structures are available for X. laevis isoenzymes. The six proteins display large differences in the net protein charge and distribution of electrically charged surface residues but the trend of the equipotential lines in the proximity of the active sites was found to be constant in all cases. These results are in line with the very similar catlytic rate constants experimentally measured for the corresponding enzyme activities. This analysis shows that electrostatic guidance for the enzyme-substrate interaction in Cu,Zn superoxide dismutases is related to a spatial distribution of charges, arranged so as to maintain, in the area surrounding the active sites, an identical electrostatic potential distribution, which is conserved in the evolution of this protein family.

  10. Two-Stage Optimal Scheduling of Electric Vehicle Charging based on Transactive Control

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Ma, Kang

    2018-01-01

    In this paper, a two-stage optimal charging scheme based on transactive control is proposed for the aggregator to manage day-ahead electricity procurement and real-time EV charging management in order to minimize its total operating cost. The day-ahead electricity procurement considers both the day......-ahead energy cost and expected real-time operation cost. In the real-time charging management, the cost of employing the charging flexibility from the EV owners is explicitly modelled. The aggregator uses a transactive market to manage the real-time charging demand to provide the regulating power. A model...... predictive control (MPC) based method is proposed for the aggregator to clear the transactive market. The realtime charging decisions of the EVs are determined by the clearing of the proposed transactive market according to the realtime requests and preferences of the EV owners. As such, the aggregators...

  11. Three Players Nash Equilibrium Game Concerning the Charging Time and Place of Employee Electric Vehicles

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie; Hirte, Georg; Tscharaktschiew, Stefan

    the charging time and increases the share of EVs as commuting mode, it results in unintended consequences including electricity peak-load problem, an increase in electricity tariff for household use, and an increase in car use that worsens traffic congestion. For the electricity supplier, workplace charging...... and when the labor tax is high; ii) employers pay less electricity tariff than households do; iii) the employment contract duration is long; iv) recharging electric vehicles (EVs) takes longer time and the value of time is higher. Accessibility of cheaper charging facility at workplace, while saves...... increases the cost of supplying electricity by aggravating the daytime peak-load problem and by increasing the demand variation from the mean. Tax based on yearly travel distance, and restriction on free workplace charging access improves social welfare. The results from this study are relevant in (i...

  12. The System of Fast Charging Station for Electric Vehicles with Minimal Impact on the Electrical Grid

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2016-01-01

    Full Text Available The searching and utilization of new energy sources and technologies is a current trend. The effort to increase the share of electricity production from renewable energy sources is characteristic for economically developed countries. The use of accumulation of electrical energy with a large number of decentralized storage units is most preferred, as well as the focus on the production of energy at the point of its consumption. Modern cogeneration units are a good example. This paper describes the accumulation of electrical energy for equalizing the power balance of electric charging stations with high instantaneous power. The possibility of re-utilization of electrical energy from the charged vehicle in the case of lack of electricity in the power grid is solved at the same time. This paper also deals with the selection of appropriate concept of accumulation system and its cooperation with both renewable and distribution networks. Details of the main power components including the results obtained from the system implementation are also described in this paper.

  13. The influence of electric charge transferred during electro-mechanical reshaping on mechanical behavior of cartilage

    Science.gov (United States)

    Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.

  14. Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector

    International Nuclear Information System (INIS)

    Bowser-Chao, D.; Keung, W.; Chang, D.; Chang, D.

    1997-01-01

    The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two level. A careful model-independent analysis of the heavy fermion contribution is provided. We also consider some specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level. copyright 1997 The American Physical Society

  15. Influence of magneto-electric coefficient for magnetic and electric charge injection properties in magneto-electric MIS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, T; Tsuboi, Y; Imura, R; Kito, S; Gomi, M, E-mail: yokota.takeshi@nitech.ac.jp [Department of Material Science and Engineering, Graduate School of Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya City, Aichi, 466-8555 (Japan)

    2011-10-29

    We investigated the electric charge injection properties of a floating-gate type metal-insulator Si capacitor having different-ME gate insulators. The samples showed charge-injection type behaviour in capacitance-voltage curves, and it was revealed that the amount of injected charges can be controlled by the application of an external magnetic field. The sample having a high-ME-coefficient gate insulator showed stepwise capacitance-voltage curves unlike the normal one. These results indicate that this capacitor, which employs a magnetic gate insulator, has the potential to be used in multilevel memory by the application of an external magnetic field.

  16. Morphological Analysis on Business Model of Electric Vehicles Charging Infrastructure in China

    DEFF Research Database (Denmark)

    Li, Suxiu; Liu, Yingqi; Wang, Jingyu

    2016-01-01

    of EVs charging infrastructure business model for China, and takes the city Shenzhen as a case study. The research shows that we can achieve EVs Charging infrastructure business model innovation by combining design possibility on the right side of morphological box as much as possible.......The issues of energy crisis and environment pollution have paved opportunities to electric vehicles (EVs), many countries take it as an effective way to reducing the depletion of fossil fuels and CO2 emissions. As the energy supply of electric vehicles, the development of charging infrastructure...

  17. Dirac particles in the field of magnetic monopoles and of strong electric charges

    International Nuclear Information System (INIS)

    Schafer, A.; Muller, B.; Greiner, W.

    1985-01-01

    The field of a magnetic pointlike monopole acts in a similar way on a charged Dirac particle as the field of a very strong electric point charge. To explore this parallel it is constructed a field solution for an extended magnetic-charge distribution. In contrast to what is found for extended electric charges, the Hamiltonian remains nonself-adjoint for an extended magnetic monopole. This suggests that there exist a fundamental difference between the two cases. In particular, the appearance of undefined states for point monopoles is not a consequence of the mere strength of the magnetic-monopole charge, which has a minimum value fixed by Dirac's quantization condition

  18. The charged component of the vacuum field as the source of electric ...

    African Journals Online (AJOL)

    The formula is derived for the electric force inside a uniformly charged spherical body, as well as for the Coulomb force between the charged bodies from the standpoint of the model of the vacuum field with charged particles. The parameters of the fluxes of charged particles are estimated, including the energy density, ...

  19. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tang, Lixin [ORNL; Chambon, Paul H [ORNL; Ozpineci, Burak [ORNL; Smith, David E [ORNL

    2016-06-20

    Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazards in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project

  20. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  1. Optimization and Economic Analysis of Grid-Photovoltaic Electric Boat Charging Station in Kuala Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N.A. S.

    2016-01-01

    Full Text Available This study evaluates the feasibility of developing grid-photovoltaic electric boat charging station in Kuala Terengganu using simulation-based method. The main focus is on reducing the dependency on subsidy spent by the government in fisheries sector and encouraging green technology in commercial sector. All data such as solar radiation, amount of subsidy received by fishermen, and fishing activities were collected for the selected area. Economic analyses of the proposed system are discussed based on payback period and net present cost (NPC. The comparison between the proposed system and the grid-only system is done based on the production and consumption of electricity per year, the NPC and emission of pollutant. The system also generates high income from selling energy to the grid with tariff rates RM 1.49/kWh. It is concluded that the proposed system is feasible to be developed in the selected area with the payback period and the NPC are 8.2 years and RM 759,098, respectively. The results also show that the performance of the proposed system is better than grid-only system in all the interested parameters.

  2. Design of Fast Response Smart Electric Vehicle Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-11-25

    The response time of the smart electrical vehicle (EV) charging infrastructure is the key index of the system performance. The traffic between the smart EV charging station and the control center dominates the response time of the smart charging stations. To accelerate the response of the smart EV charging station, there is a need for a technology that collects the information locally and relays it to the control center periodically. To reduce the traffic between the smart EV charger and the control center, a Power Information Collector (PIC), capable of collecting all the meters power information in the charging station, is proposed and implemented in this paper. The response time is further reduced by pushing the power information to the control center. Thus, a fast response smart EV charging infrastructure is achieved to handle the shortage of energy in the local grid.

  3. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Kelly, Jarod C.; MacDonald, Jason S.; Keoleian, Gregory A.

    2012-01-01

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  4. Cosmology of a charged universe

    International Nuclear Information System (INIS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories

  5. Impact of Electric Vehicle Charging Station Load on Distribution Network

    Directory of Open Access Journals (Sweden)

    Sanchari Deb

    2018-01-01

    Full Text Available Recent concerns about environmental pollution and escalating energy consumption accompanied by the advancements in battery technology have initiated the electrification of the transportation sector. With the universal resurgence of Electric Vehicles (EVs the adverse impact of the EV charging loads on the operating parameters of the power system has been noticed. The detrimental impact of EV charging station loads on the electricity distribution network cannot be neglected. The high charging loads of the fast charging stations results in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. Further, the penalty paid by the utility for the degrading performance of the power system cannot be neglected. This work aims to investigate the impact of the EV charging station loads on the voltage stability, power losses, reliability indices, as well as economic losses of the distribution network. The entire analysis is performed on the IEEE 33 bus test system representing a standard radial distribution network for six different cases of EV charging station placement. It is observed that the system can withstand placement of fast charging stations at the strong buses up to a certain level, but the placement of fast charging stations at the weak buses of the system hampers the smooth operation of the power system. Further, a strategy for the placement of the EV charging stations on the distribution network is proposed based on a novel Voltage stability, Reliability, and Power loss (VRP index. The results obtained indicate the efficacy of the VRP index.

  6. Analysis and quality of service evaluation of a fast charging station for electric vehicles

    International Nuclear Information System (INIS)

    Zenginis, Ioannis; Vardakas, John S.; Zorba, Nizar; Verikoukis, Christos V.

    2016-01-01

    Electrification of transportation is considered as one of the most promising ways to mitigate climate change and reduce national security risks from oil and gasoline imports. Fast charging stations that provide high quality of service will facilitate the wide market penetration of electric vehicles. In this paper, the operation of a fast charging station is analyzed by employing a novel queuing model. The proposed analysis considers that the various electric vehicle models are classified by their battery size, and computes the customers' mean waiting time in the queue by taking into account the available charging spots, as well as the stochastic arrival process and the stochastic recharging needs of the various electric vehicle classes. Furthermore, a charging strategy is proposed according to which the drivers are motivated to limit their energy demands. The implementation of the proposed strategy allows the charging station to serve more customers without any increase in the queue waiting time. The high precision of the present analytical model is confirmed through simulations. Therefore, it may be utilized by existing fast charging station operators that need to provide high quality of service, or by future investors that need to design an efficient installation. - Highlights: • A fast charging station for multiple classes of electric vehicles is presented and analyzed. • A novel multiclass queuing model is presented for the mean queue waiting time derivation. • The system's arrival rate capacity is derived given a maximum tolerable waiting time limit. • A charging strategy is proposed aiming at increasing the system's arrival rate capacity. • The charging station operator's revenue is calculated based on the energy drawn by the electric vehicles.

  7. Cho decomposition of electrically charged one-half monopole

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ban-Loong; Teh, Rosy; Wong, Khai-Ming [School of Physics, Universiti Sains Malaysia, 11800 USM Penang (Malaysia)

    2014-03-05

    Recently we have carried out some work on the Cho decomposition of the electrically neutral, finite energy one-half monopole solution of the SU(2) Yang-Mills-Higgs field theory. In this paper, we performed the decomposition of the electrically charged solution using the same numerical procedure. The gauge potential of the one-half dyon solution is decomposed into Abelian and non-Abelian components. The semi-infinite string singularity in the gauge potential is a contribution of the Higgs field and hence topological in nature. The string singularity cannot be cancelled by the non-Abelian components of the gauge potential. However, the string singularity is integrable and the energy of the solution is finite. By decomposing the magnetic fields and covariant derivatives of the Higgs field into three isospin space directions, we are able to provide conclusive evidence that the constructed one-half dyon is certainly a non-BPS solution even in the limit of vanishing Higgs self-coupling constant and electric charge. Furthermore, we found that the time component of gauge function is parallel to the Higgs field in isospace only at large distances, elsewhere they are non-parallel.

  8. Distribution of Electrical Charge in a System of Finite Conductors

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Kloucek, P.; Šolín, Pavel; Ulrych, B.

    2003-01-01

    Roč. 48, č. 1 (2003), s. 1-13 ISSN 0001-7043 Grant - others:GA €R(CZ) GP102/01/D114; NSF(US) DMS -0107539 Program:GP Institutional research plan: CEZ:MSM 212300016 Keywords : electrical charge * numerical modelling * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  10. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  11. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  12. Electricity purchase agreements and distributed energy policies for anaerobic digesters

    International Nuclear Information System (INIS)

    Binkley, David; Harsh, Stephen; Wolf, Christopher A.; Safferman, Steven; Kirk, Dana

    2013-01-01

    Anaerobic digestion is increasingly recognized for its ability to produce renewable energy and reduce greenhouse gas emissions from livestock operations. In 2010, there were 2645 U.S. dairy farms with herd sizes large enough to support anaerobic digesters, yet only 156 systems were in operation (U.S. Environmental Protection Agency (U.S. EPA), 2010a. Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities. AgSTAR Program; U.S. Environmental Protection Agency (U.S. EPA), 2011. Operational Anaerobic Digesters, Sorted by State (Dairy). AgSTAR Program.). This study analyzes the net present value of digester systems under alternative electricity purchase agreements and how returns are affected by standby charges, net metering policies and the use of feed-in-tariffs. In order for digester potential to be fully realized on a state or national level, changes to distributed energy policy are required. Results indicated that standby charges can reduce revenues from offsetting electricity by an average of nearly 20%. Net metering rules limit participation among larger farms and negatively affect profitability by restricting engine–generator size. Lastly, the effectiveness of a fixed price feed-in-tariff policy for digesters is significantly affected by project size differentiation. Digester energy policies are similar nationwide, making this study useful for government regulatory agencies and digester owners throughout the U.S. - Highlights: ► Anaerobic digester net present value was examined over a range of herd sizes. ► Standby charges reduce electricity sales revenues by an average of nearly 20%. ► Net metering rules reduce profitability by restricting engine–generator size. ► Feed-in-tariffs for digesters are significantly affected by project size.

  13. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  14. Novel wind powered electric vehicle charging station with vehicle-to-grid (V2G) connection capability

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2017-01-01

    Highlights: • The only wind powered EV charging station reported in the literature. • The charging station maximally converts wind energy into electric energy. • Novel fast and highly accurate MPPT technique implemented in the EV charging station. • The charging station is grid-connected type with vehicle-to-grid (V2G) technology. • The charging station balances load demand in the grid connected to it. - Abstract: In this study, a novel grid-connected wind powered electric vehicle (EV) charging station with vehicle-to-grid (V2G) technology is designed and constructed. The wind powered EV charging station consists of a wind energy conversion system (WECS), a unidirectional DC/DC converter connected to the WECS, a maximum power point tracking (MPPT) controller, 15 bidirectional DC/DC converters dedicated to 15 charging stations provided for charging EVs, and a three-phase bidirectional DC/AC inverter connected to the grid. The contribution of this work is that the grid-connected wind powered EV charging station presented in this work is the only constructed EV charging station reported in the literature that uses wind energy as a renewable resource to produce electric energy for charging EVs, and moreover, it maximally converts wind energy into electric energy because it uses a novel fast and highly accurate MPPT technique proposed in this study. Other works are only simulated models without any new MPPT consideration. It is demonstrated that the constructed wind powered EV charging station is a perfect charging station that not only produces electric energy to charge EVs but also balances load demand in the grid connected to it.

  15. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  16. Design of RFID Mesh Network for Electric Vehicle Smart Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-09-04

    With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers

  17. Estimating the net electricity energy generation and demand using the ant colony optimization approach. Case of Turkey

    International Nuclear Information System (INIS)

    Toksari, M. Duran

    2009-01-01

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear A COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic A COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)

  18. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents......, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages...

  19. Study of the top quark electric charge at the cdf experiment

    International Nuclear Information System (INIS)

    Bartos, P.

    2011-01-01

    We report on the measurement of the top quark electric charge using the jet charge tagging method on events containing a single lepton collected by the CDF II detector at Fermilab between February 2002 and February 2010 at the center-of-mass energy ps = 1.96 TeV . There are three main components to this measurement: determining the charge of the W (using the charge of the lepton), pairing the W with the b-jet to ensure that they are from the same top decay branch and finally determining the charge of the b-jet using the Jet Charge algorithm. We found, on a sample of 5.6 fb -1 of data, that the p-value under the standard model hypothesis is equal to 13.4%, while the p-value under the exotic model hypothesis is equal to 0.014%. Using the a priori criteria generally accepted by the CDF collaboration, we can say that the result is consistent with the standard model, while we exclude an exotic quark hypothesis with 95% confidence. Using the Bayesian approach, we obtain for the Bayes factor (2 · ln(BF)) a value of 19.6, that favors very strongly the SM hypothesis over the XM one. The presented method has the highest sensitivity to the top quark electric charge among the presented so far top quark charge analysis. (author)

  20. Study of the top quark electric charge at the CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Pavol [Comenius Univ., Bratislava (Slovakia)

    2011-01-01

    We report on the measurement of the top quark electric charge using the jet charge tagging method on events containing a single lepton collected by the CDF II detector at Fermilab between February 2002 and February 2010 at the center-of-mass energy √s = 1.96 TeV. There are three main components to this measurement: determining the charge of the W (using the charge of the lepton), pairing the W with the b-jet to ensure that they are from the same top decay branch and finally determining the charge of the b-jet using the Jet Charge algorithm. We found, on a sample of 5.6 fb-1 of data, that the p-value under the standard model hypothesis is equal to 13.4%, while the p-value under the exotic model hypothesis is equal to 0.014%. Using the a priori criteria generally accepted by the CDF collaboration, we can say that the result is consistent with the standard model, while we exclude an exotic quark hypothesis with 95% confidence. Using the Bayesian approach, we obtain for the Bayes factor (2ln(BF)) a value of 19.6, that favors very strongly the SM hypothesis over the XM one. The presented method has the highest sensitivity to the top quark electric charge among the presented so far top quark charge analysis.

  1. Distribution of electric field and charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    1995-01-01

    The distribution of electric field in silicon strip detectors is analyzed in the case of dull depletion as well as for partial depletion. Influence of inhomogeneous electric fields on the charge collection and performances of silicon strip detectors is discussed

  2. Static In-wheel Wireless Charging Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chirag Panchal

    2017-09-01

    Full Text Available Wireless charging is a popular upcoming technology with uses ranging from mobile phone charging through to electric vehicle EV charging. Large air gaps found in current EV wireless charging systems WCS pose a hurdle of its success. Air gaps in WCS cause issues in regards to efficiency power transfer and electromagnetic compatibility EMC leakage issues. A static In-Wheel WCS IW-WCS is presented which significantly reduces the issues associated with large air gaps. A small scale laboratory prototype utilizing a standard 10mm steel reinforced tyre has been created and compared to a typical 30mm air gap. The IW-WCS has been investigated by experimental and finite element method FEM based electro-magnetic field simulation methods to validate performance.

  3. Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations

    Directory of Open Access Journals (Sweden)

    Lixing Chen

    2016-09-01

    Full Text Available To solve the problem, because of which conventional quick-charging strategies (CQCS cannot meet the requirements of quick-charging for multiple types of electric vehicles (EV on highways where vehicle inflow is excessive, this paper proposed a new quick-charging strategy (NQCS for EVs: on the premise of not affecting those EVs being charged, the remaining power of the quick-charging pile with multiple power output interfaces is used to provide a synchronous charging service for EVs waiting in the queue. To verify the effectiveness of this strategy, a power distribution model of charging pile and a queuing model of charging station (CS were constructed. In addition, based on an actual highway service area where vehicle inflow is excessive during the simulation period (0:00–24:00, charging situations of CQCS and NQCS were respectively simulated in a charging station (CS, with different number of chargers, by basic queuing algorithm and an improved queuing algorithm. The simulation results showed that when the relative EV inflow is excessive, compared to CQCS, NQCS not only can reduce user waiting time, charging time, and stay time, but also can improve the utilisation rate of charging infrastructure and service capacity of CS and reduce the queue length of CS. At the same time, NQCS can reduce the impact on the power grid. In addition, in NQCS, the on-demand power distribution method is more efficient than the average power distribution method. Therefore, NQCS is more suitable for quick-charging for multiple types of EVs on highways where vehicle inflow is excessive.

  4. Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Zwanziger, D.

    1979-01-01

    We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles

  5. Electric bus fleet size and mix problem with optimization of charging infrastructure

    DEFF Research Database (Denmark)

    Rogge, Matthias; van der Hurk, Evelien; Larsen, Allan

    2018-01-01

    Battery electric buses are seen as a well-suited technology for the electrification of road-based public transport. However, the transition process from conventional diesel to electric buses faces major hurdles caused by range limitations and required charging times of battery buses. This work...... addresses these constraints and provides a methodology for the cost-optimized planning of depot charging battery bus fleets and their corresponding charging infrastructure. The defined problem covers the scheduling of battery buses, the fleet composition, and the optimization of charging infrastructure...... in a joint process. Vehicle schedule adjustments are monetized and evaluated together with the investment and operational costs of the bus system. The resulting total cost of ownership enables a comparison of technical alternatives on a system level, which makes this approach especially promising...

  6. Perceptions on the effect of small electric fans on comfort inside bed nets in southern Ghana: a qualitative study.

    Science.gov (United States)

    Jaeger, Mulako S; Briët, Olivier J T; Keating, Joseph; Ahorlu, Collins K; Yukich, Joshua O; Oppong, Samuel; Nardini, Peter; Pfeiffer, Constanze

    2016-12-01

    Long-lasting insecticidal nets (LLINs) are known to be highly effective in reducing malaria transmission, morbidity and mortality. However, among those owning an LLIN, use rates are often suboptimal. A reported barrier to bed net use is discomfort due to heat. This qualitative study was part of a larger evaluation conducted in communities without electricity in rural Ghana to assess whether 0.8 W solar powered net fans can increase net use. Twenty-three key informant interviews with household heads in the study communities in Shai-Osudoku District, southern Ghana, were conducted from July to August 2015. The purpose of the interviews was to obtain insight into perceptions of participants about the net fan system in relation to LLIN use. While all study participants reported using LLINs, with mosquito nuisance prevention as the prime motivation, heat was also mentioned as a key barrier to net use. Respondents appreciated the net fans because they improved comfort inside bed nets. The LED light on the fan stand became the main source of light at night and positively influenced the perception of the intervention as a whole. The general acceptance of the net fan system by the study participants highlights the potential of the intervention to improve comfort inside mosquito nets. This, therefore, has a potential to increase bed net use in areas with low access to electricity.

  7. Privacy-Preserving Billing Scheme against Free-Riders for Wireless Charging Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xingwen Zhao

    2017-01-01

    Full Text Available Recently, scientists in South Korea developed on-line electric vehicle (OLEV, which is a kind of electric vehicle that can be charged wirelessly while it is moving on the road. The battery in the vehicle can absorb electric energy from the power transmitters buried under the road without any contact with them. Several billing schemes have been presented to offer privacy-preserving billing for OLEV owners. However, they did not consider the existence of free-riders. When some vehicles are being charged after showing the tokens, vehicles that are running ahead or behind can switch on their systems and drive closely for a free charging. We describe a billing scheme against free-riders by using several cryptographic tools. Each vehicle should authenticate with a compensation-prepaid token before it can drive on the wireless-charging-enabled road. The service provider can obtain compensation if it can prove that certain vehicle is a free-rider. Our scheme is privacy-preserving so the charging will not disclose the locations and routine routes of each vehicle. In fact, our scheme is a fast authentication scheme that anonymously authenticates each user on accessing a sequence of services. Thus, it can be applied to sequential data delivering services in future 5G systems.

  8. Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Ignacio Martínez-Araya, Jorge; Grand, André; Glossman-Mitnik, Daniel

    2015-11-28

    By means of the Spin-Polarized Conceptual Density Functional Theory (SP-CDFT), three 2,6-bis(imino)pyridine catalysts based on iron(II), used for polymerization of ethylene, were studied. The catalysts differed by the substituent group, bearing either -H, -NO2 or -OCH3. To date, catalytic activity, a purely experimental parameter measuring the mass of polyethylene produced per millimole of iron per time and pressure unit at a fixed temperature, has not been explained in terms of local hyper-softness. The latter is a purely theoretical parameter designed for quantifying electronic effects; it is measured using the metal atom responsible for the coordination process with the monomer (ethylene). Because steric effects are not relevant in these kinds of catalysts and only electronic effects drive the catalytic process, an interesting link is found between catalytic activity and the local hyper-softness condensed on the iron atom by means of four functionals (B3LYP, BP86, B97D, and VSXC). This work demonstrates that the use of local hyper-softness, predicted by the SP-CDFT, is a suitable parameter for explaining order relationships among catalytic activity values, thus quantifying the electronic influence of the substituent group inducing this difference; the use of only net electric charges does not lead to clear conclusions. This finding can aid in estimating catalytic activities leading to a more rational design of new catalysts via computational chemistry.

  9. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  10. Study of Doubly Charged Delta Baryons in Collisions of Copper Nuclei at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2017-05-22

    connecting the three quarks. Composite particles composed of partons are known as “hadrons” and must have a neutral color charge. There are six... neutral charge of neutrons. The up quark has positive charge equivalent to two-thirds the charge of an electron, and the down quark has negative...known as “heavy ions.” An ion is an atom or molecule with net electric charge, bare nuclei have a large positive charge due to the absence of

  11. Electric Vehicles Integration in the Electric Power System with Intermittent Energy Sources - The Charge/Discharge infrastructure

    DEFF Research Database (Denmark)

    Marra, Francesco

    The replacement of conventional fuelled vehicles with electric vehicles (EVs) is going to increase in the coming years, following the trend seen for renewable energy sources (RES), as photovoltaic (PV) and wind power. In this scenario, the electric power systems in Europe are going to accommodate...... increased levels of non-dispatchable and fluctuating energy sources, as well as additional power demand due to EV charging. If the charging of EVs can be intelligently managed, several advantages can be offered to the power system. How useful coordinated EV charging can be, in combination with RES...... and the power levels needed. Furthermore, during EV coordination, a number of nonlinearities and battery ageing issues should be taken into account, to ensure a correct EV coordination and to preserve the EV battery lifetime. The third part of this research exploits the use of EV load coordination as an energy...

  12. Internal electric fields of electrolytic solutions induced by space-charge polarization

    Science.gov (United States)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  13. Design of electric vehicle charging station based on wind and solar complementary power supply

    Science.gov (United States)

    Wang, Li

    2018-05-01

    Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.

  14. Deposition of Aerosol Particles in Electrically Charged Membrane Filters

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1972-05-15

    A theory for the influence of electric charge on particle deposition on the surface of charged filters has been developed. It has been tested experimentally on ordinary membrane filters and Nuclepore filters of 8 mum pore size, with a bipolar monodisperse test aerosol of 1 mum particle diameter, and at a filter charge up to 20 muC/m2. Agreement with theory was obtained for the Coulomb force between filter and particle for both kinds of filters. The image force between charged filter and neutral particles did not result in the predicted deposition in the ordinary membrane filter, probably due to lacking correspondence between the filter model employed for the theory, and the real filter. For the Nuclepore filter a satisfactory agreement with theory was obtained, also at image interaction

  15. Electric vehicle charge planning using Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels K.; Madsen, Henrik

    2012-01-01

    Economic Model Predictive Control (MPC) is very well suited for controlling smart energy systems since electricity price and demand forecasts are easily integrated in the controller. Electric vehicles (EVs) are expected to play a large role in the future Smart Grid. They are expected to provide...... grid services, both for peak reduction and for ancillary services, by absorbing short term variations in the electricity production. In this paper the Economic MPC minimizes the cost of electricity consumption for a single EV. Simulations show savings of 50–60% of the electricity costs compared...... to uncontrolled charging from load shifting based on driving pattern predictions. The future energy system in Denmark will most likely be based on renewable energy sources e.g. wind and solar power. These green energy sources introduce stochastic fluctuations in the electricity production. Therefore, energy...

  16. Electric Car Users’ Time of Charging Problem under Peak Load Pricing When Delay in Charging Time Involves Uncertain Cost

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie

    The problem of peak load arises when demand fluctuates over time while the pro- duction technology is not flexible (or making it flexible is economically inefficient) and/or when a product is non-storable (or storage cost is huge). Peak load is a com- mon problem in consumption of public utilities......, on the one hand, observed cost saving benefit of postponing the time of charging to off-peak lower fee of charging and, on the other hand, the cost of delay in departure time for planned trips and uncertain cost of late charging associated with likelihood occur- rence of unanticipated trip before the car...... of electricity. The electric vehicle (EV) users choice of time of charging problem under PLP is different from that of general households using energy for house appliances since there is uncertain cost to the former as- sociated with likelihood occurrence of unanticipated trips such as visiting hospital...

  17. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  18. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gomez San Roman, Tomas [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Momber, Ilan, E-mail: ilan.momber@iit.upcomillas.es [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain); Rivier Abbad, Michel; Sanchez Miralles, Alvaro [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Madrid (Spain)

    2011-10-15

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: > A conceptual regulatory framework for charging EVs is proposed. > 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. > Depending on private or public access of charging points, contractual relations change. > A classification of charging scenarios alludes implications on regulatory topics. > EV penetration phase dependent policy and regulatory recommendations are given.

  19. The load shift potential of plug-in electric vehicles with different amounts of charging infrastructure

    Science.gov (United States)

    Gnann, Till; Klingler, Anna-Lena; Kühnbach, Matthias

    2018-06-01

    Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both these issues could be solved with coordinated load shifting (demand response). Previous studies analyzed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work and public charging. For this purpose, two models are combined. In a comparison of three scenarios, we find that charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered compared to a scenario with only domestic charging.

  20. Planning Future Electric Vehicle Central Charging Stations Connected to Low-Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2012-01-01

    A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...... on their investment cost. Investigation on location and size of CCS is conducted, analyzing two LV grids of different capacity. The results enlighten that a public CCS should be preferably located in the range of 100 m from the transformer. The AC charging levels of 11 kW and 22 kW have the highest potential in LV...

  1. Conceptual design of an electricity generating tritium breeding blanket sector for INTOR/NET

    International Nuclear Information System (INIS)

    Bond, A.

    1984-01-01

    A study is made of a fusion reactor power blanket and its associated equipment with the objective of producing a conceptual design for a blanket sector of INTOR, or one of its national variants (e.g. NET), from which electricity could be generated simultaneously with the breeding of tritium. (author)

  2. Switchless charge-discharge circuit for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Kryszyn, J; Smolik, W T; Radzik, B; Olszewski, T; Szabatin, R

    2014-01-01

    The main factor limiting the performance of electrical capacitance tomography (ECT) is an extremely low value of inter-electrode capacitances. The charge-discharge circuit is a well suited circuit for a small capacitance measurement due to its immunity to noise and stray capacitance, although it has a problem associated with a charge injected by the analogue switches, which results in a dc offset. This paper presents a new diode-based circuit for capacitance measurement in which a charge transfer method is realized without switches. The circuit was built and tested in one channel configuration with 16 multiplexed electrodes. The performance of the elaborated circuit and a comparison with a classic charge-discharge circuit are presented. The elaborated circuit can be used for sensors with inter-electrode capacitances not lower than 10 fF. The presented approach allows us to obtain a similar performance to the classic charge-discharge circuit, but has a simplified design. A lack of the need to synchronize the analogue switches in the transmitter and the receiver part of this circuit could be a desirable feature in the design of measurement systems integrated with electrodes. (paper)

  3. Electrical manipulation of oligonucleotides grafted to charged surfaces.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc

    2006-09-21

    The electrical manipulation of short DNA molecules on surfaces offers novel functionalities with fascinating possibilities in the field of bio-interfaces. Here we present systematic investigations of the electrical interactions which govern the structure of oligonucleotides on charged gold surfaces. Successively, we address influences of the applied field strength, the role of DC electrode potentials, in particular for polycrystalline surfaces, as well as screening effects of the surrounding electrolyte solution. Data obtained for single and double stranded DNA exhibit differences which can be attributed to the dissimilar flexibility of the different molecular conformations. A comparison of the experimental results with a basic model shows how the alignment of the molecules adjusts according to a balance between electrically induced ordering and stochastic thermal motions. The presented conclusions are expected to be of general relevance for the behaviour of polyelectrolytes exposed to localized electric fields at interfaces.

  4. Renewable Energy for Electric Vehicles : Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power

  5. Numerical investigation of the contraction of neutral-charged diblock copolymer brushes in electric fields

    International Nuclear Information System (INIS)

    Chen, Yuwei; Li, Haiming; Zhu, Yuejin; Tong, Chaohui

    2016-01-01

    Using self-consistent field theory (SCFT), the contraction of neutral-charged A-B diblock copolymer brushes in electric fields generated by opposite surface charges on two parallel electrodes has been numerically investigated. The diblock copolymer chains were grafted with the free end of the neutral block to one electrode and immersed in a salt-free solution sandwiched between the two electrodes. The numerical results reveal that the charged monomers, A-B joint segment and the tail exhibit bimodal distributions under external electric fields, which are absent for homopolymer polyelectrolyte brushes. The dependences of the relative populations and peak positions of the two modes on various parameters such as block ratio, grafting density, chain length and strength of the applied electric field were systematically examined and the underlining mechanisms were elucidated. It was found in this study that, if the total amount of surface charges on the grafting electrode is no more than that of the counter-ions in the system, overall charge neutrality is generally maintained inside the brushes when including the contribution of surface charges on the grafting electrode. In such a case, the counter-ions expelled from the brushes are highly enriched in the immediate vicinity of the second electrode and an approximate charge balance between these expelled counter-ions and the opposite surface charges on the second electrode is achieved. (paper)

  6. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    International Nuclear Information System (INIS)

    Gomez San Roman, Tomas; Momber, Ilan; Rivier Abbad, Michel; Sanchez Miralles, Alvaro

    2011-01-01

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: → A conceptual regulatory framework for charging EVs is proposed. → 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. → Depending on private or public access of charging points, contractual relations change. → A classification of charging scenarios alludes implications on regulatory topics. → EV penetration phase dependent policy and regulatory recommendations are given.

  7. Probabilistic modeling of nodal electric vehicle load due to fast charging stations

    DEFF Research Database (Denmark)

    Tang, Difei; Wang, Peng; Wu, Qiuwei

    2016-01-01

    In order to reduce greenhouse gas emission and fossil fuel dependence, Electric Vehicle (EV) has drawn increasing attention due to its zero emission and high efficiency. However, new problems such as range anxiety, long charging duration and high charging power may threaten the safe and efficient...... station into consideration. Fuzzy logic inference system is applied to simulate the charging decision of EV drivers at fast charging station. Due to increasing EV loads in power system, the potential traffic congestion in fast charging stations is modeled and evaluated by queuing theory with spatial...

  8. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  9. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  10. Integration between electric vehicle charging and PV system to increase self-consumption of an office application

    International Nuclear Information System (INIS)

    Roselli, Carlo; Sasso, Maurizio

    2016-01-01

    Highlights: • The interaction between a PV plant and office including EV charging is investigated. • An energy analysis on daily driving distance basis of the EV is performed. • An environmental analysis on daily driving distance basis of the EV is considered. - Abstract: The paper analyzes the introduction of a photovoltaic system satisfying electric, space heating and cooling demand of an office building located in southern Italy. The electric load is due to an electric heat pump, used to satisfy space heating and cooling load, a pure electric demand (personal computers, printers, lighting, etc.) and an electric vehicle charged during working hours. Dynamic simulations to evaluate the energy and environmental performance of the analyzed system considering different photovoltaic peak powers (4.5–9.0 kW), electric vehicle distance per day (40–120 km) and charging mode is carried out. The solar based system shows primary energy saving and equivalent carbon dioxide emission reduction higher than 40% in comparison to the reference conventional system based on a natural gas fired boiler, an electric chiller and a diesel car. The results highlight that the solar energy system is more competitive when DC charging system is provided.

  11. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff:A review on maximum demand shaving

    OpenAIRE

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar; Mihet-Popa, Lucian; Blaabjerg, Frede; Guerrero, Josep M.

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-conne...

  12. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  13. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors

    Directory of Open Access Journals (Sweden)

    Dugassa Sisay

    2012-11-01

    Full Text Available Abstract Background Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. Methods Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. Results An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR 0.46; 95% confidence interval (CI 0.40-0.53, p Conclusion A square of four e-nets with yellow sticky boards as a collection device can be used for quantifying the numbers of mosquitoes approaching a small oviposition site. Shiny sticky surfaces attract gravid females possibly because they are visually mistaken as aquatic habitats. These materials might be developed further as gravid traps

  14. Prediction and optimization methods for electric vehicle charging schedules in the EDISON project

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Andersen, Peter Bach; Pedersen, Anders Bro

    2012-01-01

    project has been launched to investigate various areas relevant to electric vehicle integration. As part of EDISON an electric vehicle aggregator has been developed to demonstrate smart charging of electric vehicles. The emphasis of this paper is the mathematical methods on which the EDISON aggregator...

  15. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    Sun, Fengchun; Hu, Xiaosong; Zou, Yuan; Li, Siguang

    2011-01-01

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  16. Soap-film flow induced by electric fields in asymmetric frames

    Science.gov (United States)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  17. Electrical charging of aerosol nanoparticles and some practical applications

    Directory of Open Access Journals (Sweden)

    Alonso, M.

    2003-02-01

    Full Text Available This review article summarizes the main results of recent fundamental research on the electrical charging of nanometer-sized aerosol particles (particle diameter below 10 nm, Knudsen number above about 15, kinetic regime. It covers topics of great relevance to aerosol processing and measurement, such as the effect of the presence of a number of ions on the surface of a nanoparticle on its electrical mobility; the experimental measurement of charging probability / efficiency for particle diameter below 10 nm, both for diffusion and corona discharge type chargers; the effect of particle growth by Brownian coagulation on the charging process; and the examination of after-charging effects downstream of an aerosol neutralizes The last part of this article discusses two practical applications of nanoaerosol charging, namely, the particle size measurement by electrical methods, and some electrostatic effects on the removal of nanoparticles from gas streams.

    El presente artículo es una revisión bibliográfica sobre el cargado eléctrico de aerosoles de nanopartículas (diámetro de partícula inferior a 10 nm, número de Knudsen mayor de 15, régimen cinético. El artículo abarca algunos tópicos de gran interés para el procesado y la medición de aerosoles, tales como el efecto de la presencia de iones en la superficie de la nanopartícula en su movilidad eléctrica; la medición experimental de probabilidad / eficacia de cargado para partículas de diámetro inferior a 10 nm, tanto para cargadores de tipo difusivo como para los de descarga de corona; el efecto del crecimiento de partícula por coagulación browniana en el proceso de cargado; y los efectos de post-cargado corriente abajo del neutralizados En la parte final del artículo, se analizan someramente dos aplicaciones prácticas del cargado eléctrico de nanoaerosoles, a saber, la medición del tamaño de partícula por métodos eléctricos, y algunos efectos electrostáticos en el

  18. Solar-Assisted Electric Vehicle Charging Station Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data

  19. Spin current induced by a charged tip in a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Shchamkhalova, B.S., E-mail: s.bagun@gmail.com

    2017-03-15

    We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin–orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.

  20. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  1. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    Science.gov (United States)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  2. An Optimal Domestic Electric Vehicle Charging Strategy for Reducing Network Transmission Loss While Taking Seasonal Factors into Consideration

    Directory of Open Access Journals (Sweden)

    Yuancheng Zhao

    2018-01-01

    Full Text Available With the rapid growth of domestic electric vehicle charging loads, the peak-valley gap and power fluctuation rate of power systems increase sharply, which can lead to the increase of network losses and energy efficiency reduction. This paper tries to regulate network loads and reduce power system transmission loss by optimizing domestic electric vehicle charging loads. In this paper, a domestic electric vehicle charging loads model is first developed by analyzing the key factors that can affect users’ charging behavior. Subsequently, the Monte Carlo method is proposed to simulate the power consumption of a cluster of domestic electric vehicles. After that, an optimal electric vehicle charging strategy based on the 0-1 integer programming is presented to regulate network daily loads. Finally, by taking the IEEE33 distributed power system as an example, this paper tries to verify the efficacy of the proposed optimal charging strategy and the necessity for considering seasonal factors when scheduling electric vehicle charging loads. Simulation results show that the proposed 0-1 integer programming method does have good performance in reducing the network peak-valley gap, voltage fluctuation rate, and transmission loss. Moreover, it has some potential to further reduce power system transmission loss when seasonal factors are considered.

  3. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  4. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    Science.gov (United States)

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  5. Blending of electricity pricing with time flavour - an analysis of net system benefit to an electric utility in India

    International Nuclear Information System (INIS)

    Bhardwaj, J.L.

    1992-01-01

    Demand-side Management is a powerful strategy for modifying electric energy consumption patterns for the mutual benefit of consumers, the supplier and the economy as a whole Time-of-use pricing of electricity suggest a policy where the price is time-differentiated so as to reduce contribution to the system-peak which determines the capacity and investments of a power-system. This paper describes a case-study of net system benefit to an electric utility in India by offering time-of-use tariff to high voltage (HV) industrial consumers. The study shows that there is a potential of shifting about 19% H.V. Industrial loads from peak to off-peak hours thereby benefitting both, the consumers and the utility. 1 fig., 2 tabs

  6. On the checking of electric charge conservation law and the pauli principle

    International Nuclear Information System (INIS)

    Okun', L.B.

    1989-01-01

    This is a short critical review of the attempts to check the accuracy with which are carried out in experiment the electric charge conservation law and the Pauli principle. The absence of the inwardly noncontradictory phenomenological theory is emphasized, which could describe the charge conservation and/or the Pauli principle violation. Under charge nonconservation longitudinal photons are of a principal importance. New suggestions concerning the principle Puli checking are discussed

  7. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  8. The economics of fast charging infrastructure for electric vehicles

    International Nuclear Information System (INIS)

    Schroeder, Andreas; Traber, Thure

    2012-01-01

    By 2011 little is known about the economic rationale of public fast chargers for electric vehicles (EV). This paper aims at providing an insight into the business case of this technology in a case study for Germany. The estimated Return on Investment (ROI) of a public fast charging station constitutes the main contribution. Potential users and organization structures are investigated as well as different tariff types. According to the estimations, the current market outlook seems too uncertain for triggering a large-scale roll-out of fast charging infrastructure. Approximations suggest that investment is hardly profitable at low EV adoption rates, unless investment cost can be severely lowered. Besides competition with alternative charging solutions, the general EV adoption rate is detected as being a main risk factor for investment in public charging infrastructure. Highlights: ► Private investment into public fast charging infrastructure appears to be driven by other than pure project prospects at current EV penetration rates. ► High cost markups are needed to refinance investment, unless grid tariffs are exempted or constant high demand is assured. ► Investment into public fast charging remains risky and incentives can be contained by the spreading of alternative home-charging devices and alternative propulsion technologies.

  9. Modeling of Electric Field Around 100 MVA 150/20 kV Power Transformator using Charge Simulation Method

    Directory of Open Access Journals (Sweden)

    Noviadi Arief Rachman

    2013-07-01

    Full Text Available Charge Simulation Method is one of the field theory that can be used as an approach to calculate the electromagnetic distribution on the electrical conductor. This paper discussed electric field modeling around power transformator by using Matlab to find the safety distance. The safe distance threshold of the electric field to human health refers to WHO and SNI was 5 kV/m. The specification of the power transformator was three phases, 150/20 kV, and 100 MVA. The basic concept is to change the distribution charge on the conductor or dielectric polarization charge with a set of discrete fictitious charge. The value of discrete fictitious charge was equivalent to the potential value of the conductor, and became a reference to calculate the electric field around the surface contour of the selected power transformator. The measurement distance was 5 meter on each side of the transformator surface. The results showed that the magnitude of the electric field at the front side was 5541 V/m, exceeding the safety limits.

  10. On the business value of ICT-controlled plug-in electric vehicle charging in California

    International Nuclear Information System (INIS)

    Goebel, Christoph

    2013-01-01

    The increasing penetration of variable renewable energy, such as wind and solar, requires the deployment of large scale energy storage or dynamic demand side management. Leveraging the intrinsic energy storage potential of certain electric loads could be the key for an efficient transition to green power generation. Plug-in electric vehicles (PEVs) are about to be introduced on a large scale. In this paper, we investigate the savings potential of electricity retailers resulting from the ability to control the charging behavior of a fleet of PEVs using Information and Communication Technology (ICT). This savings potential is important as it could jumpstart the development of advanced control infrastructures for dynamic demand side management. The paper makes three major contributions: first, it applies a novel car usage model based on data from the National Household Travel Survey (NHTS). Second, it develops and evaluates several charging scheduling algorithms with low computational requirements. Third, it identifies several key parameters influencing the relative and absolute savings potential of ICT-controlled PEV charging. We obtain a relative savings potential of up to 45%. The absolute yearly savings per PEV, however, are rather small, which could limit the economic incentives of electricity retailers to deploy the required infrastructure. - Highlights: ► The paper presents a novel model for car usage based on NHTS. ► Several charging scheduling algorithms with low computational requirements are developed and evaluated. ► Several key parameters influencing the relative and absolute savings potential of ICT-controlled PEV charging are identified. ► PEVs can be used to reduce electricity sourcing cost by up to 45%. ► The absolute yearly savings per controlled PEV are rather small and could limit the economic incentives of electricity retailers to deploy the required infrastructure.

  11. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  12. Mergers in the GB Electricity Market: effects on Retail Charges

    International Nuclear Information System (INIS)

    Salies, Evens

    2006-05-01

    The opening up of the UK residential electricity sector in 1999 prompted several studies of the impact this had on both the level and structuring of retail charges, and on incumbent players' market power. Drawing on observations of regional tariffs for the month of January 2004, this paper supports previous conclusions based on simulated retail charges, looking at the response of real tariffs to distribution and transmission costs, customer density, and the length of low voltage underground circuit. We also investigate whether vertically integrated suppliers have a particular effect on charges ceteris paribus the effect of cost drivers and supplier-related factors. (author)

  13. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Raghavan, Sesha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networks to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.

  14. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    Science.gov (United States)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  15. Electrical control of charged carriers and excitons in atomically thin materials

    Science.gov (United States)

    Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip

    2018-02-01

    Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.

  16. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  17. Impossibility of an acyclic relativistic electric motor

    Energy Technology Data Exchange (ETDEWEB)

    Spavieri, G [Universidad de Los Andes, Merida (Venezuela); Cavalleri, G [Milan Univ. (Italy). Ist. di Fisica; Spinelli, G [Padua Univ. (Italy). Ist. di Matematica Applicata

    1981-02-11

    The relativistic torque acting on a circuit carrying a current and having a uniform translatory motion in a constant and uniform electric field would seem to suggest the possibility of an acyclic relativistic electric motor. However, the net effect on the side parallel to the rotation axis is exactly balanced by the variation of the angular momentum (in the case of an insulating circuit transporting electric charges) or by the external moment due to the magnetic field (in the case of a conducting circuit) acting on the two sides perpendicular to the rotation axis.

  18. A Pattern Analysis of Daily Electric Vehicle Charging Profiles: Operational Efficiency and Environmental Impacts

    Directory of Open Access Journals (Sweden)

    Ranjit R. Desai

    2018-01-01

    Full Text Available Plug-in Electric Vehicles (PEVs are considered one solution to reducing GHG emissions from private transport. Additionally, PEV adopters often have free access to public charging facilities. Through a pattern analysis, this study identifies five distinct clusters of daily PEV charging profiles observed at the public charging stations. Empirically observed patterns indicate a significant amount of operational inefficiency, where 54% of the total parking duration PEVs do not consume electricity, preventing other users from charging. This study identifies the opportunity cost in terms of GHG emissions savings if gasoline vehicles are replaced with potential PEV adopters. The time spent in parking without charging by current PEV users can be used by these potential PEV users to charge their PEVs and replace the use of gasoline. The results suggest that reducing inefficient station use leads to significant reductions in emissions. Overall, there is significant variability in outcomes depending on the specific cluster membership.

  19. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD

    NARCIS (Netherlands)

    Buis, B.; Koomen, G. C.; Imholz, A. L.; Struijk, D. G.; Reddingius, R. E.; Arisz, L.; Krediet, R. T.

    1996-01-01

    BACKGROUND: Controversy exists as to whether electric charges of plasma proteins influence their transport across the peritoneal membrane during CAPD. Fixed negative charges in the peritoneal membrane are diminished during peritonitis in rats. METHODS: Peritoneal clearances of 10 proteins and their

  20. Network cost in transmission and distribution of electric power; Naetkostnader i oeverfoering och distribution av el

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, A; Naeslund, B; Oettinger-Biberg, C; Olander, H; Wuolikainen, T; Fritz, P

    1994-12-31

    This report is divided in two parts, where part 1 treats the charges on the regional nets with special emphasis on the net owners tariffs on a deregulated market. Part 2 describes the development of the network costs in electric power distribution for the period 1991-1993. 11 figs, 33 tabs

  1. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  2. Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Eisel, Matthias; Kolbe, Lutz M.

    2014-01-01

    A key reason for the low sales volumes of electric vehicles is their significantly higher purchasing price in comparison to conventional vehicles. However, various charging strategies can be applied to make these vehicles more profitable. In this paper, controlled charging concepts are transferred to commercial fleets operating in closed transport systems, as we found this field of application particularly well suited for the implementation of charging strategies. We analyzed data gathered in a field experiment conducted in a European port using electric vehicles in combination with a battery-swapping station to calculate the economic potentials of three charging scenarios: (1) optimizing energy procurement (2) trading load-shifting potential on control markets, and (3) a combination of the two. The findings indicate that all approaches are appropriate for reducing economic disadvantages of electric transport vehicles. Furthermore, we find that adjusting charging processes to avoid price peaks is more profitable than offering control reserve. Finally, focusing on the combination of both strategies seems to be most promising from an economic perspective. In this context, operational cost savings of more than 65% can be achieved compared to a similar dieselpowered vehicle when applying this strategy. - Highlights: • We model various charging strategies for electric transport vehicles. • The economic assessment is based on a field experiment with a port operator. • We consider the special market design of spot and ancillary service markets. • All charging strategies presented provide substantial cost-saving potentials. • Optimizing energy procurement is more profitable than offering control reserve

  3. Profit maximization with customer satisfaction control for electric vehicle charging in smart grids

    Directory of Open Access Journals (Sweden)

    Edwin Collado

    2017-05-01

    Full Text Available As the market of electric vehicles is gaining popularity, large-scale commercialized or privately-operated charging stations are expected to play a key role as a technology enabler. In this paper, we study the problem of charging electric vehicles at stations with limited charging machines and power resources. The purpose of this study is to develop a novel profit maximization framework for station operation in both offline and online charging scenarios, under certain customer satisfaction constraints. The main goal is to maximize the profit obtained by the station owner and provide a satisfactory charging service to the customers. The framework includes not only the vehicle scheduling and charging power control, but also the managing of user satisfaction factors, which are defined as the percentages of finished charging targets. The profit maximization problem is proved to be NPcomplete in both scenarios (NP refers to “nondeterministic polynomial time”, for which two-stage charging strategies are proposed to obtain efficient suboptimal solutions. Competitive analysis is also provided to analyze the performance of the proposed online two-stage charging algorithm against the offline counterpart under non-congested and congested charging scenarios. Finally, the simulation results show that the proposed two-stage charging strategies achieve performance close to that with exhaustive search. Also, the proposed algorithms provide remarkable performance gains compared to the other conventional charging strategies with respect to not only the unified profit, but also other practical interests, such as the computational time, the user satisfaction factor, the power consumption, and the competitive ratio.

  4. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  5. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  6. Electric charge accumulation in polar and non-polar polymers under electron beam irradiation

    International Nuclear Information System (INIS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    2010-01-01

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m 3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m 3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m 3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula. (author)

  7. The study of water droplets electrical charging effect on spray tower scrubber efficiency for feldspar particles removal

    Directory of Open Access Journals (Sweden)

    R Golmohammadi

    2012-01-01

    Full Text Available Background and aims: One of the modern ways introduced nowadays for increasing the collection efficiency of particulate, is the use of electric charge in wet scrubbers. These systems can be used in places in which scrubbers are suitable for contaminant collection. In fact, this system only increases the collection efficiency, and it is not a new technology for contaminant collection.   Methods: First, according to ACGIH recommendation for pilot study a ventilation system was designed and installed. Later, water was charged by using an DC electric exchanger (1275 Volt, DC& product 3×1014 electron on system. Air velocity in the duct was determined by Pitot tube, pressure drop and speed equations, and sampling prop diameter was calculated considering isokenetic conditions. Sampling was performed at two flow rates of 20.3 and 11.4 liter per minute and in overall 72 samples were collected. Sample analysis was performed using gravimetric method and data analysis was performed using SPSS software.      Results: The collection efficiency of inhalable particles in the flow rate of 20.3 liter per minute in a non-electric intervention, and electric intervention with positive and negative charge was 66, 77.67 and 73 percent and in the flow rate of 11.4 liters per minute 60, 69.43 and 68.32 percent respectively. For non-inhalable particles the efficiency in the flow rate 20.3 liter per minute in a non-electric intervention and electric intervention with positive and negative charge was 94.67, 98.33 and 97.67 percent, and in the flow charge of 11/4 liter per minute the flow charge was 91.33, 95, and 97.33 percent respectively.  Conclusion: The results obtained from the experiments, showed that in a certain flow rate, electric intervention increases the efficiency of inhalable particle collection. By the way, this electric intervention has no significant effect on non-inhalable particle collection. Also, the effect of electric intervention with

  8. Mesh Network Design for Smart Charging Infrastructure and Electric Vehicle Remote Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, Aleksey; Chung, Ching-Yen; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-14

    Plug-In Electric Vehicle (PEV) charging today happens with little knowledge of the state of the vehicle being charged. In order to implement smart charging algorithms and other capabilities of the future smart grid, provisions for remote PEV monitoring will have to be developed and tested. The UCLA Smart-grid Energy Research Center (SMERC) is working on a smart charging research platform that includes data acquired in real time from PEVs being charged in order to investigate smart charging algorithms and demand response (DR) strategies for PEVs in large parking garage settings. The system outlined in this work allows PEVs to be remotely monitored throughout the charging process by a smart-charging controller communicating through a mesh network of charging stations and in-vehicle monitoring devices. The approach may be used for Vehicle to Grid (V2G) communication as well as PEV monitoring.

  9. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  10. Probabilistic Harmonic Calculation in Distribution Networks with Electric Vehicle Charging Stations

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.

  11. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  12. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  13. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  14. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  15. The electrically charged BTZ black hole with self (anti-self) dual Maxwell field

    International Nuclear Information System (INIS)

    Kamata, M.; Koikawa, T.

    1995-04-01

    The Einstein-Maxwell equations with a negative cosmological constant Λ in 2 + 1 spacetime dimensions discussed by Banados, Teitelboim and Zanelli are solved by assuming a self (anti-self) dual equation E r-circumflex = ± B -circumflex , which is imposed on the orthonormal basis components of the electric field E r-circumflex and the magnetic field B -circumflex . This solution describes an electrically charged extra black hole with mass M=8πGQ 2 e , angular momentum J = ±8πGQ 2 e / modul Λ 1/2 and electric charge Q e . Although the coordinate components of the electric field E r and the magnetic field B have singularities on the horizon at r (4πGQ 2 e / modul Λ) 1/2 , the spacetime has the same value of constant negative curvature R = 6Λ as that of Banados et al. (author). 5 refs

  16. Operational demands as determining factor for electric bus charging infrastructure

    NARCIS (Netherlands)

    Beekman, R.; Van Den Hoed, R.

    2016-01-01

    Many cities in Europe have ambitious goals when it comes to making their public transport buses emission free. This article outlines the reasoning behind the choices made in the city of Amsterdam with regards to charging infrastructure for electric buses. Emphasising the importance of operational

  17. Spontaneous symmetry breaking, quantization of the electric charge and the anomalies

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1990-01-01

    Cancellation of anomalies and on ensuring that fermions are massive, one obtains quantization of the electric charge, which is shown to be independent of the hypercharge quantum number of the Higgs doublet in the Standard Model. Ignorance of this fact can lead to pitfalls. It is shown that contrary to the popular belief, charge quantization is not a consequence of the anomalies but that in addition spontaneous symmetry breaking is essential. (author)

  18. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    International Nuclear Information System (INIS)

    Li Yun; Pan Lijia; Pu Lin; Shi Yi; Liu Chuan; Tsukagoshi, Kazuhito

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels. (paper)

  19. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    Science.gov (United States)

    Li, Yun; Liu, Chuan; Pan, Lijia; Pu, Lin; Tsukagoshi, Kazuhito; Shi, Yi

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels.

  20. Inductive charging for electric vehicles. A techno-economic assessment; Induktives Laden von Elektromobilen. Eine techno-oekonomische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Schraven, Sebastian; Kley, Fabian; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany)

    2011-09-15

    Conductive (wired) charging, where the user has to plug or unplug a cable, dominates the concepts discussed for electric vehicles up to now. Apart from the reduced range of the electric vehicle, frequent charging and especially short charging times make this plugging and unplugging appear impractical. In contrast, inductive (wireless) energy transfer makes it possible to charge without user intervention. This article attempts to answer questions on whether inductive energy transfer can already be used to charge electric vehicles and where this represents an economically attractive solution for users. To do so, first the charging technologies are presented and contrasted. It is also possible to compare the two charging technologies economically based on a cost analysis. It can be shown that no widespread use of the inductive technology is to be expected for the time being from an economic point of view due to its significant extra costs. Under certain conditions, however, there is a limited field of application as a niche technology in certain commercial areas, such as taxis, for example. (orig.)

  1. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Science.gov (United States)

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2018-05-01

    Full Text Available The electric vehicle fast-charging station is an important guarantee for the popularity of electric vehicle. As the fast-charging piles are voltage source converters, stability issues will occur in the grid-connected fast-charging station. Since the dynamic input admittance of the fast-charging pile and the dynamic output impedance play an important role in the interaction system stability, the station and grid interaction system is regarded as load-side and source-side sub-systems to build the dynamic impedance model. The dynamic input admittance in matrix form is derived from the fast-charging pile current control loop considering the influence of the LC filter. Similarly, the dynamic output impedance can be obtained similarly by considering the regional power grid capacity, transformer capacity, and feed line length. On this basis, a modified forbidden region-based stability criterion is used for the fast-charging station stability analysis. The frequency-domain case studies and time-domain simulations are presented next to show the influence of factors from both the power grid side and fast-charging pile side. The simulation results validated the effectiveness of the dq frame impedance model and the stability analysis method.

  3. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    ). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...... encompassed by a central coordinative control, is proposed to realize the flexibility offered by EV. The local control enables adaptive charging; whereas the central coordinative control prepares optimized charging schedules. Results from various scenarios show that the proposed algorithm enables significant......Increased environmental awareness in the recent years has encouraged rapid growth of renewable energy sources (RESs); especially solar PV and wind. One of the effective solutions to compensate intermittencies in generation from the RESs is to enable consumer participation in demand response (DR...

  4. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  5. Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study

    OpenAIRE

    Barco, John; Guerra, Andres; Muñoz, Luis; Quijano, Nicanor

    2013-01-01

    In Colombia, there is an increasing interest about improving public transportation. One of the proposed strategies in that way is the use battery electric vehicles (BEVs). One of the new challenges is the BEVs routing problem, which is subjected to the traditional issues of the routing problems, and must also consider the particularities of autonomy, charge and battery degradation of the BEVs. In this work, a scheme that coordinates the routing, scheduling of charge and operating costs of BEV...

  6. Electric charge quantization and the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Pires, C.A.S. de; Rodrigues da Silva, P.S.

    2002-01-01

    We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems

  7. Lie symmetries for the electric charge-magnetic monopole interaction problem

    International Nuclear Information System (INIS)

    Moreira, I.C.; Ritter, O.M.; Santos, F.C.

    1985-01-01

    The symmetries of the equation of motion for an electric charge interacting with a magnetic monopole are analyzed. Two methods, starting from the knowledge of the Lie symmetries, are discussed and employed in this case. This procedure is also compared with the hamiltonians methods. (ltonians methods. (Author) [pt

  8. Correlation Of The Imbalance Of Electric Charges To Universal Gravitation

    Directory of Open Access Journals (Sweden)

    LaShana M. Lewis

    2015-08-01

    Full Text Available Many theories support that both static electricity and gravity contain properties that allow items to orbit or float around them. Quantum physics the science of the very small attributes this to positive and negative charges. General relativity physics the science of the very large attributes this to gravity. This paper attempts to discuss any similar properties and dialogue about proofs that suggest that these two concepts may be similarly related. It will examine the relationship between static electricity and gravity by utilizing common examples formulaic expressions and everyday equations.

  9. A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2018-01-01

    Full Text Available Fast charging stations enable the high-powered rapid recharging of electric vehicles. However, these stations also face challenges due to power fluctuations, high peak loads, and low load factors, affecting the reliable and economic operation of charging stations and distribution networks. This paper introduces a battery energy storage system (BESS for charging load control, which is a more user-friendly approach and is more robust to perturbations. With the goals of peak-shaving, total electricity cost reduction, and minimization of variation in the state-of-charge (SOC range, a BESS-based bi-level optimization strategy for the charging load regulation of fast charging stations is proposed in this paper. At the first level, a day-ahead optimization strategy generates the optimal planned load curve and the deviation band to be used as a reference for ensuring multiple control objectives through linear programming, and even for avoiding control failure caused by insufficient BESS energy. Based on this day-ahead optimal plan, at a second level, real-time rolling optimization converts the control process to a multistage decision-making problem. The predictive control-based real-time rolling optimization strategy in the proposed model was used to achieve the above control objectives and maintain battery life. Finally, through a horizontal comparison of two control approaches in each case study, and a longitudinal comparison of the control robustness against different degrees of load disturbances in three cases, the results indicated that the proposed control strategy was able to significantly improve the charging load characteristics, even with large disturbances. Meanwhile, the proposed approach ensures the least amount of variation in the range of battery SOC and reduces the total electricity cost, which will be of a considerable benefit to station operators.

  10. Optimal Electricity Charge Strategy Based on Price Elasticity of Demand for Users

    Science.gov (United States)

    Li, Xin; Xu, Daidai; Zang, Chuanzhi

    The price elasticity is very important for the prediction of electricity demand. This paper mainly establishes the price elasticity coefficient for electricity in single period and inter-temporal. Then, a charging strategy is established based on these coefficients. To evaluate the strategy proposed, simulations of the two elastic coefficients are carried out based on the history data of a certain region.

  11. International standard for the charging of electric vehicles; Internationaler Standard fuer das Laden von Elektrofahrzeugen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mathoy, A.

    2001-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the situation regarding the standardisation of battery charging systems for electric vehicles. The advantages of an international standard both for users and manufacturers of electrically-powered vehicles are discussed. The work done in the IEC and CENELEC technical committees is reviewed. Developments achieved since 1999 are reviewed and further developments and work to be done are examined. The most important points in the IEC standard 61851 are looked at and various connector interfaces are described. Direct and inductive charging systems according to IEC 61980 are examined and the special situation in Italy, where power available in homes for the charging of electrical vehicles is more limited, is reviewed.

  12. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    International Nuclear Information System (INIS)

    Gao Yu

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region, however, the net current is found to be an order-of-magnitude less than the mean absolute magnitude and has a preferred sign. In particular, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  13. An Electric Vehicle Charging Management and its Impact on Losses

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Moldes, Eloy Rodríguez; Zaidi, Arsalan Hussain

    2013-01-01

    In this paper, the statistics of passenger car usage in Denmark has been studied in order to obtain the possible future use of electric vehicles (EVs). On the basis of this analysis, a sequential charging management of EV has been developed and simulated in DIgSILENT power factory. Different cases...

  14. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  15. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Liu Jie; Wang Yichao; Peng Hongshang; Hou Yanbing; Wang Yongsheng

    2011-01-01

    In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu 2 S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu 2 S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 10 4 , which was dependent on the mass ratios of Cu 2 S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

  16. Heuristic Storage System Sizing for Optimal Operation of Electric Vehicles Powered by Photovoltaic Charging Station

    Directory of Open Access Journals (Sweden)

    Erik Blasius

    2016-01-01

    Full Text Available This paper discusses the utilisation of PV systems for electric vehicles charging for transportation requirements of smart cities. The gap between PV power output and vehicles charging demand is highly variable. Therefore, there is a need for additional support from a public distribution grid or a storage device in order to handle the residual power. Long term measurement data retrieved from a charging station for 15 vehicles equipped with a PV system were used in the research. Low and high irradiation seasons influenced the PV output. The charging demand of electric vehicles varied over the course of a year and was correlated to weather conditions. Therefore, the sizing and performance of a supportive storage device should be evaluated in a statistical manner using long period observations.

  17. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  18. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    Science.gov (United States)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  19. German electric vehicle charging infrastructure: statistically based approach to derive the demand and geographical distribution of charging points

    OpenAIRE

    González Villafranca, Sara

    2013-01-01

    Electromobility is widely seen as one of the most promising options to reduce Greenhouse gas emissions in passenger transport. In accordance with the German Government via the National Platform for Electromobility (NPE), an estimated target of 1 million of electric vehicles for 2020 is expected for Germany. One challenge for the widespread development of electric vehicles market is the lack of infrastructure. The great unknowns here are: how many charging stations will be needed in the future...

  20. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstroem space-time: Analytical solutions

    International Nuclear Information System (INIS)

    Grunau, Saskia; Kagramanova, Valeria

    2011-01-01

    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstroem space-time in terms of the Weierstrass weierp, σ, and ζ elliptic functions. Based on the study of the polynomials in the θ and r equations, we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstroem space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstroem space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.

  1. Smart and secure charging of electric vehicles in public parking spaces

    OpenAIRE

    Strobbe, Matthias; Mets, Kevin; Tahon, Mathieu; Tilman, M; Spiessens, F; Gheerardyn, J; De Craemer, K; Vandael, S; Geebelen, K; Lagaisse, B; Claessens, B; Develder, Chris

    2012-01-01

    Governments worldwide are starting to give incentives to promote the use of (hybrid) electrical vehicles to achieve cleaner and more energy-efficient road transport with a low carbon footprint. Through tax/VAT reductions and free additional services — such as free parking, and/or battery charging or lower traffic congestion taxes — private users, public organizations and car fleet operators are stimulated to adopt the plug-in (hybrid) electrical vehicle (PHEV). This upcoming breakthrough of P...

  2. A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas

    International Nuclear Information System (INIS)

    Andrenacci, N.; Ragona, R.; Valenti, G.

    2016-01-01

    Highlights: • A demand-side approach to the location of charging infrastructure problem is discussed in the paper. • The analysis is based on a large data-set of private vehicle travels within the urban area of Rome. • Cluster analysis is applied to the data to find the optimal location zones for charging infrastructures. • The daily energy demand and the average number of users per day are calculated for each and every charging infrastructure. - Abstract: Despite all the acknowledged advantages in terms of environmental impact reduction, energy efficiency and noise reduction, the electric mobility market is below expectations. In fact, electric vehicles have limitations that pose several important challenges for achieving a sustainable mobility system: among them, the availability of an adequate charging infrastructure is recognized as a fundamental requirement and appropriate approaches to optimize public and private investments in this field are to be delineated. In this paper we consider actual data on conventional private vehicle usage in the urban area of Rome to carry out a strategy for the optimal allocation of charging infrastructures into portions (subareas) of the urban area, based on an analysis of a driver sample under the assumption of a complete switch to an equivalent fleet of electric vehicles. Moreover, the energy requirement for each one of the subareas is estimated in terms of the electric energy used by the equivalent fleet of electric vehicles to reach their destination. The model can be easily generalized to other problems regarding facility allocation based on user demand.

  3. Charge your electric vehicle when driving?; Rijdend je EV opladen?

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.

    2012-07-05

    In late June 2012 a team of Japanese Toyota and ToyohashiUniversity of Technology (TUT) successfully developed and demonstrated a new induction charging method for electric vehicles (EV) [Dutch] Eind junidemonstreerde een Japans team van Toyota en ToyohashiUniversity of Technology (TUT) met succes een nieuwe inductie oplaadmethode voor elektrisch vervoer (EV)

  4. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  5. Exclusion of exotic top-like quarks with -4/3 electric charge using jet-charge tagging in single-lepton ttbar events at CDF

    CERN Document Server

    Aaltonen, T.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M.A.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.J.; Kim, Y.K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Luca, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McFarland, K.S.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Song, H.; Sorin, V.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-08-05

    We report on a measurement of the top-quark electric charge in ttbar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in sqrt(s)=1.96 TeV proton-antiproton collisions and corresponds to 5.6 fb^(-1). We find the data to be consistent with the standard model and exclude the existence of an exotic quark with -4/3 electric charge and mass of the conventional top quark at the 99% confidence level.

  6. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scoffield, Don R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  7. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  8. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  9. Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits

    Directory of Open Access Journals (Sweden)

    Su Su

    2017-07-01

    Full Text Available Many electric vehicles’ (EVs charging strategies were proposed to optimize the operations of the power grid, while few focus on users’ benefits from the viewpoint of EV users. However, low participation is always a problem of those strategies since EV users also need a charging strategy to serve their needs and interests. This paper proposes a method focusing on EV users’ benefits that reduce the cost of battery capacity degradation, electricity cost, and waiting time for different situations. A cost model of battery capacity degradation under different state of charge (SOC ranges is developed based on experimental data to estimate the cost of battery degradation. The simulation results show that the appropriate planning of the SOC range reduces 80% of the cost of battery degradation, and the queuing theory also reduces over 60% of the waiting time in the busy situations. Those works can also become a premise of charging management to increase the participation. The proposed strategy focusing on EV users’ benefits would not give negative impacts on the power grid, and the grid load is also optimized by an artificial fish swarm algorithm (AFSA in the solution space of the charging time restricted by EV users’ benefits.

  10. Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Ainur Rakhymbay

    2018-03-01

    Full Text Available Wireless power transfer provides an opportunity to charge electric vehicles (EVs without electrical cables. Two categories of this technique are distinguished: Stationary Wireless Charging (SWC and Dynamic Wireless Charging (DWC systems. Implementation of DWC is more desirable than SWC as it can potentially eliminate challenges associated with heavy weight batteries and time-consuming charging processes. However, power transfer efficiency and range, lateral misalignment of coils as well as implementation cost are issues affecting DWC. These issues need to be addressed through developing coil architectures and topologies as well as operating novel semiconductor switches at higher frequencies. This study presents a small-scale dynamic wireless power transfer system for EV. It specifically concentrates on analyzing the dynamic mutual inductance between the coils due to the misalignment as it has significant influence on the EV charging process, particularly, over the output power and overall efficiency. A simulation study is carried out to explore dynamic mutual inductance profile between the transmitter and receiver coils. Mutual inductance simulation results are then verified through practical measurements on fabricated coils. Integrating the practical results into the model, an EV DWC power transfer simulation is conducted and the relation between dynamic mutual inductance and output power are discussed technically.

  11. Secure Plug-in Electric Vehicle PEV Charging in a Smart Grid Network

    Directory of Open Access Journals (Sweden)

    Khaled Shuaib

    2017-07-01

    Full Text Available Charging of plug-in electric vehicles (PEVs exposes smart grid systems and their users to different kinds of security and privacy attacks. Hence, a secure charging protocol is required for PEV charging. Existing PEV charging protocols are usually based on insufficiently represented and simplified charging models that do not consider the user’s charging modes (charging at a private location, charging as a guest user, roaming within one’s own supplier network or roaming within other suppliers’ networks. However, the requirement for charging protocols depends greatly on the user’s charging mode. Consequently, available solutions do not provide complete protocol specifications. Moreover, existing protocols do not support anonymous user authentication and payment simultaneously. In this paper, we propose a comprehensive end-to-end charging protocol that addresses the security and privacy issues in PEV charging. The proposed protocol uses nested signatures to protect users’ privacy from external suppliers, their own suppliers and third parties. Our approach supports anonymous user authentication, anonymous payment, as well as anonymous message exchange between suppliers within a hierarchical smart grid architecture. We have verified our protocol using the AVISPA software verification tool and the results showed that our protocol is secure and works as desired.

  12. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  13. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power

    Science.gov (United States)

    Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun

    2018-05-01

    Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.

  14. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NARCIS (Netherlands)

    Slikboer, E.T.; Garcia-Caurel, E.; Guaitella, O.; Sobota, A.

    2017-01-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and

  15. A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts

    International Nuclear Information System (INIS)

    Neaimeh, Myriam; Wardle, Robin; Jenkins, Andrew M.; Yi, Jialiang; Hill, Graeme; Lyons, Padraig F.; Hübner, Yvonne; Blythe, Phil T.; Taylor, Phil C.

    2015-01-01

    Highlights: • Working with unique datasets of EV charging and smart meter load demand. • Distribution networks are not a homogenous group with more capabilities to accommodate EVs than previously suggested. • Spatial and temporal diversity of EV charging demand alleviate the impacts on networks. • An extensive recharging infrastructure could enable connection of additional EVs on constrained distribution networks. • Electric utilities could increase the network capability to accommodate EVs by investing in recharging infrastructure. - Abstract: This work uses a probabilistic method to combine two unique datasets of real world electric vehicle charging profiles and residential smart meter load demand. The data was used to study the impact of the uptake of Electric Vehicles (EVs) on electricity distribution networks. Two real networks representing an urban and rural area, and a generic network representative of a heavily loaded UK distribution network were used. The findings show that distribution networks are not a homogeneous group with a variation of capabilities to accommodate EVs and there is a greater capability than previous studies have suggested. Consideration of the spatial and temporal diversity of EV charging demand has been demonstrated to reduce the estimated impacts on the distribution networks. It is suggested that distribution network operators could collaborate with new market players, such as charging infrastructure operators, to support the roll out of an extensive charging infrastructure in a way that makes the network more robust; create more opportunities for demand side management; and reduce planning uncertainties associated with the stochastic nature of EV charging demand.

  16. Coupled heat-electromagnetic simulation of inductive charging stations for electric vehicles

    NARCIS (Netherlands)

    Kaufmann, C.; Günther, M.; Klagges, D.; Richwin, M.; Schöps, S.; Maten, ter E.J.W.

    2012-01-01

    Coupled electromagnetic-heat problems have been studied for induction or inductive heating, for dielectric heating, for testing of corrosion, for detection of cracks, for hardening of steel, and more recently for inductive charging of electric vehicles. In nearly all cases a simple co-simulation is

  17. Coupled heat-electromagnetic simulation of inductive charging stations for electric vehicles

    NARCIS (Netherlands)

    Kaufmann, C.; Günther, M.; Klagges, D.; Richwin, M.; Schöps, S.; Maten, ter E.J.W.; Fontes, M.; Günther, M.; Marheineke, N.

    2014-01-01

    Coupled electromagnetic-heat problems have been studied for induction or inductive heating, for dielectric heating, for testing of corrosion, for detection of cracks, for hardening of steel, and more recently for inductive charging of electric vehicles. In nearly all cases a simple co-simulation is

  18. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  19. Slightly uneven electric field trigatron employed in tens of microseconds charging time.

    Science.gov (United States)

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Zhang, Huibo; Yang, Xiao

    2014-09-01

    To solve the issue of operation instability for the trigatron switch in the application of tens of microseconds or even less charging time, a novel trigatron spark gap with slightly uneven electric field was presented. Compared with the conventional trigatron, the novel trigatron was constructed with an obvious field enhancement on the edge of the opposite electrode. The selection of the field enhancement was analyzed based on the theory introduced by Martin. A low voltage trigatron model was constructed and tested on the tens of microseconds charging time platform. The results show that the character of relative range was improved while the trigger character still held a high level. This slightly uneven electric field typed trigatron is willing to be employed in the Tesla transformer - pulse forming line system.

  20. Reducing greenhouse gas emissions by inducing energy conservation and distributed generation from elimination of electric utility customer charges

    International Nuclear Information System (INIS)

    Pearce, Joshua M.; Harris, Paul J.

    2007-01-01

    This paper quantifies the increased greenhouse gas emissions and negative effect on energy conservation (or 'efficiency penalty') due to electric rate structures that employ an unavoidable customer charge. First, the extent of customer charges was determined from a nationwide survey of US electric tariffs. To eliminate the customer charge nationally while maintaining a fixed sum for electric companies for a given amount of electricity, an increase of 7.12% in the residential electrical rate was found to be necessary. If enacted, this increase in the electric rate would result in a 6.4% reduction in overall electricity consumption, conserving 73 billion kW h, eliminating 44.3 million metric tons of carbon dioxide, and saving the entire US residential sector over $8 billion per year. As shown here, these reductions would come from increased avoidable costs, thus leveraging an increased rate of return on investments in energy efficiency, energy conservation behavior, distributed energy generation, and fuel choices. Finally, limitations of this study and analysis are discussed and conclusions are drawn for proposed energy policy changes

  1. Electroconvulsive therapy clinical database: Influence of age and gender on the electrical charge.

    Science.gov (United States)

    Salvador Sánchez, Javier; David, Mónica Delia; Torrent Setó, Aurora; Martínez Alonso, Montserrat; Portella Moll, Maria J; Pifarré Paredero, Josep; Vieta Pascual, Eduard; Mur Laín, María

    The influence of age and gender in the electrical charge delivered in a given population was analysed using an electroconvulsive therapy (ECT) clinical database. An observational, prospective, longitudinal study with descriptive analysis was performed using data from a database that included total bilateral frontotemporal ECT carried out with a Mecta spECTrum 5000Q ® in our hospital over 6 years. From 2006 to 2012, a total of 4,337 ECT were performed on 187 patients. Linear regression using mixed effects analysis was weighted by the inverse of the number of ECT performed on each patient per year of treatment. The results indicate that age is related with changes in the required charge (P=.031), as such that the older the age a higher charge is needed. Gender is also associated with changes in charge (P=.014), with women requiring less charge than men, a mean of 87.3mC less. When the effects of age and gender are included in the same model, both are significant (P=.0080 and P=.0041). Thus, for the same age, women require 99.0mC less charge than men, and in both genders the charge increases by 2.3mC per year. From our study, it is concluded that the effect of age on the dosage of the electrical charge is even more significant when related to gender. It would be of interest to promote the systematic collection of data for a better understanding and application of the technique. Copyright © 2015 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    FERNANDO GALEMBECK

    2001-12-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a

  3. Combining Market-Based Control with Distribution Grid Constraints when Coordinating Electric Vehicle Charging

    Directory of Open Access Journals (Sweden)

    Geert Deconinck

    2015-12-01

    Full Text Available The charging of electric vehicles (EVs impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid (e.g., under-voltage, phase unbalances; for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with event-driven control at the operational level. Different case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.

  4. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Directory of Open Access Journals (Sweden)

    João Raposo

    2015-05-01

    Full Text Available This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city’s urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE’s characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  5. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Science.gov (United States)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  6. A Comparative Study of Power Supply Architectures In Wireless Electric Vehicle Charging Systems

    Science.gov (United States)

    Esteban, Bryan

    Wireless inductive power transfer is a transformational and disruptive technology that enables the reliable and efficient transfer of electrical power over large air gaps for a host of unique applications. One such application that is now gaining much momentum worldwide is the wireless charging of electric vehicles (EVs). This thesis examines two of the primary power supply topologies being predominantly used for EV charging, namely the SLC and the LCL resonant full bridge inverter topologies. The study of both of these topologies is presented in the context of designing a 3 kW, primary side controlled, wireless EV charger with nominal operating parameters of 30 kHz centre frequency and range of coupling in the neighborhood of .18-.26. A comparison of both topologies is made in terms of their complexity, cost, efficiency, and power quality. The aim of the study is to determine which topology is better for wireless EV charging.

  7. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    Science.gov (United States)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging

  8. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    Science.gov (United States)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  9. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station

    International Nuclear Information System (INIS)

    Torreglosa, Juan P.; García-Triviño, Pablo; Fernández-Ramirez, Luis M.; Jurado, Francisco

    2016-01-01

    Highlights: • Electric vehicle charging station supplied by photovoltaic, batteries and grid connection is analyzed. • The bus voltage is the key parameter for controlling the system by decentralized approach. • Decentralized control approach facilities the enlargement of the system. • Photovoltaic and battery systems are controlled by model predictive controllers. • Response by model predictive controllers improves that by PI controllers. - Abstract: The use of distributed charging stations based on renewable energy sources for electric vehicles has increased in recent years. Combining photovoltaic solar energy and batteries as energy storage system, directly tied into a medium voltage direct current bus, and with the grid support, results to be an interesting option for improving the operation and efficiency of electric vehicle charging stations. In this paper, an electric vehicle charging station supplied by photovoltaic solar panels, batteries and with grid connection is analysed and evaluated. A decentralized energy management system is developed for regulating the energy flow among the photovoltaic system, the battery and the grid in order to achieve the efficient charging of electric vehicles. The medium voltage direct current bus voltage is the key parameter for controlling the system. The battery is controlled by a model predictive controller in order to keep the bus voltage at its reference value. Depending on the state-of-charge of the battery and the bus voltage, the photovoltaic system can work at maximum power point tracking mode or at bus voltage sustaining mode, or even the grid support can be needed. The results demonstrate the proper operation and energy management of the electric vehicle charging station under study.

  10. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    International Nuclear Information System (INIS)

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 10 6 and 1 × 10 5 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm 3 , four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm 3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm 3 (27.0 C in 0.35 cm 3 ) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm 3 , two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm 3 , respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute inflammatory

  11. Possible charge analogues of spin transfer torques in bulk superconductors

    Science.gov (United States)

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  12. Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2014-10-01

    Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.

  13. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  14. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    Science.gov (United States)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  15. Time dependent charging of layer clouds in the global electric circuit

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian A.

    2012-09-01

    There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) (Tinsley, 2008, 2010). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1-10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.Because the time scales for charging for some clouds can be long compared to cloud lifetimes, the amount of charge at a given time, and its effect on scavenging, depend more on the charging rate than on the equilibrium charge that would eventually be attained. To evaluate this, a new time-dependent charging model has been developed. The results show that for typical altostratus clouds with typical droplet radii 10 μm and aerosol particles of radius of 0.04 μm, the time constant for charging in response to a change in Jz is about 800 s, which is comparable to cloud formation and dissipation timescales for some cloud situations. The charging timescale is found to be strong functions of altitude and aerosol concentration, with the time constant for droplet charging at 2 km in air with a high concentration of aerosols being about an hour, and for clouds at 10 km in

  16. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  17. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Science.gov (United States)

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  18. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  19. Study concerning today's and tomorrow's power metering and balance settlements structure for Plug-in Hybrid Electric Vehicle/Electric Vehicle charging; Studie avseende dagens och morgondagens elmaetnings- och avraekningsinfrastruktur foer PHEV/EV-laddning

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, Mika (Vattenfall Services Nordic AB (Sweden)); Spante, Lennart (Vattenfall Research and Development AB (Sweden))

    2009-07-01

    This study is a part of the ELFORSK programme: 'Plug-In Hybrids and Electric Vehicles', sub programme 'P6 - Future systems for payment, communication and charging of Plug-In Hybrids (PHEV) and electrical vehicles (EV)'. As a first task within this sub programme, a study concerning today's and tomorrow's infrastructure for electrical metering and clearing for PHEV/EV-charging was made during autumn 2008. This report shows the results and conclusions from the initial work concerning this market related issue. During an introductory market phase, it is assumed that public charging mainly will be made by connecting an onboard charger in the vehicle to a single-phase 230 V outlet with 10 (or 16 A) fuse. For charging power of 2.3 - 3.7 kW, the cost for electricity (including grid fee) will be 3 - 5 SEK/charging hour. Costs for charging post investment, and maintenance etc must also be added. The future total 'customer cost' for access to charging posts in this power range is estimated to be less than 10 SEK/charging hour including electricity. In larger cities the 'hour cost' for parking is, in many cases, considerably higher than this. Today, there are no official regulations for charging and associated payment of PHEV/EV. In the report a number of infrastructure solutions with different levels of ambitions for utilising existing systems, e g allowing electricity supplier selection, are presented. The examples describe possible flows of payment between different potential actors within the PHEV/EV market. In the first market phase the number of charging posts and consequently number of chargings will be limited. If current market regulations would be followed the administrative costs for billing each charge would exceed other costs associated with the charge, which is not realistic. A suitable solution is to manage PHEV/EV charging and payment outside the comprehensive regulations of the electricity market, by letting

  20. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  1. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica......Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation...... of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  2. A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition

    Science.gov (United States)

    Bhar, Piyali; Singh, Ksh. Newton; Rahaman, Farook; Pant, Neeraj; Banerjee, Sumita

    In the present paper, we discover a new well-behaved charged anisotropic solution of Einstein-Maxwell’s field equations. We ansatz the metric potential g00 of the form given by Maurya et al. (Eur. Phys. J. C 76(12) (2016) 693) with n = 2. In their paper, it is mentioned that for n = 2, the solution is not well-behaved for neutral configuration as the speed of sound is nondecreasing radially outward. However, the solution can represent a physically possible configuration with the inclusion of some net electric charge, i.e. the solution can become a well-behaved solution with decreasing sound speed radially outward for a charged configuration. Due to the inclusion of electric charge, the solution leads to a very stiff equation-of-state (EoS) with the velocity of sound at the center vr02 = 0.819, vt02 = 0.923 and the compactness parameter u = 0.823 is close to the Buchdahl limit 0.889. This stiff EoS support a compact star configuration of mass 5.418M⊙ and radius of 10.1km.

  3. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  4. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  5. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  6. Network access charges, vertical integration, and property rights structure - experiences from the German electricity markets

    International Nuclear Information System (INIS)

    Growitsch, C.; Wein, T.

    2005-01-01

    After the deregulation of the German electricity markets in 1998, the German government opted for a regulatory regime called negotiated third party access, which would be subject to ex-post control by the federal cartel office. Network access charges for new competitors are based on contractual arrangements between energy producers and industrial consumers. As the electricity networks are incontestable natural monopolies, the local and regional network operators are able to set (monopolistic) charges at their own discretion, restricted only by the possible interference of the federal cartel office (Bundeskartellamt). In this paper we analyze if there is evidence for varying charging behaviour depending on the supplier's economic independence (structure of property rights) or its level of vertical integration. For this purpose, we hypothesise that incorporated and vertically integrated suppliers set different charges than independent utility companies. Multivariate estimations show a relation between network access charges and the network operator's economic independence as well as level of vertical integration: on the low voltage level for an estimated annual consumption of 1700 kW/h, vertically integrated firms set-in accordance with our hypothesis-significantly lower access charges than vertically separated suppliers, whereas incorporated network operators charge significantly higher charges compared to independent suppliers. These results could not have been confirmed for other consumptions or voltage levels. (author)

  7. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  8. Feasibility assessment of a solar-powered charging station for electric vehicles in the North Central region of Bulgaria

    Directory of Open Access Journals (Sweden)

    Ilieva Liliya Mihaylova

    2016-01-01

    Full Text Available The paper discusses the topical issue related to the prospects of widespread deployment of electric vehicles and their associated infrastructure in Bulgaria. The main problems hindering the development of electric vehicle transport are summarized and the current status of charging infrastructure in the country is discussed. An approach is proposed for analysis and evaluation of the financial feasibility of investment in a solar-powered charging station for electric vehicles in North Central region of Bulgaria.

  9. Influence of initial velocity on trajectories of a charged particle in uniform crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani

    2017-01-01

    Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered. (paper)

  10. Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2018-05-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.

  11. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    Science.gov (United States)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  12. Energy, Environmental and Economic Performance of a Micro-trigeneration System upon Varying the Electric Vehicle Charging Profiles

    Directory of Open Access Journals (Sweden)

    Sergio Sibilio

    2017-09-01

    Full Text Available The widespread adoption of electric vehicles and electric heat pumps would result in radically different household electrical demand characteristics, while also possibly posing a threat to the stability of the electrical grid. In this paper, a micro-trigeneration system (composed of a 6.0 kWel cogeneration device feeding a 4.5 kWcool electric air-cooled vapor compression water chiller serving an Italian residential multi-family house was investigated by using the dynamic simulation software TRNSYS. The charging of an electric vehicle was considered by analyzing a set of seven electric vehicle charging profiles representing different scenarios. The simulations were performed in order to evaluate the capability of micro-cogeneration technology in: alleviating the impact on the electric infrastructure (a; saving primary energy (b; reducing the carbon dioxide equivalent emissions (c and determining the operating costs in comparison to a conventional supply system based on separate energy production (d.

  13. Electrical conductivity and charge diffusion in thermal QCD from the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, Gert; Allton, Chris [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Amato, Alessandro [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Department of Physics and Helsinki Institute of Physics P.O. Box 64, FI-00014 University of Helsinki (Finland); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik Wilhelm-Klemm-Str. 9, D-48149 Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Skullerud, Jon-Ivar [Department of Mathematical Physics, National University of Ireland Maynooth Maynooth, Co Kildare (Ireland)

    2015-02-27

    We present a lattice QCD calculation of the charge diffusion coefficient, the electrical conductivity and various susceptibilities of conserved charges, for a range of temperatures below and above the deconfinement crossover. The calculations include the contributions from up, down and strange quarks. We find that the diffusion coefficient is of the order of 1/(2πT) and has a dip around the crossover temperature. Our results are obtained with lattice simulations containing 2+1 dynamical flavours on anisotropic lattices. The Maximum Entropy Method is used to construct spectral functions from correlators of the conserved vector current.

  14. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mar, Nancy

    2003-08-18

    The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.

  15. Electrical properties of air in the Carlsbad Caverns

    International Nuclear Information System (INIS)

    Wilkening, M.; Romero, V.

    1980-01-01

    Radon 222 and its daughter product concentrations in the Carlsbad Caverns are higher than in outdoor air by a factor of several hundred. The effects of the radiation from these substances on the electrical properties of air in the cave have been studied. The rate of ion-pair production, the ion density, and the electrical conductivity are much higher in the Cave than in outdoor air. The mobility of the ions is less than outdoors due to the high humidity and low condensation nuclei concentration. A small net space charge produces a barely detectable electric field of the order of one percent of the earth's fair weather field

  16. Simple supercapacitor charging scheme of an electric vehicle on small-scale hardware simulator: a prototype development for education purpose

    Directory of Open Access Journals (Sweden)

    Adnan Rafi Al Tahtawi

    2016-12-01

    Full Text Available Supercapacitor is one of electrical energy sources that have faster charging-discharging times when compared to other power sources, such as battery and fuel cell. Therefore, it is often used as an additional power source in an electric vehicle. In this paper, a prototype of small-scale electric vehicle simulator (EVS is built and a simple charging scheme of supercapacitor is used for education purpose. EVS is an electric vehicle prototype which can show the vehicle’s powertrain on small-scale configuration. Main components of this device are two direct current motors (DCMs with a linked axis of rotation. Therefore one of them will be able to act as a generator. The supercapacitor charging scheme is employed by controlling the relays. The hardware experimental result shows that the averages of charging current are proportional to the maximum slope angle of the road profiles. This scheme is simple due to the EVS utility and it is useful for education purpose.

  17. 47 CFR 69.302 - Net investment.

    Science.gov (United States)

    2010-10-01

    ...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...

  18. Modelling altered revenue function based on varying power consumption distribution and electricity tariff charge using data analytics framework

    Science.gov (United States)

    Zainudin, W. N. R. A.; Ramli, N. A.

    2017-09-01

    In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.

  19. Stochastic optimal charging of electric-drive vehicles with renewable energy

    International Nuclear Information System (INIS)

    Pantoš, Miloš

    2011-01-01

    The paper presents the stochastic optimization algorithm that may eventually be used by electric energy suppliers to coordinate charging of electric-drive vehicles (EDVs) in order to maximize the use of renewable energy in transportation. Due to the stochastic nature of transportation patterns, the Monte Carlo simulation is applied to model uncertainties presented by numerous scenarios. To reduce the problem complexity, the simulated driving patterns are not individually considered in the optimization but clustered into fleets using the GAMS/SCENRED tool. Uncertainties of production of renewable energy sources (RESs) are presented by statistical central moments that are further considered in Hong’s 2-point + 1 estimation method in order to define estimate points considered in the optimization. Case studies illustrate the application of the proposed optimization in achieving maximal exploitation of RESs in transportation by EDVs. -- Highlights: ► Optimization model for EDV charging applying linear programming. ► Formation of EDV fleets based on the driving patterns assessment applying the GAMS/SCENRED. ► Consideration of uncertainties of RES production and energy prices in the market. ► Stochastic optimization. ► Application of Hong’s 2-point + 1 estimation method.

  20. Methodology for assessing electric vehicle charging infrastructure business models

    OpenAIRE

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, w...

  1. Conception, development, and test of an apparature for the measurement of the electrical charge of the neutron

    International Nuclear Information System (INIS)

    Brose, Daniel

    2014-01-01

    The electric charge of the neutron is related to the question of charge conservation: If there exists a neutron charge there can be no quantization of charge in units of the elementary charge e. Charge quantization is not inherent in the theories of electrodynamics and the minimal standard model and hence it would not falsify them. But in further theories as grand unified theories charge quantization is an important aspect, for example to allow the decay of the proton. A measurement of a neutron charge would test these theories. In the past three years an apparatus for the measurement of the electric charge of the neutron was constructed. The principle was used before in 1988 but the current apparatus is an improvement in many aspects. E.g. the fluid Fomblin neutron mirror was the first use of a fluid neutron mirror ever. With all the improvements it was possible to reach an sensitivity five times higher than before. A possible neutron charge can be measured with an sensitivity of δq n =2.15.10 -20 (e)/(√(day)). In winter 2014 the measurement of the charge will be performed. Till then the sensitivity will be augmented to δq n =1.4.10 -21 (e)/(√(day)).

  2. The propagation of GPS signals through electrically charged plumes

    Science.gov (United States)

    Méndez Harper, J.; Steffes, P. G.; Dufek, J.

    2017-12-01

    Probing the interior dynamics of eruptive columns using electrostatic processes generated within the flows themselves has garnered much interest in the recent years. Indeed, large eruptions are often accompanied by brilliant displays of lightning, testifying to the high potentials that can be accumulated by a diverse set of electrification mechanisms. Unfortunately, lightning on its own cannot be used as a general remote sensing tool because not all volcanic eruptions produce spark discharges. As pointed out by McNutt and Williams, 2010, only 30-35% of volcanoes maintain lightning storms. The absence of lightning in two thirds of all eruptions indicates that most volcanoes produce flows with 1) inefficient or limited granular charging processes or 2) dynamics that do not promote the charge separation that sets up coherent electric fields needed for lightning. Yet, even if the prerequisites for spark discharges are not met, it is difficult to argue for plumes which are completely electrostatically neutral. The problems permeating passive electromagnetic sensing may be overcome through the use of active methods which involve interrogating charged volcanic plumes with electromagnetic radiation. The scattering of electromagnetic waves has been a common method to retrieve the physical properties of collections of particles, specifically those which cannot be accessed directly. By modifying the standard Mie formulation, Klavcka et al., 2007 showed that surface charge may influence the extinction properties of grains if such particles are much smaller than the wavelength of the incident radiation. Based on this model, we posit that the properties of charged clouds of particles can be readily assessed using robust, existing infrastructure-the Global Positioning System. In the present work, we numerically explore the manner in which electrostatic charge on particles affect the propagation of electromagnetic waves through volcanic plumes. We show that, for the range of

  3. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    Science.gov (United States)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  4. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  5. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  6. Optimal charging control of electric vehicles in smart grids

    CERN Document Server

    Tang, Wanrong

    2017-01-01

    This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.

  7. Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

    International Nuclear Information System (INIS)

    Oliveira, I.S.; Guimaraes, A.P.; Silva, X.A. da

    1996-11-01

    The motion of a charged particle under the action of a time-dependent oscillating magnetic field has been investigated. For one and two magnetic pulses were obtained analytical expressions for the free current decay and current echo in agreement with a recently proposed classical description of electrical current in fields E and B. When the resonance condition is achieved, the axis of quantization is turned over by 90 degrees. The results suggest a magnetic pulsed resonant method to separate charged particles in a beam. (author). 12 refs

  8. A technological review on electric vehicle DC charging stations using photovoltaic sources

    Science.gov (United States)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  9. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    OpenAIRE

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  10. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  11. Toward an innovative stochastic modeling of electric charges loss through dielectric

    Directory of Open Access Journals (Sweden)

    Micolau G.

    2016-01-01

    Full Text Available This paper deals with new stochastic modeling of very low tunneling currents in Non-Volatile Memories. For this purpose, we first develop current measurement method based on Floating Gate technique. In order to reach the long time behavior of electrical dynamic, we aim at using very basic tools (power supply, multimeter... but still having a very good current resolution. Also, our measurement is led in a very particular low-noise environment (underground laboratory allowing to keep the electrical contacts on the device under test as long as possible. After showing the feasibility of such measurements, we present a modeling approach of the charge loss process inside the Non-volatile Memories by using mathematical tool involving long memory effect. The model is based on stochastic counting process with memory effect yielding to a fractional relaxation equation for the charge loss over time. The main interest of the present model lies in the fact that the corresponding inversion problem involves only two parameters that can be carried out efficiently.

  12. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    Science.gov (United States)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  13. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  14. System design for a solar powered electric vehicle charging station for workplaces

    NARCIS (Netherlands)

    Chandra Mouli, G.R.; Bauer, P.; Zeman, M.

    2016-01-01

    This paper investigates the possibility of charging battery electric vehicles at workplace in Netherlands using solar energy. Data from the Dutch Meteorological Institute is used to determine the optimal orientation of PV panels for maximum energy yield in the Netherlands. The seasonal and diurnal

  15. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  16. Life cycle assessment for coordination development of nuclear power and electric vehicle

    International Nuclear Information System (INIS)

    Liu Hong; Wang Yingrong

    2010-01-01

    Energy, environment and climate change have become focus political topics. In this paper, the life cycle assessment for cooperation development of nuclear power and electric vehicle were analyzed from the view of energy efficiency and pollutant emissions. The assessment results show that the pathway of nuclear power coupled with electric vehicle is better than coal electric power coupled with electric vehicle and normal gasoline coupled with internal combustion engine powered vehicle in terms of the environmental and energy characteristics. To charge the electric vehicle, instead of water power station, can safeguard the stable operation of nuclear power station. The results could provide consulted for coordination development of nuclear power, electric vehicle and brain power electric net. (authors)

  17. Charge collection efficiency in a semiconductor radiation detector with a non-constant electric field

    International Nuclear Information System (INIS)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1990-01-01

    The development of improved semiconductor radiation detectors would be facilitated by a quantitative model that predicts the performance of these detectors as a function of material characteristics and device operating parameters. An accurate prediction of the pulse height spectrum from a radiation detector can be made if both the noise and the charge collection properties of the detector are understood. The noise characteristics of semiconductor radiation detectors have been extensively studied. The effect of noise can be closely simulated by convoluting the noise-free pulse height spectrum with a Gaussian function. Distortion of semiconductor detector's pulse height spectrum from charge collection effects is more complex than the effects of noise and is more difficult to predict. To compute these distortions it is necessary to know how the charge collection efficiency η varies as a function of position within the detector x. These effects are shown. This problem has been previously solved for planar detectors with a constant electric field, for the case of spherical detectors, and for coaxial detectors. In this paper the authors describe a more general solution to the charge collection problem which includes the case of a non-constant electric field in a planar geometry

  18. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  19. Formation and evaporation of an electrically charged black hole in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Modesto, Leonardo [Southern University of Science and Technology, Department of Physics, Shenzhen (China); Porey, Shiladitya [Novosibirsk State University, Novosibirsk (Russian Federation); Rachwal, Leslaw [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2018-02-15

    Extending previous work on the formation and the evaporation of black holes in conformal gravity, in the present paper we study the gravitational collapse of a spherically symmetric and electrically charged thin shell of radiation. The process creates a singularity-free black hole. Assuming that in the evaporation process the charge Q is constant, the final product of the evaporation is an extremal remnant with M = Q, which is reached in an infinite amount of time. We also discuss the issue of singularity and thermodynamics of black holes in Weyl's conformal gravity. (orig.)

  20. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Net-Charge Fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}= 2.76$ TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacobs, Peter; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-04-10

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudo-rapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the ALICE data points are between the theoretically predicted values for a hadron gas and a Quark-Gluon Plasma.

  2. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons.

    Science.gov (United States)

    Fukuhara, Mikio; Sugawara, Kazuyuki

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.

  3. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  4. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  5. Design of a software for calculating isoelectric point of a polypeptide according to their net charge using the graphical programming language LabVIEW.

    Science.gov (United States)

    Tovar, Glomen

    2018-01-01

    A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the polypeptide chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel (-xls) type file is generated. In this work, the experimental values of the pIs (pI) of different proteins are compared with the values of the pIs (pI) calculated graphically, achieving a correlation coefficient (R) of 0.934746 which represents a good reliability for a p program can constitute an instrument applicable in the laboratory, facilitating the calculation to graduate students and junior researchers. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):39-46, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhongyu Dai

    2017-03-01

    Full Text Available In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

  7. Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, Alexander; Yarman, Tolga

    2017-11-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.

  8. Considering the dynamic refueling behavior in locating electric vehicle charging stations

    Science.gov (United States)

    Liu, K.; Sun, X. H.

    2014-11-01

    Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum waiting time and maximum service accessibility for locating EV charging stations - named as Time-Spatial Location Model (TSLM). The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging stations.

  9. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  10. 47 CFR 32.7210 - Operating investment tax credits-net.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operating investment tax credits-net. 32.7210....7210 Operating investment tax credits—net. (a) This account shall be charged and Account 4320, Unamortized Operating Investment Tax Credits—Net, shall be credited with investment tax credits generated from...

  11. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  12. Compact stars with a small electric charge: the limiting radius to mass relation and the maximum mass for incompressible matter

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Jose P.S.; Lopes, Francisco J.; Quinta, Goncalo [Universidade de Lisboa, UL, Departamento de Fisica, Centro Multidisciplinar de Astrofisica, CENTRA, Instituto Superior Tecnico, IST, Lisbon (Portugal); Zanchin, Vilson T. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil)

    2015-02-01

    One of the stiffest equations of state for matter in a compact star is constant energy density and this generates the interior Schwarzschild radius to mass relation and the Misner maximum mass for relativistic compact stars. If dark matter populates the interior of stars, and this matter is supersymmetric or of some other type, some of it possessing a tiny electric charge, there is the possibility that highly compact stars can trap a small but non-negligible electric charge. In this case the radius to mass relation for such compact stars should get modifications. We use an analytical scheme to investigate the limiting radius to mass relation and the maximum mass of relativistic stars made of an incompressible fluid with a small electric charge. The investigation is carried out by using the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation, together with the other equations of structure, with the further hypothesis that the charge distribution is proportional to the energy density. The approach relies on Volkoff and Misner's method to solve the TOV equation. For zero charge one gets the interior Schwarzschild limit, and supposing incompressible boson or fermion matter with constituents with masses of the order of the neutron mass one finds that the maximum mass is the Misner mass. For a small electric charge, our analytical approximating scheme, valid in first order in the star's electric charge, shows that the maximum mass increases relatively to the uncharged case, whereas the minimum possible radius decreases, an expected effect since the new field is repulsive, aiding the pressure to sustain the star against gravitational collapse. (orig.)

  13. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  14. Modeling Electric Double-Layer Capacitors Using Charge Variation Methodology in Gibbs Ensemble

    Directory of Open Access Journals (Sweden)

    Ganeshprasad Pavaskar

    2018-01-01

    Full Text Available Supercapacitors deliver higher power than batteries and find applications in grid integration and electric vehicles. Recent work by Chmiola et al. (2006 has revealed unexpected increase in the capacitance of porous carbon electrodes using ionic liquids as electrolytes. The work has generated curiosity among both experimentalists and theoreticians. Here, we have performed molecular simulations using a recently developed technique (Punnathanam, 2014 for simulating supercapacitor system. In this technique, the two electrodes (containing electrolyte in slit pore are simulated in two different boxes using the Gibbs ensemble methodology. This reduces the number of particles required and interfacial interactions, which helps in reducing computational load. The method simulates an electric double-layer capacitor (EDLC with macroscopic electrodes with much smaller system sizes. In addition, the charges on individual electrode atoms are allowed to vary in response to movement of electrolyte ions (i.e., electrode is polarizable while ensuring these atoms are at the same electric potential. We also present the application of our technique on EDLCs with the electrodes modeled as slit pores and as complex three-dimensional pore networks for different electrolyte geometries. The smallest pore geometry showed an increase in capacitance toward the potential of 0 charge. This is in agreement with the new understanding of the electrical double layer in regions of dense ionic packing, as noted by Kornyshev’s theoretical model (Kornyshev, 2007, which also showed a similar trend. This is not addressed by the classical Gouy–Chapman theory for the electric double layer. Furthermore, the electrode polarizability simulated in the model improved the accuracy of the calculated capacitance. However, its addition did not significantly alter the capacitance values in the voltage range considered.

  15. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  16. Stark tuning and electrical charge state control of single divacancies in silicon carbide

    Science.gov (United States)

    de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.

    2017-12-01

    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.

  17. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  18. Electric field distribution and the charge collection process in not-ideally compensated coaxial Ge(Li) detectors

    International Nuclear Information System (INIS)

    Szymczyk, W.M.; Moszynski, M.

    1978-01-01

    The not-ideally compensated space charge of donors and acceptors in lithium-drifted coaxial Ge(Li) detectors can modify the electric field distribution in the detector depleted volume, and influence in this way the charge collection process. Observations of the capacity, the time of charge collection (transit time), and the relative efficiency characteristics vs. detector bias voltage, showed that in conventional pin + coaaxial structures an undercompensation near the inner p-type core was typical. It was found that such an undercompensation had negligible consequences from the charge collection point of view. However, one case was observed where the modification near the outer electrode was present. In that case the charge pulses with remarkably increased rise-times were observed, as compared to the predictions based on the assumption of the classical, E proportional to 1/r, electric field distribution. The pulses expected from not-ideally compensated detectors were calculated using the Variable Velocity Approximation. The pulses expected from and much better agreement with the observed pulses was obtained. The calculated and observed dependencies of the charge transit times vs. reciprocal of the detector bias voltage exhibited, in the absence of the outer-electrode modification, linear parts. Measurement of their slopes permitted to find experimentally the depletion layer width provided the charge carriers mobility value was known, or vice versa. (Auth.)

  19. Using fleets of electric-drive vehicles for grid support

    International Nuclear Information System (INIS)

    Tomic, Jasna; Kempton, Willett

    2007-01-01

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th.nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th.nk City fleet is from US$ 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US$ 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid. (author)

  20. What is the significance of the conservation of electric charge Q?

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2007-01-01

    Conservation of electric charge Q is a universal law in the sense that it should be conserved in any interaction, known or yet unknown. However Q should not be considered as a simple number but as the half sum of two irreducible quantities BAL= A-L (A is the baryonic number and L is the leptonic number) and total flavour TF. Conservation of electric charge implies obviously conservation of Q (considered as a simple number) but also BAL and TF. We verify that electromagnetism and strong interaction which conserve Q, A and L and all individual flavours conserve obviously BAL and TF; likely weak interaction which conserves Q, A and L conserves also BAL and TF. However conservation of BAL does not imply necessarily conservation of A and L. In effect ΔBAL=0 has another solution ΔA= ΔL= ± 1 which points to a possible solution to explain how a material and neutral universe could arise evolving from A=0 L=0 Q=0 state to A>0 Q=0 state through a process which would conserve BAL and TF without conserving separately A and L. (author)

  1. What is the significance of the conservation of electric charge Q?

    Energy Technology Data Exchange (ETDEWEB)

    Tsan, Ung Chan [Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS et Universite Joseph Fourier, 53 Avenue des Martyrs, F38026 Grenoble Cedex (France)

    2007-07-01

    Conservation of electric charge Q is a universal law in the sense that it should be conserved in any interaction, known or yet unknown. However Q should not be considered as a simple number but as the half sum of two irreducible quantities BAL= A-L (A is the baryonic number and L is the leptonic number) and total flavour TF. Conservation of electric charge implies obviously conservation of Q (considered as a simple number) but also BAL and TF. We verify that electromagnetism and strong interaction which conserve Q, A and L and all individual flavours conserve obviously BAL and TF; likely weak interaction which conserves Q, A and L conserves also BAL and TF. However conservation of BAL does not imply necessarily conservation of A and L. In effect {delta}BAL=0 has another solution {delta}A= {delta}L= {+-} 1 which points to a possible solution to explain how a material and neutral universe could arise evolving from A=0 L=0 Q=0 state to A>0 Q=0 state through a process which would conserve BAL and TF without conserving separately A and L. (author)

  2. What is the significance of the conservation of electric charge Q?

    International Nuclear Information System (INIS)

    Tsan, U.C.

    2006-01-01

    Conservation of electric charge Q is a universal law in the sense that it should be conserved in any interaction, known or yet unknown. However Q should not be considered as a simple number but as the half sum of two irreducible quantities BAL = A-L (A is the baryon number and L is the lepton number) and total flavour TF. Conservation of electric charge implies obviously conservation of Q (considered as a simple number) but also BAL and TF. We verify that electromagnetism and strong interaction which conserve Q, A and L and all individual flavours conserve obviously BAL and TF; likely weak interaction which conserves Q, A and L conserves also BAL and TF. However conservation of BAL does not imply necessarily conservation of A and L. In effect ΔBAL=0 has another solution ΔA=ΔL= ±1 which points to a possible solution to explain how a material and neutral universe could arise evolving from A=0 L=0 Q=0 state to A>0 Q=0 state through a process which would conserve BAL and TF without conserving separately A and L. (author)

  3. What is the significance of the conservation of electric charge Q?

    Energy Technology Data Exchange (ETDEWEB)

    Tsan, U.C. [Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS and Universite Joseph Fourier, 53 Avenue des Martyrs, F38026 Grenoble Cedex (France)

    2006-07-01

    Conservation of electric charge Q is a universal law in the sense that it should be conserved in any interaction, known or yet unknown. However Q should not be considered as a simple number but as the half sum of two irreducible quantities BAL = A-L (A is the baryon number and L is the lepton number) and total flavour TF. Conservation of electric charge implies obviously conservation of Q (considered as a simple number) but also BAL and TF. We verify that electromagnetism and strong interaction which conserve Q, A and L and all individual flavours conserve obviously BAL and TF; likely weak interaction which conserves Q, A and L conserves also BAL and TF. However conservation of BAL does not imply necessarily conservation of A and L. In effect {delta}BAL=0 has another solution {delta}A={delta}L= {+-}1 which points to a possible solution to explain how a material and neutral universe could arise evolving from A=0 L=0 Q=0 state to A>0 Q=0 state through a process which would conserve BAL and TF without conserving separately A and L. (author)

  4. A comprehensive approach for computation and implementation of efficient electricity transmission network charges

    Energy Technology Data Exchange (ETDEWEB)

    Olmos, Luis; Perez-Arriaga, Ignacio J. [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas, Alberto Aguilera, 23, 28015 Madrid (Spain)

    2009-12-15

    This paper presents a comprehensive design of electricity transmission charges that are meant to recover regulated network costs. In addition, these charges must be able to meet a set of inter-related objectives. Most importantly, they should encourage potential network users to internalize transmission costs in their location decisions, while interfering as least as possible with the short-term behaviour of the agents in the power system, since this should be left to regulatory instruments in the operation time range. The paper also addresses all those implementation issues that are essential for the sound design of a system of transmission network charges: stability and predictability of the charges; fair and efficient split between generation and demand charges; temporary measures to account for the low loading of most new lines; number and definition of the scenarios to be employed for the calculation and format of the final charges to be adopted: capacity, energy or per customer charges. The application of the proposed method is illustrated with a realistic numerical example that is based on a single scenario of the 2006 winter peak in the Spanish power system. (author)

  5. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  6. Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Liu, Zhe; Wang, Dan; Jia, Hongjie; Djilali, Ned

    2014-01-01

    Highlights: • The interactive mechanism between system and PHEVs is presented. • The charging load self-management without sacrificing user requirements is proposed. • The charging load self-management is coupled to system operation risk analysis. • The charging load self-management can reduce the extra risk brought by PHEVs. • The charging load self-management can shift charging power to the time with low risk. - Abstract: Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of PHEVs needs to be analyzed. Nighttime-charging which typically characterizes PHEVs is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and PHEVs in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users’ desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and

  7. Charge dynamics in graphene and graphene superlattices under a high-frequency electric field: a semiclassical approach

    International Nuclear Information System (INIS)

    Kryuchkov, S V; Kukhar’, E I; Zav’yalov, D V

    2013-01-01

    The semiclassical theory of the dynamics of the charge carriers in graphene and in graphene superlattices exposed to a high-frequency electric field is developed. The dispersion law of the solid averaged over the period of the high-frequency electric field is found with the Kapitza method. The band gap in graphene is shown to arise under a high-frequency electric field polarized circularly. The effective mass of charge carriers in the center of the Brillouin band of the graphene superlattice is found to change sign under certain values of the amplitude of the high-frequency field. These values are shown to determine the bounds of the regions of the electromagnetic 2π-pulse stability. The dynamics of the π-pulse in a graphene superlattice is studied. (paper)

  8. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    Science.gov (United States)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  9. Copper vanadate nanowires-based MIS capacitors: Synthesis, characterization, and their electrical charge storage applications

    KAUST Repository

    Shahid, Muhammad

    2013-07-14

    Copper vanadate (CVO) nanowires were grown on Si/SiO2 substrates by thermal annealing technique. A thin film of a CVO precursor at 550 C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO2/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices. © 2013 Springer Science+Business Media Dordrecht.

  10. Copper vanadate nanowires-based MIS capacitors: synthesis, characterization, and their electrical charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Muhammad, E-mail: shahid@skku.edu [King Abdullah University of Science and Technology, Material Science and Engineering (Saudi Arabia); Nafady, Ayman [King Saud University, Department of Chemistry, College of Science (Saudi Arabia); Shakir, Imran; Rana, Usman Ali; Sarfraz, Mansoor [King Saud University, Sustainable Energy Technologies (SET) Center, College of Engineering (Saudi Arabia); Warsi, Muhammad Farooq [The Islamia University of Bahawalpur, Department of Chemistry (Pakistan); Hussain, Rafaqat [Universiti Teknologi Malaysia, Ibnu Sina Institute for Fundamental Science Studies (Malaysia); Ashiq, Muhammad Naeem [Bahauddin Zakaryia University, Institute of Chemical Sciences (Pakistan)

    2013-08-15

    Copper vanadate (CVO) nanowires were grown on Si/SiO{sub 2} substrates by thermal annealing technique. A thin film of a CVO precursor at 550 Degree-Sign C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO{sub 2}/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices.

  11. Copper vanadate nanowires-based MIS capacitors: Synthesis, characterization, and their electrical charge storage applications

    KAUST Repository

    Shahid, Muhammad; Nafady, Ayman; Shakir, Imran; Rana, Usman Ali; Sarfraz, Mansoor M.; Warsi, Muhammad Farooq; Hussain, Rafaqat; Ashiq, Muhammad Naeem

    2013-01-01

    Copper vanadate (CVO) nanowires were grown on Si/SiO2 substrates by thermal annealing technique. A thin film of a CVO precursor at 550 C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO2/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices. © 2013 Springer Science+Business Media Dordrecht.

  12. Experimental determination of net protein charge, [A]tot, and Ka of nonvolatile buffers in bird plasma.

    Science.gov (United States)

    Stämpfli, Henry; Taylor, Michael; McNicoll, Carl; Gancz, Ady Y; Constable, Peter D

    2006-06-01

    The quantitative mechanistic acid-base approach to clinical assessment of acid-base status requires species-specific values for [A]tot (the total concentration of nonvolatile buffers in plasma) and Ka (the effective dissociation constant for weak acids in plasma). The aim of this study was to determine [A]tot and Ka values for plasma in domestic pigeons. Plasma from 12 healthy commercial domestic pigeons was tonometered with 20% CO2 at 37 degrees C. Plasma pH, Pco2, and plasma concentrations of strong cations (Na, K, Ca), strong anions (Cl, L-lactate), and nonvolatile buffer ions (total protein, albumin, phosphate) were measured over a pH range of 6.8-7.7. Strong ion difference (SID) (SID5=Na+K+Ca-Cl-lactate) was used to calculate [A]tot and Ka from the measured pH and Pco2 and SID5. Mean (+/-SD) values for bird plasma were as follows: [A]tot=7.76+/-2.15 mmol/l (equivalent to 0.32 mmol/g of total protein, 0.51 mmol/g of albumin, 0.23 mmol/g of total solids); Ka=2.15+/-1.15x10(-7); and pKa=6.67. The net protein charge at normal pH (7.43) was estimated to be 6 meq/l; this value indicates that pigeon plasma has a much lower anion gap value than mammals after adjusting for high mean L-lactate concentrations induced by restraint during blood sampling. This finding indicates that plasma proteins in pigeons have a much lower net anion charge than mammalian plasma protein. An incidental finding was that total protein concentration measured by a multianalyzer system was consistently lower than the value for total solids measured by refractometer.

  13. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  14. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  15. Load demand profile for a large charging station of a fleet of all-electric plug-in buses

    Directory of Open Access Journals (Sweden)

    Mario A. Rios

    2014-08-01

    Full Text Available This study proposes a general procedure to compute the load demand profile from a parking lot where a fleet of buses with electric propulsion mechanisms are charged. Such procedure is divided in three different stages, the first one models the daily energy utilisation of the batteries based on Monte Carlo simulations and route characteristics. The second one models the process in the charging station based on discrete event simulation of queues of buses served by a lot of available chargers. The third step computes the final demand profile in the parking lot because of the charging process based on the power consumption of batteries’ chargers and the utilisation of the available charges. The proposed procedure allows the computation of the number of required batteries’ chargers to be installed in a charging station placed at a parking lot in order to satisfy and ensure the operation of the fleet, the computation of the power demand profile and the peak load and the computation of the general characteristics of electrical infrastructure to supply the power to the station.

  16. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...

  17. Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media

    International Nuclear Information System (INIS)

    Saffouri, M.H.

    1982-07-01

    A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)

  18. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    Science.gov (United States)

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do

  19. Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications

    International Nuclear Information System (INIS)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    Highlights: • We investigate the energy, economic and environmental implications of deploying EVs for China’s power system by 2030. • EVs outperform gasoline-powered vehicles in terms of average fueling costs. • Controlled EV charging given the expected 2030 capacity portfolio results in more CO_2 emissions than uncontrolled charging. • Controlled charging has absolute advantages in mitigating the peak load and facilitating RES generation. • Controlled (dis)charging will not reduce CO_2 for China without generation decarbonization and CO_2-influenced dispatch. - Abstract: This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system and charging strategies, given expected developments by 2030 in both the power system and EV penetration levels. The impact of EV charging is quantified by applying an integrated transportation-power system model on a set of scenarios which represent uncertainties in charging strategies. We find that deploying EVs essentially shifts the use of gasoline to coal-fired power generation in China, thus leading to more coal consumption and CO_2 emissions of the power system. Economically, EVs outperform gasoline-powered vehicles in terms of average fueling costs. However, the impact of EVs in terms of CO_2 emissions at the national level largely depends on the charging strategy. Specifically, controlled charging results in more CO_2 emissions associated with EVs than uncontrolled charging, as it tends to feed EVs with electricity produced by cheap yet low-efficiency coal power plants located in regions where coal prices are low. Still, compared with uncontrolled charging, controlled charging shows absolute advantages in: (1) mitigating the peak load arising from EV charging; (2) facilitating RES

  20. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    Science.gov (United States)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  1. In situ electric fields causing electro-stimulation from conductor contact of charged human

    International Nuclear Information System (INIS)

    Nagai, T.; Hirata, A.

    2010-01-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength- duration curves with parameters used in previous studies. (authors)

  2. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  3. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  4. Effect of the Net Charge Distribution on the Aqueous Solution Properties of Polyampholytes Effet de la répartition de la charge nette sur les propriétés des solutions aqueuses de polyampholytes

    Directory of Open Access Journals (Sweden)

    Candau F.

    2006-12-01

    Full Text Available The zwitterion nature of ampholytic polymers provides features that are useful in environmental and industrial applications, e. g. ion-exchange membrane, as flocculants in sewage treatment and in oil recovery processes. In the latter case, the increase in viscosity which is observed in the presence of brine (anti -polyelectrolyte behavior make them ideal candidates for high salinity media. The aqueous solution properties of a series of ampholytic terpolymers based on sodium-2-acrylamido-2- rilethylpropanesulfonate (NaAMPS, Methacryloyloxyethyltrimethylammonium chloride (MADQUAT and acrylamide (AM, prepared in inverse micro emulsions have been investigated by viscometry and light scattering experiments. The distribution of the net charge among the chains was varied by adjusting the initial monomer composition and the degree of conversion. The effect of this distribution on the solubility of the samples and on the chain conformation was studied. It was found that samples with a narrow distribution of net charges were soluble in water even if the average net charge is small. Addition of salt produces a transition from an extended conformation to a more compact one in qualitative agreement with theoretical predictions. A practically alternated NaAMPS- MADQUAT copolymer prepared in homogeneous solution and with a small average net charge shows a behaviour quite similar to that of the terpolymers. La nature zwitterioniquedes polymères ampholytes présente des caractéristiques qui sont utiles dans les applications environnementales et industrielles, comme les membranes d'échange ionique, les floculants dans le traitement des eaux usées et dans les procédés de récupération de pétrole. Dans ce dernier cas, l'augmentation de viscosité qui est observée en présence de saumure (comportement antipolyélectrolyte en fait des candidats idéaux pour des milieux de salinité élevée. Les propriétés de la solution aqueuse d'une série de terpolym

  5. Reliability evaluation of the power supply of an electrical power net for safety-relevant applications

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.

    2006-01-01

    In this paper, we introduce a methodology for the dependability analysis of new automotive safety-relevant systems. With the introduction of safety-relevant electronic systems in cars, it is necessary to carry out a thorough dependability analysis of those systems to fully understand and quantify the failure mechanisms in order to improve the design. Several system level FMEAs are used to identify the different failure modes of the system and, a Markov model is constructed to quantify their probability of occurrence. A new power net architecture with application to new safety-relevant automotive systems, such as Steer-by-Wire or Brake-by-Wire, is used as a case study. For these safety-relevant loads, loss of electric power supply means loss of control of the vehicle. It is, therefore, necessary and critical to develop a highly dependable power net to ensure power to these loads under all circumstances

  6. A preon model with hidden electric and magnetic type charges

    International Nuclear Information System (INIS)

    Pati, J.C.; Strathdee, J.

    1980-11-01

    The U(1) x U(1) binding forces in an earlier preonic composite model of quarks and leptons are interpreted as arising from hidden electric and magnetic type charges. The preons may possess intrinsic spin zero; the half-integer spins of the composites being contributed by the force field. The quark-lepton gauge symmetry is interpreted as an effective low-energy symmetry arising at the composite level. Some remarks are made regarding the possible composite nature of the graviton. (author)

  7. Electric field of not completely symmetric systems earthed sphere-uniformly charged dielectric plan

    International Nuclear Information System (INIS)

    Vila, F.

    1994-07-01

    In this paper we study theoretically the electric field in the not completely symmetric system, earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig

  8. Measurements of electric charge and screening length of microparticles in a plasma sheath

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ishihara, O.

    2009-01-01

    An experiment is described in which microparticles are levitated within a rf sheath above a conducting plate in argon plasma. The microparticles forming a two-dimensional crystal structure are considered to possess Debye screening Coulomb potential φ(r)=(Q/4πε 0 r)exp(-r/λ), where Q is the electric charge, r is distance, and λ is the screening length. When the crystal structure is slanted with an angle θ, a particle experiences a force Mg sin θ, where M is the mass of the particle and g is acceleration due to gravity, which must be equal to the Debye screened Coulomb force from other particles. By changing θ, relations for λ(Q) are measured. The screening length λ and Q are determined uniquely from the crossing points of several relations. The electric charge Q is also estimated from a floating potential measured with a probe. The measured λ is nearly equal to an ion Debye length.

  9. An analysis of a demand charge electricity grid tariff in the residential sector

    International Nuclear Information System (INIS)

    Stokke, A. V.; Doorman, G.L.; Ericson, T.

    2010-01-01

    This paper analyzes the demand response from residential electricity consumers to a demand charge grid tariff. The tariff charges the maximum hourly peak consumption in each of the winter months Dec, Jan, and Feb, thus giving incentives to reduce peak consumption. We use hourly electricity consumption data from 443 households, as well as data on their grid and power prices, the local temperature, wind speed, and hours of daylight. The panel data set is analyzed with a fixed effects regression model. The estimates indicate average demand reductions up to 0.37 kWh/h per household in response to the tariff. This is on average a 5% reduction, with a maximum reduction of 12% in hour 8 in Dec. The consumers did not receive any information on their continuous consumption or any reminders when the tariff was in effect. It is likely that the consumption reductions would have been even higher with more information to the consumers.

  10. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  11. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    International Nuclear Information System (INIS)

    Saenz de Miera, Gonzalo; Rio Gonzalez, Pablo del; Vizcaino, Ignacio

    2008-01-01

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer

  12. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  13. Plasma dynamics near an earth satellite and neutralization of its electric charge during electron beam injection into the ionosphere

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    2000-01-01

    A study is made of the dynamics of the ionospheric plasma in the vicinity of an earth satellite injecting an electron beam. The time evolution of the electric charge of the satellite is determined. The electric potential of the satellite is found to be well below the beam-cutoff potential. It is shown that, under conditions typical of active experiments in space, the plasma electrons are capable of neutralizing the satellite's charge

  14. Neutron charge radius and the neutron electric form factor

    International Nuclear Information System (INIS)

    Gentile, T. R.; Crawford, C. B.

    2011-01-01

    For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G E n , vs the square of the four-momentum transfer, Q 2 . Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G E n data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G E n (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

  15. Electric charging for preparation of composite particulate materials. Funtai no fukugo zairyoka no tame no kaden sosa

    Energy Technology Data Exchange (ETDEWEB)

    Endo, S [National Institute for Resources and Environment, Tsukuba (Japan)

    1992-11-30

    Explanation was made of problems in interparticulate coagulation mainly in the mixing process of microparticulates which are less than 0.1[mu]m in diameter and about 1[mu]m diameter particulates for the composition in gaseous phase. The utilization of electrostatic interaction was particularly explained together with the recent result of basic experiment. The composition of two-component particulate system in the gaseous phase progresses generally with the Brownian movement and electrostatic interaction of particulates. The interparticulate collision/coagulation rate is evaluated by the coagulation rate function. As for the electric charging operation to make the coagulation more effective, application is made of contact or collision charging and ionic charging, and the latter is further divided into electric field charging and diffusion charging. Experiment was conducted by mixing TiO2 microparticulates which were less than 100nm in diameter and about 1[mu]m diameter PSL (polystyrene latex) particulates for the composition in a mixer. As a result of investigating the coagulation process with a device which could observe the diffused laser beam from the particulates, confirmation could be made of the situation in which the particulate charging effectively contributed to the composition. 20 refs., 10 figs., 2 tabs.

  16. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  17. Modeling plug-in electric vehicle charging demand with BEAM: the framework for behavior energy autonomy mobility

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Colin; Waraich, Rashid; Campbell, Andrew; Pozdnukov, Alexei; Gopal, Anand R.

    2017-05-01

    This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding charging infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.

  18. Charge Losses in Silicon Sensors and Electric-Field Studies at the Si-SiO$_2$ Interface

    CERN Document Server

    Poehlsen, Thomas

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs ($eh$ pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate $eh$ pairs along the whole sensor depth, a few $\\mu$m below the surface and very close to the surface, respectively. Segmented p$^+$n silicon strip sensors are used to study the electric field below the SiO$_2$ separating the strip implants. The sensors are investigated before and after irradiation with 12 keV x-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO$_2$ interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the...

  19. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  20. Decree no. 2004-90 from January 28, 2004 relative to the compensation of electric public utility charges

    International Nuclear Information System (INIS)

    2004-03-01

    This decree defines the charges imputable to the missions of electric public utility, the procedure of determination of their amount, the contribution to these charges by end-users and the operations of recovery and transfer, the processing of declaration defects and payment failures and some other various dispositions. (J.S.)

  1. A Sepic Type Switched Mode Power Supply System For Battery Charging In An Electric Tricycle Auto-Rickshaw

    Directory of Open Access Journals (Sweden)

    Kureve

    2017-08-01

    Full Text Available This paper analyzes the plug-in electric tricycle Auto rickshaw battery charging system using a non-isolated DC-DC SEPIC converter which operates as a switched mode power supply SMPS. The control of dc voltage output is by varying the gating pulses duty cycle of the switch in the dc-dc converter using PID controller based PWM technique. The 60 V 30 A DC-DC SEPIC converter is designed to provide non-inverting voltage buck from the rectified AC mains for charging deep cycle battery bank in an electric auto rickshaw. The charger system is implemented using MATLABSimulink.

  2. Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

    Science.gov (United States)

    Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador

    2015-01-01

    We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563

  3. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  4. Charge losses in silicon sensors and electric-field studies at the Si-SiO2 interface

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2013-07-01

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs (eh pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate eh pairs along the whole sensor depth, a few μm below the surface and very close to the surface, respectively. Segmented p + n silicon strip sensors are used to study the electric field below the SiO 2 separating the strip implants. The sensors are investigated before and after irradiation with 12 keV X-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO 2 interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the electrostatic potential for different boundary conditions at the surface. Depending on the biasing history incomplete collection of electrons, full charge collection or incomplete collection of holes is observed. After the bias voltage is changed, the amount of observed charge losses is time dependent with time constants being a function of humidity. For the irradiated sensors an increased effective oxide charge density and more electron losses are observed compared to the non-irradiated sensors. Due to positive oxide charges which are always present at the Si-SiO 2 interface an electronaccumulation layer forms, if the oxide charge is not compensated by charges on top of the passivation. If negative charges overcompensate the oxide charge, a hole-accumulation layer forms. In both cases the number of accumulated charges can be temporarily increased by incomplete charge collection of either electrons or holes. How many additional charge carriers can be added to the

  5. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  6. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  7. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  8. Estimation of droplet charge forming out of an electrified ligament in the presence of a uniform electric field

    International Nuclear Information System (INIS)

    Osman, H; Castle, G S P; Adamiak, K; Fan, H T; Simmer, J

    2015-01-01

    The charge on a liquid droplet is a critical parameter that needs to be determined to accurately predict the behaviour of the droplet in many electrostatic applications, for example, electrostatic painting and ink-jet printing. The charge depends on many factors, such as the liquid conductivity, droplet and ligament radii, ligament length, droplet shape, electric field intensity, space charge, the presence of adjacent ligaments and previously formed droplets. In this paper, a 2D axisymmetric model is presented which can be used to predict the electric charge on a conductive spherical droplet ejected from a single ligament directly supplied with high voltage. It was found that the droplet charging levels for the case of isolated electrified ligaments are as much as 60 times higher than that in the case of ligaments connected to a planar high voltage electrode. It is suggested that practical atomization systems lie somewhere between these two extremes and that a better model was achieved by developing a 3D approximation of a linear array of ligaments connected to an electrode having variable width. The effect on droplet charge and its radius was estimated for several cases of different boundary conditions. (paper)

  9. NEW HYPOTHESIS AND ELECTROPHYSICS NATURE OF ADDITIONAL MECHANISMS OF ORIGIN, ACCUMULATION AND DIVISION OF ELECTRIC CHARGES IN THE ATMOSPHERIC CLOUDS OF EARTH

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2018-02-01

    Full Text Available Purpose. Development of new hypothesis about the possible additional mechanisms of origin, accumulation and division of electric charges in atmospheric clouds, containing shallow dispersible drops of water, shallow particulate dielectric matters and crystals of ice. Methodology. Electrophysics bases of technique of high voltage, theoretical bases of the electrical engineering, theoretical electrophysics, theory of the electromagnetic field, technique of the high electric and magnetic fields. Results. Pulled out and grounded new scientific supposition, related to possible existence in earthly troposphere of additional mechanisms of origin, accumulation and division of electric charges in the atmospheric clouds of Earth, being based on electrization in the warm ascending currents of air of shallow round particulate dielectric matters, getting in an air atmosphere from a terrene and from the smoke extras of industrial enterprises. By a calculation a way it is shown that the offered additional electrophysics mechanisms are able to provide achievement in the atmospheric clouds of such values of volume closeness of charges, total electric charge and tension of the electrostatic field stocked in them inwardly and on the external border of storm clouds which correspond modern experimental information from an area atmospheric electricity. The calculation estimations of levels of electric potential and stocked electric energy executed on the basis of the offered hypothesis in storm clouds specify on possibility of receipt in them of ever higher electric potentials and large supplies of electric energy. The obtained results are supplemented by the known approaches of forming and development in earthly troposphere of the electric charged atmospheric clouds, being based on electrization in the warm ascending streams of air the masses of shallow round aquatic drops. Originality. First on the basis of the well-known theses of technique and electrophysics of

  10. Studies of the mobility of charge carriers in low-dimensional systems in a transverse DC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Sinyavskii, E. P., E-mail: sinyavskii@gmail.com [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Karapetyan, S. A., E-mail: karapetyan.sa@gmail.com [Shevchenko Pridnestrovskii State University (Moldova, Republic of)

    2011-08-15

    The mobility of charge carriers {mu} in a parabolic quantum well in an electric field E directed along the size-confinement axis is calculated. With consideration for scattering of charge carriers at a rough surface, the mobility {mu} is shown to decrease with increasing E. A physical interpretation of this effect is proposed.

  11. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    in order to support basic electrical operation. This paper proposes a local implementation of a hysteresis-based aggregation algorithm for coordinated control of multiple stations that can provide functions such as peak shaving, spinning reserves, frequency control, regulation and load following. Local......Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...... stability. Finally, corresponding hardware in the loop results based on dSPACE1006 platform have been reported in order to verify the validity of proposed approach....

  12. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  13. Impact of Distribution Feeders that do not have Voltage Regulators on the number of Charged Electric Vehicles using IEEE 34 Bus Test Feeder

    Energy Technology Data Exchange (ETDEWEB)

    Allehyani, Ahmed [University of Southern California, Department of Electrical Engineering; Beshir, Mohammed [University of Southern California, Department of Electrical Engineering

    2015-02-01

    Voltage regulators help maintain an acceptable voltage profile for the system. This paper discusses the effect of installing voltage regulators to the system to fix the voltage drop resulting from the electrical vehicles loading increase when they are being charged. The effect will be studied in the afternoon, when the peak load occurs, using the IEEE 34 bus test feeder. First, only one spot node is used to charge the electric vehicles while a voltage regulator is present. Second, five spot nodes are loaded at the same time to charge the electric vehicles while voltage regulators are installed at each node. After that, the impact of electric vehicles on distribution feeders that do not have voltage regulators will appear.

  14. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  15. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  16. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  17. Charges in gravitational fields: From Fermi, via Hanni-Ruffini-Wheeler, to the 'electric Meissner effect'

    Science.gov (United States)

    Ruffini, R.

    2004-07-01

    Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.

  18. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    Science.gov (United States)

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  19. The  Practitioner's guide to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Christensen, Søren; Jensen, Kurt

    1998-01-01

    four hundred commercial companies. It is available free of charge, also for commercial use. This paper provides a comprehensive road map to the practical use of CP-nets and the Design/CPN tool. We give an informal introduction to the basic concepts and ideas underliying CP-nets. The key components...... and facilities of the Design/CPN tool are presented and their use illustrated. The paper is self-contained and does not assume any prior kowledge of Petri nets and CP-nets nor any experience with the Design/CPN tool...

  20. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  1. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  2. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the

  3. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  4. Electric bus migration in Bengaluru with dynamic charging technologies

    Directory of Open Access Journals (Sweden)

    Ankit Kumar Begwani

    2017-12-01

    Full Text Available Rapid but unplanned urban development coupled with economic growth has resulted in congestion and pollution concerns in Indian cities. This forced India consider taking concrete steps towards design policies that would help stir the nation towards a more sustainable future. India, along with other bigger Asian economies like China, needs to address the growing global concerns over climate change and design their framework and policies to help cut down the greenhouse gas emissions. Transportation is a major source of pollution. A shift towards a pro-public transport policy would solve the traffic congestion problems and address the emission concerns. India has a significantly higher modal share of public transportation in its major cities. Public bus transport system acts as a lifeline to the India’s poor and middle class citizens. The following study focuses on the need for a replacement of conventional fossil fuel dependent buses with Electric buses in the existing public transport bus fleet in the city of Bengaluru. A design has been developed to utilize wireless charging technologies to realize electric bus migration in Bengaluru.

  5. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  6. Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress

    Directory of Open Access Journals (Sweden)

    Y. A. Baadj

    2017-06-01

    Full Text Available Multidielectric polyethylene is a material that is generally employed as insulation for  the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE and Fluorinated Ethylene Propylene (FEP sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm for extended duration of time and the space charge measurements were taken using bipolar model is one-dimensional, taking into account trapping, detrapping and the rencommbinaison in order to determine the charge density and electric field of the sample depending on the thickness. The simulation was carried out at three different temperatures (20, 40,  and 60°C. The results of this model going to compare with experimental space charge measurements . Finally, simulation results demonstrated that the temperature has many effects on the dynamic space charge  and of influences the charge injection, charge mobility, electrical conduction, trapping and detrapping.

  7. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2013-02-01

    Full Text Available Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  8. Induced charge of spherical dust particle on plasma-facing wall in non-uniform electric field

    International Nuclear Information System (INIS)

    Tomita, Y.; Smirnov, R.; Zhu, S.

    2005-01-01

    Induced charge of a spherical dust particle on a plasma-facing wall is investigated analytically, where non-uniform electric field is applied externally. The one-dimensional non-uniform electrostatic potential is approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate is introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge. (author)

  9. Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in canine plasma.

    Science.gov (United States)

    Constable, Peter D; Stämpfli, Henry R

    2005-01-01

    Acid-base abnormalities frequently are present in sick dogs. The mechanism for an acid-base disturbance can be determined with the simplified strong ion approach, which requires accurate values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma weak acids (K(a)). The aims of this study were to experimentally determine A(tot) and K(a) values for canine plasma. Plasma was harvested from 10 healthy dogs; the concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, L-lactate) and nonvolatile buffer ions (total protein, albumin, phosphate) were determined; and the plasma was tonometered with CO2 at 37 degrees C. Strong ion difference (SID) was calculated from the measured strong ion concentrations, and nonlinear regression was used to estimate values for A(tot) and K(a), which were validated with data from an in vitro and in vivo study. Mean (+/- SD) values for canine plasma were A(tot) = (17.4 +/- 8.6) mM (equivalent to 0.273 mmol/g of total protein or 0.469 mmol/g of albumin); K(a) = (0.17 +/- 0.11) x 10(-7); pK(a) = 7.77. The calculated SID for normal canine plasma (pH = 7.40; P(CO2) = 37 mm Hg; [total protein] = 64 g/L) was 27 mEq/L. The net protein charge for normal canine plasma was 0.25 mEq/g of total protein or 0.42 mEq/g of albumin. Application of the experimentally determined values for A(tot), K(a), and net protein charge should improve understanding of the mechanism for complex acid-base disturbances in dogs.

  10. Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in human plasma.

    Science.gov (United States)

    Staempfli, Henry R; Constable, Peter D

    2003-08-01

    The mechanism for an acid-base disturbance can be determined by using the strong ion approach, which requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma weak acids (Ka). The aim of this study was to experimentally determine Atot and Ka values for human plasma by using in vitro CO2 tonometry. Plasma Pco2 was systematically varied from 25 to 145 Torr at 37 degrees C, thereby altering plasma pH over the physiological range of 6.90-7.55, and plasma pH, Pco2, and concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, lactate) and buffer ions (total protein, albumin, phosphate) were measured. Strong ion difference was estimated, and nonlinear regression was used to calculate Atot and Ka from the measured pH and Pco2 and estimated strong ion difference; the Atot and Ka values were then validated by using a published data set (Figge J, Rossing TH, and Fencl V, J Lab Clin Med 117: 453-467, 1991). The values (mean +/- SD) were as follows: Atot = 17.2 +/- 3.5 mmol/l (equivalent to 0.224 mmol/g of protein or 0.378 mmol/g of albumin); Ka = 0.80 +/- 0.60 x 10-7; negative log of Ka = 7.10. Mean estimates were obtained for strong ion difference (37 meq/l) and net protein charge (13+.0 meq/l). The experimentally determined values for Atot, Ka, and net protein charge should facilitate the diagnosis and treatment of acid-base disturbances in critically ill humans.

  11. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  12. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    Directory of Open Access Journals (Sweden)

    Mark Mullett

    2014-03-01

    Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  13. A Data-Driven Approach to Manage Charging Infrastructure for Electric Vehicles in Parking Lots

    NARCIS (Netherlands)

    J. Babic (Jurica); A. Carvalho (Arthur); W. Ketter (Wolfgang); V. Podobnik (Vedran)

    2017-01-01

    textabstractThe ever-increasing number of electric vehicles (EV) on the road is in line with many governments' efforts to tackle urgent environmental challenges. This inherently means that there is a growing need for charging infrastructure as well. A potential solution to address the need for

  14. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  15. Measurement of the electric charge of the top quark in tt¯ events

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2014-01-01

    Roč. 90, č. 5 (2014), "051101-1"-"051101-8" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : pair production * top * charge * electric * jet * final state * Batavia TEVATRON Coll * admixture * lepton * quark Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  16. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  17. An electric vehicle driving behavior model in the traffic system with a wireless charging lane

    Science.gov (United States)

    He, Jia; Huang, Hai-Jun; Yang, Hai; Tang, Tie-Qiao

    2017-09-01

    In this paper, a car-following model is proposed to study each EV's (electric vehicle) motion behavior near the WCL (wireless charging lane) and a lane-changing rule is designed to describe the EV's lane-changing behavior. Then, the car-following model and lane-changing rule are used to explore each EV's micro driving behavior in a two-lane system with a WCL. Finally, the impacts of the WCL on each EV's motion behavior are investigated. The numerical results show that each EV should run slowly on the WCL if it needs charge of electricity, that the EV's lane-changing behavior has great effects on the whole system, that the delay time caused by the WCL turns more prominent when the traffic turns heavy, and that lane-changing frequently occurs near the WCL (especially at the downstream of the WCL).

  18. Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Iltan, E.O.

    2005-01-01

    We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10 -22 e cm (10 -20 e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment. (orig.)

  19. Regular black holes: electrically charged solutions, Reissner-Nordstroem outside a De Sitter core

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Jose P.S. [Universidade Tecnica de Lisboa (CENTRA/IST/UTL) (Portugal). Instituto Superior Tecnico. Centro Multidisciplinar de Astrofisica; Zanchin, Vilson T. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2011-07-01

    Full text: The understanding of the inside of a black hole is of crucial importance in order to have the correct picture of a black hole as a whole. The singularities that lurk inside of the usual black hole solutions are things to avoid. Their substitution by a regular part is of great interest, the process generating regular black holes. In the present work regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several solutions: the regular nonextremal black holes with a null matter boundary, the regular nonextremal black holes with a timelike matter boundary, the regular extremal black holes with a timelike matter boundary, and the regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed. (author)

  20. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, Jim [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Carlson, Richard [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Garretson, Thomas [Electric Applications Incorporated, Phoenix, AZ (United States); Gourley, LauraLee [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Karner, Donal [Electric Applications Incorporated, Phoenix, AZ (United States); McGuire, Patti [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kirkpatrick, Mindy [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Shrik, Matthew [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Schey, Stephen [Electric Applications Incorporated, Phoenix, AZ (United States); Smart, John [Idaho National Laboratory (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Wishard, Jeffery [Intertek Center for the Evaluation of Clean Energy Technology, Phoenix, AZ (United States)

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  1. Modeling of Electric Field Around 100 MVA 150/20 KV Power Transformator Using Charge Simulation Method

    OpenAIRE

    Rachman, Noviadi Arief; Risdiyanto, Agus; Ramdan, Ade

    2013-01-01

    Charge Simulation Method is one of the field theory that can be used as an approach to calculate the electromagnetic distribution on the electrical conductor. This paper discussed electric field modeling around power transformator by using Matlab to find the safety distance. The safe distance threshold of the electric field to human health refers to WHO and SNI was 5 kV/m. The specification of the power transformator was three phases, 150/20 kV, and 100 MVA. The basic concept is to change the...

  2. Analysis and Comparison of Voltage Dependent Charging Strategies for Single-Phase Electric Vehicles in an Unbalanced Danish Distribution Grid

    DEFF Research Database (Denmark)

    Álvarez, Jorge Nájera; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    This paper studies four voltage dependent solutions for modulating the charging of multiple Electric Vehicles (EVs) in a real Danish network. Uncontrolled EV charging, especially in grid with high EV penetration, can result in overloaded lines and transformers, low-voltages and other performance...

  3. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    International Nuclear Information System (INIS)

    Gilmore, Elisabeth A.; Apt, Jay; Lave, Lester B.; Walawalkar, Rahul; Adams, Peter J.

    2010-01-01

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2 ) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x ). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5 ) result in a benefit of 4.5 cents kWh -1 and 17 cents kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3 ) concentrations increase due to decreases in nitrogen oxide (NO x ) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At $20 per tonne of CO 2 , the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated

  4. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  5. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  6. Incentive-based coordinated charging control of plug-in electric vehicles at the distribution-transformer level

    NARCIS (Netherlands)

    Hermans, R.M.; Almassalkhi, M.R.; Hiskens, I.A.

    2012-01-01

    Distribution utilities are becoming increasingly aware that their networks may struggle to accommodate large numbers of plug-in electric vehicles (PEVs). In particular, uncoordinated overnight charging is expected to be problematic, as the corresponding aggregated power demand exceeds the capacity

  7. Charge losses in silicon sensors and electric-field studies at the Si-SiO{sub 2} interface

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2013-07-15

    Electric fields and charge losses in silicon sensors before and after irradiation with x-rays, protons, neutrons or mixed irradiation are studied in charge-collection measurements. Electron-hole pairs (eh pairs) are generated at different positions in the sensor using sub-ns pulsed laser light of different wavelengths. Light of 1063 nm, 830 nm and 660 nm wavelength is used to generate eh pairs along the whole sensor depth, a few {mu}m below the surface and very close to the surface, respectively. Segmented p{sup +}n silicon strip sensors are used to study the electric field below the SiO{sub 2} separating the strip implants. The sensors are investigated before and after irradiation with 12 keV X-rays to a dose of 1 MGy. It is found that the electric field close to the Si-SiO{sub 2} interface depends on both the irradiation dose and the biasing history. For the non-irradiated sensors the observed dependence of the electric field on biasing history and humidity is qualitatively as expected from simulations of the electrostatic potential for different boundary conditions at the surface. Depending on the biasing history incomplete collection of electrons, full charge collection or incomplete collection of holes is observed. After the bias voltage is changed, the amount of observed charge losses is time dependent with time constants being a function of humidity. For the irradiated sensors an increased effective oxide charge density and more electron losses are observed compared to the non-irradiated sensors. Due to positive oxide charges which are always present at the Si-SiO{sub 2} interface an electronaccumulation layer forms, if the oxide charge is not compensated by charges on top of the passivation. If negative charges overcompensate the oxide charge, a hole-accumulation layer forms. In both cases the number of accumulated charges can be temporarily increased by incomplete charge collection of either electrons or holes. How many additional charge carriers can be

  8. Optimizing plug-in electric vehicle charging in interaction with a small office building

    Energy Technology Data Exchange (ETDEWEB)

    Momber, Ilan; Gomez, Tomas [Instituto de Investigacion Tecnologica (IIT), Madrid (Spain); Dallinger, David; Beer, Sebastian; Wietschel, Martin [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Marnay, Chris; Stadler, Michael [Lawrence Berkeley Lab., CA (United States)

    2011-07-01

    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capacity of 864 kWh. With the benefit-sharing mechanism proposed here and idealized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. (orig.)

  9. Managing charging loads of electric vehicles by monetary incentives. A model-based optimization; Monetaere Anreize zur Steuerung der Ladelast von Elektrofahrzeugen. Eine modellgestuetzte Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Paetz, Alexandra-Gwyn; Kaschub, Thomas; Kopp, Martin; Jochem, Patrick; Fichtner, Wolf [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Industriebetriebslehre und Industrielle Produktion

    2013-03-15

    Electric mobility is supposed to contribute to climate policy targets by reducing CO{sub 2}-emissions in the transportation sector. Increasing penetration rates of electric vehicles (EV) can lead to new challenges in the electricity sector, especially with regard to local distribution networks. Thus the management of charging loads is discussed as a key issue in energy economics. Due to their long parking times, high electricity and power demand, EV seem to be predestined for load management. Monetary incentives as dynamic pricing can be suitable for that: They reflect the current supply situation, pass the information to the consumers and can thus lead to a corresponding charging behaviour. In this article we analyse this interaction between dynamic pricing and charging loads. For this reason we have developed the optimization model DS-Opt+. It models a total number of 4,000 households in two residential areas of a major city with regard to its electricity demand, its mobility behaviour and its equipment of photovoltaic systems. Four different pricing models are tested for their effects on charging behaviour and thus the total load of the residential area. The results illustrate that only fairly high penetration rates of EV lead to remarkably higher electricity demand and require some load management. The tested dynamic pricing models are suitable for influencing charging loads; load-based tariffs are best in achieving a balanced load curve. In our analysis uncontrolled charging strategies are superior regarding a balanced load curve than controlled strategies by time-varying tariffs. Our results lead to several implications relevant for the energy industry and further research.

  10. Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario

    International Nuclear Information System (INIS)

    Telaretti, E.; Graditi, G.; Ippolito, M.G.; Zizzo, G.

    2016-01-01

    Battery energy storage systems (BESSs) are expected to become a fundamental element of the electricity infrastructure, thanks to their ability to decouple generation and demand over time. BESSs can also be used to store electricity during low-price hours, when the demand is low, and to meet the demand during peak hours, thus leading to savings for the consumer. This work focuses on the economic viability of BESS from the point of view of the electricity customer. The analysis refers to a lithium-ion (Li-ion), an advanced lead-acid, a zinc-based, a sodium-sulphur (NaS) and a flow battery. The total investment and replacement costs are estimated in order to calculate the cumulated cash flow, the net present value (NPV) and the internal rate of return (IRR) of the investment. A parametric analysis is further carried out under two different assumptions: a) varying the difference between high and low electricity prices, b) varying the peak demand charges. The analysis reveals that some electrochemical technologies are more suitable than others for electric bill management applications, and that a profit for the customer can be reached only with a significant difference between high and low electricity prices or when high peak demand charges are applied. - Highlights: •We examine the convenience of using BESS to reduce customer electricity bill. •We make a comparison among different types of batteries for end-user applications. •We evaluate the convenience of using storage in presence of demand charges. •A parametric analysis changing the BESS cost, electricity prices and demand charges has been carried out. •A case study is performed to show the advantages/disadvantages of this approach.

  11. Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits

    Science.gov (United States)

    Matar, M.; Welti, R.

    2017-11-01

    In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.

  12. ANALYSIS OF SOLAR POWER STATION SCHEMES ON PHOTOELECTRIC MODULES FOR ELECTRIC CARS CHARGING STATIONS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2017-12-01

    Full Text Available The analysis of existing schemes for building solar power stations on photoelectric modules with the revealing of their operation principles and functionality has been conducted. The specified technical characteristics of each of the analyzed schemes are given. The structural scheme of the solar charging station for electric cars with determining its functional capabilities and operation features is proposed. The practical application of this scheme will help to reduce the dependence on the general electric power supply network and will create conditions for its total rejection.

  13. Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies

    International Nuclear Information System (INIS)

    Wu, Tian; Ma, Lin; Mao, Zhonggen; Ou, Xunmin

    2015-01-01

    The difficulty of charging electric vehicles (EVs) is now hindering their further development. Governments generally choose to build stations for home charging (including piles) within residential communities. Given the conflict of interest between various government agencies and property management companies, constructing a charging station within residential communities would result in welfare loss for the property management companies and therefore lead to the principal–agent problem. This paper constructs a two-period imperfect information game theory model to study the moral hazard involved in this issue and government agencies' optimal choice. In the analytic solution of the model, we find that the optimal choice for a farsighted government agency is to constantly improve the incentive mechanism and introduce charging stations only when the conflict of interest is eliminated. Any benefits derived from government regulations by force would prove short-lived. The government should focus on long-term returns in the development of EVs, and its optimal mechanism should be designed to mitigate the principal–agent problem of property management companies, thereby accelerate the progress of EV charging infrastructure and improve overall social welfare. - Highlights: • The charging of electric vehicles (EVs) is hindering their use. • A game theory model is used for analysis of EV charging station construction. • Charging stations are in residential communities in China. • Government agencies are constantly improving incentive mechanisms

  14. Electric charge quantisation from gauge invariance of a Lagrangian: a catalogue of baryon number violating scalar interactions

    International Nuclear Information System (INIS)

    Bowes, J.P.; Foot, R.; Volkas, R.R.

    1997-01-01

    In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs

  15. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  16. Electric charge quantisation from gauge invariance of a Lagrangian: a catalogue of baryon number violating scalar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, J.P.; Foot, R.; Volkas, R.R.

    1997-06-01

    In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs.

  17. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Saenz de Miera, Gonzalo [Department of Public Economics, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid 28049 (Spain); del Rio Gonzalez, Pablo [Institute for Public Policies, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Vizcaino, Ignacio [Iberdrola, C/Tomas Redondo, 1, Madrid 28033 (Spain)

    2008-09-15

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer. (author)

  18. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  19. Electrical charging characteristics of the hetero layer film for reducing water-borne paint contamination in electrostatic rotary atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Imanishi, T.; Yoshida, O.; Mizuno, A. [ABB Japan, Tokyo (Japan)

    2010-07-01

    The electrostatic rotary atomizer is the most efficient of all liquid spray painting methods. Its use minimizes the waste of paint and reduces emissions of volatile organic compounds (VOCs). Water-borne painting processes which use water-soluble paint also reduce VOC emissions, but the atomizer body is easily contaminated by the paint mists. The Institute of Electrical and Electronics Engineers (IEEE) considered the causes of water-borne paint contamination and presented the experimental results of a contamination proof system in which the atomizer is surrounded by the repelling film that is charged and repels the incoming paint droplets. Among the key factors for repelling film were electrical properties, such as low capacitance and high insulation to keep high surface potential. Charging uniformity was found to be among the most important characteristic to avoid contamination. The pulse electro-acoustic (PEA) method was used to check these features using space charge measurements inside the repelling film. It was concluded that hetero layer films have more uniform charging characteristics than single layer films.

  20. Data and material of the Safe-Range-Inventory: An assistance tool helping to improve the charging infrastructure for electric vehicles.

    Science.gov (United States)

    Carbon, Claus-Christian; Gebauer, Fabian

    2017-10-01

    The Safe-Range-Inventory (SRI) was constructed in order to help public authorities to improve the charging infrastructures for electric vehicles [1; 10.1016/j.trf.2017.04.011]. Specifically, the impact of fast (vs slow) charging stations on people's range anxiety was examined. Ninety-seven electric vehicle users from Germany (81 male; M age =46.3 years, SD =12.1) were recruited to participate in the experimental design. Statistical analyses were conducted using ANOVA for repeated measures to test for interaction effects of available charging stations and remaining range with the dependent variable range anxiety . The full data set is publicly available via https://osf.io/bveyw/ (Carbon and Gebauer, 2017) [2].