WorldWideScience

Sample records for net cooling effect

  1. Microbial activity in district cooling nets; Mikrobiell Aktivitet i Fjaerrkylenaet

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus [Swedish Corrosion Inst., Stockholm (Sweden)

    2004-07-01

    Four district cooling nets with varying water quality have been investigated according to presence of microbially related problems. The aim has been to formulate recommendations regarding the water quality and regarding other procedures that might reduce the risk for biofilm formation and microbial corrosion. The method has consisted of using so called exposure containers, connected to each net. The water has been allowed to flow through the exposure containers where coupons of carbon steel have been exposed. The coupons have been withdrawn at different times, and analysed regarding the presence of biofilm and corrosion attack. Analyses have also been made regarding the amount of a number of different types of micro-organisms in the biofilm and in the district cooling water. The project has been divided in two phases. During the first phase of the project only two nets were investigated, one with municipal water and one with water of district heating quality, i.e. degassed and deionised. Biofilms could be seen on the coupons from both nets, even though the exposure time only had been 1.5 month. Considerable concentrations of micro-organisms were found in the biofilms and in the water for both nets, however much larger amounts for the net with municipal water. During the second phase of the project four nets were investigated, two with mainly municipal water and two with water of district heating quality. Here, on the other hand, it could be seen that the two nets with municipal water had micro-organisms of equivalent or lower concentrations compared to the two nets with water of district heating quality. One explanation to this is that the colouring substance pyranine is added to these two nets. Pyranine is added for the purpose of easily detecting a leakage but is at the same time a carbon compound, and as such a possible nutrient for the micro-organisms. This illustrates the importance of having the district cooling water as free from additives as possible. Other

  2. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  3. Confirmation of shutdown cooling effects

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kotaro, E-mail: ksato@nelted.co.jp; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro [Nuclear Engineering, Limited, 1-3-7 Tosabori Nishi-ku, Osaka-shi, Osaka 550-0001 (Japan)

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  4. Local cooling and warming effects of forests based on satellite observations

    Science.gov (United States)

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529

  5. Effectiveness of hand cooling and a cooling jacket on post-exercise cooling rates in hyperthermic athletes.

    Science.gov (United States)

    Maroni, Tessa; Dawson, Brian; Barnett, Kimberley; Guelfi, Kym; Brade, Carly; Naylor, Louise; Brydges, Chris; Wallman, Karen

    2018-01-24

    This study compared the effects of a hand cooling glove (∼16°C water temperature; subatmospheric pressure of -40 mmHg) and a cooling jacket (CJ) on post-exercise cooling rates (gastrointestinal core temperature, Tc; skin temperature, Tsk) and cognitive performance (the Stroop Colour-Word test). Twelve male athletes performed four trials (within subjects, counterbalanced design) involving cycling at a workload equivalent to 75% ⩒O 2 max in heat (35.7 ± 0.2°C, 49.2 ± 2.6% RH) until a Tc of 39°C or exhaustion occurred. A 30-min cooling period (in 22.3 ± 0.3°C, 42.1 ± 3.6% RH) followed, where participants adopted either one-hand cooling (1H), two-hand cooling (2H), wore a CJ or no cooling (NC). No significant differences were seen in Tc and Tsk cooling rates between trials; however, moderate effect sizes (d = 0.50-0.76) suggested Tc cooling rates to be faster for 1H, 2H and CJ compared to NC after 5 min; 1H and CJ compared to NC after 10 min and for CJ to be faster than 2H at 25-30 min. Reaction times on the cognitive test were similar between all trials after the 30 min cooling/no-cooling period (p > .05). In conclusion, Tc cooling rates were faster with 1H and CJ during the first 10 min compared to NC, with minimal benefit associated with 2H cooling. Reaction time responses were not impacted by the use of the glove(s) or CJ.

  6. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    Science.gov (United States)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  7. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  8. Evaluation of cooling tower environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, G.W.; Sopocy, D.M.

    1974-11-01

    Cooling towers interact with the environment through the discharge of blowdown to a lake or stream and through the emission of moisture and warmed air to the atmosphere. The environmental effects of these interactions can be evaluated by measuring various physical and chemical properties of the cooling system and of the ambient meteorology and hydrology. Blowdown parameters used in this evaluation are temperature, pH, flow rate, total dissolved solids, biocide, and inhibitor concentrations. In addition to meteorological parameters, the atmospheric parameters which require evaluation include fogging, drift, salt deposition, and moist plume characteristics. The instrumentation needs for monitoring these parameters are discussed with respect to current status. Concepts and instrumentation requiring additional development are also cited. Instrumentation required for the measurement of meteorology, humidity, wind speed and direction, atmospheric temperature and stability, height of the mixed layer, fogging, visibility, and drift are included. Fog dispersal techniques are mentioned. (Air Pollut. Abstr.)

  9. Global Cooling: Effect of Urban Albedo on Global Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  10. Fracture behaviour of bread crust: Effect of bread cooling conditions

    NARCIS (Netherlands)

    Primo-Martín, C.; Beukelaer, H. de; Hamer, R.J.; Vliet, T. van

    2008-01-01

    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear

  11. Analytical model of transient thermal effect on convectional cooled ...

    Indian Academy of Sciences (India)

    Abstract. The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived. The results are compared with other works and good agreements are found. The effects of increasing the edge cooling and face cooling are studied.

  12. Renewable Generation Effect on Net Regional Energy Interchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul; Jenkin, Thomas; Margolis, Robert

    2015-07-30

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affecting the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.

  13. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Directory of Open Access Journals (Sweden)

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  14. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  15. Innovative intraoral cooling device better tolerated and equally effective as ice cooling.

    Science.gov (United States)

    Walladbegi, Java; Gellerstedt, Martin; Svanberg, Anncarin; Jontell, Mats

    2017-11-01

    Most of the patients who receive myeloablative therapy prior to stem cell transplantation develop oral mucositis (OM). This adverse reaction manifests as oral mucosal erythema and ulcerations and may require high doses of morphine for pain alleviation. OM may also interfere with food intake and result in weight loss, a need for parenteral nutrition, and impaired quality of life. To date, there have been very few studies of evidence-based interventions for the prevention of OM. Cryotherapy, using ice chips, has been shown to reduce in an efficient manner the severity and extent of OM, although clinical applications are still limited due to several shortcomings, such as adverse tooth sensations, problems with infectious organisms in the water, nausea, and uneven cooling of the oral mucosa. The present proof-of-concept study was conducted to compare the tolerability, temperature reduction, and cooling distribution profiles of an intra-oral cooling device and ice chips in healthy volunteers who did not receive myeloablative treatment, and therefore, did not experience the symptoms of OM. Twenty healthy volunteers used the cooling device and ice chips for a maximum of 60 min each, using a cross-over design. The baseline and final temperatures were measured at eight intra-oral locations using an infra-red thermographic camera. The thermographic images were analysed using two digital software packages. A questionnaire was used to assess the tolerability levels of the two interventions. The intra-oral cooling device was significantly better tolerated than the ice-chips (p = 0.0118). The two interventions were equally effective regarding temperature reduction and cooling distribution. The intra-oral cooling device shows superior tolerability in healthy volunteers. Furthermore, this study shows that temperature reduction and cooling distribution are achieved equally well using either method.

  16. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  17. Analytical model of transient thermal effect on convectional cooled ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 4. Analytical model of transient thermal effect on convectional cooled end-pumped laser rod ... The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived.

  18. Effective selective head cooling during posthypoxic hypothermia in newborn piglets.

    Science.gov (United States)

    Thoresen, M; Simmonds, M; Satas, S; Tooley, J; Silver, I A

    2001-04-01

    Selective head cooling has been proposed as a neuroprotective intervention after hypoxia-ischemia in which the brain is cooled without subjecting the rest of the body to significant hypothermia, thus minimizing adverse systemic effects. There are little data showing it is possible to cool the brain more than the body. We have therefore applied selective head cooling to our hypoxia-ischemia piglet model to establish whether it is possible. Nine piglets were anesthetized, and brain temperature was measured at the surface and in the superficial (0.2 cm) and deep (1.7-2.0 cm) gray matter. Rectal (6-cm depth), skin, and scalp temperatures (T) were recorded continuously. Lowering T-rectal from normothermia (39 degrees C) to hypothermia (33.5-33.8 degrees C) using a head cap perfused with cold (6-24 degrees C) water was undertaken for up to 6 h. To assess the impact of the 45-min hypoxia-ischemia insult on the effectiveness of selective head cooling, four piglets were cooled both before and after the insult, and four, only afterward. During selective head cooling, it was possible to achieve a lower T-deep brain than T-rectal in all animals both before and after hypoxia. However, this was only possible when overhead body heating was used. The T-rectal to T-deep brain gradient was significantly smaller after the insult (median, 5.3 degrees C; range, 4.2-8.5 degrees C versus 3.0 degrees C; 1.7-7.4 degrees C; p = 0.008). During rewarming to normothermia, the gradient was maintained at 4.5 degrees C. We report for the first time a study, which by direct measurement of deep intracerebral temperatures, validates the cooling cap as an effective method of selective brain cooling in a newborn animal hypoxia-ischemia model.

  19. Effect of stack channel radius on the cooling performance of a thermoacoustic cooling system with diameter-expanded prime movers

    Science.gov (United States)

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro

    2017-07-01

    We study a thermoacoustic cooling system with diameter-expanded two-stage prime movers to improve the cooling performance of the system. The heat flow, which depends on the amplitude of the progressive wave, is expected to increase when the heat-pump stack channel radius is decreased. In this study, we investigate the effect of the heat-pump stack channel radius on the cooling performance. The experimental results show that the temperature difference formed at the heat-pump stack is large as the channel radius is decreased. To improve the cooling performance, it is suggested that the proportion of the heat flow that prevents cooling should be decreased.

  20. Effects of Channel Geometry and Coolant Fluid on Thermoelectric Net Power

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse; Sørensen, Kim

    2014-01-01

    generation in TEG for different size of hydraulic diameter of plate-fin heat sink and over a wide range of Reynolds number. The particular focus of this study is to find optimal Reynolds number in each considered channel hydraulic diameter and to explore optimal channel hydraulic diameter for maximum TEG net......, and the maximum net power output occurs at smaller Reynolds number when the channel hydraulic diameter reduces.......Channel geometry has a strong influence on the heat transfer coefficient and cooling energy input in a heat sink. The net power output in a thermoelectric generator (TEG) can be defined as power generation minus the required cooling energy in TEG. This study aims to evaluate the net power...

  1. Steam Driven Triple Effect Absorption Solar Cooling System

    OpenAIRE

    Yabase, Hajime; Makita, Kazuyuki

    2012-01-01

    The authors propose a solar cooling system employing a steam-driven triple effect absorption chiller as a new technique for saving CO2 emission in the air conditioning field. The absorption chiller is a cooling machine using thermal energy as a drive source, and it is ideal for utilizing solar heat. In addition, by employing a triple effect absorption chiller of high efficiency, a high energy saving effect and a significant CO2 saving effect can be expected. As a result of studies, it has bee...

  2. Effect of dietary net energy concentrations on growth performance and net energy intake of growing gilts.

    Science.gov (United States)

    Lee, Gang Il; Kim, Jong Hyuk; Han, Gi Ppeum; Koo, Do Yoon; Choi, Hyeon Seok; Kil, Dong Yong

    2017-09-01

    This experiment investigated the effect of dietary net energy (NE) concentrations on growth performance and NE intake of growing gilts. Five diets were formulated to contain 9.6, 10.1, 10.6, 11.1, and 11.6 MJ NE/kg, respectively. A metabolism trial with 10 growing pigs (average body weight [BW] = 15.9±0.24 kg) was conducted to determine NE concentrations of 5 diets based on French and Dutch NE systems in a 5×5 replicated Latin square design. A growth trial also was performed with five dietary treatments and 12 replicates per treatment using 60 growing gilts (average BW = 15.9±0.55 kg) for 28 days. A regression analysis was performed to predict daily NE intake from the BW of growing gilts. Increasing NE concentrations of diets did not influence average daily gain and average daily feed intake of growing gilts. There was a quadratic relationship (p = 0.01) between dietary NE concentrations and feed efficiency (G:F), although the difference in G:F among treatment means was relatively small. Regression analysis revealed that daily NE intake was linearly associated with the BW of growing gilts. The prediction equations for NE intake with the BW of growing gilts were: NE intake (MJ/d) = 1.442+(0.562×BW, kg), R 2 = 0.796 when French NE system was used, whereas NE intake (MJ/d) = 1.533+(0.614×BW, kg), R 2 = 0.810 when Dutch NE system was used. Increasing NE concentrations of diets from 9.6 to 11.6 MJ NE/kg have little impacts on growth performance of growing gilts. Daily NE intake can be predicted from the BW between 15 and 40 kg in growing gilts.

  3. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  4. Can Coolness Predict Technology Adoption? Effects of Perceived Coolness on User Acceptance of Smartphones with Curved Screens.

    Science.gov (United States)

    Kim, Ki Joon; Shin, Dong-Hee; Park, Eunil

    2015-09-01

    This study proposes an acceptance model for curved-screen smartphones, and explores how the sense of coolness induced by attractiveness, originality, subcultural appeal, and the utility of the curved screen promotes smartphone adoption. The results of structural equation modeling analyses (N = 246) show that these components of coolness (except utility) increase the acceptance of the technology by enhancing the smartphones' affectively driven qualities rather than their utilitarian ones. The proposed coolness model is then compared with the original technology acceptance model to validate that the coolness factors are indeed equally effective determinants of usage intention, as are the extensively studied usability factors such as perceived ease of use and usefulness.

  5. Effect of Modified Atmosphere Packaging under Ice Cooling on the ...

    African Journals Online (AJOL)

    Effect of Modified Atmosphere Packaging under Ice Cooling on the Postharvest Storage Life and Quality of Spinach ( Spinacea oleracea L) Leaves. ... In addition, this treatment reduced loss of ascorbic acid and soluble protein (10% compared to 30% under ambient conditions). Modified atmosphere packaging plus ice ...

  6. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    ... attributed to the presence of manganese. In addition, variation in cooling rate led to increase in strength but severely affected percentage elongation albeit in an acceptable limit of 6%. This effect is discussed in the light of degree of banding of strips and microstructural constituents generated during heat treatment of steel ...

  7. Effects of Cooling Media on the Mechanical Properties and ...

    African Journals Online (AJOL)

    Die and sand castings are versatile processes capable of being used in mass production of alloys having properties unobtainable by other manufacturing method. In this research, efforts were made to study the effects of cooling media on Aluminium alloy cast. Aluminium scrap (Al – Mg – Si,) were charged into crucible ...

  8. Effects of net hapa on the survival of Clarias gariepinus (Burchell ...

    African Journals Online (AJOL)

    The effects of net hapa on the survival of fry from diffe rent brood stock sizes of Clarias gariepinus (Burchell 1822) was investigated in indoor aquaria for five weeks. Net hapa was incorporated to facilitate the separation of hatch lings from unhatched eggs and shells. The use of incubating net hapa with kakabans inside did ...

  9. How to measure thermal effects of personal cooling systems : Human, thermal manikin and human simulator study

    NARCIS (Netherlands)

    Bogerd, N.; Psikuta, A.; Daanen, H.A.M.; Rossi, R.M.

    2010-01-01

    Thermal effects, such as cooling power and thermophysiological responses initiated upon application of a personal cooling system, can be assessed with (i) humans, (ii) a thermal manikin and (iii) a thermophysiological human simulator. In order to compare these methods, a cooling shirt (mild cooling)

  10. Effect of cooling procedure on final denture base adaptation.

    Science.gov (United States)

    Ganzarolli, S M; Rached, R N; Garcia, R C M R; Del Bel Cury, A A

    2002-08-01

    Well-fitted dentures prevent hyperplasic lesions, provide chewing efficiency and promote patient's comfort. Several factors may affect final adaptation of dentures, as the type of the acrylic resin, the flask cooling procedure and the water uptake. This investigation evaluated the effect of water storage and two different cooling procedures [bench cooling (BC) for 2 h; running water (RW) at 20 degrees C for 45 min] on the final adaptation of denture bases. A heat-cured acrylic resin (CL, Clássico, Clássico Artigos Odontológicos) and two microwave-cured acrylic resins [Acron MC, (AC) GC Dent. Ind. Corp.; Onda Cryl (OC), Clássico Artigos Odontológicos] were used to make the bases. Adaptation was assessed by measuring the weight of an intervening layer of silicone impression material between the base and the master die. Data was submitted to ANOVA and Tukey's test (0.05). The following means were found: (BC) CL=0.72 +/- 0.03 a; AC=0.70 +/- 0.03 b; OC=0.76 +/- 0.04 c//(RW) CL= 1.00 +/- 0.11 a; AC=1.00 +/- 0.12 a; OC=0.95 +/- 0.10 a. Different labels join groups that are not statistically different (P > 0.05). Comparisons are made among groups submitted to the same cooling procedure (BC or RW). The conclusions are: interaction of type of material and cooling procedure had a statistically significant effect on the final adaptation of the denture bases (P 0.05) on the final adaptation.

  11. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Reimann, J.; Sebening, H. [comps.; Barleon, L.; Bogusch, E.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Malang, S.; Meyder, R.; Norajitra, P.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary, Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated R and D-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required R and D-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.). [Deutsch] Ein selbstgekuehltes Fluessigmetall-Brutblanket fuer einen DEMO Fusionsreaktor und der Stand der Entwicklungsarbeiten, als Teil des Europaeischen Entwicklungsprogramms fuer ein DEMO-relevantes Testblanket fuer NET/ITER werden beschrieben. Band 1 (KfK 4907) enthaelt die Zusammenfassung und Band 2 (KfK 4708) den detaillierten Bericht. In den beiden Berichten werden bisher durchgefuehrte Untersuchungen fuer selbstgekuehlte Fluessigmetallbrutblankets beschrieben. Es werden der Referenzentwurf fuer das DEMO-Reaktorblanket und ein typischer Entwurf fuer ein Testblanket in NET/ITER mit den dazugehoerigen externen Kreislaeufen und einem Komponentenaufstellungsplan vorgestellt. Der augenblickliche Stand der Forschungs- und Entwicklungsarbeiten bezueglich: Neutronenrechnungen, Magnetohydrodynamik (MHD), Tritiumgewinnung, Bestaendigkeit im Fluessigmetall, Fluessigmetallreinigung sowie Sicherheit und Zuverlaessigkeit der Kreislaeufe wird aufgezeigt. Es wird ein

  12. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    Energy Technology Data Exchange (ETDEWEB)

    John, H.; Malang, S.; Sebening, H. [comps.; Barleon, L.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Meyder, R.; Norajitra, P.; Reiser, H.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E. [Kernforschungszentrum Karlsruhe GmbH (Germany). Projekt Kernfusion; Bogusch, E. [Interatom GmbH, Bergisch Gladbach (Germany)

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.). [Deutsch] Ein selbstgekuehltes Fluessigmetall-Brutblanket fuer einen DEMO Fusionsreaktor und der Stand der Entwicklungsarbeiten, als Teil des Europaeischen Entwicklungsprogramms fuer ein DEMO-relevantes Testblanket fuer NET/ITER werden beschrieben. Band 1 (KfK 4907) enthaelt die Zusammenfassung und Band 2 (KfK 4708) den detaillierten Bericht. In den beiden Berichten werden bisher durchgefuehrte Untersuchungen fuer selbstgekuehlte Fluessigmetallbrutblankets beschrieben. Es werden der Referenzentwurf fuer das DEMO-Reaktorblanket und ein typischer Entwurf fuer ein Testblanket in NET/ITER mit den dazugehoerigen externen Kreislaeufen und einem Komponentenaufstellungsplan vorgestellt. Der augenblickliche Stand der Forschungs- und Entwicklungsarbeiten bezueglich: Neutronenrechnungen, Magnetohydrodynamik (MHD), Tritiumgewinnung, Bestaendigkeit im Fluessigmetall, Fluessigmetallreinigung und Sicherheit und Zuverlaessigkeit der Kreislaeufe wird aufgezeigt. Es wird ein Ausblick

  13. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  14. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  15. Net Effects of Ecotourism on Threatened Species Survival.

    Directory of Open Access Journals (Sweden)

    Ralf C Buckley

    Full Text Available Many threatened species rely on ecotourism for conservation funding, but simultaneously suffer direct ecological impacts from ecotourism. For a range of IUCN-Redlisted terrestrial and marine bird and mammal species worldwide, we use population viability analyses to calculate the net effects of ecotourism on expected time to extinction, in the presence of other anthropogenic threats such as poaching, primary industries and habitat loss. Species for which these calculations are currently possible, for one or more subpopulations, include: orangutan, hoolock gibbon, golden lion tamarin, cheetah, African wild dog, New Zealand sealion, great green macaw, Egyptian vulture, and African penguin. For some but not all of these species, tourism can extend expected survival time, i.e., benefits outweigh impacts. Precise outcomes depend strongly on population parameters and starting sizes, predation, and ecotourism scale and mechanisms. Tourism does not currently overcome other major conservation threats associated with natural resource extractive industries. Similar calculations for other threatened species are currently limited by lack of basic population data.

  16. Net Effects of Ecotourism on Threatened Species Survival.

    Science.gov (United States)

    Buckley, Ralf C; Morrison, Clare; Castley, J Guy

    2016-01-01

    Many threatened species rely on ecotourism for conservation funding, but simultaneously suffer direct ecological impacts from ecotourism. For a range of IUCN-Redlisted terrestrial and marine bird and mammal species worldwide, we use population viability analyses to calculate the net effects of ecotourism on expected time to extinction, in the presence of other anthropogenic threats such as poaching, primary industries and habitat loss. Species for which these calculations are currently possible, for one or more subpopulations, include: orangutan, hoolock gibbon, golden lion tamarin, cheetah, African wild dog, New Zealand sealion, great green macaw, Egyptian vulture, and African penguin. For some but not all of these species, tourism can extend expected survival time, i.e., benefits outweigh impacts. Precise outcomes depend strongly on population parameters and starting sizes, predation, and ecotourism scale and mechanisms. Tourism does not currently overcome other major conservation threats associated with natural resource extractive industries. Similar calculations for other threatened species are currently limited by lack of basic population data.

  17. Not cool with cooling

    Science.gov (United States)

    Blain, Barry

    2010-09-01

    I confess that I may have missed the point of Roland Ennos's article "Urban cool" (August pp22-25), which describes methods of cooling cities by mitigating and reversing the effect of solar heating and includes an illustration of "evapotranspiration" in, of all places, Greater Manchester.

  18. Effect of hypersaline cooling canals on aquifer salinization

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-01-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  19. Repellent effect of alphacypermethrin-treated netting against Bemisia tabaci (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Martin, T; Kamal, A; Gogo, E; Saidi, M; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M

    2014-04-01

    For > 20 yr, Bemisia tabaci Gennadius persists as a begomovirus vector and is a serious problem in tomato production in many parts of the world. In tropical countries, the use of netting to protect horticultural crops has proven to be an effective and sustainable tool against Lepidoptera but not against small insects. This study evaluated the repellent effect of AgroNet 0.9T, a 0.9-mm pore diameter and 40-mesh size netting treated with alphacypermethrin insecticide against B. tabaci. This pyrethroid insecticide is known to have toxic and repellent effects against mosquitoes and has been used for treatment of mosquito nets. Two nontreated netting materials were used as control: AgroNet 0.9NT with 0.9-mm pore diameter and 40-mesh size and AgroNet 0.4NT with 0.4-mm pore diameter and 80-mesh size. The behavior of B. tabaci and its parasitoid Encarsia formosa Gahan as they progressed through the treated netting was studied in the laboratory in choice and no-choice tests. The development of wild B. tabaci population on tomato plants protected by the same nets was followed in two field trials implemented in Njoro, Kenya. Results obtained with the no-choice tests showed a significant reduction of movement on the treated net with 40-mesh (19%) compared with nontreated netting (35 and 46% with 80- and 40-mesh, respectively). The mortality of B. tabaci was significantly higher (two-fold) in the test tube containing only the treated netting compared with the nontreated one. The repellent effect of the treated netting was also demonstrated against E. formosa, but it did not have this toxic effect. Unlike for B. tabaci, the treated and nontreated nets appeared to have a similar repellent effect on E. formosa in the choice test, which suggests a learning behavior of the parasitoid. In both field tests, B. tabaci population was significantly lower on tomato protected by the treated net compared with the same nontreated net. However there was no significant difference in B. tabaci

  20. [Air bubble effect during alloy cooling in shielding blocks radiotherapy].

    Science.gov (United States)

    Ostinelli, A; Gelosa, S; Frigerio, M; Monti, A F

    1998-10-01

    Shaped fields are widely used in radiotherapy to protect critical organs and to avoid unnecessary normal tissue irradiation. The most common system for photon beam shaping consists in a low melting point alloy. We studied the air bubbles which can occur during alloy cooling with both new and remelted alloys and when different cooling techniques are chosen. Forty cone samples (18 of remelted alloy and 22 of new alloy) were prepared to evaluate the frequence of air bubble recurrence, with reproducible geometric sizes (height = 70 mm, major base surface diameter = 60 mm, minor base surface diameter = 40 mm). Air bubble sizes and dose inhomogeneity were evaluated by reproducing 60Co radiograph of each sample (two orthogonal projections: 6 x 7 cm). The samples were cooled at a constant temperature, following three different modalities: high (25 degrees C), medium (5 degrees C), low (-20 degrees C) temperature. Owing to the small geometrical magnification, air bubble sizes were determined by measuring their surface on samples lateral projections, taking into account the sight detectable bubble edges. Up to 300 mm2 lateral surface bubbles are always present in all castings. Casting inhomogeneities can produce a film-density inhomogeneity ranging from 9% to 40%. The spatial distribution of bubbles seems to be random. Bubble recurrence is independent of both the metal alloy (repeatedly used castings) and the different block cooling modalities. The effect of air bubbles on the shielded areas dose inhomogeneity is generally of no relevant importance. However, these inhomogeneities can produce hot spots which must be taken into accurate consideration only in the particular treatments where critical small size organ dose sparing represents a basic issue (i.e. the shielding of eye lens).

  1. Film Cooling Effectiveness from Single and Two Inlined/ Staggered Rows of Novel Semicircular Cooling Holes

    Directory of Open Access Journals (Sweden)

    Fayyaz Hussain Asghar

    2012-04-01

    Full Text Available Computational analysis of film cooling effectiveness using novel semicircular hole shapes with streamwise inclination of 30o has been carried out. Pitch to diameter ratios of 3.0 has been investigated. Reynolds Averaged Navier-Stoke equation solver FLUENT with standard k- turbulence model is used for simulations. Coolant to mainstream blowing ratios is varied from 1.33-2.0. It is observed that for the streamwise region x/D<20 the centerline and laterally averaged effectiveness values from a row of semicircular holes are higher than that from a row of circular holes due to the less jet lift-off of coolant jet. For a row of semicircular holes, mean coolant jet heights are lower than that from a row of circular holes. Simulations for two rows of inlined and staggered semicircular holes are also carried out and the results are compared with single row of full circular holes. It is found that centerline and laterally averaged effectiveness values from 2 rows of semicircular holes are much higher than a single row of full circular hole case at all streamwise regions at all blowing ratios tested. Among all the cases studied, effectiveness values from two staggered rows of semicircular holes are found to be highest. Jet lift-off is found minimum from two staggered row of semicircular holes. For all cases studied, the mean coolant jet heights from two staggered rows of semicircular holes are found minimum. Results for counter rotating vortex pairs from all cases at plane normal to mainstream

  2. Effectiveness of insecticide-treated and untreated nets to prevent malaria in India.

    Science.gov (United States)

    Van Remoortel, Hans; De Buck, Emmy; Singhal, Maneesh; Vandekerckhove, Philippe; Agarwal, Satya P

    2015-08-01

    India is the most malaria-endemic country in South-East Asia, resulting in a high socio-economic burden. Insecticide-treated or untreated nets are effective interventions to prevent malaria. As part of an Indian first-aid guideline project, we aimed to investigate the magnitude of this effect in India. We searched MEDLINE, Embase and Central to systematically review Indian studies on the effectiveness of treated or untreated vs. no nets. Parasite prevalence and annual parasite incidence served as malaria outcomes. The overall effect was investigated by performing meta-analyses and calculating the pooled risk ratios (RR) and incidence rate ratios. Of 479 articles, we finally retained 16 Indian studies. Untreated nets decreased the risk of parasite prevalence compared to no nets [RR 0.69 (95% CI; 0.55, 0.87) in high-endemic areas, RR 0.49 (95% CI; 0.28, 0.84) in low-endemic areas], as was the case but more pronounced for treated nets [RR 0.35 (95% CI; 0.26, 0.47) in high-endemic areas, risk ratio 0.16 (95% CI; 0.06, 0.44) in low-endemic areas]. Incidence rate ratios showed a similar observation: a significantly reduced rate of parasites in the blood for untreated nets vs. no nets, which was more pronounced in low-endemic areas and for those who used treated nets. The average effect of treated nets (vs. no nets) on parasite prevalence was higher in Indian studies (RR 0.16-0.35) than in non-Indian studies (data derived from a Cochrane systematic review; RR 0.58-0.87). Both treated and untreated nets have a clear protective effect against malaria in the Indian context. This effect is more pronounced there than in other countries. © 2015 John Wiley & Sons Ltd.

  3. Effect of Half Time Cooling on Thermoregulatory Responses and Soccer-Specific Performance Tests

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-03-01

    Full Text Available This study examined two active coolings (forearm and hand cooling, and neck cooling during a simulated half-time recovery on thermoregulatory responses and subsequent soccer-specific exercise performance. Following a 45-min treadmill run in the heat, participants (N=7 undertook 15-min recovery with either passive cooling, forearm and hand cooling, or neck cooling in a simulated cooled locker room environment. After the recovery, participants performed a 6×15-m sprint test and Yo-Yo Intermittent Recovery Level 1 test (YYIR1 in a temperate environment. During the 15-min recovery, rectal temperature fell significantly (p<0.05. Neither active coolings induced further reduction in rectal temperature compared to passive cooling. No effect of active coolings was found in repeated sprint test. However, neck cooling reduced (p<0.05 the thermal sensation (TS compared to passive cooling during the 15-min recovery. Active coolings attenuated (p<0.05 the sweat rate compared to passive cooling: 1.2±0.3 l•h-1 vs. 0.8±0.1 l•h-1 vs. 0.8±0.3 l•h-1, for passive cooling, forearm and hand cooling, and neck cooling, respectively. For passive cooling, elevated sweat rate resulted in higher (p<0.05 dehydration (2.1±0.3% compared to neck cooling (1.5±0.3% and forearm and hand cooling (1.4±0.3%. YYIR1 was improved (p<0.05 following forearm and hand cooling (869±320 m and neck cooling (814±328 m compared to passive cooling (654±311 m. Neck cooling (4.6±0.6 reduced (p=0.03 the session TS compared to passive cooling (5.3±0.5. These results suggest that active coolings effectively improved comfort and sweating response, which delayed exercise-heat induced performance diminish during a second bout of exercise.

  4. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  5. Effects of climate change and shifts in forest composition on forest net primary production

    Science.gov (United States)

    Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown

    2008-01-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...

  6. Effects of Net Blotch ( Pyrenophora teres ) on Malt Barley Yield and ...

    African Journals Online (AJOL)

    Barley (Hordeum vulgare L.) production is constrained by diseases such as net blotch caused by Pyrenophora teres Drechsl. The objectives of this study were to assess the effects of net blotch disease on malt barley yield and grain quality under natural infection. Four malt barley varieties (Beka, HB 120, HB 52 and Holker), ...

  7. Effect of insecticide treated nets fence in protect- ing cattle against ...

    African Journals Online (AJOL)

    A field trial was carried out to assess the effect of insecticide treated net in pro- tecting cattle from tsetse and other flies. A total of 35 pens were constructed, out of which 30 of them were fenced with insecticide treated net which served as treatment group and the remaining 5 pens were untreated controls. The fly populations ...

  8. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting

    Science.gov (United States)

    Tang, Hao; Hu, Fuxiang; Xu, Liuxiong; Dong, Shuchuang; Zhou, Cheng; Wang, Xuefang

    2017-10-01

    Knotless polyethylene (PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0° (parallel to flow) to 90° (perpendicular to flow) and current speeds from 40 cm s-1 to 130 cm s-1. It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50° and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.

  9. Field issues related to effectiveness of insecticide-treated nets in Tanzania.

    Science.gov (United States)

    Erlanger, T E; Enayati, A A; Hemingway, J; Mshinda, H; Tami, A; Lengeler, C

    2004-06-01

    Insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides have become one of the most promising interventions to prevent malaria in highly endemic areas. Despite the large body of experience documenting their health impact and the best way to distribute them, some key practical issues remain unresolved. For example, the duration of effective life of a net under field conditions is unknown. The most important factor affecting net effectiveness is the issue of regular re-treatment with insecticide. Washing is also an important determinant of insecticide longevity in the field. Trials were undertaken to provide some essential field information on ITNs within the site of an extended ITN programme in the Morogoro region of Tanzania. It was found that 45% of all nets were in bad condition (defined as more than seven large holes). It is concluded that an effective 'life' for polyester nets is 2-3 years. Further, two-thirds of the 20% of nets that were reported as having been re-treated within the last 12 months had less than 5 mg/m(2) of insecticide. According to the World Health Organization this is insufficient to be effective. People reported that they washed their nets four to seven times per year, usually with soap. Observations showed that such washing does not harm the nets and that the wash-water was unlikely to have an impact on the environment. Finally, bioassays were carried out with Anopheles gambiae on polyester netting with 0.5, 2, 5, 10 and 30 mg/m(2) of deltamethrin, alphacypermethrin and lambdacyhalothrin to assess the effectiveness of pyrethroids. The results confirmed that even with low insecticide concentrations, nets can still provide partial protection.

  10. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  11. The effect of cool water ingestion on gastrointestinal pill temperature.

    Science.gov (United States)

    Wilkinson, David M; Carter, James M; Richmond, Victoria L; Blacker, Sam D; Rayson, Mark P

    2008-03-01

    Telemetric gastrointestinal (GI) temperature pills are now commonly used to measure core body temperature and could minimize the risk of heat illness while maximizing operational effectiveness in workers subject to high levels of thermal strain. To quantify the effect of repeated cool water ingestion on the accuracy of GI pill temperature. Ten operational firefighters ingested a pill to measure GI temperature (T1int) before overnight sleep. Two hours following breakfast and 11.5 h after ingesting T1int, the firefighters ingested a second pill (T2int) before performing 8.5 h of intermittent activity (repetitive cycles of 30 min of seated rest followed by 30 min of general firefighter duties). During the first 2 min of each 30-min rest period, the firefighters consumed 250 mL of chilled water (5-8 degrees C). Water ingestion had a highly variable effect both within and between subjects in transiently (32 +/- 10 min) reducing the temperature of T2int in comparison with T1int. In general, this transient reduction in T2int became progressively smaller as time following ingestion increased. In some firefighters, the difference between T1int and T2int became negligible (+/- 0.1 degrees C) after 3 h, whereas in two others, large differences (peaking at 2.0 degrees C and 6.3 degrees C) were still observed when water was consumed 8 h after pill ingestion. These results show that a GI pill ingested immediately prior to physical activity cannot be used to measure core body temperature accurately in all individuals during the following 8 h when cool fluids are regularly ingested. This makes GI temperature measurement unsuitable for workers who respond to emergency deployments when regular fluid consumption is recommended operational practice.

  12. Effects of geometry on slot-jet film cooling performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyams, D.G.; McGovern, K.T.; Leylek, J.H. [Clemson Univ., SC (United States)

    1995-10-01

    The physics of the film cooling process for shaped, inclined slot-jets with realistic slot-length-to-width ratios (L/s) is studied for a range of blowing ratio (M) and density ratio (DR) parameters typical of gas turbine operations. For the first time in the open literature, the effect of inlet and exit shaping of the slot-jet on both flow and thermal field characteristics is isolated, and the dominant mechanisms responsible for differences in these characteristics are documented. A previously documented computational methodology was applied for the study of four distinct configurations: (1) slot with straight edges and sharp corners (reference case); (2) slot with shaped inlet region; (3) slot with shaped exit region; and (4) slot with both shaped inlet and exit regions. Detailed field results as well as surface phenomena involving adiabatic film effectiveness ({eta}) and heat transfer coefficient (h) are presented. It is demonstrated that both {eta} and h results are vital in the proper assessment of film cooling performance. All simulations were carried out using a multi-block, unstructured/adaptive grid, fully explicit, time-marching solver with multi-grid, local time stepping, and residual smoothing type acceleration techniques. Special attention was paid to and full documentation provided for: (1) proper modeling of the physical phenomena; (2) exact geometry and high quality grid generation techniques; (3) discretization schemes; and (4) turbulence modeling issues. The key parameters M and DR were varied from 1.0 to 2.0 and 1.5 to 2.0, respectively, to show their influence. Simulations were repeated for slot length-to-width ratio (L/s) of 3.0 and 4.5 in order to explain the effects of this important parameter. Additionally, the performance of two popular turbulence models, standard k-F, and RNG k-E, were studied to establish their ability to handle highly elliptic jet/crossflow interaction type processes.

  13. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...

  14. Effect of body cooling on subsequent aerobic and anaerobic exercise performance: a systematic review.

    Science.gov (United States)

    Ranalli, Gregory F; Demartini, Julianne K; Casa, Douglas J; McDermott, Brendon P; Armstrong, Lawrence E; Maresh, Carl M

    2010-12-01

    Body cooling has become common in athletics, with numerous studies looking at different cooling modalities and different types of exercise. A search of the literature revealed 14 studies that measured performance following cooling intervention and had acceptable protocols for exercise and performance measures. These studies were objectively analyzed with the Physiotherapy Evidence Database (PEDro) scale, and 13 of the studies were included in this review. These studies revealed that body cooling by various modalities had consistent and greater impact on aerobic exercise performance (mean increase in performance = 4.25%) compared to anaerobic (mean increase in performance = 0.66%). Different cooling modalities, and cooling during different points during an exercise protocol, had extremely varied results. In conclusion, body cooling seems to have a positive effect on aerobic performance, although the impact on anaerobic performance may vary and often does not provide the same positive effect.

  15. The appearance of erythrocyte membrane elevations Effects of cooling rates

    NARCIS (Netherlands)

    Goekoop, J.G.; Spies, F.; Wisse, D.M.; Vries, E. de; Verkleij, A.J.; Kempen, G.M.J. van

    Low cooling rates during the freezing procedure of normal human blood reveals red cell membrane elevations in freeze-etch electron microscopy. When high cooling rate is applied, these morphological changes are present, if the blood samples are quenched from 5 °C. The number of elevations is

  16. EFFECTS OF ANKLE JOINT COOLING ON PERONEAL SHORT LATENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    J. Ty Hopkins

    2006-06-01

    Full Text Available While cryotherapy has direct physiological effects on contractile tissues, the extent to which joint cooling affects the neuromuscular system is not well understood. The purpose of the study was to detect changes in ankle dynamic restraint (peroneal short latency response and muscle activity amplitude during inversion perturbation following ankle joint cryotherapy. A 2x3 factorial design was used to compare reaction time and EMG amplitude data of treatment conditions (cryotherapy and control across time (pre-treatment, post-treatment, and 30 min post-treatment. Thirteen healthy volunteers (age 23 ± 4 yrs, ht 1.76 ± 0.09 m, mass 78.8 ± 16.6 kg, with no history of lower extremity joint injury participated in this study. Surface EMG was collected from the peroneus longus (PL of the dominant leg during an ankle inversion perturbation triggered while walking. Subjects walked the length of a 6.1 m runway 30 times. A trap door mechanism, inducing inversion perturbation, was released at heel contact during six randomly selected trials for each leg. Following baseline measurements, a 1.5 L bag of crushed ice was applied to the lateral ankle of subjects in the treatment group with an elastic wrap. A bag similar in weight and consistency was applied to the lateral ankle of subjects in the control group. A repeated measures ANOVA was used to compare treatment conditions across time (p 0.05 for PL reaction time. Average RMS EMG, normalized to an isometric reference position, increased in the cryotherapy group at the 30 min post-treatment interval relative to the control group (p < 0.05. Joint cooling does not result in deficiencies in reaction time or immediate muscle activation following inversion perturbation compared to a control

  17. Negative magnetization and zero-field cooled exchange bias effect in Eu0.9Pr0.1CrO3 ceramics

    Science.gov (United States)

    Huang, Ping; Deng, Dongmei; Zheng, Jiashun; Li, Qing; Feng, Zhenjie; Kang, Baojuan; Ren, Wei; Jing, Chao; Zhang, Jincang; Cao, Shixun

    2018-02-01

    Interesting magnetic behaviors, including negative magnetization, zero field fooled and field cooled exchange bias effects, have been observed in Eu0.9Pr0.1CrO3. The negative magnetization at low temperature results from the antiparallel coupling between the Pr3+ moment and the canted moment of Cr3+ sublattice. Left shift of zero field cooled M-H loops, and right shift of field cooled M-H loops have been observed, due to the growth and competition of two types of magnetic structures with GxFz (EuCrO3) and GzFx (PrCrO3) orderings under magnetic field. When the cooling field is high enough, the Pr3+ moment is frozen antiparallel with the applied field during the cooling process, giving rise to a positive exchange bias (right shift of M-H). However, when the cooling field is near zero, magnetic clusters with GxFz (EuCrO3) or GzFx (PrCrO3) orderings are formed and distribute randomly during the cooling process, and the net Pr3+ moment get aligned along the applied field during the initial magnetization process to lower the Zeeman energy, and then negative exchange bias (left shift of M-H) appears.

  18. Menthol concentration in topical cold gel does not have significant effect on skin cooling.

    Science.gov (United States)

    Lasanen, R; Julkunen, P; Airaksinen, O; Töyräs, J

    2016-02-01

    Topical menthol gels are used in the treatment of various pain conditions. However, the effect of the menthol concentration to skin cooling or cooling sensation is not clear. We hypothesized that increasing menthol concentration enhances skin cooling and causes elevated cooling sensation. Ten healthy male volunteers (age range 25-30 years) were recruited for this study. Application of three gels with different menthol concentrations (0.5%, 4.6% and 10.0%) was tested in random sequence on the left thigh of the subjects. Skin cooling was recorded with a digital infrared camera (FLIR Systems Inc., USA), and cooling sensation was measured with the visual analogue scale rating. All gels decreased skin temperature significantly (P menthol concentration seemed not to have a significant effect on skin cooling. Subjects experienced that gel with 4.6% menthol concentration caused significantly stronger cooling effect than 0.5% and 10.0% gels. Gel application had no significant effect on skin temperature in surrounding skin areas. In contrast to our hypothesis, menthol concentration was not connected to skin cooling, while moderate menthol concentration of 4.6% may induce stronger cooling sensation compared to low (0.5%) or high (10.0%) concentration gels. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The effect of net foreign assets on saving rate

    Directory of Open Access Journals (Sweden)

    Ben David Nissim

    2014-01-01

    Full Text Available Observing empirical data we find that many countries try to delay the decision of increasing saving rate in order to avoid a decrease of the living standards. However the delay leads a deterioration of countries financial stability. We present a simple theoretical model that connects between countries' saving rate and their net foreign assets. Using cross section data set of 135 countries in 2010 we estimated the econometric relation between saving rate in 2010 as dependent variable and two explanatory variables: the current account in 2010 and the aggregated current account during 1980-2010. Our findings show that industrial countries in a bad financial state tend to decrease their saving rate as external debt is larger causing to deterioration in external debt while countries with good financial state tend to increase their saving rate and the tendency increase as financial state becomes better. Only in countries with a very large external debt saving rate tends to grow. The results point that gross foreign debt will keep increasing and will worsen world financial state causing increased risk of getting into a world crisis.

  20. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    DEFF Research Database (Denmark)

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...

  1. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  2. Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect

    Directory of Open Access Journals (Sweden)

    Xinjun Wang

    2018-02-01

    Full Text Available The Land Surface Temperature (LST of a park is lower than the surrounding environment, and thus the parkland forms a Park Cool Island (PCI. However, more case studies are needed to reveal the relationship between park composition, vegetation characteristic and PCI development. The LST and Land Use/Land Cover (LULC of 18 different sized parks in Changzhou, China were obtained from Landsat-8 and Mapworld Changzhou data. Then, a sample investigation method was used to calculate vegetation characteristics of these parks by an i-Tree Eco model. In order to reduce the impact from the external environment on PCI, the Temperature Drop Amplitude (TDA and Temperature Drop Range (TR inside the parks were analyzed by ArcGIS 9.3. Impact factors were tested by Pearson correlation analysis and curve fit to reveal the relationship between these factors and PCI formation. The result shows that a park area threshold of 1.34 to 17 hectares provides the best PCI effect, that park shape (perimeter/area, Leaf Area Index (LAI, density, tree cover, water cover, and impervious surface cover have significant correlation with PCI development, vegetation health and global climate change affect the PCI development. Advice is proposed to improve and maintain PCI effects.

  3. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  4. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    B eutectic prepared under various cooling rates had been investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was observed that for ...

  5. Cost-Effective Integration of Efficient Low-Lift Base Load Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Armstrong, Peter R.

    2008-01-14

    The long-term goal of DOE’s Commercial Buildings Integration subprogram is to develop cost-effective technologies and building practices that will enable the design and construction of net Zero Energy Buildings — commercial buildings that produce as much energy as they use on an annual basis — by 2025. To support this long-term goal, DOE further called for — as part of its FY07 Statement of Needs — the development by 2010 of “five cost-effective design technology option sets using highly efficient component technologies, integrated controls, improved construction practices, streamlined commissioning, maintenance and operating procedures that will make new and existing commercial buildings durable, healthy and safe for occupants.” In response, PNNL proposed and DOE funded a scoping study investigation of one such technology option set, low-lift cooling, that offers potentially exemplary HVAC energy performance relative to ASHRAE Standard 90.1-2004. The primary purpose of the scoping study was to estimate the national technical energy savings potential of this TOS.

  6. Cost-effectiveness analysis of scalp cooling to reduce chemotherapy-induced alopecia

    NARCIS (Netherlands)

    van den Hurk, C.J.; van den Akker-van Marle, E.M.; Breed, W.P.M.; van de Poll-Franse, L.V.; Nortier, J.; Coebergh, J.W.W.

    2014-01-01

    Background. Alopecia is a frequently occurring side effect of chemotherapy that often can be prevented by cooling the scalp during the infusion. This study compared effects and costs of scalp cooling with usual general oncological care, i.e. purchasing a wig or head cover. Material and methods.

  7. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2002-01-01

    concentration. The experiment was conducted during 70 days during the autumn. Our system could not detect any ozone effects on dark respiration, but eventually effects on dark respiration could be masked in signal noise. An inhibition of daily net photosynthesis in ozone treated shoots was apparent......, and it is was found that a mean increase in ozone concentration of 10 nl l(-1) reduced net photosynthesis with 7.4 %. This effect should be related to a pre-exposure during the season of AOT40 12.5 mul l(-1) h....

  8. Effects of gill-net trauma, barotrauma, and deep release on postrelease mortality of Lake Trout

    Science.gov (United States)

    Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.

    2015-01-01

    Unaccounted postrelease mortality violates assumptions of many fisheries studies, thereby biasing parameter estimates and reducing efficiency. We evaluated effects of gill-net trauma, barotrauma, and deep-release treatment on postrelease mortality of lake trout Salvelinus namaycush. Lake trout were captured at depths up to 65 m with gill nets in Priest Lake, Idaho, and held in a large enclosure for 10–12 d. Postrelease mortality was the same for surface-release–and deep-release–treated fish (41%). Mixed-effects logistic regression models were used to evaluate effects of intrinsic and environmental factors on the probability of mortality. Presence of gill-net trauma and degree of barotrauma were associated with increased probability of postrelease mortality. Smaller fish were also more likely to suffer postrelease mortality. On average, deep-release treatment did not reduce postrelease mortality, but effectiveness of treatment increased with fish length. Of the environmental factors evaluated, only elapsed time between lifting the first and last anchors of a gill-net gang (i.e., lift time) was significantly related to postrelease mortality. Longer lift times, which may allow ascending lake trout to acclimate to depressurization, were associated with lower postrelease mortality rates. Our study suggests that postrelease mortality may be higher than previously assumed for lake trout because mortality continues after 48 h. In future studies, postrelease mortality could be reduced by increasing gill-net lift times and increasing mesh size used to increase length of fish captured.

  9. Entomological determinants of insecticide-treated bed net effectiveness in Western Myanmar

    NARCIS (Netherlands)

    Smithuis, Frank M.; Kyaw, Moe Kyaw; Phe, U. Ohn; van der Broek, Ingrid; Katterman, Nina; Rogers, Colin; Almeida, Patrick; Kager, Piet A.; Stepniewska, Kasia; Lubell, Yoel; Simpson, Julie A.; White, Nicholas J.

    2013-01-01

    In a large cluster randomized control trial of insecticide-treated bed nets (ITN) in Western Myanmar the malaria protective effect of ITN was found to be highly variable and, in aggregate, the effect was not statistically significant. A coincident entomological investigation measured malaria vector

  10. 47 CFR 32.7910 - Income effect of jurisdictional ratemaking differences-net.

    Science.gov (United States)

    2010-10-01

    ... Other Income Accounts § 32.7910 Income effect of jurisdictional ratemaking differences—net. This account shall include the impact on revenues and expenses of the jurisdictional ratemaking practices which vary... 47 Telecommunication 2 2010-10-01 2010-10-01 false Income effect of jurisdictional ratemaking...

  11. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    Directory of Open Access Journals (Sweden)

    Karen M. Tobias

    2016-11-01

    Full Text Available Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia. Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature, while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice

  12. Effect of floor cooling on farrowing sow and litter performance: Field experiment under Dutch conditions

    NARCIS (Netherlands)

    Wagenberg, van A.V.; Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Claessen, P.J.P.W.

    2006-01-01

    Lactating sows generally have problems dissipating their body heat to the environment. Cooling the floor under the sow¿s shoulder, called the cool-sow system, is a method to increase body heat removal by conduction, thereby contributing to the thermal comfort of the sow. In this study, the effect of

  13. The effect of icepack cooling on skin and muscle tempera- ture at ...

    African Journals Online (AJOL)

    duration of exercise, the athlete's muscle temperature, core temperature and cardiac output, will have increased.8,16. These haemodynamic and temperature changes may affect temperature flux under a cooling pack. The aim of this study was to investigate the effect of an icepack on muscle cooling following acute exercise ...

  14. The effect of icepack cooling on skin and muscle temperature at rest ...

    African Journals Online (AJOL)

    The effect of icepack cooling on skin and muscle temperature at rest and after exercise. M Mars, B Hadebe, M Tufts. Abstract. Objective. To compare cooling of skin, subcutaneous fat and muscle, produced by an icepack, at rest and after short-duration exhaustive exercise. Methods. Eight male subjects were studied. With the ...

  15. Effect of cooling on sperm motility before and after frozen-thawed ...

    African Journals Online (AJOL)

    The aim of this study was to assess the effect of cooling on sperm motility before and after frozen-thawed stallion semen. Fifteen ejaculates of three stallions were collected with artificial vagina. The progressive motility was determined under microscope immediately after collection, cooling (5°C for 0, 2, 7 or 24 h) before ...

  16. Effect of floor cooling on late lactation sows under acute heat stress

    Science.gov (United States)

    The objective was to evaluate the effects of floor cooling on late lactation sows under severe summer heat stress. Ten multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipes. Treatments were randomly allotted to sows to...

  17. Effects of floor cooling on late lactation sows under severe acute heat stress

    Science.gov (United States)

    The objective was to evaluate the effects of floor cooling on late lactation sows under severe summer heat stress. Ten multiparous sows were provided with a cooling pad built with an aluminum plate surface, high-density polyethylene base and copper pipes. Treatments were randomly allotted to sows to...

  18. Effect of endwall cooling on secondary flows in turbine stator vanes

    Science.gov (United States)

    Goldman, L. J.; Mclallin, K. L.

    1977-01-01

    An experimental investigation was performed to determine the effect of endwall cooling on the secondary flow behavior and the aerodynamic performance of a core-turbine stator vane. The investigation was conducted in a cold-air, full-annular cascade, where three-dimensional effects could be obtained. In one configuration, the cooling holes were oriented so that the coolant was injected in line with the inviscid streamline direction. In another configuration, the coolant was injected at an angle of 15 deg to the inviscid streamline direction and oriented toward the vane pressure surface. Total-pressure surveys were taken downstream of the stator vanes over a range of cooling flows. Changes in the total-pressure contours downstream of the vanes were used to obtain the effect of endwall cooling on the secondary flows in the stator. Comparisons are made between the two cooled-endwall configurations and with the results obtained previously for solid (uncooled) endwalls.

  19. Carbon savings resulting from the cooling effect of green areas: a case study in Beijing.

    Science.gov (United States)

    Lin, Wenqi; Wu, Tinghai; Zhang, Chengguo; Yu, Ting

    2011-01-01

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mesh Grid of SILVACO TCAD Effect on Net Doping Profile for NMOS Structures

    Science.gov (United States)

    Redzuan, M.; Ayub, B.; Shahrir, M.; Suziana, O.; Yunus, M.; Abdullah, M. H.; Noor, U. M.; Rusop, M.

    2009-06-01

    Process of developing the NMOS structure is performed in 2D SILVACO Athena and Atlas Simulation. The NMOS fabrication process steps were chosen from reference [4]. Mesh grid effect on net doping profile was obtained by varying the grid. Variation of grid was determined through observation between fine mesh and loosen mesh in y-axis. Simulation results show that mesh grid affects the doping concentration inside the substrate. Doping concentration will affect junction depth formation where the net doping of phosphorus shows a different concentration at the surface of substrate. Changes of junction depth formation will then gave an effect to the value of threshold voltage. Observation using sheet resistance of Athena tool shows that having high density mesh in y-axis will results in increases in net doping in polysilicon and highly doped region but reduced the concentration in the lightly doped region.

  1. Effect of cooling on Clostridium perfringens in pea soup

    NARCIS (Netherlands)

    Jong, de A.E.I.; Rombouts, F.M.; Beumer, R.R.

    2004-01-01

    Foods associated with Clostridium perfringens outbreaks are usually abused after cooking. Because of their short generation times, C. perfringens spores and cells can grow out to high levels during improper cooling. Therefore, the potential of C. perfringens to multiply in Dutch pea soup during

  2. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    Science.gov (United States)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  3. Effect of Triangular Fins on Critical Heat Flux in Ethanol-cooled Combustion Chamber

    Science.gov (United States)

    Takegoshi, Masao; Suzuki, Ryosuke; Saito, Toshihito; Ono, Fumiei; Hiraiwa, Tetsuo; Tomioka, Sadatake

    A pressure-fed engine with a regeneratively-cooled combustion chamber is studied in JAXA. Operation chamber pressure is approximately 1 MPa. A proposed propellant combination is liquid oxygen and ethanol. However, it is necessary to understand the critical heat flux when ethanol is used as a coolant for regeneratively-cooled combustion chamber because the saturation pressure of it is 6.3 MPa. In general, it is known that the cooling wall with fins improves the cooling performance. In this study, the effect of triangular fins on critical heat flux of ethanol in ethanol-cooled combustion chamber was investigated. As the result, it was found that the critical heat flux of cooling wall with triangular fins was 23 % higher than that of that without fin in the same velocity condition of the coolant. The critical heat flux increases by the triangular fins on the cooling surface due to the effect of the combination cooling with film boiling and nucleate boiling.

  4. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  5. Assessing marginal, threshold and net effects of financial globalisation on financial development in Africa

    OpenAIRE

    Asongu, Simplice

    2017-01-01

    The present inquiry contributes to extant literature by simultaneously accounting for variations in financial development and financial globalisation in the assessment of hypothetical initial financial development conditions for the rewards of financial globalisation. For this purpose, we examine marginal, threshold and net effects of financial globalisation on financial development throughout the conditional distributions of financial development. The empirical evidence is based on contempor...

  6. Numerical simulation of secondary vortex chamber effect on the cooling capacity enhancement of vortex tube

    Science.gov (United States)

    Pourmahmoud, Nader; Azar, Farid Sepehrian; Hassanzadeh, Amir

    2014-09-01

    A vortex tube with additional chamber is investigated by computational fluid mechanics techniques to realize the effects of additional chamber in Ranque-Hilsch vortex tube and to understand optimal length for placing the second chamber in order to have maximum cooling effect. Results show that by increasing the distance between two chambers, both minimum cold and maximum hot temperatures increase and maximum cooling effect occurs at Z/ L = 0.047 (dimensionless distance).

  7. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  8. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...... the nugget region of uncooled welds. Originality/value - There has been no previous work to investigate the effect of cryogenic CO2 cooling on the corrosion behaviour of FSW AA7010-T7651. The paper relates the microstructures of both uncooled and cooled welds to their anodic and cathodic reactivities using...

  9. Melting and crystallization of poly(3-hydroxybutyrate: effect of heating/cooling rates on phase transformation

    Directory of Open Access Journals (Sweden)

    Renate Maria Ramos Wellen

    2015-06-01

    Full Text Available AbstractWe studied the crystallization and melting phenomena of poly (3- hydroxybutyrate (PHB, a biodegradable and biocompatible semi-crystalline thermoplastic, obtained from renewable resources. Its high crystallinity motivated several studies on crystallization and melting behavior, and also on ways to increase the amorphous polymer fraction. The effect of heating and cooling rates on the crystallization and melting of commercial PHB was investigated by differential scanning calorimetry. Several rates, ranging from 2.5 to 20 °C min–1, were used to study the phase changes during heating/cooling/reheating cycles. The results showed that PHB partially crystallizes from the melt during the cooling cycle and partially cold crystallizes on reheating, and that the relative amount of polymer crystallizing in each stage strongly depends on the cooling rate. The melt and cold crystallization temperatures, as well as the rates of phase change, depend strongly on the cooling and heating rates.

  10. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  11. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Science.gov (United States)

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  13. A comparative analysis to quantify the biogeochemical and biogeophysical cooling effects on climate of a white mustard cover crop

    Science.gov (United States)

    Ferlicoq, Morgan; Ceschia, Eric; Brut, Aurore; Tallec, Tiphaine; Carrer, Dominique; Pique, Gaetan; Ferroni, Nicole

    2017-04-01

    During the COP21, agriculture was recognised as a strategic sector and an opportunity to strengthen climate mitigation. In particular, the "4 per 1000" initiative relies upon solutions that refer to agro-ecology, conservation agriculture, … that could lead to increase carbon storage. Among those agro-ecology practices, including cover crops during fallow periods is considered as a fundamental agronomic lever for storing carbon. However, if biogeochemical benefits of cover-crops (CC) have already been addressed, their biogeophysical effects on climate have never been quantified and compared to biogeochemical effects. This comparative study (CC vs. bare soil), quantified and compared biogeochemical (including carbon storage) and biophysical effects (albedo and energy partitioning effect) of CC on climate. An experimental campaign was performed in 2013 in Southwest France, during the fallow period following a winter-wheat crop (and before a maize). The experimental plot was divided in two: the northern part was maintained in bare soil (BS) while white-mustard (WM) was grown during 3-months on the southern part. On each subplot, continuous measurements of CO2, latent and sensible fluxes (by eddy covariance) and solar radiation were acquired. Also, N2O emissions were measured by means of automatic chambers on each subplots. Moreover, by using a Life-Cycle-Analysis approach, each component of the greenhouse gas budget (GHGB) was quantified for each subplot, including emissions associated to field operations (FO). To quantify the albedo induced radiative forcing (RFα) caused by the white-mustard, the bare soil subplot was used as a reference state (IPCC, 2007). Finally, the net radiative forcing for each subplot was calculated as the sum of biogeochemical and biogeophysical (albedo effect) radiative forcing. The white-mustard allowed a net CO2 fixation of 63 g C-eq.m-2, corresponding to 20% of the net annual CO2 flux that year (-332 g C-eq.m-2). Through the WM seeds

  14. System effectiveness of a targeted free mass distribution of long lasting insecticidal nets in Zanzibar, Tanzania

    Directory of Open Access Journals (Sweden)

    Abass Ali K

    2010-06-01

    Full Text Available Abstract Background Insecticide-treated nets (ITN and long-lasting insecticidal treated nets (LLIN are important means of malaria prevention. Although there is consensus regarding their importance, there is uncertainty as to which delivery strategies are optimal for dispensing these life saving interventions. A targeted mass distribution of free LLINs to children under five and pregnant women was implemented in Zanzibar between August 2005 and January 2006. The outcomes of this distribution among children under five were evaluated, four to nine months after implementation. Methods Two cross-sectional surveys were conducted in May 2006 in two districts of Zanzibar: Micheweni (MI on Pemba Island and North A (NA on Unguja Island. Household interviews were conducted with 509 caretakers of under-five children, who were surveyed for socio-economic status, the net distribution process, perceptions and use of bed nets. Each step in the distribution process was assessed in all children one to five years of age for unconditional and conditional proportion of success. System effectiveness (the accumulated proportion of success and equity effectiveness were calculated, and predictors for LLIN use were identified. Results The overall proportion of children under five sleeping under any type of treated net was 83.7% (318/380 in MI and 91.8% (357/389 in NA. The LLIN usage was 56.8% (216/380 in MI and 86.9% (338/389 in NA. Overall system effectiveness was 49% in MI and 87% in NA, and equity was found in the distribution scale-up in NA. In both districts, the predicting factor of a child sleeping under an LLIN was caretakers thinking that LLINs are better than conventional nets (OR = 2.8, p = 0.005 in MI and 2.5, p = 0.041 in NA, in addition to receiving an LLIN (OR = 4.9, p Conclusions Targeted free mass distribution of LLINs can result in high and equitable bed net coverage among children under five. However, in order to sustain high effective coverage, there

  15. System effectiveness of a targeted free mass distribution of long lasting insecticidal nets in Zanzibar, Tanzania.

    Science.gov (United States)

    Beer, Netta; Ali, Abdullah S; de Savigny, Don; Al-Mafazy, Abdul-Wahiyd H; Ramsan, Mahdi; Abass, Ali K; Omari, Rahila S; Björkman, Anders; Källander, Karin

    2010-06-18

    Insecticide-treated nets (ITN) and long-lasting insecticidal treated nets (LLIN) are important means of malaria prevention. Although there is consensus regarding their importance, there is uncertainty as to which delivery strategies are optimal for dispensing these life saving interventions. A targeted mass distribution of free LLINs to children under five and pregnant women was implemented in Zanzibar between August 2005 and January 2006. The outcomes of this distribution among children under five were evaluated, four to nine months after implementation. Two cross-sectional surveys were conducted in May 2006 in two districts of Zanzibar: Micheweni (MI) on Pemba Island and North A (NA) on Unguja Island. Household interviews were conducted with 509 caretakers of under-five children, who were surveyed for socio-economic status, the net distribution process, perceptions and use of bed nets. Each step in the distribution process was assessed in all children one to five years of age for unconditional and conditional proportion of success. System effectiveness (the accumulated proportion of success) and equity effectiveness were calculated, and predictors for LLIN use were identified. The overall proportion of children under five sleeping under any type of treated net was 83.7% (318/380) in MI and 91.8% (357/389) in NA. The LLIN usage was 56.8% (216/380) in MI and 86.9% (338/389) in NA. Overall system effectiveness was 49% in MI and 87% in NA, and equity was found in the distribution scale-up in NA. In both districts, the predicting factor of a child sleeping under an LLIN was caretakers thinking that LLINs are better than conventional nets (OR = 2.8, p = 0.005 in MI and 2.5, p = 0.041 in NA), in addition to receiving an LLIN (OR = 4.9, p < 0.001 in MI and in OR = 30.1, p = 0.001 in NA). Targeted free mass distribution of LLINs can result in high and equitable bed net coverage among children under five. However, in order to sustain high effective coverage, there is need

  16. What is the net effect of introducing vitrification for cryopreservation of surplus 2PN oocytes in an IVF program?

    Science.gov (United States)

    Golakov, Manja; Depenbusch, Marion; Schultze-Mosgau, Askan; Schoepper, Beate; Hajek, Jennifer; Neumann, Kay; Griesinger, Georg

    2018-02-01

    The aim of this study was to accurately describe outcome differences (cryo-survival, pregnancy rate and live birth rate, both per ET and cumulatively), between the vitrification method and slow-freezing method of surplus 2PN oocytes in an IVF program. In 2004, the freezing method for 2PN oocytes was changed from slow-cooling to vitrification. The data of 711 patients (timespan: 1/1999-7/2011; 410 vitrification and 301 slow-cooling events) undergoing a first IVF/ICSI cycles with freezing of 2PN oocytes were retrospectively analyzed. The outcome of one, the first, IVF cycle per patient was explored. The data were analyzed per freezing-thawing attempt as well as cumulatively per one complete IVF cycle, taking pregnancy occurrence after a fresh embryo transfer preceding the cryo-cycle(s) and other confounders (such as female age, elective vs. surplus 2PN cryopreservation) into account by means of exploratory regression analyses. In the vitrification and slow-cooling group, 756 and 376, respectively, attempts of thawing 2PN oocytes were recorded. Each attempt of thawing 2PN oocytes showed statistically significantly higher mean cryo-survival rates after vitrification (effect size approximately 30-40%, with vitrification cryo-survival consistently above 90% in all thawing attempts). Furthermore, the incidence of "zero survival" was lower after vitrification (0.5 vs. 7.3%, p IVF cycle (fresh and frozen transfers combined) with vitrification of 2PN oocytes is increased approximately 1.4-fold (OR of 1.405, 95% CI 0.968-2.038; p = 0.07); however, statistical significance was not achieved due to sample size. Female age and elective cryopreservation of all 2PN oocytes without a fresh transfer (e.g., hyperresponders) were found to be negatively and positively, respectively, associated with the chance of achieving a live birth. The introduction of vitrification has a measurable impact on the efficacy of an IVF program. However, this effect is not large despite the

  17. Commercial Manila clam ( Tapes philippinarum) culture in British Columbia, Canada: The effects of predator netting on intertidal sediment characteristics

    Science.gov (United States)

    Munroe, Daphne; McKinley, R. Scott

    2007-03-01

    Quantifying risks posed by aquaculture to adjacent coastal ecosystems is necessary to ensure long term stability of coastal systems and the sustainability of industries that exist therein. Research has demonstrated that the use of predator netting in shellfish aquaculture increases sedimentation rates and productivity; here we examine the influence of netting on the west coast of Canada. Changes in percent silt (sediment particles 2 mm), organic and inorganic carbon levels and temperature, and differences in clam populations were monitored on paired netted and non-netted Manila clam ( Tapes philippinarum) plots on four farmed beaches at Baynes Sound, British Columbia in 2003 and 2004. There were no significant differences in the levels of silt ( p = 0.129, n = 8), gravel ( p = 0.723, n = 8), or inorganic carbon ( p = 0.070, n = 8) between netted and non-netted plots. However, the level of organic carbon was significantly higher on netted plots ( p = 0.014, n = 8) and a slight temperature buffering effect of the netting during low-tide events over the period of study. There were significantly more T. philippinarum on netted plots compared to non-netted plots ( p = 0.001, n = 8) and the length frequency distribution of the populations also differed ( p British Columbia, has limited effect on the sediment.

  18. NUMERICAL STUDY ON COOLING EFFECT POTENTIAL FROM VAPORIZER DEVICE OF LPG VEHICLE

    Directory of Open Access Journals (Sweden)

    MUJI SETIYO

    2017-07-01

    Full Text Available Over fuel consumption and increased exhaust gas due to the A/C system have become a serious problem. On the other hand, the LPG-fueled vehicle provides potential cooling from LPG phase changes in the vaporizer. Therefore, this article presents the potential cooling effect calculation from 1998 cm3 spark ignition (SI engine. A numerical study is used to calculate the potential heat absorption of latent and sensible heat transfer during LPG is expanded in the vaporizer. Various LPG compositions are also simulated through the engine speed range from 1000 to 6000 rpm. The result shows that the 1998 cm3 engine capable of generating the potential cooling effect of about 1.0 kW at 1000 rpm and a maximum of up to 1.8 kW at 5600 rpm. The potential cooling effects from the LPG vaporizer contributes about 26% to the A/C system works on eco-driving condition.

  19. Air pollution causes health effects and net national product of a country decreases: a theoretical framework

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    The paper deals with green accounting and accounts the health effects of air pollution. It shows that due to air pollution human capital can not be utilized properly and net national product of a country decreases. The willing to pay system among workers is beneficial to the government, factory owners and workers of a country. The marginal cost-benefit rule for an optimal level of air pollution creates negative health effects. The air pollution cause both direct disutility and indirect welfar...

  20. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  1. The cooling effect by adsorption-desorption cycles

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2017-01-01

    Full Text Available Adsorption appliances may turn out to be an alternative to compression-type refrigerators. The adsorption refrigeration machine may be driven by a low-grade heat source, especially solar energy. Solar adsorption cooling systems are environment-friendly and have zero ozone depletion potential. Therefore, the adsorption refrigeration is one kind of energy saving refrigeration methods. The merits of the adsorption refrigeration systems will be more significant especially when it is used in vehicles (automobiles, ships and locomotives, to preserve food and medicines and in air-conditioning. The paper presents the advantages and disadvantages as well as the evolution of the technology of adsorptive refrigeration systems. The methods of improving of adsorption refrigeration systems through improvements in adsorbents properties, use of advanced cycles and hybrid systems is also presented. Possible applications and perspectives for development of adsorption cooling systems are also analyzed. The paper describes a test stand of the adsorption-desorption refrigeration. The present investigations have been carried out utilizing the activated carbon granules as an adsorbent and methanol as an adsorbate. The paper demonstrates the measurement of temperature changes in the adsorbent bed and condenser during adsorption-desorption cycles.

  2. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    retain the favorable air and temperature distribution patterns and high ventilation effectiveness that are typically attained by displacement ventilation, while exploiting the energy conservation advantages of a high temperature cooling system. The tests were performed under a range of boundary......The influence of displacement ventilation and a cooled floor on indoor climate in the cooling season were experimentally studied in a room representing an office with a shaded window, occupied by two simulated employees. The aim was to investigate whether the combination of these two systems can...

  3. The net effect of alternative allocation ratios on recruitment time and trial cost.

    Science.gov (United States)

    Vozdolska, Ralitza; Sano, Mary; Aisen, Paul; Edland, Steven D

    2009-04-01

    Increasing the proportion of subjects allocated to the experimental treatment in controlled clinical trials is often advocated as a method of increasing recruitment rates and improving the performance of trials. The presumption is that the higher likelihood of randomization to the experimental treatment will be perceived by potential study enrollees as an added benefit of participation and will increase recruitment rates and speed the completion of trials. However, studies with alternative allocation ratios require a larger sample size to maintain statistical power, which may result in a net increase in time required to complete recruitment and a net increase in total trial cost. To describe the potential net effect of alternative allocation ratios on recruitment time and trial cost. Models of recruitment time and trial cost were developed and used to compare trials with 1:1 allocation to trials with alternative allocation ratios under a range of per subject costs, per day costs, and enrollment rates. In regard to time required to complete recruitment, alternative allocation ratios are net beneficial if the recruitment rate improves by more than about 4% for trials with a 1.5:1 allocation ratio and 12% for trials with a 2:1 allocation ratio. More substantial improvements in recruitment rate, 13 and 47% respectively for scenarios we considered, are required for alternative allocation to be net beneficial in terms of tangible monetary cost. The cost models were developed expressly for trials comparing proportions or means across treatment groups. Using alternative allocation ratio designs to improve recruitment may or may not be time and cost-effective. Using alternative allocation for this purpose should only be considered for trial contexts where there is both clear evidence that the alternative design does improve recruitment rates and the attained time or cost efficiency justifies the added study subject burden implied by a larger sample size.

  4. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    Science.gov (United States)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  5. Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment

    Science.gov (United States)

    Maji, Soma; Subhani, Amir Raza; Show, Bijay Kumar; Maity, Joydeep

    2017-07-01

    A systematic study has been carried out to ascertain the effect of cooling rate on structure and mechanical properties of eutectoid steel subjected to a novel incomplete austenitization-based cyclic heat treatment process up to 4 cycles. Each cycle consists of a short-duration holding (6 min) at 775 °C (above A1) followed by cooling at different rates (furnace cooling, forced air cooling and ice-brine quenching). Microstructure and properties are found to be strongly dependent on cooling rate. In pearlitic transformation regime, lamellar disintegration completes in 61 h and 48 min for cyclic furnace cooling. This leads to a spheroidized structure possessing a lower hardness and strength than that obtained in as-received annealed condition. On contrary, lamellar disintegration does not occur for cyclic forced air cooling with high air flow rate (78 m3 h-1). Rather, a novel microstructure consisting of submicroscopic cementite particles in a `interweaved pearlite' matrix is developed after 4 cycles. This provides an enhancement in hardness (395 HV), yield strength (473 MPa) and UTS (830 MPa) along with retention of a reasonable ductility (%Elongation = 19) as compared to as-received annealed condition (hardness = 222 HV, YS = 358 MPa, UTS = 740 MPa, %Elongation = 21).

  6. Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment.

    Science.gov (United States)

    Yi, Wen; Zhao, Yijie; Chan, Albert P C

    2017-05-01

    This study aims to evaluate the effectiveness of a newly designed hybrid cooling vest for construction workers in alleviating heat stress. Two types of cooling vests, namely, a commonly worn Vest A and a newly designed Vest B, were tested in a climatic chamber environment (34.0°C temperature, 60% relative humidity, and 0.4 m s-1 air velocity) using a sweating thermal manikin. Four test scenarios were included: fan off with no phase change materials (PCMs) (Fan-off), fan on with no PCMs (Fan-on), fan off with completely solidified PCMs (PCM + Fan-off), and fan on with completely solidified PCMs (PCM + Fan-on). Test results showed that Vests A and B provided a continuous cooling effect during the 3-h test. The average cooling power for the torso region of Vest B was 67 W, which was higher than that of Vest A (56 W). The addition of PCMs offered a cooling effect of approximately 60 min. Ventilation fans considerably improved the evaporative heat loss compared with the Fan-off condition. The newly designed hybrid cooling vest (Vest B) may be an effective means to reduce heat strain and enhance work performance in a hot and humid environment.

  7. Costs and cost-effectiveness of vector control in Eritrea using insecticide-treated bed nets.

    Science.gov (United States)

    Yukich, Joshua O; Zerom, Mehari; Ghebremeskel, Tewolde; Tediosi, Fabrizio; Lengeler, Christian

    2009-03-30

    While insecticide-treated nets (ITNs) are a recognized effective method for preventing malaria, there has been an extensive debate in recent years about the best large-scale implementation strategy. Implementation costs and cost-effectiveness are important elements to consider when planning ITN programmes, but so far little information on these aspects is available from national programmes. This study uses a standardized methodology, as part of a larger comparative study, to collect cost data and cost-effectiveness estimates from a large programme providing ITNs at the community level and ante-natal care facilities in Eritrea. This is a unique model of ITN implementation fully integrated into the public health system. Base case analysis results indicated that the average annual cost of ITN delivery (2005 USD 3.98) was very attractive when compared with past ITN delivery studies at different scales. Financing was largely from donor sources though the Eritrean government and net users also contributed funding. The intervention's cost-effectiveness was in a highly attractive range for sub-Saharan Africa. The cost per DALY averted was USD 13 - 44. The cost per death averted was USD 438-1449. Distribution of nets coincided with significant increases in coverage and usage of nets nationwide, approaching or exceeding international targets in some areas. ITNs can be cost-effectively delivered at a large scale in sub-Saharan Africa through a distribution system that is highly integrated into the health system. Operating and sustaining such a system still requires strong donor funding and support as well as a functional and extensive system of health facilities and community health workers already in place.

  8. Factors shaping effective utilization of health information technology in urban safety-net clinics.

    Science.gov (United States)

    George, Sheba; Garth, Belinda; Fish, Allison; Baker, Richard

    2013-09-01

    Urban safety-net clinics are considered prime targets for the adoption of health information technology innovations; however, little is known about their utilization in such safety-net settings. Current scholarship provides limited guidance on the implementation of health information technology into safety-net settings as it typically assumes that adopting institutions have sufficient basic resources. This study addresses this gap by exploring the unique challenges urban resource-poor safety-net clinics must consider when adopting and utilizing health information technology. In-depth interviews (N = 15) were used with key stakeholders (clinic chief executive officers, medical directors, nursing directors, chief financial officers, and information technology directors) from staff at four clinics to explore (a) nonhealth information technology-related clinic needs, (b) how health information technology may provide solutions, and (c) perceptions of and experiences with health information technology. Participants identified several challenges, some of which appear amenable to health information technology solutions. Also identified were requirements for effective utilization of health information technology including physical infrastructural improvements, funding for equipment/training, creation of user groups to share health information technology knowledge/experiences, and specially tailored electronic billing guidelines. We found that despite the potential benefit that can be derived from health information technologies, the unplanned and uninformed introduction of these tools into these settings might actually create more problems than are solved. From these data, we were able to identify a set of factors that should be considered when integrating health information technology into the existing workflows of low-resourced urban safety-net clinics in order to maximize their utilization and enhance the quality of health care in such settings.

  9. Effective Body Cooling Method for Persons with Spinal Cord Injury during Exercise

    OpenAIRE

    山崎, 昌廣; 長谷川, 博; 高取, 直志; 金, 奎兌

    2003-01-01

    The purpose of this study was to clarify the effects of water ingestion and wearing a cooling jacket on thermoregulatory responses during arm cranking exercise in persons with spinal cord injury. Six male paraplegics (Li - Th6) exercised for 30 min at 20 watts in a hot environment (33 °C, 80% relative humidity) under three separate conditions; no drinking (ND), water ingestion (D) and water ingestion with wearing cooling jacket (DJ). Tympanic membrane temperature (Tty), skin temperature and h...

  10. Effects of a Novel Cooling Shirt on Various Physical Performance Parameters in Elite Athletes

    Science.gov (United States)

    2015-06-03

    AFRL-SA-WP-SR-2015-0017 Effects of a Novel Cooling Shirt on Various Physical Performance Parameters in Elite Athletes Reginald...Cooling Shirt on Various Physical Performance Parameters in Elite Athletes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...13. SUPPLEMENTARY NOTES 14. ABSTRACT Elite athletes, as well as military personnel, are routinely exposed to a variety of high-heat conditions

  11. Effect of cooling rate on the microstructure and hardness of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A. [ISEC - IPC, Quinta da Nora, Coimbra (Portugal); Loureiro, A. [DEM - FCTUC, Polo II, Coimbra (Portugal)

    2004-07-01

    The aim of this work is to study the effect of the cooling rate on the microstructure and hardness of the melted material of welds in steels AISI 304 and AISI 316L. The increase of weld heat input, consequently the decrease in the cooling rate, produces only a smooth increase of the ferrite content and a small decrease of hardness in the melted material of autogeneous TIG welds. (orig.)

  12. Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

    Science.gov (United States)

    Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang

    2016-04-01

    The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

  13. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  14. Urbanization has a positive net effect on soil carbon stocks: modelling outcomes for the Moscow region

    Science.gov (United States)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Leemans, Rik; Valentini, Riccardo

    2016-04-01

    Urbanization is responsible for large environmental changes worldwide. Urbanization was traditionally related to negative environmental impacts, but recent research highlights the potential to store soil carbon (C) in urban areas. The net effect of urbanization on soil C is, however, poorly understood. Negative influences of construction and soil sealing can be compensated by establishing of green areas. We explored possible net effects of future urbanization on soil C-stocks in the Moscow Region. Urbanization was modelled as a function of environmental, socio-economic and neighbourhood factors. This yielded three alternative scenarios: i) including neighbourhood factors; ii) excluding neighbourhood factors and focusing on environmental drivers; and iii) considering the New Moscow Project, establishing 1500km2 of new urbanized area following governmental regulation. All three scenarios showed substantial urbanization on 500 to 2000km2 former forests and arable lands. Our analysis shows a positive net effect on SOC stocks of 5 to 11 TgC. The highest increase occurred on the less fertile Orthic Podzols and Eutric Podzoluvisols, whereas C-storage in Orthic Luvisols, Luvic Chernozems, Dystric Histosols and Eutric Fluvisols increased less. Subsoil C-stocks were much more affected with an extra 4 to 10 TgC than those in the topsoils. The highest increase of both topsoil and subsoil C stocks occurred in the New Moscow scenario with the highest urbanization. Even when the relatively high uncertainties of the absolute C-values are considered, a clear positive net effect of urbanization on C-stocks is apparent. This highlights the potential of cities to enhance C-storage. This will progressively become more important in the future following the increasing world-wide urbanization.

  15. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  16. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  17. The costs and effects of a nationwide insecticide-treated net programme: the case of Malawi

    Directory of Open Access Journals (Sweden)

    Ortiz Juan

    2005-05-01

    Full Text Available Abstract Background Insecticide-treated nets (ITNs are a proven intervention to reduce the burden of malaria, yet there remains a debate as to the best method of ensuring they are universally utilized. This study is a cost-effectiveness analysis of an intervention in Malawi that started in 1998, in Blantyre district, before expanding nationwide. Over the 5-year period, 1.5 million ITNs were sold. Methods The costs were calculated retrospectively through analysis of expenditure data. Costs and effects were measured as cost per treated-net year (cost/TNY and cost per net distributed. Results The mean cost/TNY was calculated at $4.41, and the mean cost/ITN distributed at $2.63. It also shows evidence of economies of scale, with the cost/TNY falling from $7.69 in year one (72,196 ITN to $3.44 in year five (720,577 ITN. Cost/ITN distributed dropped from $5.04 to $1.92. Conclusion Combining targeting and social marketing has the potential of being both cost-effective and capable of achieving high levels of coverage, and it is possible that increasing returns to scale can be achieved.

  18. Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy

    Directory of Open Access Journals (Sweden)

    Debao Liu

    2014-10-01

    Full Text Available This study was carried out to investigate the effect of solidification cooling rate on the corrosion resistance of an Mg–Zn–Ca alloy developed for biomedical applications. A wedge shaped copper mould was used to obtain different solidification cooling rates. Electrochemical and immersion tests were employed to measure the corrosion resistance of Mg–Zn–Ca alloy. It was found that increasing cooling rate resulted in a significant improvement in the corrosion resistance of the Mg–Zn–Ca alloy. The findings were explained in terms of solidification behaviour in association with the change in solubility of the alloying elements, microstructural homogeneity and refinement and chemical homogeneity as well as the increased cooling rates.

  19. Effect of osmolality on net fluid absorption in non-infected and ETEC-infected piglet small intestinal segments

    NARCIS (Netherlands)

    Kiers, J.L.; Hoogendoorn, A.; Nout, M.J.R.; Rombouts, F.M.; Nabuurs, M.J.A.; Meulen, van der J.

    2006-01-01

    In the small intestinal segment perfusion model the effect of osmolality on net fluid absorption in enterotoxigenic Escherichia coli (ETEC)-infected and non-infected small intestinal segments of piglets was investigated. In ETEC-infected segments net fluid absorption was reduced. Lowering the

  20. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    Science.gov (United States)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  1. Effect of Cooling Rate on the Dendrite Coherency Point During Solidification of Al2024 Alloy

    Science.gov (United States)

    Ghoncheh, M. H.; Shabestari, S. G.

    2015-03-01

    Most research related to dendrite coherency point (DCP) has been done on cast aluminum alloys and at a low cooling rate condition. In this research, the DCP of a wrought aluminum alloy is calculated in the range of high cooling rates used in the direct-chill casting process. The two-thermocouple thermal analysis technique was used to determine the DCP of Al2024 alloy. The aim of this work is to investigate the effect of different cooling rates on the dendrite coherency characteristics of Al2024. The cooling rates used in the present study range from 0.4 to 17.5 °C s-1. Also, the effect of 1.2 wt pct Al-5Ti-1B grain refiner on the DCP was studied. To calculate the solid fraction at dendrite coherency, solid fraction versus time is plotted based on Newtonian technique. The results show that by increasing the cooling rate, both time and temperature of dendrite coherency are decreased. Also, by adding the Al-5Ti-1B master alloy, dendrite coherency temperature is reduced and dendrite impingement is postponed. To reduce casting defects occurring during equiaxed solidification, e.g., macrosegregation, porosities, and hot tearing, these two operations which lead to postpone the transition from mass to inter-dendritic feeding, or dendrite coherency, can be useful. By increasing the cooling rate, solid fraction at dendrite coherency increases initially and then decreases at higher cooling rates. Presence of grain refiner leads to increasing of solid fraction at DCP. Thus, by delaying the dendrite coherency and increasing the solid fraction at DCP, semi-solid forming can be performed on parts with higher solid fraction and less shrinkage. Microstructural evaluation was carried out to present the correlation between the cooling rate and solid fraction in 2024 aluminum alloy.

  2. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    Science.gov (United States)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  3. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  4. An improved null model for assessing the net effects of multiple stressors on communities.

    Science.gov (United States)

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2017-07-28

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our

  5. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    Directory of Open Access Journals (Sweden)

    Peter Walters, Nathaniel Thom, Kai Libby, Shelby Edgren, Amanda Azadian, Daniel Tannous, Elisabeth Sorenson, Brian Hunt

    2017-03-01

    Full Text Available Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C and dry (14.68 ±4.29% rh environmental conditions could positively effect participants peak power output (PP on a maximal effort graded exercise test (GXT. Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs. completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C and dry (17-20% rh environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001 in participants peak power output (W were measured when cooling was applied compared to the placebo condition (304.23(W ± 26.19(W cooling, 291.68(W ± 26.04(W placebo. These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance.

  6. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat.

    Science.gov (United States)

    Walters, Peter; Thom, Nathaniel; Libby, Kai; Edgren, Shelby; Azadian, Amanda; Tannous, Daniel; Sorenson, Elisabeth; Hunt, Brian

    2017-03-01

    Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C) and dry (14.68 ±4.29% rh) environmental conditions could positively effect participants peak power output (PP) on a maximal effort graded exercise test (GXT). Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs.) completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C) and dry (17-20% rh) environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001) in participants peak power output (W) were measured when cooling was applied compared to the placebo condition (304.23(W) ± 26.19(W) cooling, 291.68(W) ± 26.04(W) placebo). These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance.

  7. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  8. Improvement of film cooling effectiveness in thin rectangular channel by using riblets

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takashi; Horiki, Sachiyo; Osakabe, Masahiro

    1999-07-01

    Film cooling behavior in a thin rectangular channel was experimentally studied by using water and the film cooling effectiveness was compared with previous correlations for a wide space. The flow pattern and the wall temperature distribution were visualized with hydrogen bubbles and liquid crystal sheet, respectively. The wavy temperature distribution was observed on the wall just after the injection slit. The temperature wave slowly moved and oscillated in the streamwise direction. The wave propagation in the spanwise direction was relatively small, but the wave pattern was randomly different in each experimental condition. The low and high temperature regions of the wave corresponded to the high and low speed regions near the wall, respectively. It was suggested that the temperature wave was generated with the several longitudinal vortexes developed downstream of the injection in the thin channel. As thinning the channel, the size of vortexes corresponding to the wave length became smaller and the cooling effectiveness was decreased. The riblets were tentatively used to depress the vortexes and increase the film cooling effectiveness. By using the appropriate riblets, the inrushes of high speed main flow into the film due to the vortexes was reduced and approximately 30% increase of the cooling effectiveness was obtained.

  9. Effects of Nitrite and Erythorbate on Clostridium perfringens Growth during Extended Cooling of Cured Ham.

    Science.gov (United States)

    Osterbauer, Katie J; King, Amanda M; Seman, Dennis L; Milkowksi, Andrew L; Glass, Kathleen A; Sindelar, Jeffrey J

    2017-10-01

    To control the growth of Clostridium perfringens in cured meat products, the meat and poultry industries commonly follow stabilization parameters outlined in Appendix B, "Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)" ( U.S. Department of Agriculture, Food Safety and Inspection Service [USDA-FSIS], 1999 ) to achieve cooling (54.4 to 4.4°C) within 15 h after cooking. In this study, extended cooling times and their impact on C. perfringens growth were examined. Phase 1 experiments consisted of cured ham with 200 mg/kg ingoing sodium nitrite and 547 mg/kg sodium erythorbate following five bilinear cooling profiles: a control (following Appendix B guidelines: stage A cooling [54.4 to 26.7°C] for 5 h, stage B cooling [26.7 to 4.4°C] for 10 h), extended stage A cooling for 7.5 or 10 h, and extended stage B cooling for 12.5 or 15 h. A positive growth control with 0 mg/kg nitrite added (uncured) was also included. No growth was observed in any treatment samples except the uncured control (4.31-log increase within 5 h; stage A). Phase 2 and 3 experiments were designed to investigate the effects of various nitrite and erythorbate concentrations and followed a 10-h stage A and 15-h stage B bilinear cooling profile. Phase 2 examined the effects of nitrite concentrations of 0, 50, 75, 100, 150, and 200 mg/kg at a constant concentration of erythorbate (547 mg/kg). Results revealed changes in C. perfringens populations for each treatment of 6.75, 3.59, 2.43, -0.38, -0.48, and -0.50 log CFU/g, respectively. Phase 3 examined the effects of various nitrite and erythorbate concentrations at 100 mg/kg nitrite with 0 mg/kg erythorbate, 100 with 250, 100 with 375, 100 with 547, 150 with 250, and 200 with 250, respectively. The changes in C. perfringens populations for each treatment were 4.99, 2.87, 2.50, 1.47, 0.89, and -0.60 log CFU/g, respectively. Variability in C. perfringens growth for the 100 mg/kg nitrite with 547 mg/kg erythorbate

  10. Costs and effects of the Tanzanian national voucher scheme for insecticide-treated nets

    Directory of Open Access Journals (Sweden)

    Hanson Kara

    2008-02-01

    Full Text Available Abstract Background The cost-effectiveness of insecticide-treated nets (ITNs in reducing morbidity and mortality is well established. International focus has now moved on to how best to scale up coverage and what financing mechanisms might be used to achieve this. The approach in Tanzania has been to deliver a targeted subsidy for those most vulnerable to the effects of malaria while at the same time providing support to the development of the commercial ITN distribution system. In October 2004, with funds from the Global Fund to Fight AIDS Tuberculosis and Malaria, the government launched the Tanzania National Voucher Scheme (TNVS, a nationwide discounted voucher scheme for ITNs for pregnant women and their infants. This paper analyses the costs and effects of the scheme and compares it with other approaches to distribution. Methods Economic costs were estimated using the ingredients approach whereby all resources required in the delivery of the intervention (including the user contribution are quantified and valued. Effects were measured in terms of number of vouchers used (and therefore nets delivered and treated nets years. Estimates were also made for the cost per malaria case and death averted. Results and Conclusion The total financial cost of the programme represents around 5% of the Ministry of Health's total budget. The average economic cost of delivering an ITN using the voucher scheme, including the user contribution, was $7.57. The cost-effectiveness results are within the benchmarks set by other malaria prevention studies. The Government of Tanzania's approach to scaling up ITNs uses both the public and private sectors in order to achieve and sustain the level of coverage required to meet the Abuja targets. The results presented here suggest that the TNVS is a cost-effective strategy for delivering subsidized ITNs to targeted vulnerable groups.

  11. Effect of site of starch digestion on portal nutrient net fluxes in steers.

    Science.gov (United States)

    Nozière, Pierre; Rémond, Didier; Lemosquet, Sophie; Chauveau, Béatrice; Durand, Denys; Poncet, Claude

    2005-08-01

    Processing of maize grain is known to modulate the site of starch digestion, thus the nature and amount of nutrients delivered for absorption. We assessed the effect of site of starch digestion on nutrient net fluxes across portal-drained viscera (PDV). Three steers, fitted with permanent digestive cannulas and blood catheters, successively received two diets containing 35 % starch as dent maize grain. Diets differed according to maize presentation: dry and cracked (by-pass, BP) v. wet and ground (control, C). Ruminal physicochemical parameters were not significantly affected. Between C and BP, the decrease in ruminal starch digestion was compensated by an increase in starch digestion in the small intestine. The amount of glucose and soluble alpha-glucoside reaching the ileum was not affected. The amount of glucose disappearing in the small intestine increased from 238 to 531 g/d between C and BP, but portal net flux of glucose remained unchanged (-97 g/d). The portal O2 consumption and net energy release were not significantly affected, averaging 16 % and 57 % of metabolizable energy intake, respectively. The whole-body glucose appearance rate, measured by jugular infusion of [6,6-2H2]glucose, averaged 916 g/d. The present study shows that the increase in the amount of glucose disappearing in the small intestine of conventionally fed cattle at a moderate intake level induces no change in portal net flux of glucose, reflecting an increase in glucose utilization by PDV. That could contribute to the low response of whole-body glucose appearance rate observed at this moderate level of intestinal glucose supply.

  12. Turbine endwall film cooling with combustor-turbine interface gap leakage flow: Effect of incidence angle

    Science.gov (United States)

    Zhang, Yang; Yuan, Xin

    2013-04-01

    This paper is focused on the film cooling performance of combustor-turbine leakage flow at off-design condition. The influence of incidence angle on film cooling effectiveness on first-stage vane endwall with combustor-turbine interface slot is studied. A baseline slot configuration is tested in a low speed four-blade cascade comprising a large-scale model of the GE-E3Nozzle Guide Vane (NGV). The slot has a forward expansion angle of 30 deg. to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5 × 105 and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet). The blowing ratio of the coolant through the interface gap varies from M = 0.1 to M = 0.3, while the blowing ratio varies from M = 0.7 to M = 1.3 for the endwall film cooling holes. The film-cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique. The results show that with an increasing blowing ratio the film-cooling effectiveness increases on the endwall. As the incidence angle varies from i = +10 deg. to i = -10 deg., at low blowing ratio, the averaged film-cooling effectiveness changes slightly near the leading edge suction side area. The case of i = +10 deg. has better film-cooling performance at the downstream part of this region where the axial chord is between 0.15 and 0.25. However, the disadvantage of positive incidence appears when the blowing ratio increases, especially at the upstream part of near suction side region where the axial chord is between 0 and 0.15. On the main passage endwall surface, as the incidence angle changes from i = +10 deg. to i = -10 deg., the averaged film-cooling effectiveness changes slightly and the negative incidence appears to be more effective for the downstream part film cooling of the endwall surface where the axial chord is between 0.6 and 0.8.

  13. Carbon savings resulting from the cooling effect of green areas: A case study in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wenqi, E-mail: linwq@mail.tsinghua.edu.cn [Key Laboratory of the Ministry of Education for Urban-rural Ecological Planning and Green Architecture, School of Architecture, Tsinghua University, Beijing 100084 (China); Wu Tinghai; Zhang Chengguo [Institute of Architectural and Urban Studies, Tsinghua University, Beijing 100084 (China); Yu Ting [Key Laboratory of the Ministry of Education for Urban-rural Ecological Planning and Green Architecture, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. - Highlights: > We provide an integral equation for the calculation of energy conservation and carbon savings. > We show that carbon savings is partly influenced by green areas' features. > A strong correlation between biomass, size and shape of green areas and carbon savings. - An integral equation for the calculation of energy conservation and carbon savings; Showing that carbon savings is partly influenced by green areas' features.

  14. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  15. Effect of large-scale social marketing of insecticide-treated nets on child survival in rural Tanzania.

    Science.gov (United States)

    Schellenberg, J R; Abdulla, S; Nathan, R; Mukasa, O; Marchant, T J; Kikumbih, N; Mushi, A K; Mponda, H; Minja, H; Mshinda, H; Tanner, M; Lengeler, C

    2001-04-21

    Insecticide-treated nets have proven efficacy as a malaria-control tool in Africa. However, the transition from efficacy to effectiveness cannot be taken for granted. We assessed coverage and the effect on child survival of a large-scale social marketing programme for insecticide-treated nets in two rural districts of southern Tanzania with high perennial malaria transmission. Socially marketed insecticide-treated nets were introduced step-wise over a 2-year period from May, 1997, in a population of 480000 people. Cross-sectional coverage surveys were done at baseline and after 1, 2, and 3 years. A demographic surveillance system (DSS) was set up in an area of 60000 people to record population, births, and deaths. Within the DSS area, the effect of insecticide-treated nets on child survival was assessed by a case-control approach. Cases were deaths in children aged between 1 month and 4 years. Four controls for each case were chosen from the DSS database. Use of insecticide-treated nets and potential confounding factors were assessed by questionnaire. Individual effectiveness estimates from the case-control study were combined with coverage to estimate community effectiveness. Insecticide-treated net coverage of infants in the DSS area rose from less than 10% at baseline to more than 50% 3 years later. Insecticide-treated nets were associated with a 27% increase in survival in children aged 1 month to 4 years (95% CI 3-45). Coverage in such children was higher in areas with longer access to the programme. The modest average coverage achieved by 1999 in the two districts (18% in children younger than 5 years) suggests that insecticide-treated nets prevented 1 in 20 child deaths at that time. Social marketing of insecticide-treated nets has great potential for effective malaria control in rural African settings.

  16. Fluid intake during wheelchair exercise in the heat: effects of localized cooling garments.

    Science.gov (United States)

    Goosey-Tolfrey, Victoria L; Diaper, Nicholas J; Crosland, Jeanette; Tolfrey, Keith

    2008-06-01

    Wheelchair tennis players, competing in hot and humid environments, are faced with an increased risk of heat-related illness and impaired performance. This study examined the effects of head and neck cooling garments on perceptions of exertion (RPE), thermal sensation (TS), and water consumption during wheelchair exercise at 30.4 +/- 0.6 degrees C. Eight highly trained wheelchair tennis players (1 amputee and 7 spinal cord injured) completed two 60-min, intermittent sprint trials; once with cooling (COOL) and once without cooling (CON) in a balanced cross-over design. Players could drink water ad libitum at five predetermined intervals during each trial. Heart rate, blood lactate concentration, peak speed, TS, and RPE were recorded during the trials. Body mass and water consumption were measured before and after each trial. Water consumption was lower in COOL compared with CON (700 +/- 393 mL vs. 1198 +/- 675 mL respectively; P = 0.042). Trends in data suggested lower RPE and TS under COOL conditions (N.S.). Total sweat losses ranged from 200 to 1300 mL; this equated to approximately 1% dehydration after water consumption had been accounted for when averaged across all trials. The ad libitum drinking volumes matched and, in some cases, were greater than the total sweat losses. These results suggest that there is a counterproductive effect of head and neck cooling garments on water consumption. However, despite consuming volumes of water at least equivalent to total sweat loss, changes in body mass suggest an incidence of mild dehydration during wheelchair tennis in the heat.

  17. Cost-effectiveness of social marketing of insecticide-treated nets for malaria control in the United Republic of Tanzania.

    Science.gov (United States)

    Hanson, Kara; Kikumbih, Nassor; Armstrong Schellenberg, Joanna; Mponda, Haji; Nathan, Rose; Lake, Sally; Mills, Anne; Tanner, Marcel; Lengeler, Christian

    2003-01-01

    To assess the costs and consequences of a social marketing approach to malaria control in children by means of insecticide-treated nets in two rural districts of the United Republic of Tanzania, compared with no net use. Project cost data were collected prospectively from accounting records. Community effectiveness was estimated on the basis of a nested case-control study and a cross-sectional cluster sample survey. The social marketing approach to the distribution of insecticide-treated nets was estimated to cost 1560 US dollars per death averted and 57 US dollars per disability-adjusted life year averted. These figures fell to 1018 US dollars and 37 US dollars, respectively, when the costs and consequences of untreated nets were taken into account. The social marketing of insecticide-treated nets is an attractive intervention for preventing childhood deaths from malaria.

  18. A numerical investigation of the effect of ambient conditions on natural convection cooling of electronics

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Hattel, Jesper Henri

    2017-01-01

    Thermal management is a serious concern in electronic industry. It is important to understand the effects of ambient conditions on cooling of electronics. In this work, the effect of ambient conditions on the thermophysical properties of humid air is estimated in five cities (Copenhagen, Mashhad,...

  19. The Effect of Cooling Rate on the Microstructure of High Pressure Die Casting Alloys

    Science.gov (United States)

    McAdams, Ian R.

    The current research project explored the effect that heat extraction has on the micro-constituents of the A380 and Silafont 36 high pressure die casting (HPDC) alloys. Phase evolution and distribution, SDAS measurements, and the alpha and beta iron-bearing phases were all examined as a function of heat extraction. Literature was found to be limited on the quantification of the micro-constituents of these two alloys as a function of cooling rate. Different cooling rate apparatuses were used to manipulate the alloys via heat extraction. Magma simulations of the mold were run and Pandat thermodynamic calculations determined the solidus and liquidus of the alloys based on composition. Statistical testing was done on the SDAS measurements. The A380 alpha and beta phase were measured along with the SDAS to create quantitative correlation. Beginning with the A380 microstructure, the FCC-Al, beta/alpha phase, and the Al-Cu phases appeared in the slow and fast cooled sample confirmed by visual and EDS analysis. Cooling rate has the ability to refine microstructure and distribute phases more effectively at higher heat extraction rates but heat extraction rates cannot eliminate the type of phases formed and their specific morphology within the A380 alloy seen at lower cooling rates. The reason is due to the similar phases in fast and slow cooled samples. Higher heat extraction rates can however form unpredicted phase with chemical compositions not usually seen. The reason is due to unique phases with Cu/Zn/Mg found in the A380. The beta phase composition contains Al-Si-Fe and the alpha phase composition contained Al-Si-Fe-Mn. Manganese was also seen to substitute for the Fe to create the Mn-alpha phase with the A380 alloy. The Al-Cu phase appears to have used the iron-bearing phases as nucleation spot thus confirming its phase order to be after that of the FCC, Al-Si eutectic, and iron bearing phases. All confirmed by EDS and visual analysis. The Al-FCC, Alpha-Mn, Al

  20. Determining and addressing obstacles to the effective use of long-lasting insecticide-impregnated nets in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Benziger Peter W

    2009-12-01

    Full Text Available Abstract Background The objective of this project was to achieve high, sustainable levels of net coverage in a village in rural Tanzania by combining free distribution of long-lasting insecticide-impregnated nets (LLINs with community-tailored education. In Tanzania, malaria is the leading cause of morbidity and mortality. Although malaria bed nets have a well-established role in reducing disease burden, few rural households have access to nets, and effective use depends on personal practices and attitudes. Methods Five practices and attitudes inconsistent with effective LLIN use were identified from household interviews (n = 10. A randomized survey of villagers (n = 132 verified local prevalence of these practices and attitudes. Community leaders held an educational session for two members of every household addressing these practice and attitudes, demonstrating proper LLIN use, and emphasizing behaviour modification. Attendees received one or two LLINs per household. Surveys distributed three weeks (n = 104 and 15 months (n = 104 post-intervention assessed corrected practices and attitudes. Project efficacy was defined by correction of baseline practices and attitudes as well as high rates of reported daily net use, with statistical significance determined by chi-square test. Results Baseline interviews and surveys revealed incorrect practices and attitudes regarding 1 use of nets in dry season, 2 need to retreat LLINs, 3 children napping under nets, 4 need to repair nets, and 5 net procurement as a priority, with 53- 88.6% incorrect responses (11.4-47% correct responses. A three-week follow-up demonstrated 83-95% correct responses. Fifteen-month follow-up showed statistically significant (p Conclusions Results suggest that addressing community-specific practices and attitudes prior to LLIN distribution promotes consistent and correct use, and helps change attitudes towards bed nets as a preventative health measure. Future LLIN distributions

  1. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  2. Quantifying the effects of zoned cooling systems on household peak electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Lomanowski, Bartosz; Haddad, Kamel [Cammet, Natural Resources Canada, Ottawa, ON (Canada)

    2010-07-01

    In Canada, significant temperature changes occur during the year with important peaks. Most residential apartments use a single thermostat to control heating and cooling, however those systems result in unbalanced delivery and high costs. The aim of this study is to evaluate the potential benefits of a zoned cooling system during peak summer days. A building energy simulation model was developed and simulations were performed on the Canadian Centre for Housing Technology's representative test house with different control strategies for peak summer days in Southern Ontario. Results showed that the effectiveness of a control strategy depends on the capacity of the system to meet the peak loads and that gradually decreasing the set point is better than a sudden drop. In addition, the implementation of passive cooling measures was found to reduce power consumption considerably and increase the effectiveness of the control strategy.

  3. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  4. Effects of Cooling During Exercise on Thermoregulatory Responses of Men With Paraplegia.

    Science.gov (United States)

    Bongers, Coen C W G; Eijsvogels, Thijs M H; van Nes, Ilse J W; Hopman, Maria T E; Thijssen, Dick H J

    2016-05-01

    People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4-T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI. © 2016 American Physical Therapy Association.

  5. Effects of forced cooling on mechanical properties and fracture behavior of heavy section ductile iron

    Directory of Open Access Journals (Sweden)

    Er-jun Guo

    2015-11-01

    Full Text Available To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture.

  6. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    Science.gov (United States)

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  7. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  8. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  9. A review of the risks of sudden global cooling and its effects on agriculture

    DEFF Research Database (Denmark)

    Engvild, K.C.

    2003-01-01

    Global warming has received much attention, but evidence from the past shows that sudden global cooling has occurred with severe failures of agriculture. Extrapolating from dendrochronological evidence, one can predict the following: Approximately once per century there will be a drop of about 0.......5-1 degreesC in mean temperature worldwide. In some of these cases, perhaps once every 200 or 300 years this might endanger agricultural production globally. About once per millenium there will be periods of 5-20 years where the temperature is seriously below normal. The last major one year temperature drop...... was 1816, the year without a summer, probably caused by the cooling effect of the eruption of the volcano Tambora, Indonesia. The last decade-long cooling event was A.D. 536-545 where dust veil, cold, famine, and plague was recorded in Byzantium and China. Very large volcanic eruptions or a comet...

  10. Effects of strong convection on the cooling process for a long or thin pipe

    Science.gov (United States)

    Marušić, Sanja; Marušić-Paloka, Eduard; Pažanin, Igor

    2008-06-01

    In this Note a heat flow through a thin pipe filled with fluid is studied. The pipe is cooled by the exterior medium. Depending on the ratio between the pipe's thickness ɛ and the Reynolds number Re, we obtain three different macroscopic models via rigorous asymptotic analysis. For small Re the fluid in the pipe is perfectly cooled, i.e. it assumes the temperature of the surrounding medium. For large Re, the fluid is not cooled at all, i.e. it maintains the same temperature as it had when it entered the pipe. Between those two cases there is a critical value of Re when the macroscopic model is described by an ODE keeping the effects of the surrounding medium as well as the entering temperature. To cite this article: S. Marušić et al., C. R. Mecanique 336 (2008).

  11. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material.

    Science.gov (United States)

    Komine, Futoshi; Saito, Ayako; Kobayashi, Kazuhisa; Koizuka, Mai; Koizumi, Hiroyasu; Matsumura, Hideo

    2010-12-01

    The purpose of the present study was to evaluate the effect of cooling rates after firing procedures of veneering porcelain on shear bond strength between veneering porcelain and a zirconium dioxide (zirconia; ZrO₂) ceramic material. A total of 48 ZrO₂ disks were divided equally into three groups. Two veneering porcelains that are recommended for ZrO₂ material - Cerabien ZR (CZR), IPS e.max Ceram (EMX) - and one that is recommended for metal ceramics - Super Porcelain AAA (AAA) were assessed. Each group was then further divided into two subgroups (n = 8) according to cooling time (0 or 4 min) after porcelain firing. Specimens were fabricated by veneering the porcelain on the ZrO₂ disks, after which shear bond testing was conducted. Bond strength differed significantly by cooling time in ZrO₂-AAA (P veneering porcelain to a zirconia material depending on porcelain material used.

  12. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Mikkelsen, Lars Pilgaard

    2015-01-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead to...

  13. Effects of tropical climate and water cooling methods on growing pigs' responses

    NARCIS (Netherlands)

    Huynh, T.T.T.; Aarnink, A.J.A.; Truong, C.T.; Kemp, B.; Verstegen, M.W.A.

    2006-01-01

    We report a study on crossbred growing pig ((Duroc x Pietrain) x Large White) that measured the effect of tropical conditions on respiration rate (RR), skin temperature (ST), rectal temperature (RT) and productivity and determined the efficacy of two simple cooling methods. The experiment was a

  14. Effectiveness and durability of Interceptor® long-lasting insecticidal nets in a malaria endemic area of central India

    Directory of Open Access Journals (Sweden)

    Bhatt Rajendra M

    2012-06-01

    Full Text Available Abstract Background In the present study, Interceptor®, long-lasting polyester net, 75 denier and bursting strength of minimum 250 kPa coated with alpha-cypermethrin @ 200 mg/m2 was evaluated for its efficacy in reducing the mosquito density, blood feeding inhibition and malaria incidence in a tribal dominated malaria endemic area in Chhattisgarh state, central India. Its durability, washing practices and usage pattern by the community was also assessed up to a period of three years. Methods The study was carried out in two phases. In the first phase (September 2006 to August 2007, 16 malaria endemic villages in district Kanker were randomized into three groups, viz. Interceptor net (LN, untreated polyester net (100 denier and without net. Malaria cases were detected by undertaking fortnightly surveillance by home visits and treated as per the national drug policy. Mosquito collections were made by hand catch and pyrethrum space spray methods from human dwellings once every month. Slide positivity rate (SPR and malaria incidence per 1000 population (PI were compared between the three study arms to assess the impact of use of Interceptor nets. Simultaneously, wash resistance studies were carried out in the laboratory by doing cone bioassays on Interceptor LNs washed up to 20 times. Activities undertaken in second Phase (April 2008 to October 2009 after an interval of about 18 months post-net distribution included questionnaire based surveys at every six months, i.e. 18, 24, 30 and 36 months to observe durability, usage pattern of LNs and washing practices by the community. After 36 months of field use, 30 nets were retrieved and sampled destructively for chemical analysis. Results Interceptor nets were found effective in reducing the density, parity rate and blood feeding success rate of main malaria vector Anopheles culicifacies as compared to that in untreated net and no net villages. SPR in LN villages was 3.7% as compared to 6

  15. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    Thus, numerical picture suggests that most of the radiative effects dominate at large implying condensation and structure formation down to much shorter scales (nearly by a factor of 2) than otherwise possible by purely. Jeans mode (curve 1). Physically, gravitational condensation is inhibited by the 'thermal pressure' (set up ...

  16. Effects of disinfection, packaging and evaporatively cooled storage ...

    African Journals Online (AJOL)

    Similarly, disinfection treatment significantly (P 0.01) affected the changes in reducing, non-reducing and total sugars of mangoes during storage. Two-way interactions were significant (P 0.01) in terms of the changes in sugar content of mangoes. The benefits of the combined effect of post-harvest treatments on mangoes ...

  17. New approaches to thermoelectric cooling effects in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, A.; Darling, T.W.; Freibert, F.; Trugman, S.A.; Moshopoulou, E. [Los Alamos National Lab., NM (United States); Sarrao, J.L. [Florida State Univ., Tallahassee, FL (United States)

    1997-08-01

    The authors review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the limiting performance and problems with its computation for both Peltier and Ettingshausen coolers are presented. New principles are discussed to guide the materials scientist in the search for better Ettingshausen materials, and a brief review of the subtle measurement problems is presented.

  18. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  19. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  20. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.

    Science.gov (United States)

    Mhd Haniffa, Mhd Abd Cader; Ching, Yern Chee; Chuah, Cheng Hock; Yong Ching, Kuan; Nazri, Nik; Abdullah, Luqman Chuah; Nai-Shang, Liou

    2017-10-01

    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...... of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells...

  2. Evaporative Cooling Availability in Water Based Sensible Cooling Systems

    OpenAIRE

    Costelloe, Ben; Finn, Donal

    2001-01-01

    Recent developments have prompted a review of evaporative cooling technology as an effective means of cooling modern deep plan buildings. Prominent among these developments is the success of high temperature sensible cooling systems, such as chilled ceilings, which require a supply of cooling water at 14 to 18°C. Crucial to the success of evaporative cooling technology, as a significant means of cooling in modern applications, is the ability to generate cooling water, in an indirect circuit, ...

  3. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    Science.gov (United States)

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  4. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  5. The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment

    Science.gov (United States)

    Broadbent, Ashley M.; Coutts, Andrew M.; Tapper, Nigel J.; Demuzere, Matthias; Beringer, Jason

    2017-09-01

    Prolonged drought has threatened traditional potable urban water supplies in Australian cities, reducing capability to adapt to climate change and mitigate against extreme. Integrated urban water management (IUWM) approaches, such as water sensitive urban design (WSUD), reduce the reliance on centralised potable water supply systems and provide a means for retaining water in the urban environment through stormwater harvesting and reuse. This study examines the potential for WSUD to provide cooling benefits and reduce human exposure and heat stress and thermal discomfort. A high-resolution observational field campaign, measuring surface level microclimate variables and remotely sensed land surface characteristics, was conducted in a mixed residential suburb containing WSUD in Adelaide, South Australia. Clear evidence was found that WSUD features and irrigation can reduce surface temperature (T s) and air temperature (T a) and improve human thermal comfort (HTC) in urban environments. The average 3 pm T a near water bodies was found to be up to 1.8 °C cooler than the domain maximum. Cooling was broadly observed in the area 50 m downwind of lakes and wetlands. Design and placement of water bodies were found to affect their cooling effectiveness. HTC was improved by proximity to WSUD features, but shading and ventilation were also effective at improving thermal comfort. This study demonstrates that WSUD can be used to cool urban microclimates, while simultaneously achieving other environmental benefits, such as improved stream ecology and flood mitigation.

  6. Effects of heat acclimation on hand cooling efficacy following exercise in the heat.

    Science.gov (United States)

    Adams, Elizabeth L; Vandermark, Lesley W; Pryor, J Luke; Pryor, Riana R; VanScoy, Rachel M; Denegar, Craig R; Huggins, Robert A; Casa, Douglas J

    2017-05-01

    This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg-1·min-1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90-240 min of treadmill or stationary bike exercise (60-80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min-1) had a greater cooling rate than NC (0.013 ± 0.003°C·min-1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min-1) was similar to NC (0.025 ± 0.002°C·min-1) (0.004°C [-0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min-1) was similar to when NHA (0.020 ± 0.003°C·min-1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.

  7. Sex effects on net protein and energy requirements for growth of Saanen goats.

    Science.gov (United States)

    Souza, A P; St-Pierre, N R; Fernandes, M H R M; Almeida, A K; Vargas, J A C; Resende, K T; Teixeira, I A M A

    2017-06-01

    Requirements for growth in the different sexes remain poorly quantified in goats. The objective of this study was to develop equations for estimating net protein (NP G ) and net energy (NE G ) for growth in Saanen goats of different sexes from 5 to 45 kg of body weight (BW). A data set from 7 comparative slaughter studies (238 individual records) of Saanen goats was used. Allometric equations were developed to determine body protein and energy contents in the empty BW (EBW) as dependent variables and EBW as the allometric predictor. Parameter estimates were obtained using a linearized (log-transformation) expression of the allometric equations using the MIXED procedure in SAS software (SAS Institute Inc., Cary, NC). The model included the random effect of the study and the fixed effects of sex (intact male, castrated male, and female; n = 94, 73, and 71, respectively), EBW, and their interactions. Net requirements for growth were estimated as the first partial derivative of the allometric equations with respect to EBW. Additionally, net requirements for growth were evaluated based on the degree of maturity. Monte Carlo techniques were used to estimate the uncertainty of the calculated net requirement values. Sex affected allometric relationships for protein and energy in Saanen goats. The allometric equation for protein content in the EBW of intact and castrated males was log 10 protein (g) = 2.221 (±0.0224) + 1.015 (±0.0165) × log 10 EBW (kg). For females, the relationship was log 10 protein (g) = 2.277 (±0.0288) + 0.958 (±0.0218) × log 10 EBW (kg). Therefore, NP G for males was greater than for females. The allometric equation for the energy content in the EBW of intact males was log 10 energy (kcal) = 2.988 (±0.0323) + 1.240 (±0.0238) × log 10 EBW (kg); of castrated males, log 10 energy (kcal) = 2.873 (±0.0377) + 1.359 (±0.0283) × log 10 EBW (kg); and of females, log 10 energy (kcal) = 2.820 (±0.0377) + 1.442 (±0.0281) × log 10 EBW (kg). The NE G

  8. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    Science.gov (United States)

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration state, decrease in the risk of heat illness, and extends the duration of soldiers' exposure to extreme conditions.

  9. Detrimental effect of cypermethrin treated nets on Culicoides populations (Diptera; Ceratopogonidae) and non-targeted fauna in livestock farms.

    Science.gov (United States)

    Del Río, R; Barceló, C; Lucientes, J; Miranda, M A

    2014-01-31

    Bluetongue (BT) is an important disease of ruminants which exhibits its most severe clinical signs on cattle and especially on certain breeds of sheep. The known vectors of BT are small insects of the genus Culicoides (Diptera; Ceratopogonidae). Two species from this genus - Culicoides imicola and Culicoides obsoletus - play the major role in the transmission of the disease in Europe. Several prophylactic methods are used to avoid transmission; however, an easy and cost-effective preventive technique would be very useful for the control of the Culicoides populations near the animals. In the present study, the insecticide effect of cypermethrin treated nets on a Culicoides population was evaluated. A polyethylene net sprayed with 1L cypermethrin solution (1%) surrounding a UV light suction trap was placed at a cattle farm in Majorca (Balearic Islands). Collections of Culicoides and other fauna from the trap and floor around the net were compared with a control. Results showed no significant differences in the collection of Culicoides midges between the insecticide-treated net and the control. However, significant differences were observed in the collection of the non-target fauna between the treated net and the control, indicating that the dose used in the present trial was enough to kill most of the arthropods that contacted the net. The reasons for these equivocal findings and means to improve this technique for the control of Culicoides midges are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  11. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  12. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    Science.gov (United States)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  13. Investigation on the Effect of Cooling Rate on Hot Tearing Susceptibility of Al2024 Alloy Using Thermal Analysis

    Science.gov (United States)

    Shabestari, S. G.; Ghoncheh, M. H.

    2015-12-01

    Effect of different cooling rates and Al-5Ti-1B grain refiner on hot tearing susceptibility of Al2024 alloy were studied using thermal analysis. Influence of cooling rates on microsegregation, and the amount of gas and shrinkage porosities was investigated. The cooling rates used in the present study range from 0.4 to 17.5 K s-1. To evaluate the hot tearing susceptibility, Clyne and Davies' criterion is used. To calculate solid fraction during solidification, solid fraction vs time is plotted based on Newtonian technique via thermal analysis. The results show that the hot tearing susceptibility reduces initially by increasing the cooling rate and then increases at higher cooling rates. Hot tearing susceptibility is decreased by grain refinement. Solidification characteristics of Al2024 e.g., microsegregation, gas, and shrinkage porosities are decreased by increasing cooling rate.

  14. Transient thermoelectric supercooling: Isosceles current pulses from a response surface perspective and the performance effects of pulse cooling a heat generating mass

    Science.gov (United States)

    Piggott, Alfred J., III

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials

  15. The Cooling Effect of Urban Parks and Its Monthly Variations in a Snow Climate City

    Directory of Open Access Journals (Sweden)

    Chaobin Yang

    2017-10-01

    Full Text Available Urban parks have been shown to form park cool islands (PCIs, which can effectively alleviate the negative influences of urban heat islands (UHI. However, few studies have examined the detailed characteristics of PCIs, the effect of urban park features on their individual temperatures, and monthly variation in PCIs. Land surface temperature (LST retrieved from Landsat 8 TIR images between May and October were used to represent the thermal environment. Urban park characteristics were extracted from high-resolution GF-2 images. Using these datasets, the relationships between urban park characteristics and PCIs were explored in this study using Changchun, which has a snow climate, as a case study. The results showed the following: (1 the urban parks exhibited a cooling island effect, and the PCIs showed significant monthly variations with the highest intensities in the hot months; (2 the effects of composition (e.g., park size and the percentage of water area on LSTs and PCIs showed significant monthly variability and were stronger than the configuration effects. Furthermore, an unexpected, negative correlation between PCIs and the area of park grass was also found; and (3 larger parks tended to have stronger PCI intensities and extents of influence. For parks larger than 30 ha, the cooling effects extended approximately 480 m from the park edge between June and August. For all of parks during the study duration, the rate of temperature increase was highest within 60 m from the park edge. The PCI we employ specifically in this study is characterized by LST.

  16. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year‑1) by enhancing nighttime warming (0.009 °C year‑1) more than daytime cooling (‑0.007 °C year‑1) during the dry season from 1961–2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  17. The effect of body cooling on respiratory system mechanics and hysteresis in rats.

    Science.gov (United States)

    Rubini, Alessandro; El-Mazloum, Dania; Morra, Francesco; Bosco, Gerardo

    2013-10-01

    Literature reports and theoretical considerations suggest that body cooling may affect respiratory mechanics in vivo. To examine this hypothesis, healthy rats were studied using the end-inflation occlusion method under control conditions and after total body cooling. Respiratory mechanics parameters, hysteresis areas, the inspiratory work of breathing, and its elastic and resistive components, were calculated. After body cooling (mean rectal temperature from 36.6 ± 0.25 to 32.1 ± 0.26 °C), the ohmic and the additional visco-elastic respiratory system resistances, the hysteresis, the total inspiratory work of breathing, and its resistive components, were all increased. No significant changes were detected for the static and dynamic respiratory system elastance mean values, and the related elastic component of the work of breathing. These data indicate that body cooling increases the mechanical inspiratory work of breathing by increasing the resistive pressures dissipation. This effect is evident even for limited temperature variations, and it is suggested that it may occur in the event of accidental or therapeutic hypothermia. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effect of stray electric fields on cooling of center of mass motion of levitated graphite flakes

    Science.gov (United States)

    Nagornykh, Pavel; Coppock, Joyce; Kane, Bruce

    2015-03-01

    Levitation of charged multilayer graphene flakes in a quadrupole ion trap provides a unique way to study graphene in isolated conditions. Cooling of a flake in such a setup is necessary for high vacuum measurements of the flake and is achieved by using a parametric feedback scheme. We present data showing the strong dependence of the cooling of the flake's center of mass motion on the stray electric fields. We achieve this by using auxiliary electrodes to shift the position of the trap center in space. Once the point of minimum interaction between the stray fields and the particle is found (leading to cooling of the flake motion to temperatures below 20K at pressure of 10-7 Torr), we can estimate charge and mass of the flake by observing quantized discharge of the particle and measure transient dynamics of the center of mass motion by turning the cooling off and on. As an additional benefit, the behavior of the flake away from the optimum trap position can be used to quantify stray fields' effect on the particle motion by measuring its spinning orientation and frequency dependence on offset from the optimum position.

  19. The effect of hand cooling during intermittent training of elite swimmers.

    Science.gov (United States)

    Zochowski, Thomas; Docherty, David

    2016-03-01

    The aim of this paper was to determine the effects of using intermittent hand cooling during high intensity, intermittent training on thermoregulatory, performance and psychophysical variables in elite level swimmers in a training pool (30.5±0.5 °C). Randomized cross-over design. Following a standard warm-up, ten male swimmers (20.3±3.2 years) were instructed to maintain the fastest 100-m time (on average) for an 8 x 100 m freestyle swimming set performed either in a training pool with cooling (TPC) or a training pool with no-cooling (TPNC). Time at 100 m, core temperature (Tc), heart rate (HR), ratings of perceived exertion (RPE), thermal comfort (ThC) and thermal sensation (ThS) were recorded following each repetition. Participants were cooled during the 90 s rest interval between repetitions using the Rapid Thermal Exchange System (RTX) (AVAcore Technologies Inc., Ann Arbor, MI, USA). There was a better performance when comparing 100 m time (1.50±1.98 s faster) for the final repetition in the TPC condition compared to the final repetition in the TPNC condition (P<0.05). There was no significant difference between Tc, HR, RPE, ThC and ThS (P<0.05). There was a performance benefit in the last set of the training block in the TPC condition that could not be attributed to any of the physiological and psychophysical measures used in the study.

  20. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  1. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  2. Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics

    Directory of Open Access Journals (Sweden)

    P. Lorenzo Bozzelli

    2018-01-01

    Full Text Available The perineuronal net (PNN represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV- positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.

  3. Effects of cooling timescale and non-ideaness of the gas in the shockwaves

    Directory of Open Access Journals (Sweden)

    Mohsen Nejad-Asghar

    2017-09-01

    Full Text Available According to the suddenly compression of the matters in some regions of the compressible fluids, the density and temperature suddenly increases, and shockwaves can be produced. The cooling of post-shock region and non-idealness of the equation of state, $p=(k_B/mu m_prho T (1+brho equivmathcal{K}rho T (1+eta R$, where $mu m_p$ is the relative density of the post-shock gas and $Requiv rho_2 / rho_1$ is the non-idealness parameter, may affect on the shocked gases. In this article, we study the effects of both cooling timescale and non-idealness of the shocked gases, on the relative density of the post-shock region. For simplicity, the shock is assumed planar and steady in which the deceleration is negligible and there is no any instabilities through the cooling layer. Conservation of mass, momentum, and energy across the shock front are given by the Rankine-Hugoniot conditions. The most important factor through the shock is the energy lost per unit mass during the shock process, $Q=frac{n_2 Lambda}{mu_2 m_p} t_{dur}$, where $Lambda (erg cm^{-3} s^{-1}$ is the cooling function at the post-shock region with density $n_2} and mean particle mass $mu_2 m_p$, and $t_{dur}$ is the duration time of the post-shock process. Accurate determination of the cooling timescale requires specifying the elemental abundance of the post-shock region, but a simple estimate can be obtained using $t_{cool}approx k_B T_2/(n_2Lambda$. Eliminating the $n_2 Lambda$, we approximately have $Q/c^2approx lambda T$, where $c equiv sqrt{K_1 T_1}$ is the pre-shock sound speed, $lambda  equiv t_{dur}/t_{cool}$ and $T equiv K_2 T_2/K_1 T_1$. We would be interested to consider the collision of two gas sheets with velocities $v_0$ in the rest frame of the laboratory. Defining the Mach number as $M_0 equiv v_0/c$, we obtain a third degree polynomial equation for $R$, with coefficients as functions of the three parameters $eta$, $lambda$, and $M_0$. We numerically solved this three

  4. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  5. Effect of cooling rate on structural and electromagnetic properties of high-carbon ferrochrome powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian-ping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Chen, Jin, E-mail: chenjin_ty@126.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Hao, Jiu-jiu; Guo, Li-na [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Jin-ying [The 12th Institute of China Electronics Technology Group Corporation, Beijing 100016 (China)

    2016-03-01

    The structural and electromagnetic properties of high-carbon ferrochrome powders (HCFCP) obtained at different cooling rates were respectively investigated by means of optical microscope, X-ray diffractometer, electron probe as well as the vector network analyzer in the frequency range of 1–18 GHz. The results show that the cell structure of main phase, (Cr,Fe){sub 7}C{sub 3}, transforms from hexagonal to orthogonal with the improvement of cooling rate. Meanwhile the mass ratio of Cr to Fe in (Cr,Fe){sub 7}C{sub 3} gradually declines, while that for CrFe goes up. Both the real part and the imaginary part of relative complex permittivity of HCFCP are in an increasing order with cooling rate rising in most frequencies. For comparison, the relative complex permeability presents an opposite changing tendency. The peaks of the imaginary part of relative complex permeability appearing in low and high frequencies are attributed to nature resonance. The reflection loss of HCFCP gradually decreases as cooling rate reduces and frequency enhances. At 2.45 GHz, the algebraic sum of dielectric loss factor and magnetic loss factor increases first and then decreases in the temperature extent from 298 K to 1273 K. - Highlights: • The changes of phases in structure and composition are found as cooling rate rises. • The relation between dielectric property and covalent bond is preliminarily studied. • The forming factor of peaks in the imaginary part of permeability is determined. • The reflection loss is analyzed basing on morphology features of particle. • The effect of temperature on loss factor is discussed from 298 K to 1273 K.

  6. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    Science.gov (United States)

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  7. Effectiveness of a night radiative cooling system in different geographical latitudes

    Science.gov (United States)

    Tsoy, A. P.; Granovskiy, A. S.; Baranenko, A. V.; Tsoy, D. A.

    2017-08-01

    Growth of world energy consumption and depletion of energy resources make humanity to constantly work on the creation of the energy efficient technologies and increase usage of the alternative and renewable sources of energy. One of such alternative sources of energy is the night radiative cooling (NRC). NRC is an alternative and renewable source of energy, derived from the effective radiation of the Earth into the Space. If the given surface is located so that it looks to the night sky, then under the particular condition more energy can be generated under the effect of radiative cooling, than received from the atmosphere. As a result the temperature of the surface can be kept lower than the temperature of the ambient air. This effect can be used for creation of the refrigeration systems with the low energy consumption and as a result lower negative influence on the environment. During the research it has been identified that the possibility of the NRC usage is mostly predetermined by the specifics of the climate of the each region. In particular climate conditions the refrigeration systems working on night radiative cooling will be more effective that in others.

  8. Numerical Simulation on the Effect of Turbulence Models on Impingement Cooling of Double Chamber Model

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Investigation of the effects of impingement cooling for the different turbulence models and study of the aerodynamic behavior of a simplified transition piece model (TP are the two themes of this paper. A model (double chamber model of a one-fourth cylinder is designed which could simulate the transition piece structure and performance. The relative strengths and drawbacks of renormalization group theory k-ε (RNG, the realizable k-ε (RKE, the v2-f, the shear stress transport k-ω (SST, and large-eddy simulation (LES models are used to solve the closure problem. The prediction of the inner wall temperature, cooling effectiveness, and velocity magnitude contours in various conditions are compared in five different turbulence models. Surprisingly, the v2-f and SST models can produce even better predictions of fluid properties in impinging jet flows. It is recommended as the best compromise between solution speed and accuracy.

  9. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  10. Adiabatic Cooling of Antiprotons

    CERN Document Server

    Gabrielse, G; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2011-01-01

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.

  11. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas.

    Science.gov (United States)

    Jaganmohan, Madhumitha; Knapp, Sonja; Buchmann, Carsten M; Schwarz, Nina

    2016-01-01

    It is well known that the cooling effect of an urban green space extends into its surroundings, cooling the immediate environment and mitigating urban heat problems. However, the effects of size, shape, and type of an urban green space on cooling remain uncertain. The objectives of our study were to quantify and compare the strength of the cooling effects of urban parks and forests, to determine how far the cooling effects extend into the surrounding residential environment, and to better understand how temperature gradients are driven by physical characteristics of the green space and the surroundings. Mobile air temperature measurements were performed in 62 urban parks and forests in the city of Leipzig, Germany, in the summer of 2013. Three indicators of cooling were calculated: the change in temperature (ΔT) at the park-width distance, the maximum ΔT, and the cooling distance. The relationships of these variables to the physical characteristics of the green spaces and their surroundings were examined in multiple regression models. Analyzing all three indicators revealed that cooling effects were greater in urban forests than in parks. Cooling increased with increasing size but in a different manner for forests and parks, whereas the influence of shape was the same for forests and parks. Generally, the characteristics of the green spaces were more important than the characteristics of the residential surroundings. These findings have the potential to assist in better planning and designing of urban green spaces to increase their cooling effects. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Physiological tolerance to uncompensated heat stress in soldiers: Effects of various types of body cooling systems

    Directory of Open Access Journals (Sweden)

    Jovanović Dalibor

    2014-01-01

    Full Text Available Background/Aim. In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the “Phase Change Material” (PCM, and its effects on soldiers’ subjective comfort and physiological performance during exertional heat stress in hot environments. Methods. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs consisted of walking on a treadmill (5.5 km/h in hot conditions (40ºC in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL, and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk, tympanic temperature (Tty, and heart rate values (HR, while sweat rates (SwR indicated changes in hydration status. Results. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 ± 0.03 and 0.49 ± 0.05ºC, respectively; p < 0.05, as well as the average SwR (0.17 ± 0.03 L/m2/h. When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Conclusions. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects

  13. The Effect of Intermittent Vest Cooling on Thermoregulation and Cardiovascular Strain in Baseball Catchers.

    Science.gov (United States)

    Bishop, Stacy H; Szymanski, David J; Ryan, Greg A; Herron, Robert L; Bishop, Phil A

    2017-08-01

    Bishop, SH, Szymanski, DJ, Ryan, GA, Herron, RL, and Bishop, PA. The effect of intermittent vest cooling on thermoregulation and cardiovascular strain in baseball catchers. J Strength Cond Res 31(8): 2060-2065, 2017-Baseball catchers are exposed to multiple physiological challenges while playing outside during the spring and summer months, many of which deal with recovery and thermoregulation. The purpose of this study was to investigate the effect of intermittent cooling on core temperature, cardiovascular strain, exertion, and recovery during a simulated catching performance in the heat. Six trained college-aged baseball catchers performed in a controlled, hot (35° C), and humid (25% relative humidity) environment in a counter-balanced, cross-over design. Ice vest cooling (VC) was used as a cooling modality and was compared with a control of no cooling (NC). Rectal temperature (Tre), heart rate (HR), rating of perceived exertion (RPE), and perceived recovery scale (PRS) were recorded before and after each simulated inning. All activities took place in a heat chamber, and each inning consisted of catchers receiving 12 pitches in their position followed by 6 minutes of recovery. Nine total innings were performed, and 27 total innings were performed with each of the 2 treatments. A significantly smaller mean Tre change was seen in VC when compared with NC (0.58 ± 0.2° C, 0.98 ± 0.2° C, p ≤ 0.01, respectively). Rating of perceived exertion was significantly lower and PRS was significantly improved for VC compared with NC (both p ≤ 0.05). Mean recovery HR during VC was significantly lower than NC in the fifth (VC = 84 ± 8 b·min, NC = 90 ± 9 b·min, p = 0.04), seventh (VC = 84 ± 3 b·min, NC = 92 ± 7 b·min, p = 0.02), and ninth (VC = 85 ± 7 b·min, NC = 93 ± 5 b·min, p = 0.01) innings. Heart rate during catching was significantly lower at the end of the VC trials when compared with NC (108 ± 16 b·min vs. 120 ± 19 b·min, p = 0.02, respectively

  14. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    Science.gov (United States)

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  15. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    Science.gov (United States)

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  16. Investigating the Effect of Soil Moisture on Net Ecosystem Exchange in Shale Hills

    Science.gov (United States)

    Griffiths, Z. G.; Davis, K. J.; He, Y.

    2016-12-01

    Carbon sinks have the ability to absorb more carbon dioxide than what they emit. The terrestrial biome acts as a huge carbon sink, however, this ability is dependent on different environmental factors. This study focused on the effects of soil moisture on net ecosystem exchange(NEE) in the Shale Hills Critical Zone Observatory, PA. It was hypothesized that the strength of the carbon sink would grow with wetter soils. Data was collected from the eddy-covariance flux tower, a COSMOS soil moisture probe, automated soil respiration chambers and sap flow probes for May to August between the years 2011-2016. Since temperature and photosynthetically active radiation(PAR) also have an effect on carbon fluxes, these variables were isolated to properly study soil moisture and carbon fluxes. Generally, less carbon dioxide was absorbed with increasing soil moisture. Since NEE is a combination of photosynthesis and respiration, the effect of soil moisture was studied separately for each process. The sap flow data showed a decrease in activity with increasing soil moisture, hence photosynthesis was most likely reduced. Additionally, more carbon dioxide was emitted from respiration with increasing soil moisture. These findings could possibly explain why the forest at Shale Hills tends to release more carbon dioxide with increasing soil moisture.

  17. Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor, and haze.

    Science.gov (United States)

    Sigler, K; Matoulková, D; Dienstbier, M; Gabriel, P

    2009-04-01

    The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12 degrees all-malt wort supplemented with sorbitol to reach osmolarity equal to 16 degrees and 20 degrees. Three pitchings were performed in 12 degrees/12 degrees/12 degrees, 16 degrees/16 degrees/12 degrees, and 20 degrees/20 degrees/12 degrees worts. Fermentations in 16 degrees and 20 degrees worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd "back to normal" pitching into 12 degrees wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16 degrees and 20 degrees worts was delayed but increased about two times at fermentation end relative to that in 12 degrees wort. Third "back-to-normal" pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.

  18. Effect of cooling on the efficiency of Schottky varactor frequency multipliers at millimeter waves

    Science.gov (United States)

    Louhi, Jyrki; Raiesanen, Antti; Erickson, Neal

    1992-01-01

    The efficiency of the Schottky diode multiplier can be increased by cooling the diode to 77 K. The main reason for better efficiency is the increased mobility of the free carriers. Because of that the series resistance decreases and a few dB higher efficiency can be expected at low input power levels. At high output frequencies and at high power levels, the current saturation decreases the efficiency of the multiplication. When the diode is cooled the maximum current of the diode increases and much more output power can be expected. There are also slight changes in the I-V characteristic and in the diode junction capacitance, but they have a negligible effect on the efficiency of the multiplier.

  19. Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal

    Directory of Open Access Journals (Sweden)

    Sunil Thapa

    2017-03-01

    Full Text Available Biomass gasification is a proven technology; however, one of the major obstacles in using product syngas for electric power generation and biofuels is the removal of tar. The purpose of this research was to develop and evaluate effectiveness of tar removal methods by cooling the syngas and using wood shavings as filtering media. The performance of the wood shavings filter equipped with an oil bubbler and heat exchanger as cooling systems was tested using tar-laden syngas generated from a 20-kW downdraft gasifier. The tar reduction efficiencies of wood shavings filter, wood shavings filter with heat exchanger, and wood shavings filter with oil bubbler were 10%, 61%, and 97%, respectively.

  20. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  1. Effect of Glaze Cooling Rate on Mechanical Properties of Conventional and Pressed Porcelain on Zirconia.

    Science.gov (United States)

    Longhini, Diogo; Rocha, Cibele Oliveira de Melo; Medeiros, Igor Studart; Fonseca, Renata Garcia; Adabo, Gelson Luis

    2016-01-01

    The aim of this study was to characterize a conventional and a pressed porcelain for zirconia core as to biaxial flexural strength (BFS), apparent fracture toughness (FT) and microstructure composition, and to investigate the effect of glaze cooling rate on the BFS of the zirconia/porcelain bilayers. Monolayers of conventional porcelain Vita VM9 and pressed porcelain Vita PM9 (n=15) (12 mm diameter x 1.2 mm thick) were prepared for the BFS test (MPa). Apparent fracture toughness (MPa.m1/2) was measured by indentation technique (n=15). t-Student test was performed for statistical analysis. Scanning electron microscopy and x-ray diffraction were used to analyze the porcelain's microstructure. For the BFS of bilayers, zirconia discs (12 mm diameter x 1 mm thick) (Vita In-Ceram YZ) were veneered with the two porcelains (1 mm thick). After the glaze firing simulation, the specimens were submitted to fast or slow cooling (n=15). Apparent fracture toughness (MPa.m1/2) was measured on the porcelain surface of bilayers (n=15) and residual stress was calculated. Two-way ANOVA (porcelain and cooling method) was used for the bilayer analysis (a=0.05). Vita PM9 monolayer exhibited significantly higher BFS (pporcelains. For bilayer specimens, the two-way ANOVA for BFS was significant for the porcelain variable only (pporcelain seems to be mechanically more effective for zirconia veneering.

  2. Effect of cooling heat-stressed dairy cows during the dry period on insulin response.

    Science.gov (United States)

    Tao, S; Thompson, I M; Monteiro, A P A; Hayen, M J; Young, L J; Dahl, G E

    2012-09-01

    Heat stress (HT) during the dry period affects hepatic gene expression and adipose tissue mobilization during the transition period. In addition, it is postulated that HT may alter insulin action on peripheral tissues. Our objective was to evaluate the effect of cooling heat-stressed cows during the dry period on insulin effects on peripheral tissues during the transition period. Cows were dried off 46 d before expected calving and assigned to 1 of 2 treatments: HT (n = 16) or cooling (CL, n = 16). During the dry period, the average temperature-humidity index was 78, but CL cows were cooled with sprinklers and fans, whereas HT cows were not. After calving, all cows were housed and managed under the same conditions. Rectal temperatures were measured twice daily (0730 and 1430 h) and respiration rate recorded 3 times weekly during the dry period. Dry matter intake was recorded daily from dry-off to 42 d relative to calving (DRC). Body weight and body condition score were measured weekly from dry-off to 42 DRC. Milk yield and composition were recorded daily to 42 wk postpartum. Glucose tolerance tests (GTT) and insulin challenges (IC) were performed at dry-off, -14, 7, and 28 DRC in a subset of cows (HT, n = 8; CL, n = 8). Relative to HT, CL cows had lower rectal temperatures (39.3 vs. 39.0°C) in the afternoon and respiration rate (69 vs. 48 breath/min). Cows from the cooling treatment tended to consume more feed than HT cows prepartum and postpartum. Compared with HT, CL cows gained more weight before calving but lost more weight and body condition in early lactation. Cows from the cooling treatment produced more milk than HT cows (34.0 vs. 27.7 kg/d), but treatments did not affect milk composition. Treatments did not affect circulating insulin and metabolites prepartum, but CL cows had decreased glucose, increased nonesterified fatty acid, and tended to have lower insulin concentrations in plasma postpartum compared with HT cows. Cooling prepartum HT cows did not

  3. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.

    Science.gov (United States)

    Choi, Dong Soo; Kim, Keun Soo; Kim, Hyeongkeun; Kim, Yena; Kim, TaeYoung; Rhy, Se-hyun; Yang, Cheol-Min; Yoon, Dae Ho; Yang, Woo Seok

    2014-11-26

    Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene.

  4. Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects

    CERN Document Server

    Rumolo, Giovanni; Zimmermann, Frank; ECLOUD'12

    2013-01-01

    This report contains the Proceedings of the Joint INFN-Frascati, INFN-Pisa, CERN-LER and EuCARD-AccNet Mini-Workshop on Electron-Cloud Effects, “ECLOUD12”, held at La Biodola, Isola d’Elba, from 5 to 9 June 2012. The ECLOUD12 workshop reviewed many recent electron-cloud (EC) observations at existing storage rings, EC predictions for future accelerators, electron-cloud studies at DAFNE, EC mitigation by clearing electrodes and graphite/carbon coatings, modeling of incoherent EC effects, self-consistent simulations, synergies with other communities like the Valencia Space Consortium and the European Space Agency. ECLOUD12 discussed new EC observations at existing machines including LHC, CesrTA, PETRA-3, J-PARC, and FNAL MI; latest experimental efforts to characterize the EC – including EC diagnostics, experimental techniques, mitigation techniques such as coating and conditioning, advanced chemical and physical analyses of various vacuum-chamber surfaces, beam instabilities and emittance growth –; the...

  5. The effect of deltamethrin-treated net fencing around cattle enclosures on outdoor-biting mosquitoes in Kumasi, Ghana.

    Science.gov (United States)

    Maia, Marta Ferreira; Abonuusum, Ayimbire; Lorenz, Lena Maria; Clausen, Peter-Henning; Bauer, Burkhard; Garms, Rolf; Kruppa, Thomas

    2012-01-01

    Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and -resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m(2)) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A - with cattle and no net; B - with cattle and protected by an untreated net; C - with cattle and protected by a deltamethrin-treated net; D - no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (penclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa.

  6. Study on Climate Change Effect on Net Irrigation Requirement and Yield for Rice Crop (Case Study: Tajan Plain

    Directory of Open Access Journals (Sweden)

    M. Sheidaeian

    2015-06-01

    Full Text Available In this study, impact of climate change on net irrigation requirement (In and yield of Rice Crop using HadCM3 climate projection model, one of the AOGCM models, in Tajan Plain area is evaluated. Changes in temperature and precipitation were simulated run under the IPCC scenario A2 for 2011-2040, 2041-2070 and 2071-2100 periods. This work was done by using statistical and proportional downscaling techniques. For estimating Net Irrigation Requirement, Potential evapotranspiration (ETo and effective rainfall (Pe were calculated using Penman Monteith equation and USDA method With Cropwat Model, respectively. Impact of water deficit on crop yield was estimated using the linear crop-water production function developed by FAO. The results of downscaling by using SDSM model and proportional method indicate that the decrease in rainfall and increase in the temperature are in future periods. CROPWAT model results indicate that the effect of climate change with increased Potential evapotranspiration and decreased effective Rainfall and increased water consumption of the plant, can be increased, the net irrigation requirement of rice plants in the basin duration years future to come by the year 2100. As a result of climate change and rising temperatures and reduced rainfall, the yield reduction percent to low levels to rise in the coming years. So it can be conclude that the effect of climate change closer to the year 2100 when effective rainfall is less could provide water consumption and net irrigation requirement of rice in the area.

  7. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of the cryogenic cooling on the fatigue strength of the AISI 304 stainless steel ground components

    Science.gov (United States)

    Ben Fredj, Nabil; Sidhom, Habib

    2006-06-01

    For environmental considerations, the substitution of the conventionally used oil-based grinding fluids has nowadays become strongly recommended. Although several alternatives have been proposed, cryogenic cooling by liquid nitrogen is the non-polluting coolant that has been given relatively more attention because of its very low temperature. In this investigation, in order to contribute to developing this promising cooling mode, its beneficial effects on the ground surface integrity of the AISI 304 stainless steel and their consequences on the fatigue lifetime are explored. Results of this investigation show that grinding under cryogenic cooling mode generates surfaces with lower roughness, less defects, higher work hardening and less tensile residual stresses than those obtained on surfaces ground under oil-based grinding fluid. These surface enhancements result into substantial improvements in the fatigue behaviour of components ground under this cooling mode. An increasing rate of almost 15% of the endurance limit at 2 × 10 6 cycles could be realized. SEM analyses of the fatigue fracture surfaces have shown that the fatigue cracks observed on the specimens ground under cryogenic cooling are shorter (i.e., 30-50 μm) than those generated under oil-based cooling mode (i.e., 150-200 μm). The realized improvements in the surface integrity and in the fatigue behaviour are thought to be related to the reduction of the grinding zone temperature observed under cryogenic cooling, as no significant differences between the grinding force components for both cooling modes have been observed.

  9. Evaluating the sterilizing effect of pyriproxyfen treated mosquito nets against Anopheles gambiae at different blood-feeding intervals.

    Science.gov (United States)

    Jaffer, Aneesa; Protopopoff, Natacha; Mosha, Franklin W; Malone, David; Rowland, Mark W; Oxborough, Richard M

    2015-10-01

    Pyrethroid resistant malaria vectors are widespread throughout sub-Saharan Africa and new insecticides with different modes of action are urgently needed. Pyriproxyfen is a juvenile hormone mimic that reduces fecundity and fertility of adult Anopheles mosquitoes when used as a contact insecticide. A long-lasting insecticidal net incorporating pyriproxyfen is under development. As wild, host-seeking females may succeed in blood-feeding at different intervals after initial contact with mosquito nets the aim of this study was to determine the effect that age and gonotrophic status (nulliparous or parous) and the interval between initial pyriproxyfen exposure and blood-feeding has in terms of subsequent reduced fecundity and fertility. Anopheles gambiae s.s. were exposed to pyriproxyfen LLIN for three minutes in WHO cone bioassays. Four regimens were tested with different blood-feeding intervals A-1 hour (nulliparous), B-1 hour (parous), C-24h (nulliparous), or D-120h (nulliparous) after pyriproxyfen exposure. Mosquito oviposition rate, fecundity and fertility of eggs were recorded for several days. All four treatment regimens produced levels of mortality similar to unexposed females. The overall reduction in reproductive rate of 99.9% for regimen A relative to the untreated net was primarily due to oviposition inhibition in exposed females (97%). Pyriproxyfen was equally effective against older parous mosquitoes and when blood-feeding was 24h after exposure. Regimen D produced a reduction in reproductive rate of 60.1% but this was of lesser magnitude than other regimens and was the only regimen that failed to reduce fertility of laid eggs, indicating the effects of pyriproxyfen exposure on reproduction are to some extent reversible as mosquitoes age. In an area of moderate to high mosquito net coverage a host-seeking mosquito is likely to contact a treated mosquito net before: (a) penetrating a holed net and blood-feeding shortly after exposure or, (b) be frustrated

  10. Effect of makeup water properties on the condenser fouling in power planr cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

  11. Effect of cooling rate on mechanical properties of carbon fibre fabric and polypropylene composites

    Science.gov (United States)

    Lee, Joon Seok; Kim, Jong Won

    2017-09-01

    In this study, thermoplastic composites were fabricated using carbon fibre fabric and polypropylene. The effects of the cooling rate, which is a process parameter, on the mechanical properties of the composites were investigated. The degree of crystallinity, tensile properties, flexural properties, drop-weight impact, interlaminar fracture toughness, and fracture surface of the fabricated composites were investigated for composites prepared at cooling rates of 0.6, 1.1, 3.2, and 7.1 °C min-1. The increase in the cooling rate during composite fabrication was found to decrease the stiffness of the composite because the degree of crystallinity of the matrix decreased. In addition, the tensile and flexural properties were somewhat reduced, but the energy absorption and fracture toughness were significantly increased owing to the increased ductility. Therefore, the results of this study can be applied to material-design scenarios in which the tensile and flexural properties are somewhat reduced, but high damage tolerance is required in composite material.

  12. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-01-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of ten simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from ten to hundred per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations which link star formation rate to metal emission lines.

  13. FILTER-NET STRUCTURE AND PUMPING ACTIVITY IN THE POLYCHAETE NEREIS-DIVERSICOLOR - EFFECTS OF TEMPERATURE AND PUMP-MODELING

    DEFF Research Database (Denmark)

    Riisgård, H.U.; Vedel, A.; Boye, H.

    1992-01-01

    Electron micrographs of the filter-net structure in the facultatively suspension-feeding polychaete Nereis diversicolor O. F. Muller showed that the net is composed of an irregular mesh-work made up of long, relatively thick filaments (up to 300 nm) interconnected with a variety of shorter...... and thinner filaments. The thinner filaments range in diameter from 5 to >25 nm. The average size of the meshes, measured directly on the micrographs, lies between 0.5 and 1.0-mu-m, but due to shrinkage the values represent only about 75 % of the actual dimension of the intact net. The effects of temperature...... increase in clearance, and a doubling of the temperature was followed by a doubling in clearance. Direct measurements of pumping rate showed that high stroke frequency was correlated with high pumping rate. A doubling of temperature from 13 to 23-29-degrees-C led to a doubling of the stroke frequency...

  14. Effects of a cool environment on the health of female office workers and students.

    Science.gov (United States)

    Kai, Kyoko; Inoue, Shinichi; Higaki, Yasuki; Tomokuni, Katsumaro

    2008-05-01

    The aim of this study was to evaluate the effect of a cool environment on the peripheral skin blood flow and subjective thermal sensations of female office workers and female students. The subjects were 26 female bank employees (mean age, 38 years) who worked in a cool environment and 10 female college students (mean age, 22 years). The peripheral skin blood flow was measured using a laser Doppler blood flow meter. In each bank employee, peripheral skin blood flow was measured at three time points during the workday in the medical treatment room at their workplace. In the college students, peripheral skin blood flow was measured every hour between 9:00 and 17:00 in a laboratory. In both the medical treatment room and the laboratory, the room temperature was controlled at 24-26 degrees C with a relative humidity of 55+/-10%. The bank employees and students were each divided into those with hypersensitivity to cold (Group A) and those without hypersensitivity to cold (Group B). When the 10 college students were in the cool environment (24-26 degrees C), their peripheral skin blood flow generally decreased over time. The rate of decrease of this blood flow was greater in Group A than in Group B. In the female bank employees, the peripheral skin blood flow was the lowest at 12:00 (before lunch), was increased at 13:00 (after lunch), and then was decreased at 17:30. However, the degree of the increase from before lunch to after lunch in Group A was about half of that in Group B. Among female office workers and students, a cool environment reduced the peripheral skin blood flow of individuals with hypersensitivity to cold to a greater degree than in those without hypersensitivity to cold.

  15. Northern pike bycatch in an inland commercial hoop net fishery: effects of water temperature and net tending frequency on injury, physiology, and survival

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Raby, Graham D.; Hasler, Caleb T.; Haxton, Tim; Smokorowski, Karen; Blouin-Demers, Gabriel; Cooke, Steven J.

    2013-01-01

    In lakes and rivers of eastern Ontario (Canada) commercial fishers use hoop nets to target a variety of fishes, but incidentally capture non-target (i.e., bycatch) gamefish species such as northern pike (Esox lucius). Little is known about the consequences of bycatch in inland commercial fisheries, making it difficult to identify regulatory options. Regulations that limit fishing during warmer periods and that require frequent net tending have been proposed as possible strategies to reduce bycatch mortality. Using northern pike as a model, we conducted experiments during two thermal periods (mid-April: 14.45 ± 0.32 °C, and late May: 17.17 ± 0.08 °C) where fish were retained in nets for 2 d and 6 d. A ‘0 d’ control group consisted of northern pike that were angled, immediately sampled and released. We evaluated injury, physiological status and mortality after the prescribed net retention period and for the surviving fish used radio telemetry with manual tracking to monitor delayed post-release mortality. Our experiments revealed that injury levels, in-net mortality, and post-release mortality tended to increase with net set duration and at higher temperatures. Pike exhibited signs of chronic stress and starvation following retention, particularly at higher temperatures. Total mortality rates were negligible for the 2 d holding period at 14 °C, 14% for 6 d holding at 14 °C, 21% for 2 d holding at 17 °C, and 58% for 6 d holding at 17 °C. No mortality was observed in control fish. Collectively, these data reveal that frequent net tending, particularly at warmer temperatures, may be useful for conserving gamefish populations captured as bycatch in inland hoop net fisheries.

  16. Effect of supplementary feeding during the sucking period on net absorption from the small intestine of weaned pigs

    NARCIS (Netherlands)

    Nabuurs, M.J.A.; Hoogendoorn, A.; Zijderveld-van Bemmel, van A.

    1996-01-01

    An intestinal perfusion technique was used to measure the effects of supplementary feeding (experiment 1) and temporary weaning (experiment 2) during the sucking period on the net absorption of fluid, sodium, chloride and potassium from the small intestine of pigs after weaning. The technique was

  17. The cost-effectiveness of permethrin-treated bed nets in an area of intense malaria transmission in western Kenya

    NARCIS (Netherlands)

    Wiseman, Virginia; Hawley, William A.; ter Kuile, Feiko O.; Phillips-Howard, Penelope A.; Vulule, John M.; Nahlen, Bernard L.; Mills, Anne J.

    2003-01-01

    This study compared the costs and effects of insecticide (permethrin)-treated bed net (ITN) use in children less than five years of age in an area of intense, perennial malaria transmission in western Kenya. The data were derived from a group-randomized controlled trial of ITNs conducted between

  18. Effect of processed and fermented soyabeans on net absorption in enterotoxigenic Escherichia coli-infected piglet small intestine

    NARCIS (Netherlands)

    Kiers, J.L.; Nout, M.J.R.; Rombouts, F.M.; Andel, van E.E.; Nabuurs, M.J.A.; Meulen, van der J.

    2006-01-01

    Infectious diarrhoea is a major problem in both children and piglets. Infection of enterotoxigenic Escherichia coli (ETEC) results in fluid secretion and electrolyte losses in the small intestine. In the present study the effect of processed and fermented soyabean products on net absorption during

  19. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya

    NARCIS (Netherlands)

    Gimnig, John E.; Kolczak, Margarette S.; Hightower, Allen W.; Vulule, John M.; Schoute, Erik; Kamau, Luna; Phillips-Howard, Penelope A.; ter Kuile, Feiko O.; Nahlen, Bernard L.; Hawley, William A.

    2003-01-01

    The effect of insecticide (permethrin)-treated bed nets (ITNs) on the spatial distribution of malaria vectors in neighboring villages lacking ITNs was studied during a randomized controlled trial of ITNs in western Kenya. There was a trend of decreased abundance of Anopheles gambiae with decreasing

  20. Malaria risk factors in North West Tanzania: the effect of spraying, nets and wealth.

    Directory of Open Access Journals (Sweden)

    Philippa A West

    Full Text Available Malaria prevalence remains high in many African countries despite massive scaling-up of insecticide treated nets (ITN and indoor residual spraying (IRS. This paper evaluates the protective effect of pyrethroid IRS and ITNs in relation to risk factors for malaria based on a study conducted in North-West Tanzania, where IRS has been conducted since 2007 and universal coverage of ITNs has been carried out recently. In 2011 community-based cross-sectional surveys were conducted in the two main malaria transmission periods that occur after the short and long rainy seasons. These included 5,152 and 4,325 children aged 0.5-14 years, respectively. Data on IRS and ITN coverage, household demographics and socio-economic status were collected using an adapted version of the Malaria Indicator Survey. Children were screened for malaria by rapid diagnostic test. In the second survey, haemoglobin density was measured and filter paper blood spots were collected to determine age-specific sero-prevalence in each community surveyed. Plasmodium falciparum infection prevalence in children 0.5-14 years old was 9.3% (95%CI:5.9-14.5 and 22.8% (95%CI:17.3-29.4 in the two surveys. Risk factors for infection after the short rains included households not being sprayed (OR = 0.39; 95%CI:0.20-0.75; low community net ownership (OR = 0.45; 95%CI:0.21-0.95; and low community SES (least poor vs. poorest tertile: OR = 0.13, 95%CI:0.05-0.34. Risk factors after the long rains included household poverty (per quintile increase: OR = 0.89; 95%CI:0.82-0.97 and community poverty (least poor vs. poorest tertile: OR = 0.26, 95%CI:0.15-0.44; household IRS or high community ITN ownership were not protective. Despite high IRS coverage and equitable LLIN distribution, poverty was an important risk factor for malaria suggesting it could be beneficial to target additional malaria control activities to poor households and communities. High malaria prevalence in some clusters

  1. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  2. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    Science.gov (United States)

    Gokce, Zeki Ozgur

    confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)

  3. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  4. Modeling hydrochory effects on the Tunisian island populations of Pancratium maritimum L. using colored Petri nets.

    Science.gov (United States)

    Sanaa, Adnen; Ben Abid, Samir; Boulila, Abdennacer; Messaoud, Chokri; Boussaid, Mohamed; Ben Fadhel, Najeh

    2015-03-01

    Hydrochory, the seed dispersal by water, is a strategy used by many aquatic and some terrestrial plants to move into areas appropriate for establishment. In this paper we model the hydrochory effects on the Tunisian island populations of Pancratium maritimum L. using colored Petri nets. Nineteen Tunisian coastal sites were considered including fourteen mainland and five island sites. The model was simulated for 400 thousand Atlantic Tunisian Current cycles (years). Snapshots of the island population's genetic makeup were taken for 50, 200 and 400 thousand years. The evolution of the obtained dendrograms showed a clear divide between the northern and southern island populations according to their estimated genetic make-up for the considered simulation durations. Hydrochory is not only with important ecological consequences, such as maintaining the populations of P. maritimum but also it may move species into areas appropriate for establishment. In this context, in situ and ex situ conservation measures of P. maritimum populations should be adopted very fast. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  6. Heating-related flows in cool solar loops

    Science.gov (United States)

    Klimchuk, J. A.; Mariska, J. T.

    1988-01-01

    The effects of spatial and temporal variations in the heating of cool loop models are investigated in an attempt to explain the net redshifts that are observed on the sun. The response of initially static cool loops to changes in the energy input is simulated. For hot loops, it is found that spatially asymmetric changes produce a final steady state that is dynamic, and that spatially symmetric changes produce a final state that is static. Some general properties of cool loop equilibria are discussed, emphasizing the relationship between structure and energy input. The results are unable to explain the net redshifts observed in emission lines formed near 100,000 K on the sun.

  7. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  8. Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer

    Science.gov (United States)

    Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei

    2017-06-01

    In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.

  9. Effect of a Scalp Cooling Device on Alopecia in Women Undergoing Chemotherapy for Breast Cancer: The SCALP Randomized Clinical Trial.

    Science.gov (United States)

    Nangia, Julie; Wang, Tao; Osborne, Cynthia; Niravath, Polly; Otte, Kristen; Papish, Steven; Holmes, Frankie; Abraham, Jame; Lacouture, Mario; Courtright, Jay; Paxman, Richard; Rude, Mari; Hilsenbeck, Susan; Osborne, C Kent; Rimawi, Mothaffar

    2017-02-14

    Chemotherapy may induce alopecia. Although scalp cooling devices have been used to prevent this alopecia, efficacy has not been assessed in a randomized clinical trial. To assess whether a scalp cooling device is effective at reducing chemotherapy-induced alopecia and to assess adverse treatment effects. Multicenter randomized clinical trial of women with breast cancer undergoing chemotherapy. Patients were enrolled from December 9, 2013, to September 30, 2016. One interim analysis was planned to allow the study to stop early for efficacy. Data reported are from the interim analysis. This study was conducted at 7 sites in the United States, and 182 women with breast cancer requiring chemotherapy were enrolled and randomized. Participants were randomized to scalp cooling (n = 119) or control (n = 63). Scalp cooling was done using a scalp cooling device. The primary efficacy end points were successful hair preservation assessed using the Common Terminology Criteria for Adverse Events version 4.0 scale (grade 0 [no hair loss] or grade 1 [scalp cooling and control groups. Only adverse events related to device use were collected; 54 adverse events were reported in the cooling group, all grades 1 and 2. There were no serious adverse device events. Among women with stage I to II breast cancer receiving chemotherapy with a taxane, anthracycline, or both, those who underwent scalp cooling were significantly more likely to have less than 50% hair loss after the fourth chemotherapy cycle compared with those who received no scalp cooling. Further research is needed to assess longer-term efficacy and adverse effects. clinicaltrials.gov Identifier: NCT01986140.

  10. Net profit flow per country from 1980 to 2009: The long-term effects of foreign direct investment

    Science.gov (United States)

    2017-01-01

    Aim of the paper The paper aims at describing and explaining net profit flows per country for the period 1980–2009. Net profit flows result from Foreign Direct Investment (FDI) stock and profit repatriation: inward stock creating a profit outflow and outward FDI stock a profit inflow. Profit flows, especially ‘normal’ ones are not commonly researched. Theoretical background According to world-system theory, countries are part of a system characterised by a core, semi-periphery and periphery, as shown by network analyses of trade relations. Network analyses based on ownership relations of TransNational Corporations (TNCs) show that the top 50 firms that control about 40% of the world economy are almost exclusively located in core countries. So, we may expect a hierarchy in net profit flows with core countries on top and the periphery at the bottom. FDI outflows from the core countries especially rose in the 1990s, so we may expect that the difference has grown in time. Data and results A dataset on 'net profit flow' per country is developed. There are diverging developments in net profit flows since the 1980s, as expected: ever more positive for core countries, negative and ever lower for semi-peripheral and peripheral countries, in particular from the 1990s onwards. A fixed effects quantile regression using publicly available data confirms the prediction that peripheral countries share a unique characteristic: their outward investments do not have a positive influence on net profit flow as is the case with semi-peripheral and core countries. The most probable explanation is that peripheral outward investments are indirectly owned by firms located in core and semi-peripheral countries, so all peripheral profit inflows end up in those countries. PMID:28654644

  11. Study of Different Effects of Nets Impregnated with Different Pyrethroids on Susceptible and Resistant Strains of Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    M.H. Hodjati

    2006-10-01

    Full Text Available Introduction & Objectives: A laboratory study was carried out to investigate the insecticidal, irritant and anti-feeding effects of nets treated with various pyrethroids against susceptible and highly pyrethroid resistant strains of An. stephensi. Materials & Methods: Tests were carried out inside a mosquito cage measuring 25×25×25 cm where mosquitoes were offered the opportunity to feed blood on an arm through the top face of the cage which had been pyrethroid treated.Results: With all the pyrethroids tested, the resistant strain spent a longer time in contact with a treated net, which was in contact with a human arm, than did the susceptible strain. With permethrin the resistant strain fed significantly more successfully through the treated netting than did the susceptible strain. With deltamethrin there was a non-significant tendency in the same direction in comparing the two strains. However, with alphacypermethrin there was a non-significant tendency in the reverse direction. After 15 min in the cage which tested for the ability to feed through a pyrethroid treated net, observed mortality was higher with the susceptible than the resistant strain. Conclusion: Thus there was no sign that the longer resting of the resistant strain on treated netting would compensate for the fact that a higher dose was needed to kill this strain. Such compensation had been suggested with the West African An. gambiae where treated nets continue to work well against a highly resistant wild population. However this does not seem to apply to our resistant An. stephens.

  12. Net profit flow per country from 1980 to 2009: The long-term effects of foreign direct investment.

    Science.gov (United States)

    Akkermans, Dirk H M

    2017-01-01

    The paper aims at describing and explaining net profit flows per country for the period 1980-2009. Net profit flows result from Foreign Direct Investment (FDI) stock and profit repatriation: inward stock creating a profit outflow and outward FDI stock a profit inflow. Profit flows, especially 'normal' ones are not commonly researched. According to world-system theory, countries are part of a system characterised by a core, semi-periphery and periphery, as shown by network analyses of trade relations. Network analyses based on ownership relations of TransNational Corporations (TNCs) show that the top 50 firms that control about 40% of the world economy are almost exclusively located in core countries. So, we may expect a hierarchy in net profit flows with core countries on top and the periphery at the bottom. FDI outflows from the core countries especially rose in the 1990s, so we may expect that the difference has grown in time. A dataset on 'net profit flow' per country is developed. There are diverging developments in net profit flows since the 1980s, as expected: ever more positive for core countries, negative and ever lower for semi-peripheral and peripheral countries, in particular from the 1990s onwards. A fixed effects quantile regression using publicly available data confirms the prediction that peripheral countries share a unique characteristic: their outward investments do not have a positive influence on net profit flow as is the case with semi-peripheral and core countries. The most probable explanation is that peripheral outward investments are indirectly owned by firms located in core and semi-peripheral countries, so all peripheral profit inflows end up in those countries.

  13. EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2015-10-01

    Full Text Available ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO. In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO. Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan

  14. Effect of Austenite Deformation on the Microstructure Evolution and Grain Refinement Under Accelerated Cooling Conditions

    Science.gov (United States)

    Zhao, H.; Palmiere, E. J.

    2017-07-01

    Although there has been much research regarding the effect of austenite deformation on accelerated cooled microstructures in microalloyed steels, there is still a lack of accurate data on boundary densities and effective grain sizes. Previous results observed from optical micrographs are not accurate enough, because, for displacive transformation products, a substantial part of the boundaries have disorientation angles below 15 deg. Therefore, in this research, a niobium microalloyed steel was used and electron backscattering diffraction mappings were performed on all of the transformed microstructures to obtain accurate results on boundary densities and grain refinement. It was found that with strain rising from 0 to 0.5, a transition from bainitic ferrite to acicular ferrite occurs and the effective grain size reduces from 5.7 to 3.1 μm. When further increasing strain from 0.5 to 0.7, dynamic recrystallization was triggered and postdynamic softening occurred during the accelerated cooling, leading to an inhomogeneous and coarse transformed microstructure. In the entire strain range, the density changes of boundaries with different disorientation angles are distinct, due to different boundary formation mechanisms. Finally, the controversial influence of austenite deformation on effective grain size of low-temperature transformation products was argued to be related to the differences in transformation conditions and final microstructures.

  15. The Effect of Cooling Rate on Microstructure and Mechanical Properties of Zr-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Weihong Fu

    2013-01-01

    Full Text Available The aim of the present study is to shed some insights on the effect of cooling rate on the microstructure and mechanical properties for glass-forming alloys. A crystalline gradient was observed in the microstructure of 12 mm diameter Zr51Al9.96Ni14.34Cu24.9 (Zr51 alloy sample from the edge to center due to uneven cooling rates. Microhardness results indicate that the lower the cooling rate, the higher the hardness for the studied alloy.

  16. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result......Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...

  17. Cost-effective control systems for solar heating and cooling applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pejsa, J. H.; Bassett, W. W.; Wenzler, S. A.; Nguyen, K. H.; Olson, T. J.

    1978-09-01

    A methodology has been defined to arrive at control recommendations for a variety of climate control system designs, applications and regions, and the results are presented in two parts. Part I consists of a literature and market-place survey, involving control strategies, functions, sensors, actuators, and the controllers themselves. Part II represents the bulk of the study effort - an attempt to simulate and evaluate system performance for several representative residential and commercial heating and cooling designs and thus to derive improved performance techniques within cost-effective control systems. (MHR)

  18. The Effect of Cooling Rate on the Apparent Bond Strength of Porcelain-Metal Couples,

    Science.gov (United States)

    1981-03-06

    IADR Program and Abstracts 53:742, 1974. 10. Dykema, R. W., Johnston, J. F., and Cunningham, D. M.: The veneered gold crown. The Dental Clinics of...AD-A097 492 ARMY INST OF DENTAL RESEARCH WASHINGTON DC F/G 11/2 THE EFFECT OF COOLING RATE ON THE APPARENT BOND STRENGTH OF POR-’ETC(U) MAR 81 J...porcelain- metal couples John W. Guinn, III, B.S., D.D.S. William H. Griswold, B.S., D.D.S. Stanley G. Vermilyea, B.S.,D.M.D., M.S. U.S. Army Dental

  19. Effects of Educational Intervention on Long-Lasting Insecticidal Nets Use in a Malarious Area, Southeast Iran

    Directory of Open Access Journals (Sweden)

    Abdol Hossein Madani

    2012-04-01

    Full Text Available Long-lasting insecticidal nets (LLINs have been advocated as an effective tool against malaria transmission. However, success of this community based intervention largely depends on the knowledge and practice regarding malaria and its prevention. According to the national strategy plan on evaluation of LLINs (Olyset nets, this study was conducted to determine the perceptions and practices about malaria and to improve use of LLINs in Bashagard district, one of the important foci of malaria in southeast Iran. The study area comprised 14 villages that were randomized in two clusters and designated as LLINs and untreated nets. Each of households in both clusters received two bed nets by the free distribution and delivery. After one month quantitative data collection method was used to collect information regarding the objectives of the study. On the basis of this information, an educational program was carried out in both areas to increase motivation for use of bed nets. Community knowledge and practice regarding malaria and LLIN use assessed pre- and post-educational program. The data were analyzed using SPSS ver.16 software. At baseline, 77.5% of respondents in intervention and 69.4 % in control area mentioned mosquito bite as the cause of malaria, this awareness increased significantly in intervention (90.3% and control areas (87.9%, following the educational program. A significant increase also was seen in the proportion of households who used LLINs the previous night (92.5% compared with untreated nets (87.1%. Educational status was an important predictor of LLINs use. Regular use of LLIN was considerably higher than the targeted coverage (80% which recommended by World Heaths Organization. About 81.1% and 85.3% of respondents from LLIN and control areas reported that mosquito nuisance and subsequent malaria transmission were the main determinants of bed net use. These findings highlight a need for educational intervention in implementation of

  20. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  1. Effectiveness of insecticidal nets on uncomplicated clinical malaria: a case-control study for operational evaluation.

    Science.gov (United States)

    Damien, Georgia Barikissou; Djènontin, Armel; Chaffa, Evelyne; Yamadjako, Sandra; Drame, Papa Makhtar; Ndille, Emmanuel Elanga; Henry, Marie-Claire; Corbel, Vincent; Remoué, Franck; Rogier, Christophe

    2016-02-19

    In a context of large-scale implementation of malaria vector control tools, such as the distribution of long-lasting insecticide nets (LLIN), it is necessary to regularly assess whether strategies are progressing as expected and then evaluate their effectiveness. The present study used the case-control approach to evaluate the effectiveness of LLIN 42 months after national wide distribution. This study design offers an alternative to cohort study and randomized control trial as it permits to avoid many ethical issues inherent to them. From April to August 2011, a case-control study was conducted in two health districts in Benin; Ouidah-Kpomasse-Tori (OKT) in the south and Djougou-Copargo-Ouake (DCO) in the north. Children aged 0-60 months randomly selected from community were included. Cases were children with a high axillary temperature (≥37.5 °C) or a reported history of fever during the last 48 h with a positive rapid diagnostic test (RDT). Controls were children with neither fever nor signs suggesting malaria with a negative RDT. The necessary sample size was at least 396 cases and 1188 controls from each site. The main exposure variable was "sleeping every night under an LLIN for the 2 weeks before the survey" (SL). The protective effectiveness (PE) of LLIN was calculated as PE = 1 - odds ratio. The declared SL range was low, with 17.0 and 27.5 % in cases and controls in the OKT area, and 44.9 and 56.5 % in cases and controls, in the DCO area, respectively. The declared SL conferred 40.5 % (95 % CI 22.2-54.5 %) and 55.5 % (95 % CI 28.2-72.4 %) protection against uncomplicated malaria in the OKT and the DCO areas, respectively. Significant differences in PE were observed according to the mother's education level. In the context of a mass distribution of LLIN, their use still conferred protection in up to 55 % against the occurrence of clinical malaria cases in children. Social factors, the poor use and the poor condition of an LLIN can be in disfavour with

  2. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  3. Effect of pulse tube volume on dynamics of linear compressor and cooling performance in Stirling-type pulse tube refrigerator

    Science.gov (United States)

    Ko, Junseok; Jeong, Sangkwon; Ki, Taekyoung

    2010-01-01

    In a Stirling-type pulse tube refrigerator (PTR), the pulse tube volume affects the dynamic behavior of a linear compressor as well as the cooling performance of PTR. In this study, PTRs which have different pulse tube volume are tested and simulated. The simulation code is verified with the experimental measurement of piston displacement, pressure wave, input power and cooling capacity. And then, the power transfer from the electric power input to the cooling capacity is explained with the simulation results. The smaller pulse tube increases the resonant frequency of a linear compressor and suppresses the piston motion because it imposes larger gas spring effect and also larger gas damping effect to the piston. The smaller one allows larger power transfer from electric power to expansion PV work despite the smaller piston displacement, but shows less cooling capacity due to larger thermal losses.

  4. Effect of cooling equipment location on the working point of a main fan

    Energy Technology Data Exchange (ETDEWEB)

    Fraczek, R.

    1990-02-01

    Analyzes effect of cooling equipment location in coal mines on ventilation air flow on the example of recirculated-water coolers in an air conditioning system planned for the 950 m horizon of the Morcinek mine. The ventilation system has two intake shafts and one ventilation shaft. Input data for calculation of the ventilation system are given. Calculation method and calculation results of thermal depression in winter and summer are presented. It was found that thermal depression reaches 10% of the main fan depression and causes air flow to increase by 4%. However, the power of the main fan motor falls by only 0.7%. The conclusion is reached that although thermal depression in a deep mine can assume a significant value (over 400 Pa), it has little effect on the working point of the main fan when an air stream of over 400 m{sup 3}/s flows through one shaft. Thus the location of the cooler in the return water cooling equipment has an insignificant effect on the main fan's working point. 8 refs.

  5. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    , with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated...... were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from...

  6. Texture Based Image Analysis With Neural Nets

    Science.gov (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.

    1990-03-01

    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  7. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  8. Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers

    Science.gov (United States)

    Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2017-04-01

    Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high

  9. Petri Nets

    Indian Academy of Sciences (India)

    Associate Professor of. Computer Science and. Automation at the Indian. Institute of Science,. Bangalore. His research interests are broadly in the areas of stochastic modeling and scheduling methodologies for future factories; and object oriented modeling. GENERAL I ARTICLE. Petri Nets. 1. Overview and Foundations.

  10. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  11. Effect of cholera toxin on glucose absorption and net movements of water and electrolytes in the intestinal loop of sheep.

    Science.gov (United States)

    Hyun, H S; Onaga, T; Mineo, H; Kim, J T; Kato, S

    1996-12-01

    This study was designed to evaluate the effect of cholera toxin on glucose absorption and net movement of water and electrolytes in the jejunal loop of sheep. Intraluminal perfusion was performed at the rate of 1 ml/min with isotonic 10 mM glucose solution. Osmolality was adjusted by adding NaCl, and the outflow solution was collected every 10 min. After a 30 min control period, cholera toxin was applied intraluminally for 30 min at doses of 30, 60, and 120 micrograms/loop. In the control period, water, sodium and chloride were absorbed, while potassium and bicarbonate were secreted. Cholera toxin reversed the net absorption of water, sodium and chloride to net secretions, and this secretory response to cholera toxin was dose-dependent. Bicarbonate secretion was stimulated dose-dependently by cholera toxin. Potassium secretion was also increased at all doses, though this response was not dose-dependent. The net glucose absorption was decreased dose-dependently by cholera toxin. In conclusion, these results indicate that cholera toxin stimulates water and electrolyte secretion, and inhibits glucose absorption in the jejunal loop of sheep.

  12. Effect of Calcium Chloride and Cooling on Post-Harvest Brussels Cabbage (Brassica Oleracea L.

    Directory of Open Access Journals (Sweden)

    Alfonso Rincón Pérez

    2014-11-01

    Full Text Available In recent years, the demand of crucifers has increased and particularly of Brussels sprouts (Brassica genus, species Brassica oleracea L.; mainly due to their functional properties; however, this vegetable is perishable and with inadequate techniques in postharvest handling, considerable losses are generated. The objective of this research was to determine the effect of calcium chloride and cooling on postharvest behavior of Brussels sprouts. A completely randomized design was performed, treatments corresponded to three storage temperatures (4°C, 8°C and temperature (18°C and three concentrations of calcium chloride (0%, 2% and 4% were used. Sprouts were harvested at commercial maturity on a farm irrigation district in Usochicamocha, Boyacá Department; of uniform size, excellent plant health and free from mechanical damage conditions. For 19 days of storage, weight loss, respiratory rate and total chlorophyll were measured. Sprouts stored at room temperature lasted 11days postharvest, while cooled lasted for 19 days. A significant effect in reducing weight loss between those sprouts which were stored at 4°C and 8°C and treated with calcium chloride solution at 4% was observed. For the respiratory rate was observed a significant reduction insprouts stored at 4°C. Therefore the most favorable temperature for the storage of Brussels sprouts is 4°C and calcium chloride solution 4%,useful information for producers and marketers.

  13. Effect of pre-cooling, fruit coating and packaging on postharvest quality of apple.

    Science.gov (United States)

    Wijewardane, R M Nilanthi Anuruddika; Guleria, S P S

    2013-04-01

    Freshly harvested apple fruits cv.'Royal Delicious' were subjected to Surface coating with 1, 1.5, 2% neem oil (Azadirachta indica) and 10, 15, 20% marigold flower (Tagetes erectus) extracts with pre cooling on apple storage quality was tested. Then the fruits were analyzed for physicochemical and physiological characters such as loss in weight, fruit firmness, total soluble solids (TSS) content, titratable acidity (TA), pH, reducing sugar contents, pectin, total anthocyanin, polygalacturonase (PG) activity and fruit spoilage. The results revealed that, the 1.5-2% concentration of neem oil as a surface coating along with pre-cooling was the most effective by retaining better physiochemical characteristics, in addition, significantly lowering disease incidence. Similarly, packaging of fruits with corrugated fiber board (CFB) boxes + paper mould trays, CFB + Polyethylene (PE) liners and shrink wrapped tray packing during storage (18-25 °C and 65-75% RH), revealed that 2% neem oil surface coating with shrink wrap tray packing resulted the better retention of storage life and, whereas, the treatment effect on physico-chemical characteristics of fruits were significant (p fruits (10-15 °C, 70-75% RH) during ambient storage (18-25 ° C, 65-75% RH).

  14. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    Science.gov (United States)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  15. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    Science.gov (United States)

    Tušek, J.; Engelbrecht, K.; Mikkelsen, L. P.; Pryds, N.

    2015-03-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead to different stabilized superelastic behaviors. The stabilized (trained) wires were further tested isothermally (at low strain-rate) and adiabatically (at high strain-rate) at different temperatures (from 312 K to 342 K). We studied the impact of the training temperature and resulting superelastic behavior on the adiabatic temperature changes. The largest measured adiabatic temperature change during loading was 25 K with a corresponding 21 K change during unloading (at 322 K). A special focus was put on the irreversibilities in the adiabatic temperature changes between loading and unloading. It was shown that there are two sources of the temperature irreversibilities: the hysteresis (and related entropy generation) and the temporary residual strain immediately after unloading, respectively. The latter results in the temporary bending of the wire and reduced negative adiabatic temperature change. The paper also shows the impact of the applied strain on the adiabatic temperature changes as well as the distribution of the elastocaloric effect over the wire during loading in the case of two wires trained at different temperatures and the virgin wire, respectively. In the end, we propose guidelines about the required material properties for an efficient elastocaloric cooling device.

  16. Effect of decreasing dietary phosphorus supply on net recycling of inorganic phosphate in lactating dairy cows

    DEFF Research Database (Denmark)

    Puggaard, Liselotte; Kristensen, Niels Bastian; Sehested, Jens Jakob

    2011-01-01

    Five ruminally cannulated lactating Holstein cows, fitted with permanent indwelling catheters in the mesenteric vein, hepatic vein, portal vein, and an artery were used to study intestinal absorption and net recycling of inorganic phosphate (Pi) to the gastrointestinal tract. Treatments were low P...... restrictively, resulting in equal dry matter intakes as well as milk, fat, and protein yields between treatments. Net Pi recycling (primarily salivary) was estimated as the difference between net portal plasma flux (net absorption of Pi) and apparently digested tP (feed – fecal tP difference). Phosphorus intake...... (LP; 2.4 g of P/kg of DM) and high P (HP; 3.4 g of P/kg of DM). The dietary total P (tP) concentrations were obtained by replacing 0.50% calcium carbonate in the LP diet with 0.50% monocalcium phosphate in the HP diet. Diets were fed for 14 d and cows were sampled on d 14 in each period. Cows were fed...

  17. Effect of twine diameter on fishing power of experimental gill nets used in Greenland waters

    DEFF Research Database (Denmark)

    Hovgård, Holger

    1996-01-01

    The relative fishing powers of experimental gill nets were estimated for shorthorn sculpin (Myoxocephalus scorpius), Greenland cod (Gadus ogac), and Atlantic cod (Gadus morhua). The results suggested that fishing power was negatively correlated to the ratio between twine diameter and mesh size...

  18. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  19. Rotational effects of polymeric fluids on shape of filaments in melt extruded net structures

    CSIR Research Space (South Africa)

    Rawal, A

    2006-01-01

    Full Text Available The present work deals with the net structures, which are produced by replacing the static die (spinneret) with two concentric dies rotating in opposite directions in a melt extrusion process. These dies consist of defined number of slots with non...

  20. The effect of insecticide-treated bed net on malarial parasitaemia ...

    African Journals Online (AJOL)

    Also, some field studies have indicated that the efficacy achieved might be due to the high coverage rate achieved during the trial that produced a mass killing of mosquitoes in the communities. Aim: To assess the impact of the use of the insecticide-treated bed net in a programme situation, on malarial parasitaemia, ...

  1. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy.

    Science.gov (United States)

    Nomura, Sadahiro; Inoue, Takao; Imoto, Hirochika; Suehiro, Eiichi; Maruta, Yuichi; Hirayama, Yuya; Suzuki, Michiyasu

    2017-04-01

    Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r(2) = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r(2) = 0.11). Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  3. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench

    Science.gov (United States)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.

    2017-09-01

    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  4. [Potentiative effects of noradrenaline on the neurogenic vasoreactivity diminished by cooling].

    Science.gov (United States)

    Iartsev, V N; Karachentseva, O V; Dvoretskiĭ, D P

    2013-08-01

    The effect of 0.03--1.0 μM noradrenaline on the response to electrical field stimulation of the juvenile rat tail artery segment at 36 degrees C and after cooling to 25 degrees C was studied. At 25 degrees C, the neurogenic vasoconstriction was inhibited, but low dose noradrenaline potentiate the constriction. This potentiation was greater at 25 degrees C than at 36 degrees C, following spontaneous decline in the constriction counteracted by noradrenaline. At low temperature, the potentiative effects of noradrenaline were greater at high frequency of electrical field stimulation. The phenomenon of increase in the noradrenaline-evoked potentiation of neurogenic vasoconstriction inhibited by cold may be of importance for thermoregulation. It could provide restoration of diminished effectiveness of the neurogenic contractile signal thus leading to low heat emission at low temperature.

  5. Effect of Air Cooling and Vacuum Cooling Storage on the β-Carotene Content and Proximate Analysis (Water Content, pH, Total Protein and Content of Sugar) in Carrot

    Science.gov (United States)

    Kusumaningsih, T.; Martini, T.; Rini, K. S.; Okstafiyanti, L.

    2017-04-01

    The study of air cooling and vacuum cooling storage effect on the β-carotene content and proximate analysis in carrot has been studied. The aim of the research to determine the effective storage in carrot to improve the quality and the shelf life. Parameters measured during the 12 weeks of storage process were β-carotene, pH, water, sugar and protein content. Validation analysis for β-carotene method showed a good linearity (r 2 = 0.997) in a range of 0-8 mg/L and (r 2 = 0.999) in a range of 0-1 mg/L. The precision was exemplified by %RSD of 0.88%-7.48%. Mean recovery was 100.66% during accuracy studied. UV analysis revealed the LOD values were 0.009 mg/L and LOQ values were 0.032 mg/L. The decreased content of β-carotene, water, protein, and pH from carrot during vacuum cooling storage were higher than in the air cooling storage period. The sugar content for air cooling storage increased up to eight weeks and decreased at the end of storage while the vacuum cooling storage decreased from the beginning of the storage period. All the data indicates that the air cooling storage was more effective storage techniques for extending the shelf life of carrot compared to the vacuum cooling storage.

  6. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  7. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  8. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble.

    Science.gov (United States)

    Kim, Jung-Hyun; Coca, Aitor; Williams, W Jon; Roberge, Raymond J

    2011-07-01

    This study investigated the effects of body cooling using liquid cooling garments (LCG) on performance time (PT) and recovery in individuals wearing a fully equipped prototype firefighter ensemble (PFE) incorporating a self-contained breathing apparatus (SCBA). Six healthy male participants (three firefighters and three non-firefighters) completed six experimental sessions in an environmental chamber (35°C, 50% relative humidity), consisting of three stages of 15 min exercise at 75% VO2max, and 10 min rest following each exercise stage. During each session, one of the following six conditions was administered in a randomized order: control (no cooling, CON); air ventilation of exhaust SCBA gases rerouted into the PFE (AV); top cooling garment (TCG); TCG combined with AV (TCG+AV); a shortened whole body cooling garment (SCG), and SCG combined with AV (SCG+AV). Results showed that total PT completed was longer under SCG and SCG+AV compared with CON, AV, TCG, and TCG+AV (pAV>TCG=TCG+AV>SCG>SCG+AV) without a statistical difference between the conditions (prest and prolongs performance time in subsequent bouts of exercise. LCG also appears to be an effective method for body cooling that promotes heat dissipation during uncompensable heat stress.

  9. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  10. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-09-14

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  11. The lock-in effect and the greening of automotive cooling systems in the European Union.

    Science.gov (United States)

    Bjørnåvold, Amalie; Van Passel, Steven

    2017-12-01

    As of 2017, the sale and use of the refrigerants most commonly used in automotive cooling systems - hydrofluorocarbons - are entirely banned in all new vehicles placed on the market in the European Union. These refrigerants have been recognised as potent greenhouse gases and, therefore, direct contributors to climate change. It is within this regulation-driven market that the technologies for a sustainable solution have been developed. However, this paper argues that the market for automotive cooling systems has been 'locked-in', which means that competing technologies, operating under dynamic increasing returns, will allow for one - potentially inferior technology - to dominate the market. Whilst such a situation is not uncommon, this paper discusses the way that regulation has reinforced a patented monopoly in 'picking winners': to the advantage of a synthetic chemical, R-1234yf, as opposed to the natural solution, which is CO 2 . By developing a generic conceptual framework of path dependence and lock-in, the presented evidence seeks to show how a snowballing effect has led to the intensification of differences in market share. We also argue that the automotive industry is potentially promoting short-term fixes, rather than long-term, sustainable and economically viable solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The comparative analysis of single and multi-effect absorption cooling machines

    OpenAIRE

    Ruciski, A.; Rusowicz, A.

    2009-01-01

    Описані результати розрахунку коефіцієнта корисної дії абсорбувальних охоло- джувальних утановок, а також представлено охолоджувальні установки багатокатної дії з сукупністю характеристичних робочих параметрів. This paper reports on the results of calculation of cooling machine absorption coefficients of performance as well as presentation of multi effect cooling machines with set of characteristic working parameters....

  13. Effectiveness and equity of the Tanzania National Voucher Scheme for mosquito nets over 10 years of implementation.

    Science.gov (United States)

    Kramer, Karen; Mandike, Renata; Nathan, Rose; Mohamed, Ally; Lynch, Matthew; Brown, Nick; Mnzava, Ally; Rimisho, Wilhelmina; Lengeler, Christian

    2017-06-15

    The Tanzania National Voucher Scheme (TNVS) was a public private partnership managed by the Ministry of Health that provided pregnant women and infants with highly subsidized (long-lasting) insecticide-treated nets between 2004 and 2014. It was implemented in the context of the National Insecticide Treated Nets (NATNETS) Programme and was the main keep up strategy for vulnerable populations. The programme design was adjusted considerably over time to incorporate new evidence, shifting public health policies, and changing donor priorities. Three TNVS models can be distinguished: (1) the fixed discount; (2) the fixed top-up; (3) the hybrid voucher model. The changes improved equity and effectiveness, but also had a profound effect on how the programme was managed and implemented. The TNVS reached the majority of beneficiaries with vouchers, and significantly increased household ownership and use of LLINs. While two mass distribution campaigns implemented between 2009 and 2011 achieved universal coverage and equity, the TNVS ensured continuous protection of the vulnerable populations before, during and after the campaigns. The TNVS stimulated and maintained a large national retail network which managed the LLIN supply chain. The effectiveness of the TNVS was a function of several interdependent factors, including the supply chain of vouchers through the public health system; the supply chain of nets in the commercial sector; the demand for nets from voucher recipients; management and risk mitigation measures; and the influence of global and donor objectives. The TNVS was a highly innovative and globally influential programme, which stimulated the thinking around effectively and equitably distributing ITNs, and contributed directly to the evolution of global policy. It was a fundamental component of the NATNETS programme which protected a malaria-vulnerable population for over a decade.

  14. Effects of socioeconomic factors on household appliance, lighting, and space cooling electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Aydinalp, M. [Itron Inc., Boston, MA (United States); Ismet Ugursal, V.; Fung, A.S. [Dalhousie University, Halifax (Canada). Dept. of Mechanical Engineering

    2003-07-01

    Two methods are currently used to model residential energy consumption at the national or regional level: the engineering method and the conditional demand analysis (CDA) method. One of the major difficulties associated with the use of engineering models is the inclusion of consumer behaviour and socioeconomic factors that have significant effects on the residential energy consumption. The CDA method can handle socioeconomic factors if they are included in the model formulation. However, the multicollinearity problem and the need for a very large amount of data make the use of CDA models very difficult. It is shown in this paper that the neural network (NN) method can be used to model the residential energy consumption with the inclusion of socioeconomic factors. The appliances, lighting, and cooling component of the NN based energy consumption model developed for the Canadian residential sector is presented here and the effects of some socioeconomic factors on the residential energy consumption are examined using the model. (author)

  15. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling

    Science.gov (United States)

    Engelbrecht, Kurt; Tušek, Jaka; Sanna, Simone; Eriksen, Dan; Mishin, Oleg V.; Bahl, Christian R. H.; Pryds, Nini

    2016-06-01

    Elastocaloric cooling has emerged as a promising alternative to vapor compression in recent years. Although the technology has the potential to be more efficient than current technologies, there are many technical challenges that must be overcome to realize devices with high performance and acceptable durability. We study the effects of surface finish and training techniques on dog bone shaped polycrystalline samples of NiTi. The fatigue life of several samples with four different surface finishes was measured and it was shown that a smooth surface, especially at the edges, greatly improved fatigue life. The effects of training both on the structure of the materials and the thermal response to an applied strain was studied. The load profile for the first few cycles was shown to change the thermal response to strain, the structure of the material at failure while the final structure of the material was weakly influenced by the surface finish.

  16. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study.

    Science.gov (United States)

    Briët, Olivier J T; Penny, Melissa A; Hardy, Diggory; Awolola, Taiwo S; Van Bortel, Wim; Corbel, Vincent; Dabiré, Roch K; Etang, Josiane; Koudou, Benjamin G; Tungu, Patrick K; Chitnis, Nakul

    2013-02-25

    The effectiveness of insecticide-treated nets in preventing malaria is threatened by developing resistance against pyrethroids. Little is known about how strongly this affects the effectiveness of vector control programmes. Data from experimental hut studies on the effects of long-lasting, insecticidal nets (LLINs) on nine anopheline mosquito populations, with varying levels of mortality in World Health Organization susceptibility tests, were used to parameterize malaria models. Both simple static models predicting population-level insecticidal effectiveness and protection against blood feeding, and complex dynamic epidemiological models, where LLINs decayed over time, were used. The epidemiological models, implemented in OpenMalaria, were employed to study the impact of a single mass distribution of LLINs on malaria, both in terms of episodes prevented during the effective lifetime of the batch of LLINs, and in terms of net health benefits (NHB) expressed in disability-adjusted life years (DALYs) averted during that period, depending on net type (standard pyrethroid-only LLIN or pyrethroid-piperonyl butoxide combination LLIN), resistance status, coverage and pre-intervention transmission level. There were strong positive correlations between insecticide susceptibility status and predicted population level insecticidal effectiveness of and protection against blood feeding by LLIN intervention programmes. With the most resistant mosquito population, the LLIN mass distribution averted up to about 40% fewer episodes and DALYs during the effective lifetime of the batch than with fully susceptible populations. However, cost effectiveness of LLINs was more sensitive to the pre-intervention transmission level and coverage than to susceptibility status. For four out of the six Anopheles gambiae sensu lato populations where direct comparisons between standard LLINs and combination LLINs were possible, combination nets were more cost effective, despite being more expensive

  17. Cheating the Locals: Invasive Mussels Steal and Benefit from the Cooling Effect of Indigenous Mussels.

    Directory of Open Access Journals (Sweden)

    Justin A Lathlean

    Full Text Available The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of

  18. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  19. Effect of Water Vapor During Secondary Cooling on Hot Shortness in Fe-Cu-Ni-Sn-Si Alloys

    Science.gov (United States)

    Sampson, Erica; Sridhar, Seetharaman

    2014-10-01

    Residual Cu in recycled steel scrap can cause hot shortness when the iron matrix is oxidized. Hot shortness can occur directly after the solid steel is formed from continuous casting as the steel undergoes a cooling process known as secondary cooling where water is first sprayed on the surface to promote cooling. This is followed by a radiant cooling stage where the steel is cooled in air to room temperature. This investigation examines the roles of water vapor, Si content, temperature, and the presence of Sn in a Fe-0.2 wt pct Cu-0.05 wt pct Ni alloy on oxidation, separated Cu and Cu induced-hot shortness during simulations of the secondary cooling process. The secondary cooling from 1473 K (1200 °C) resulted in a slight increase in liquid quantity and grain boundary penetration as compared to the isothermal heating cycles at 1423 K (1150 °C) due to the higher temperatures experienced in the non-isothermal cycle. The addition of water vapor increased the sample oxidation as compared to samples processed in dry atmospheres due to increased scale adherence, scale plasticity, and inward transport of oxygen. The increase in weight gain of the wet atmosphere increased the liquid formation at the interface in the non-Si containing alloys. The secondary cooling cycle with water vapor and the effect of Sn lead to the formation of many small pools of Cu-rich liquid embedded within the surface of the metal due to the Sn allowing for increased grain boundary decohesion and the water vapor allowing for oxidation within liquid-penetrated grain boundaries. The presence of Si increased the amount of occlusion of Cu and Fe, significantly decreasing the quantity of liquid at the interface and the amount of grain boundary penetration.

  20. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.

    Science.gov (United States)

    Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik

    2015-08-01

    Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The

  1. Effects of Thermal Barrier Coatings on Approaches to Turbine Blade Cooling

    Science.gov (United States)

    Boyle, Robert J.

    2007-01-01

    Reliance on Thermal Barrier Coatings (TBC) to reduce the amount of air used for turbine vane cooling is beneficial both from the standpoint of reduced NOx production, and as a means of improving cycle efficiency through improved component efficiency. It is shown that reducing vane cooling from 10 to 5 percent of mainstream air can lead to NOx reductions of nearly 25 percent while maintaining the same rotor inlet temperature. An analysis is given which shows that, when a TBC is relied upon in the vane thermal design process, significantly less coolant is required using internal cooling alone compared to film cooling. This is especially true for small turbines where internal cooling without film cooling permits the surface boundary layer to remain laminar over a significant fraction of the vane surface.

  2. The effect of twine thickness on the size selectivity and fishing power of Baltic cod gill nets

    DEFF Research Database (Denmark)

    Holst, René; Wileman, D.; Madsen, Niels

    2002-01-01

    . Subsequently a model was fitted for the mean selectivity taking between-set variation into account. The selectivity Curve that fitted the data best was given by the sum of two normal distributions. It was found that twine thickness and trials period had relatively little effect upon the shape......Sea trials were carried out on a Danish commercial vessel measuring the size selectivity and fishing power of gill nets used to catch Baltic cod (Gadus morhua). A comparison was made of two different twine thicknesses at two different times of the year. Nominal mesh sizes of 70-130 mm were used....... Method of capture, condition factor and girths were measured for sub- samples of the cod caught. A model of the size selectivity of the gill nets was adapted to the experimental conditions where two gears were fished on the same population. This model was fitted to the catch data for each set...

  3. Minimization of the Effects of Secondary Reactions on Turbine Film Cooling in a Fuel Rich Environment

    Science.gov (United States)

    2014-06-02

    Kirk et al. also performed a CFD simulation on reactive film cooling [4]. Their results are shown in Figure 2.13 and show a comparison between...fail. However, starting in 1960, cooling methods were introduced to turbine airfoils allowing for an increase in T4max above the failure temperature... airfoils with high-pressure air bled from the compressor. In 1970, a new cooling technology was introduced where air was bled from the internal passages

  4. The effect of cooling procedure on the characteristics and quality of raw milk

    OpenAIRE

    Slavko Kirin

    2001-01-01

    Prompt cooling of the milk after milking is vital to preserve milkcharacteristics untill manufacture. The way and the speed of the cooling as well as cooling time and temperature have an important influence on physicochemical characteristics and psychrophilic and psychrotrophic microflora development in milk. Intensity of these changes are especially evident in milk kept at low temperatures more than 48 hours, which make this milk unusable for further processing. The minerals balance is distu...

  5. [Impacts of urban cooling effect based on landscape scale: a review].

    Science.gov (United States)

    Yu, Zhao-wu; Guo, Qing-hai; Sun, Ran-hao

    2015-02-01

    The urban cooling island (UCI) effect is put forward in comparison with the urban heat island effect, and emphasizes on landscape planning for optimization of function and way of urban thermal environment. In this paper, we summarized current research of the UCI effects of waters, green space, and urban park from the perspective of patch area, landscape index, threshold value, landscape pattern and correlation analyses. Great controversy was found on which of the two factors patch area and shape index has a more significant impact, the quantification of UCI threshold is particularly lacking, and attention was paid too much on the UCI effect of landscape composition but little on that of landscape configuration. More attention should be paid on shape, width and location for water landscape, and on the type of green space, green area, configuration and management for green space landscape. The altitude of urban park and human activities could also influence UCI effect. In the future, the threshold determination should dominate the research of UCI effect, the reasons of controversy should be further explored, the study of time sequence should be strengthened, the UCI effects from landscape pattern and landscape configuration should be identified, and more attention should be paid to spatial scale and resolution for the precision and accuracy of the UCI results. Also, synthesizing the multidisciplinary research should be taken into consideration.

  6. Effects of menthol application on the skin during prolonged immersion in cool and cold water.

    Science.gov (United States)

    Botonis, P G; Kounalakis, S N; Cherouveim, E D; Koskolou, M D; Geladas, N D

    2017-09-20

    The aim of the study was to compare the effect of skin surface menthol application on rectal temperature (Tre) during prolonged immersion in cool and cold water. We hypothesized that menthol application would lead to a slower Tre decline due to the reduced heat loss as a consequence of the menthol-induced vasoconstriction and that this effect would be attenuated during cold-water immersion. Six male subjects were immersed for 55 minutes in stirred cool (24°C) or cold (14°C) water immediately after attaining a Tre of 38°C by cycling at 60% of maximum heart rate on two occasions: without (ΝM) and with (M) whole-body skin application of menthol cream. Tre, the proximal-distal skin temperature gradient, and oxygen uptake were continuously measured. ANOVA with repeated measures was employed to detect differences among variables. Significance level was set at 0.05. The area under the curve for Tre was calculated and was greater in 24°C M (-1.81 ± 8.22 a.u) compared to 24°C NM (-27.09 ± 19.09 a.u., P = .03, r = .90), 14°C NM (-18.08 ± 10.85 a.u., P = .03, r = .90), and 14°C M (-11.71 ± 12.58 a.u, P = .05, r = .81). In cool water, oxygen uptake and local vasoconstriction were increased (P ≤ .05) by 39 ± 25% and 56 ± 37%, respectively, with menthol compared to ΝM, while no differences were observed in cold water. Menthol application on the skin before prolonged immersion reduces heat loss resulting in a blunted Tre decline. However, such a response is less obvious at 14°C water immersion, possibly because high-threshold cold-sensitive fibers are already maximally recruited and the majority of cold receptors saturated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study

    Science.gov (United States)

    Lu, Yangyang; Wen, Zuozhu; Shi, Dalin; Chen, Mingming; Zhang, Yao; Bonnet, Sophie; Li, Yuhang; Tian, Jiwei; Kao, Shuh-Ji

    2018-01-01

    Dinitrogen fixation (NF) by marine cyanobacteria is an important pathway to replenish the oceanic bioavailable nitrogen inventory. Light is the key to modulating NF; however, field studies investigating the light response curve (NF-I curve) of NF rate and the effect of light on diazotroph-derived nitrogen (DDN) net release are relatively sparse in the literature, hampering prediction using models. A dissolution method was applied using uncontaminated 15N2 gas to examine how the light changes may influence the NF intensity and DDN net release in the oligotrophic ocean. Experiments were conducted at stations with diazotrophs dominated by filamentous cyanobacterium Trichodesmium spp. in the western Pacific and the South China Sea. The effect of light on carbon fixation (CF) was measured in parallel using the 13C tracer method specifically for a station characterized by Trichodesmium bloom. Both NF-I and CF-I curves showed a Ik (light saturation coefficient) range of 193 to 315 µE m-2 s-1, with light saturation at around 400 µE m-2 s-1. The proportion of DDN net release ranged from ˜ 6 to ˜ 50 %, suggesting an increasing trend as the light intensity decreased. At the Trichodesmium bloom station, we found that the CF / NF ratio was light-dependent and the ratio started to increase as light was lower than the carbon compensation point of 200 µE m-2 s-1. Under low-light stress, Trichodesmium physiologically preferred to allocate more energy for CF to alleviate the intensive carbon consumption by respiration; thus, there is a metabolism tradeoff between CF and NF pathways. Results showed that short-term ( < 24 h) light change modulates the physiological state, which subsequently determined the C / N metabolism and DDN net release by Trichodesmium. Reallocation of energy associated with the variation in light intensity would be helpful for prediction of the global biogeochemical cycle of N by models involving Trichodesmium blooms.

  8. Effect of cooling rate on properties of plasma nitrided AISI 1010 steel

    OpenAIRE

    ALVES Jr, Clodomiro; Lima, José de Anchieta; HAJEK, VACLAV; Cunha, João Batista Marimon; Santos,Carlos Alberto

    2007-01-01

    In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was...

  9. Effect of façade systems on the performance of cooling ceilings: In situ measurements

    Directory of Open Access Journals (Sweden)

    Katharina Eder

    2015-03-01

    Full Text Available This article presents an innovative façade system designed to increase the thermal comfort inside an office room and to enhance the cooling capacity of the suspended cooling ceiling. A series of measurements is conducted in an existing office building with different façade systems (i.e., a combination of glazing and shading. An innovative façade system is developed based on this intensive set of measurements. The new system enhances the thermal comfort and cooling capacity of the suspended cooling ceiling. The main usage of the new system is the refurbishment and improvement of existing façade systems.

  10. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis).

    Science.gov (United States)

    Chen, Yulong; Wu, Jijun; Xu, Yujuan; Fu, Manqing; Xiao, Gengsheng

    2014-09-03

    A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.

  11. Transient and cyclic effects on a PCM-cooled mobile device

    Directory of Open Access Journals (Sweden)

    Tso C.P.

    2015-01-01

    Full Text Available A mock handset with heat storage unit (HSU has been designed, fabricated, and experimented under various conditions to examine the effect of external heat sink on the handset’s transient temperature distribution, performance of the individual HSU under different power level and orientation, as well as under the more realistic cyclic heating. The cooling of the handset is through using a phase change material (PCM, n-eicosane, stored in the external HSU connected to the handset through a miniature heat pipe. The heat pipe channels the internal heat dissipation to the HSU where it is absorbed by the PCM. Results show that the temperature is significantly lowered with the PCM-based HSU.

  12. Effect of electricity tariffs and cooling technologies on dairy farm electricity consumption, related costs and greenhouse gas emissions

    NARCIS (Netherlands)

    Upton, J.R.; Shalloo, L.; Murphy, M.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2014-01-01

    The aim of this study was to provide insight into the variations in dairy farm electricity costs across five electricity tariffs. The effect of four milk cooling scenarios is also simulated to illustrate the effect of technologies on the electricity consumption, related costs and CO2 emissions of a

  13. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves.

    Science.gov (United States)

    Harley, P.; Guenther, A.; Zimmerman, P.

    1996-01-01

    In June 1993, net photosynthetic rates, stomatal conductance and isoprene emission rates of sweetgum leaves (Liquidambar styraciflua L.) were measured at the top of the forest canopy (sun leaves) and within the canopy at a height of 8-10 m above ground level (shade leaves). Large differences in net photosynthetic rates and stomatal conductance were found between sun and shade leaves. Mean rates of isoprene emission, expressed on a leaf area basis, were significantly lower in shade leaves than in sun leaves (4.1 versus 17.1 nmol m(-2) s(-1)); however, because specific leaf area of sun leaves was lower than that of shade leaves (0.0121 versus 0.0334 m(2) g(-1)), the difference between sun and shade leaves was less, though still significant, when isoprene emissions were expressed on a dry mass basis (45.5 versus 29.0 micro g C g(-1) h(-1)). Saturation of both net photosynthesis and isoprene emission occurred at lower PPFDs in shade leaves than in sun leaves. The effect of leaf temperature on isoprene emissions also differed between sun and shade leaves. Sun leaves lost a significantly greater percentage of fixed carbon as isoprene than shade leaves. The leaf-level physiological measurements were used to derive parameters for a canopy-level isoprene flux model. The importance of incorporating differences between sun- and shade-leaf properties into existing models is discussed.

  14. [Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng)].

    Science.gov (United States)

    Liang, Yao; Jiang, Xiao-Li; Yang, Fen-Tuan; Cao, Qing-Jun; Li, Gang

    2014-08-01

    The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P lead concentration was also observed (P lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.

  15. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  16. Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport.

    Science.gov (United States)

    Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake

    2013-01-01

    To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.

  17. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    Science.gov (United States)

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  18. Effect of netting direction and number of meshes around on size selection in the codend for Baltic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Wienbeck, Harald; Herrmann, Bent; Moderhak, Waldemar

    2011-01-01

    We investigated experimentally the effect that turning the netting direction 90° (T90) and halving the number of meshes around in the circumference in a diamond mesh codend had on size selection of Baltic cod. The results generally agreed with predictions of a previous simulation-based study. Both...... modifications had a significant positive effect on the size selection of cod. The best selection results were obtained for a codend in which both factors were applied together. For that codend, very little between-haul variation in cod size selection was detected, especially compared to the reference codend...

  19. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  20. Magnetocaloric and Hopkinson effects in slowly and rapidly cooled Gd{sub 7}Pd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Talik, Ewa; Guzik, Adam; Oboz, Monika; Zajdel, Pawel; Ziolkowski, Grzegorz [Silesia Univ., Katowice (Poland). Inst. of Physics

    2016-01-15

    Gd{sub 7}Pd{sub 3} intermetallic compound was prepared as slowly cooled polycrystal and rapidly cooled (rc) casts. The slowly cooled polycrystalline samples were obtained by melting in an induction coil. The rc-cast Gd{sub 7}Pd{sub 3} sample was obtained by means of a mould casting technique. The samples were characterized by means of X-ray diffraction, SQUID magnetometry and scanning electron microscopy in order to elucidate the Hopkinson effect and magnetocaloric properties in relation to the technological aspects. The investigated ferromagnetic system is sensitive to grain size. The magnetocaloric and Hopkinson effect decreases with the decrease of the grain size. The results were compared to the data of single crystal obtained by the Czochralski method from a levitating melt.

  1. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    Directory of Open Access Journals (Sweden)

    Angelica Garcia-Olivares

    2016-03-01

    Conclusions: Cooling of pig sperm to −7 °C (no freezing damaged sperm function and structure; in contrast, cooling to either −3 °C or −5 °C did not change pig sperm survival after freeze-thawing.

  2. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Suplicz, A.; Szabo, F.; Kovacs, J.G., E-mail: kovacs@pt.bme.hu

    2013-12-20

    Highlights: • BN, talc and TiO{sub 2} in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO{sub 2})) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly.

  3. Observed increase in local cooling effect of deforestation at higher latitudes

    Science.gov (United States)

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei. Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  4. Infrared camera evaluation of the cooling effect of triamcinolone acetonide aerosol.

    Science.gov (United States)

    Linkner, Rita V; Sohn, Andrew; Goldenberg, Kristin A; Lebwohl, Mark

    2013-11-01

    Triamcinolone acetonide spray is a topical corticosteroid indicated for the relief of inflammatory/pruritic manifestations of corticosteroid-responsive dermatoses. There are clinical reports of an antipruritic, cooling sensation appreciated upon application. This study was designed to quantify the cryotherapeutic cooling effect of triamcinolone acetonide spray. Using an infrared video camera, skin surface temperature was evaluated for change upon application of the triamcinolone acetonide and two comparator ingredient components of triamcinolone acetonide: ethanol alcohol in a non-aerosolized spray and triamcinolone acetonide cream. This was an open-label, single center, comparator study. This study enrolled 20 subjects with a diagnosis of either an acute or chronic steroid-responsive dermatosis. Ten additional controls were also enrolled. Using an infrared video camera, skin surface temperature was evaluated for change upon application of the triamcinolone acetonide and two comparator ingredient components of triamcinolone acetonide:ethanol alcohol in a non-aerosolized spray and triamcinolone acetonide cream. Across every study cohort, the average change in skin surface temperature with triamcinolone acetonide (between 16-18°C; P<0.001 for all comparisons, Figures 1 and 2) was significantly greater than the change demonstrated by both the non-aerosolized spray (between 5-7°C) and the triamcinolone acetonide cream (between 5.0-6.5°C). The transient temperature change of nearly 20°C with triamcinolone acetonide is most likely attributable to the refrigerant properties of the isobutane propellant of this product. Similar to other common cryotherapy methods, triamcinolone acetonide can achieve very low skin surface temperatures, which may result in localized relief of pruritus.

  5. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  6. Hypothalamic, rectal, and muscle temperatures in exercising dogs - Effect of cooling

    Science.gov (United States)

    Kruk, B.; Kaciuba-Uscilko, H.; Nazar, K.; Greenleaf, J. E.; Kozlowski, S.

    1985-01-01

    An experimental investigation of the mechanisms of performance prolongation during exercise is presented. Measurements were obtained of the rectal, muscle, and hypothalamic temperature of dogs during treadmill exercise at an ambient temperature of 22 + or - 1 C, with and without cooling by use of ice packs. In comparison with exercise without cooling, exercise with cooling was found to: (1) increase exercise duration from 90 + or - 14 to 145 + or - 15 min; (2) attenuate increases in hypothalamic, rectal and muscle temperature; (3) decrease respiratory and heart rates; and (4) lower blood lactic acid content. It is shown that although significant differences were found between the brain, core, and muscle temperatures during exercise with and without cooling, an inverse relation was observed between muscle temperature and the total duration of exercise. It is suggested that sustained muscle hyperthermia may have contributed to the limitation of working ability in exercise with and without cooling.

  7. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  8. [Effects of environmental factors on catch variation of main species of stow net fisheries in East China Sea].

    Science.gov (United States)

    Zhou, Sufang; Fan, Wei; Cui, Xuesen; Cheng, Yanhong

    2004-09-01

    Stow net fishery is one of the important fishing methods in the East China Sea. This paper used the generalized additive models (GAMs) to quantitatively describe the relationships between stow net catch and environmental factors (sea surface temperature SST, water depth, fishing position and tide) in the East China Sea. The results indicated that each factor had its own nonlinear effect on the catch per unit effort (CPUE) of haitail (Trichiurus japonicus), small yellow croaker (Larimichthys polyactis) and butter fish (Pampus spp.), and SST and water depth were the key factors. The GAMs' fitting results showed that SST had the strongest effect on the catch per unit effort of haitail, and water depth had the second one. The effects of fishing location and tide were very small. Water depth was the most influential variable when adjusted for the effects on small yellow croaker. SST, fishing location and tide had similar effects. Meanwhile, water depth and SST were the key factors affecting the catch per unit effort of butter fish. They had similar intensity.

  9. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.

    Science.gov (United States)

    Räisänen, Mikko; Repo, Tapani; Lehto, Tarja

    2006-04-01

    Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. In 2003, the freezing point of primordial shoots of buds (T(f)), i.e. the low-temperature exotherm (LTE), was, on average, -39 degrees C when buds were thawed for less than 3 h and the T(f) increased to -21 degrees C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 degrees C h(-1). In 2005, buds dehardened linearly from -39 degrees C to -35 degrees C at a rate of 0.7 degrees C h(-1). In 2003, different cooling rates of 1-5 degrees C h(-1) had a minor effect on T(f) but in 2005 with slow cooling rates T(f) decreased. In both samplings, at cooling rates of 2 and 1 degrees C h(-1), T(f) was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, T(f) was somewhat lower in B-fertilized trees. There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.

  10. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    Science.gov (United States)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  11. Effect of Cooling Rate on the Mechanical Strength of Carbon Fiber-Reinforced Thermoplastic Sheets in Press Forming

    Science.gov (United States)

    Tatsuno, D.; Yoneyama, T.; Kawamoto, K.; Okamoto, M.

    2017-07-01

    The purpose of this study is to elucidate the effect of the cooling rate of the carbon fiber-reinforced thermoplastic (CFRTP) sheets on the mechanical property in the press forming within 1 min cycle time. In order to pay attention only to the compression stage after the deformation stage in press forming, a flat sheet of dimensions 200 mm × 100 mm × 3 mm was produced. It was fabricated by stacking 15 CFRTP sheets of 0.2-mm-thick plain woven fabric impregnated with PA6, preheating them to 280 °C and pressing them at 5 MPa using a die cooled from near the melting temperature of PA6 with various cooling rates. Cooling rate of -26 °C/s with pressure holding time (defined in this study as the period that the pressure sensor detects high pressure) of 7 s and that of -4.4 °C/s with pressure holding time of 18 s gave a flexural strength of 536 and 733 MPa, respectively. It was found that the cooling rate during pressure holding is related to the mechanical property of press-formed CFRTP part.

  12. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  13. Effects of Blood-cooling and Stasis-removing Formula on Hemorheology in Rats with Acute Blood Stasis

    Directory of Open Access Journals (Sweden)

    Songyi Ning

    2013-06-01

    Full Text Available Objective: To investigate the effects of blood-cooling and stasis-removing formula on hemorheology in rats with acute blood stasis induced by mutifactor stimuli. Methods: The selected SD rats orally took blood-cooling and stasis-removing granule for six days, then the model of acute blood stasis was prepared on the fifth day by injection of epinephrine combined with ice-water bath. The variations of blood-cooling and stasis-removing granule on hemorheology were detected. Results: The high-dose group of blood-cooling and stasis-removing formula can decrease plasma viscosity in rats with acute blood stasis, and obviously reduce the blood viscosity under the condition of shear rates (200s-1, 30s-1, 5s-1, 1s-1 (P < 0.01, P < 0.05. The middle-dose group can decrease the blood viscosity under the condition of shear rate (30s-1 (P < 0.05. Conclusion: Blood-cooling and stasis-removing formula can improve abnormal hemorheology in rats with acute blood stasis.

  14. Artificial cooling of the atmosphere - A discussion on the environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Department of Mechanical Engineering, Rio de Janeiro, RJ (Brazil); de Araujo, Maria Silvia Muylaert [Energy and Environment Planning Program/Federal University of Rio de Janeiro, COPPE/UFRJ - Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP 21945-970, Caixa Postal: 68501 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    This article presents a literature review to discuss some new technological options for climate change mitigation called as Geoengineering and the environmental impacts related to aerosol emissions. Some proposals to produce a cooler effect in the Earth surface at short term are defending the injection of a large quantity of aerosol particles in the stratosphere like a ''virtual Pinatubo''. In 15 June 1991 a volcanic eruption of the Pinatubo Mount in Philippines resulted in around -0.5 C variation in Earth surface temperature in 1992 and only in 1995 the temperature returned back to the former one. Several important environmental issues arise from this kind of mitigation proposal. Some of the topics which may be considered relevant in such analysis are: the level of acceptable risk of this kind of technological option for the human and the environment as a whole; the foreseen linear and non-linear impacts resultant from the artificial cooling effect in the Earth surface; the feasibility and cost-effectiveness of this kind of proposals. The environmental problems associated to aerosols injections into the stratosphere are the main topic discussed in the present article. (author)

  15. Optimum design of composite panel with photovoltaic-thermo module. Absorbing effect of cooling panel; Hikari netsu fukugo panel no saiteki sekkei. Reikyaku panel no kyunetsu koka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Kikuchi, S.; Tani, T. [Science University of Tokyo, Tokyo (Japan); Kadotani, K.; Imaizumi, H. [Komatsu Ltd., Tokyo (Japan)

    1996-10-27

    The composite panel with photovoltaic-thermo module becomes higher in energy-saving than the conventional air-conditioning system by the independent radiational heating and cooling effect obtained when the generating panel using a solar cell module is combined with the heating and cooling panel using a thermo-element module. The output of a solar cell module can be directly used because the solar cell module operates in AC. This paper reports the relation between the absorbed value and power consumption of the cooling panel, while paying attention to the cooling panel. The performance coefficient of the maximum absorbed value from an non-absorbing substance to a cooling panel is 2 to 3. Assume that the cooling panel during non-adiabatic operation is operated using a solar cell module of 800 W/m{sup 2} in solar intensity and 15% in conversion efficiency. The cooling-surface temperature difference is 12.12 K, and the maximum absorbed value of a non-absorbing substance to a cooling panel is 39.12 W/m{sup 2}. The absorbed value of the outer temperature to the cooling panel is 74.4 W/m{sup 2}, and each performance coefficient is 3.26 and 0.62. The absorbed value must be calculated for evaluation from the cooling-surface temperature difference measured directly from the cooling panel. 4 refs., 8 figs., 1 tab.

  16. Effect of alternate cooling systems and beneficial use of waste heat on power plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.K.; Porter, R.W.

    1978-11-01

    The performance and cost of alternate closed-cycle cooling systems for steam--electric power plants are discussed. Included are cooling ponds, spray canals and mechanical- and natural-draft wet cooling towers. Besides equipment, operational and maintenance costs, loss of generating capacity is determined on a seasonal basis in order to determine life-cycle costs relative to once-through cooling. In addition, two beneficial uses of waste heat are similarly analyzed: once-through discharge of condenser coolant into a municipal water supply and interaction of a conventional cooling system with a wastewater treatment plant. Both typical nuclear- and fossil-fueled power plants are considered throughout. Meteorological and system parameters were taken for the Chicago area as an example. Plant heat rates, availability and unit costs were selected from the literature. A new unified analysis of closed-cycle-cooling system performance is developed in order to facilitate computation of loss of generating capacity. The order of cooling systems in terms of increasing cost is: once-through, pond, natural-draft wet tower, spray canal and mechanical-draft wet tower. Alternatively, once-through discharge into a municipal water supply would save 1 to 2% of power-plant fuel and 14 to 22% of residential water-heater energy. Or, the interactive wastewater plant would save 2 to 15% of treatment costs, favoring larger facilities.

  17. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  18. EFFECT OF ELECTROLYZER CONFIGURATION AND PERFORMANCE ON HYBRID SULFUR PROCESS NET THERMAL EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M

    2007-03-16

    Hybrid Sulfur cycle is gaining popularity as a possible means for massive production of hydrogen from nuclear energy. Several different ways of carrying out the SO{sub 2}-depolarized electrolysis step are being pursued by a number of researchers. These alternatives are evaluated with complete flowsheet simulations and on a common design basis using Aspen Plus{trademark}. Sensitivity analyses are performed to assess the performance potential of each configuration, and the flowsheets are optimized for energy recovery. Net thermal efficiencies are calculated for the best set of operating conditions for each flowsheet and the results compared. This will help focus attention on the most promising electrolysis alternatives. The sensitivity analyses should also help identify those features that offer the greatest potential for improvement.

  19. Effects of different cooling principles on thermal sensation and physiological responses

    DEFF Research Database (Denmark)

    Schellen, Lisje; Loomans, Marcel G.L.C.; De Wit, Martin H.

    2013-01-01

    by the floor and mixing ventilation, and (6) AC-R-D-F; active cooling through radiation by the floor and displacement ventilation. Though all cases were designed at PMV ≈ 0, subjective data indicate significant differences between the cases. For the prediction of thermal sensation and thermal comfort under non......Applying low exergy cooling concepts in the built environment allows reduction of use of high quality energy sources. Non-uniform thermal conditions, which may occur due to application of lowex systems, can result in discomfort. Two different cooling principles were studied: passive (through...

  20. Effects of a New Cooling Technology on Physical Performance in U.S Air Force Military Personnel

    Science.gov (United States)

    2015-03-25

    in humans. Circulation. 2003; 107(6):824- 830. 4. Maughan RJ, Watson P, Shirreffs SM. Heat and cold : what does the environment do to the marathon...Palmer CD, Sleivert GG, Cotter JD. The effects of head and neck cooling on thermoregulation , pace selection, and performance. Proc Aust Physiol

  1. Cost-effectiveness of social marketing of insecticide-treated nets for malaria control in the United Republic of Tanzania

    National Research Council Canada - National Science Library

    Hanson, Kara; Kikumbih, Nassor; Armstrong Schellenberg, Joanna; Mponda, Haji; Nathan, Rose; Lake, Sally; Mills, Anne; Tanner, Marcel; Lengeler, Christian

    2003-01-01

    To assess the costs and consequences of a social marketing approach to malaria control in children by means of insecticide-treated nets in two rural districts of the United Republic of Tanzania, compared with no net use...

  2. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    -of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  3. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect.

    Science.gov (United States)

    An, Kyoung Jin; Lam, Yun Fat; Hao, Song; Morakinyo, Tobi Eniolu; Furumai, Hiroaki

    2015-12-01

    The potential use of rainwater harvesting in conjunction with miscellaneous water supplies and a rooftop garden with rainwater harvesting facility for temperature reduction have been evaluated in this study for Hong Kong. Various water applications such as toilet flushing and areal climate controls have been systematically considered depending on the availability of seawater toilet flushing using the Geographic Information System (GIS). For water supplies, the district Area Precipitation per Demand Ratio (APDR) has been calculated to quantify the rainwater utilization potential of each administrative district in Hong Kong. Districts with freshwater toilet flushing prove to have higher potential for rainwater harvest and utilization compared to the areas with seawater toilet flushing. Furthermore, the effectiveness of using rainwater harvesting for miscellaneous water supplies in Hong Kong and Tokyo has been analyzed and compared; this revives serious consideration of diurnal and seasonal patterns of rainfall in applying such technology. In terms of the cooling effect, the implementation of a rooftop rainwater harvesting garden has been evaluated using the ENVI-met model. Our results show that a temperature drop of 1.3 °C has been observed due to the rainwater layer in the rain garden. This study provides valuable insight into the applicability of the rainwater harvesting for sustainable water management practice in a highly urbanized city. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  5. Effect of hydro cooling and packaging on the shelf life of cold stored ...

    African Journals Online (AJOL)

    Selected litchi fruits cultivar Taiso harvested at full red color stage were destalked and were (a) non-hydro cooled and (b) hydro cooled at 0 - 1ºC for 12 to 15 minutes until the core pulp temperature reached 5ºC and were packed in LDPE plastic packaging, clip-on barquettes , opaque plastic bags,70 micron thick and cold ...

  6. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    Science.gov (United States)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In

  7. Effects of Permafrost Thaw on Net Ecosystem Carbon Balance in a Subarctic Peatland

    Science.gov (United States)

    Wang, Z.; Roulet, N. T.; Moore, T. R.

    2014-12-01

    This research is to assess changes in net ecosystem carbon balance (NECB) with permafrost thaw in northern peatland: in particular how changes in C biogeochemistry influence NECB. Thawed transects associated with varying stages of permafrost thaw: from palsas with intact permafrost (P), through edge of palsa (EP), dry lawn (DL), wet lawn (WL), edge of thawed pond (ET), pond sedges (PS), to several thawed ponds (TP) in a subarctic peatland in northern Quebec were sampled in the snow free seasons of 2013 and 2014. The exchange of CO2 and CH4, vegetation, dissolved organic C (DOC) concentration and biodegradability, active layer depth, air and peat temperatures, water table depth (WT), pH, and conductivity were measured. Peat temperatures were quite similar among different locations, but the WT decreased significantly along the transect creating varied environmental conditions that supporting different plant communities. From dry to wet area, vegetation abundance and biomass showed reductions of shrubs and lichens, and increases of Sphagnum, grasses and sedges. Pore water pH increased from dry to wet area, and conductivity slightly decreased. Wet thaw area WL, ET and PS had relatively higher season gross ecosystem production (GEP) and higher season ecosystem respiration (ER), but relative similar net ecosystem CO2 exchange (NEE). Only TP had a significant higher positive season NEE. Palsa was the only CH4 sink, and quite high CH4 emissions were found after it thawed. CH4-C release significantly increased from dry to wet in thawed area, which even several times bigger than total C exchange in ET and PS. Generally, wet area had higher DOC concentration and higher DOC biodegradability indicated by lower SUVA254 (except PS which received great influence from pond). All components in the NECB (GEP, ER, CH4, DOC) increased significantly in magnitude from palsa to wet thawed area, and ecosystem C sink turned into source as palsa thawed into PS and TP. These results

  8. Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum.

    Science.gov (United States)

    Ramírez-Santana, C; Pérez-Cano, F J; Audí, C; Castell, M; Moretones, M G; López-Sabater, M C; Castellote, C; Franch, A

    2012-05-01

    Breast milk constitutes the best form of newborn alimentation because of its nutritional and immunological properties. Banked human milk is stored at low temperature, which may produce losses of some bioactive milk components. During lactation, colostrum provides the requirements of the newborn during the first days of life. The aim of this study was to evaluate the effect of cooling storage at 4°C and freezing storage at -20°C and -80°C on bioactive factors in human colostrum. For this purpose, the content of IgA, growth factors such as epidermal growth factor, transforming growth factor (TGF)-β1 and TGF-β2, and some cytokines such as IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, and its type I receptor TNF-RI, were quantified. Some colostrum samples were stored for 6, 12, 24, and 48 h at 4°C and others were frozen at -20°C or -80°C for 6 and 12 mo. We quantified IgA, epidermal growth factor, TGF-β1, and TGF-β2 by indirect ELISA. Concentrations of IL-6, IL-10, and TNF-α cytokines, IL-8 chemokine, and TNF-RI were measured using the BD Cytometric Bead Array (BD Biosciences, Erembodegem, Belgium). Bioactive immunological factors measured in this study were retained in colostrum after cooling storage at 4°C for at least 48h, with the exception of IL-10. None of the initial bioactive factor concentrations was modified after 6 mo of freezing storage at either -20°C or -80°C. However, freezing storage of colostrum at -20°C and -80°C for 12 mo produced a decrease in the concentrations of IgA, IL-8, and TGF-β1. In summary, colostrum can be stored at 4°C for up to 48 h or at -20°C or -80°C for at least 6 mo without losing its immunological properties. Future studies are necessary to develop quality assurance guidelines for the storage of colostrum in human milk banks, and to focus not only on the microbiological safety but also on the maintenance of the immunological properties of colostrum. Copyright © 2012 American Dairy Science Association

  9. The effect of changing cow production and fitness traits on net income and greenhouse gas emissions from Australian dairy systems.

    Science.gov (United States)

    Bell, M J; Eckard, R J; Haile-Mariam, M; Pryce, J E

    2013-01-01

    The aim of this study was to compare the effect of changing a range of biological traits on farm net income and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq.) in the Australian dairy cow population. An average cow was modeled, using breed-average information for Holsteins and Jerseys from the Australian Dairy Herd Improvement Scheme. A Markov chain approach was used to describe the steady-state herd structure, as well as estimate the CO2-eq. emissions per cow and per kilogram of milk solids. The effects of a single unit change in herd milk volume, fat and protein yields, live weight, survival, dry matter intake, somatic cell count, and calving interval were assessed. With the traits studied, the only single-unit change that would bring about a desirable increase in both net income and reduced emissions intensity per cow and per kilogram of milk solids in Australian dairy herds would be an increase in survival and reductions in milk volume, live weight, DMI, SCC, and calving interval. The models developed can be used to assess lifetime dairy system abatement options by breeding, feeding, and management. Selective breeding and appropriate management can both improve health, fertility, and feed utilization of Australian dairy systems and reduce its environmental impact. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    Science.gov (United States)

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  11. Egg Yolk Protective Effect in Boar Spermatozoa Cooled at 5ºC

    Directory of Open Access Journals (Sweden)

    Alexandru-Vasile Rusu

    2011-05-01

    Full Text Available Nowadays, many boar reproduction researches are directed to improve extenders and to increase cold shock protection of semen. Little research is focused on the influence of egg yolk combined with alternative cold shock protective media. Egg yolk could interfere with other compounds present in the extender composition. The influence of egg yolk addition was assessed in boar sperm cells, cooled at 5ºC, to elucidate its effect on motility and membrane integrity. Flow Cytometry and Computer Assisted Semen Analysis (CASA were used to determine the rate of sperm with intact plasma and acrosomal membrane, respectively the sperm cells motility. Statistical analyses (T-Test were performed using GraphPad Prism version 5.00. Androhep Plus supplemented with 20% egg yolk (AhPlus+20%EY indicated a higher cold shock protection in progressive motility (93.9±2.64% and membrane integrity (79.78±4.14%, rather than the extender without egg yolk (p0.05. The combination egg yolk-AhPlus seems to be an alternative to standard extenders, conferring stability in boar sperm cells against cold shock.

  12. Study on the effect of naturally ventilated cavity wall for passive cooling of warehouse envelopes

    Science.gov (United States)

    Kadoya, Terunori; Utsumi, Yasuo

    A wall cavity with two open slits at top and bottom is expected to regulate overheating of the exterior walls by solar irradiation. This study focuses on estimating the effect with the simulation in steady-state. For a cavity wall which has 3000 mm height, 50 mm thickness and 40% aperture ratio of openings, scores of calculations were excuted. With the condition of 200 W/ m 2 solar irradiation, 15°C temperature difference between interior and exterior and 5 m 2 K/W heat resistance value of the solid part wall, the excution results indicated that the increasing rate of heat resistance by cavity was 21%, more temperature difference provided less efficiency, and more solar irradiation generated more effeciency. To define the ability of the cavity, apparant thermal conductivity of the cavity was estimated. The thermal conductivity of cavity (0.022 W /mK) can be smaller than good insulation materials under the condition of large solar irradiation value (600W/m2). Results proved that the cavity wall had enough performance for reduction of cooling load.

  13. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  14. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  15. Elastocaloric effect of a Ni-Ti plate to be applied in a regenerator-based cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2016-01-01

    , a testing and analysis of the elastocaloric effect of the Ni-Ti plate using infrared thermography is shown. Prior to the elastocaloric testing, the sample was mechanically polished and subjected to 200 loading–unloading cycles at a slow strain-rate and 10,000 loading–unloading cycles at high strain......The aim of this article is to analyze the elastocaloric effect of a commercial Ni-Ti plate for its application in a cooling device. In the first part, the article shows numerical results of the cooling characteristics of a regenerator-based elastocaloric cooling device with different thickness...... of the Ni-Ti plates based on a previously developed numerical model. It is shown that such a device (with a plate thickness of 0.1 mm) can produce a specific cooling power up to 7 kW/kg and coefficient of performance values up to 5 at the 30 K of the temperature span. In the second part of the article...

  16. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    Science.gov (United States)

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol-1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley

  17. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    Science.gov (United States)

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  18. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets : a modelling study

    OpenAIRE

    Briët, Olivier JT; Chitnis, Nakul

    2013-01-01

    Background The effectiveness of long-lasting, insecticidal nets (LLINs) in preventing malaria is threatened by the changing biting behaviour of mosquitoes, from nocturnal and endophagic to crepuscular and exophagic, and by their increasing resistance to insecticides. Methods Using epidemiological stochastic simulation models, we studied the impact of a mass LLIN distribution on Plasmodium falciparum malaria. Specifically, we looked at impact in terms of episodes prevented during the effective...

  19. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  20. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  1. The effect of cooling procedure on the characteristics and quality of raw milk

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-04-01

    Full Text Available Prompt cooling of the milk after milking is vital to preserve milkcharacteristics untill manufacture. The way and the speed of the cooling as well as cooling time and temperature have an important influence on physicochemical characteristics and psychrophilic and psychrotrophic microflora development in milk. Intensity of these changes are especially evident in milk kept at low temperatures more than 48 hours, which make this milk unusable for further processing. The minerals balance is disturbed and the casein micelles properties are changed thus having an influence on technological process, characteristics and the yield of product. Psychrotrophic microflora present in milk is mostly derived from the milk producing environment and poor hygienic conditions including water quality. Dominating psychrotrophic microflora, in low temperature cooled milk, are Pseudomonas bacteria. Pasteurisation destroys these bacteria but not theirs thermoduric proteolytic and lipolytic enzymes, degrading milk proteins and fats thus contributing to off-flavours and other defects of milk products. Although cooling procedure certainly improves the microbiological quality of raw milk, good hygienic practice is of vital importance in milk production, transportation and storage.

  2. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  3. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    2009-03-01

    Full Text Available Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not appropriate when applied to common multigenic diseases, because such methods investigate association with the phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects, from Mendelian to multifactorial epistasis. Random Forests (RF and Relief-F are two powerful machine-learning methods that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC feature selection, a flexible machine learning method that can integrate multiple importance scores while removing irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network (GAIN, whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs and infer a GAIN for a collection of SNPs associated with adverse events. Our results suggest an important

  4. Excitation of flare-induced waves in coronal loops and the effects of radiative cooling

    Science.gov (United States)

    Provornikova, Elena; Ofman, Leon; Wang, Tongjiang

    2018-01-01

    EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.

  5. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  6. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  7. Effect of cooling to different sub-zero temperatures on boar sperm cryosurvival

    OpenAIRE

    Angelica Garcia-Olivares; Cesar Garzon-Perez; Oscar Gutierrez-Perez; Alfredo Medrano

    2016-01-01

    Objective: To compare different cooling temperatures before ice formation on pig sperm quality, before and after cryopreservation. Methods: Semen diluted in BF5 was cooled from 23 °C to 5 °C (1% glycerol, 200 × 106 cells/mL). Sperm were packaged in plastic straws, and maintained at +5 °C per 16 h. 1. Freezing point of diluted spermatozoa was determined by exposing straws to nitrogen vapors. 2. Straws (at +5 °C) were further cooled to −3 °C, −5 °C, and −7 °C, and rewarmed. 3. Straws (at +5 ...

  8. Effect of particulate thermophoresis in reducing the fouling rate advantages of effusion-cooling

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    To predict small-particle diffusional mass transfer (deposition), including particle thermophoresis, transpiration cooling, and variable properties, the coupled ordinary differential equations governing self-similar laminar boundary layers are solved numerically. Under typical combustion turbine conditions, although diffusional deposition rates can be dramatically reduced by transpiration cooling (e.g., by some 5-decades for mainstream submicron particles corresponding to a Schmidt number of about 100 and a wall transpiration-cooled to Tw/Te = 0.8), actual deposition rate reductions will be smaller than previously expected (by about 1 decade for particles with Sc of about 100), owing to thermophoretic particle drift caused by the colder wall. Such microdroplets, small enough to behave like heavy molecules in combustion systems, are often important because they can cause adherence of the much larger ash particles which inertially impact on the same surface.

  9. Effect of Glucagon on Net Splanchnic Cyclic AMP Production in Normal and Diabetic Men

    Science.gov (United States)

    Liljenquist, John E.; Bomboy, James D.; Lewis, Stephen B.; Sinclair-Smith, Bruce C.; Felts, Philip W.; Lacy, William W.; Crofford, Oscar B.; Liddle, Grant W.

    1974-01-01

    Glucagon activates hepatic adenylate cyclase, thereby increasing acutely the liver content of cyclic AMP (cAMP) as well as the release of cAMP into the hepatic vein. Insulin, on the other hand, antagonizes this glucagon-mediated cAMP production, thus providing a hypothetical mechanism through which insulin might correct some of the metabolic abnormalities of diabetes. To study this hormonal interaction in man, net splanchnic cAMP production (NScAMPP) was investigated in normal and insulin-dependent diabetic men under basal conditions and in response to intravenous glucagon, 50 ng/kg/min for 2 h. In normals (n=19), basal hepatic vein cAMP concentration was 23.6±1.1 nM and NScAMPP was 1.7±0.6 nmol/min. Glucagon stimulated NScAMPP in four normal subjects to a peak of 99.6±43 nmol/min at 25 min with a subsequent fall to 12.4±5.1 nmol/min by 90 min despite continuing glucagon infusion. Endogenous insulin secretion was stimulated as indicated by rising levels of immunoreactive insulin and C-peptide (connecting peptide) immunoreactivity, raising the possibility that endogenous insulin might be responsible for the fall in NScAMPP that followed the initial spike. In the diabetics (n=8), basal hepatic vein cAMP concentration was 24.7±1.2 nM and NScAMPP was undetectable. Glucagon stimulated NScAMPP in five diabetics to a peak of 169.9±42.6 with a subsequent fall to 17.4±3.9 nmol/min by 90 min even though endogenous insulin secretion was not stimulated (no rise in C-peptide immunoreactivity). Although the mean increase in NScAMPP was greater in the diabetics, the two groups did not differ significantly. Conclusions. In normal resting man the liver is a significant source of circulating cAMP. Diabetics do not release abnormally large amounts of hepatic cAMP under basal conditions. Glucagon markedly enhances hepatic cAMP release with a spike-decline pattern in both normal and diabetic men. The decline in hepatic cAMP release despite continuing glucagon stimulation is due

  10. Properties of magnetically supported dissipative accretion flow around black holes with cooling effects

    Science.gov (United States)

    Sarkar, Biplob; Das, Santabrata; Mandal, Samir

    2018-01-01

    We investigate the global structure of the advection dominated accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. We consider synchrotron radiative process as an effective cooling mechanism active in the flow. With this, we obtain the global transonic accretion solutions by exploring the variety of boundary conditions and dissipation parameters, namely accretion rate ({\\dot{m}}) and viscosity (αB). The fact that depending on the initial parameters, steady state accretion flows can possess centrifugally supported shock waves. These global shock solutions exist even when the level of dissipation is relatively high. We study the properties of shock waves and observe that the dynamics of the post-shock corona (hereafter, PSC) is regulated by the flow parameters. Interestingly, we find that shock solution disappears completely when the dissipation parameters exceed their critical values. We calculate the critical values of viscosity parameter (α ^cri_B) adopting the canonical values of adiabatic indices as γ = 4/3 (ultrarelativistic) and 1.5 (seminon-relativistic) and find that in the gas pressure dominated domain, α ^cri_B ˜ 0.4 for γ = 4/3 and α ^cri_B ˜ 0.27 for γ = 1.5, respectively. We further show that global shock solutions are relatively more luminous compared to the shock free solutions. Also, we have calculated the synchrotron spectra for shocked solutions. When the shock is considered to be dissipative in nature, it would have an important implication as the available energy at PSC can be utilized to power the outflowing matter escaped from PSC. Towards this, we calculate the maximum shock luminosity and discuss the observational implication of our present formalism.

  11. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    Science.gov (United States)

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the

  12. Indirect evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, M.J.; Chapman, H.L.; Pescod, D.

    1976-01-01

    Characteristics and applications of three indirect evaporative cooling systems are described. The rock bed regenerative unit is now in licensed production and some operational experience is available, while the plastic plate heat exchanger unit has been demonstrated to be effective. A third system, based on a rotary heat exchanger is included. Although less development has been done on it, several successful applications of the heat exchanger are operational. All systems provide comfort cooling in which building indoor temperature varies over the day at an operating cost less than 50% of that of a comparable refrigerated cooling system.

  13. Moderating factors of immediate, gross, and net cross-brand effects of price promotions

    NARCIS (Netherlands)

    C. Horváth (Csilla); D. Fok (Dennis)

    2013-01-01

    textabstractThis article examines cross-price promotional effects in a dynamic context. Among other things, we investigate whether previously established findings hold when consumer and competitive dynamics are taken into account. Five main influential effects (asymmetric price effect, neighborhood

  14. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda

    Directory of Open Access Journals (Sweden)

    Strachan Daniel

    2010-04-01

    Full Text Available Abstract Background In Uganda, long-lasting insecticidal nets (LLIN have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Methods Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY. These effects were calculated for the total number of LLINs delivered and for those retained and used. Results After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja and 99% (ANC Adjumani were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja. Economic cost for ANC distribution were considerably higher (USD 2.27 compared to campaign costs (USD 1.23 in Adjumani. Conclusions Targeted campaigns and routine ANC

  15. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda.

    Science.gov (United States)

    Kolaczinski, Jan H; Kolaczinski, Kate; Kyabayinze, Daniel; Strachan, Daniel; Temperley, Matilda; Wijayanandana, Nayantara; Kilian, Albert

    2010-04-20

    In Uganda, long-lasting insecticidal nets (LLIN) have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC) services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY). These effects were calculated for the total number of LLINs delivered and for those retained and used. After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja) and 99% (ANC Adjumani) were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja). Economic cost for ANC distribution were considerably higher (USD 2.27) compared to campaign costs (USD 1.23) in Adjumani. Targeted campaigns and routine ANC services can both achieve high LLIN retention and use among

  16. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu; Ma, Yaoguang; Zhai, Yao; Tan, Gang; Yin, Xiaobo; Yang, Ronggui

    2017-11-01

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  17. Safety and effectiveness of scalp cooling in cancer patients undergoing cytotoxic treatment

    NARCIS (Netherlands)

    Hurk, Corina Johanna Geertruida van den

    2013-01-01

    Various cytotoxics cause severe alopecia, it is estimated to affect more than 15.000 Dutch cancer patients per year. Hair loss has high impact on the majority of these patients, they describe it as stigmatizing and a constant reminder of cancer disease. Scalp cooling decreases hair loss and is well

  18. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  19. Numerical simulation of the effects of hanging sound absorbers on TABS cooling performance

    DEFF Research Database (Denmark)

    Rage, Nils; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    Recently there has been a considerable increase in the use of Thermally-Active Building Systems (TABS) in Europe as an energy-efficient and economical cooling and heating solution for buildings. However, this widespread solution requires large uncovered hard surfaces indoors, which can lead to a ...

  20. Effects of acoustic ceiling units on the cooling performance of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Niels; Kazanci, Ongun Berk

    2017-01-01

    Europe, with a building stock responsible for about 40% of the total energy use, needs to reduce the primary energy use in buildings in order to meet the 2020 energy targets of the European Union. High temperature cooling and low temperature heating systems, and as an example, Thermally Activated...

  1. Effect of T56 preswirl cooling modelling on disc assembly temperature prediction

    CSIR Research Space (South Africa)

    Roos, TH

    2007-09-01

    Full Text Available The T56 Series III 1st stage rotor blade is cooled using moderately preswirled air from 36 preswirl injection nozzles. The amount of swirl achieved by discrete preswirl coolant jets is generally unknown, due to mixing losses. A “frozenrotor” CFD...

  2. Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60

    Science.gov (United States)

    Sharifi, P.; Fan, Y.; Anaraki, H. B.; Banerjee, A.; Sadayappan, K.; Wood, J. T.

    2016-10-01

    With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness via established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.

  3. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  4. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Similarly, application of postharvest quarantine heat treatment (52-55 °C) for 5 minutes to mango showed no heat injury (HI) symptoms like skin scalding, damaged lenticels which could be due to very short duration of exposure. Extent of recommendation of pre-cooling temperature and heat treatment of these fruits after ...

  5. High Cooling Water Temperature Effects on Design and Operational Safety of NPPs in the Gulf Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo [Khalifa Univ., Abu Dhabi (United Arab Emirates); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-12-15

    The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4Χ1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  6. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  7. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    ... rates increase with increasing body temperature, and for all body temperatures heart rates were greater during heating than during cooling. This suggests that the cardiovascular system plays a role in the heat exchange of the tortoises, but further study is required to completely understand the thermoregulatory process.

  8. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    OpenAIRE

    Yuquan, Li; Botao, Hao; Jia, Zhong; Nan, Wang

    2017-01-01

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although so...

  9. Effect of pre-cooling injection site on pain perception in pediatric dentistry: "A randomized clinical trial"

    OpenAIRE

    Faezeh Ghaderi; Shahin Banakar; Shima Rostami

    2013-01-01

    Background: Injection of local anesthesia is one of the most important reasons for development of avoidance behavior in children. Efforts have been performed to decrease pain perception of injection. The present research evaluated the effect of cooling the injection site on pain perception before infiltration of local anesthetics. Materials and Methods: A prospective single-blind crossover clinical trial was used to investigate pain perception in 50 healthy pediatric patients who needed b...

  10. Water freezing at outdoor temperatures higher than 0 °C by the effect of radiative cooling

    Science.gov (United States)

    Sugawara, M.; Tago, M.; Komatsu, Y.; Beer, H.

    2018-01-01

    A numerical analysis is adopted to construct a diagram for estimating freezing of thin water layers at outdoor temperatures higher than 0 °C by the effect of radiative cooling. Freezing is affected significantly by the wind-temperature and - velocity as well as cloud temperature which are encountered in winter seasons. On a fine day, the observed outdoor freezing data show fairly good agreement with the present diagram.

  11. Single-Sided Digital Microfluidic (SDMF Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling

    Directory of Open Access Journals (Sweden)

    Sung-Yong Park

    2016-12-01

    Full Text Available Digital microfluidics (DMF driven by electrowetting-on-dielectric (EWOD has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchannels, and capillary wicks. However, a typical sandwiched configuration in DMF devices only allows sensible heat transfer, which seriously limits heat rejection capability, particularly for high-heat-flux thermal dissipation. In this paper, we present a single-sided digital microfluidic (SDMF device that enables not only effective liquid handling on a single-sided surface, but also two-phase heat transfer to enhance thermal rejection performance. Several droplet manipulation functions required for two-phase cooling were demonstrated, including continuous droplet injection, rapid transportation as fast as 7.5 cm/s, and immobilization on the target hot spot where heat flux is locally concentrated. Using the SDMF platform, we experimentally demonstrated high-heat-flux cooling on the hydrophilic-coated hot spot. Coolant droplets were continuously transported to the target hot spot which was mitigated below 40 K of the superheat. The effective heat transfer coefficient was stably maintained even at a high heat flux regime over ~130 W/cm2, which will allow us to develop a reliable thermal management module. Our SDMF technology offers an effective on-chip cooling approach, particularly for high-heat-flux thermal management based on two-phase heat transfer.

  12. The effects of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage

    DEFF Research Database (Denmark)

    Hesarinejad, Mohammad Ali; Sami Jokandan, Maryam; Mohammadifar, Mohammad Amin

    2017-01-01

    In this study, the effect of concentration (0.5, 1, 1.5 and 2%) and heating-cooling rate (1, 5 and 10 °C min−1) on the rheological properties of Plantago lanceolata seed mucilage (PLSM) solutions were investigated. It was observed that the gum dispersions exhibited viscoelastic properties under...... information. The results revealed that PLSM had high total sugar content (87.35%), and it is likely an arabinoxylomannan-type polysaccharide....

  13. Effect of the Aerosol Type Selection for the Retrieval of Shortwave Ground Net Radiation: Case Study Using Landsat 8 Data

    Directory of Open Access Journals (Sweden)

    Cristiana Bassani

    2016-08-01

    Full Text Available This paper discusses the aerosol radiative effects involved in the accuracy of shortwave net radiation, R n . s w , with s w ∈ (400–900 nm, retrieved by the Operational Land Imager (OLI, the new generation sensor of the Landsat mission. Net radiation is a key parameter for the energy exchange between the land and atmosphere; thus, R n . s w retrieval from space is under investigation by exploiting the increased spatial resolution of the visible and near-infrared OLI data. We adopted the latest version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV atmospheric radiative transfer model implemented in the atmospheric correction algorithm (OLI Atmospherically-Corrected Reflectance Imagery (OLI@CRI developed specifically for OLI data. The values of R n . s w were obtained by varying the microphysical properties of the aerosol during the OLI@CRI retrieval of both the OLI surface reflectance, ρ p x l o l i , and the incoming solar irradiance at the surface. The analysis of the aerosol effects on the R n . s w was carried out on a spectrally-homogeneous desert area located in the southwestern Nile Delta. The results reveal that the R n . s w available for energy exchange between the land and atmosphere reduces the accuracy (NRMSE ≃ 14% when the local aerosol microphysical properties are not considered during the processing of space data. Consequently, these findings suggest that the aerosol type should be considered for variables retrieved by satellite observations concerning the energy exchange in the natural ecosystems, such as Photosynthetically-Active Radiation (PAR. This will also improve the accuracy of land monitoring and of solar energy for power generation when space data are used.

  14. The effect of cannibalism intensity on the net primary production and the dynamics of trophic links in the aquatic ecosystem

    Science.gov (United States)

    Sirobokova, I.; Pechurkin, N.

    The aim of the work was to construct a mathematical model of the effect of cannibalism intensity on the dynamic behavior and functional characteristics of simple aquatic ecosystems. A mathematical model of an aquatic ecosystem has been constructed, with the following principal trophic links: limiting nutrient concentration, producers (phytoplankton), predators of the first order, and predators of the second order. The model takes into account the age structure of the second-order predator and includes two age groups (the young and adults). The adult predators of the second order are cannibals feeding on both first-order predators and their own young, which consume phytoplankton. The model was used to investigate the effect of cannibalism intensity on the net primary production and the dynamics of trophic links in the aquatic ecosystem characterized by cannibalism at the upper trophic level or by the emergence of a third-order predator in the system. It has been found that when cannibalism increases above a certain level, the concentrations of both adults and the young of the 2nd-order predators decrease. At the same time, the concentrations of the 1st-order predators and of nutrients increase, while the biomass of producers decreases. When the cannibalism intensity is low, the net primary production of the system increases to a certain level with the increase in cannibalism intensity and drops sharply when the level of consumption of the young is high. The emergence of the 3rd-order predator in the system leads to a change in the dynamics of links in conformity with the "bottom-up" and "top-down" control. Thus, cannibalism of a certain magnitude can lead to an increase in integrated parameters of aquatic ecosystems: the amount of energy used by the ecosystem and the productivity in the photosynthesis link.

  15. Effects of cooling rate on vermicular graphite percentage in a brake drum produced by one-step cored wire injection

    Directory of Open Access Journals (Sweden)

    Yu-shuang Feng

    2015-09-01

    Full Text Available In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.

  16. Analysis on Cooling Effect of Crushed-Rocks Embankment of Qinghai-Tibet High-Grade Road

    Directory of Open Access Journals (Sweden)

    Dongqing Li

    2015-01-01

    Full Text Available In order to study the cooling effect of the crushed-rocks embankment, the permeability and the inertial resistance coefficient were measured by the wind tunnel test of spheres with a diameter of 20 cm, and then the stabilities of the closed crushed-rocks embankment with the wide pavement, the closed crushed-rocks embankment with the narrow pavement, and the duct-ventilated and closed crushed-rocks embankment were calculated. In the next 50 years, assuming that the temperature in Qinghai-Tibet plateau will rise by 2.6°C condition, the cooling effects of these three special high-grade embankment structures were studied. The test results and the numerical calculation results show that the relationship between pressure gradient and seepage velocity in the spheres layer diverges completely from Darcy’s law, and it shows a nice quadratic nonlinear relationship. Stabilities of those two closed crushed-rock embankments without the duct-ventilated structure could be destroyed because of the high permafrost temperature under embankments. The duct-ventilated and closed crushed-rocks embankment can cool down the permafrost effectively and raise the permafrost table and ensure the long-term thermal stability of permafrost under road.

  17. Effect of rapid cooling and acidic pH on cellular homeostasis of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium.

    Science.gov (United States)

    Chihib, N E; Tholozan, J L

    1999-06-01

    Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.

  18. The NET effect of dispersants : A critical review of testing and modelling of surface oil dispersion

    NARCIS (Netherlands)

    Marieke Zeinstra-Helfrich; Wierd Koops; Albertinka J. Murk

    2015-01-01

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and

  19. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion

    NARCIS (Netherlands)

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, A.J.

    2015-01-01

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and

  20. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months.

    Directory of Open Access Journals (Sweden)

    Rebecca A Strong

    Full Text Available The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1 thermally cooled perches, 2 perches with ambient air, and 3 cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures.

  2. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  3. Net profit flow per country from 1980 to 2009 : The long-term effects of foreign direct investment

    NARCIS (Netherlands)

    Akkermans, Dirk H.M.

    2017-01-01

    Aim of the paper The paper aims at describing and explaining net profit flows per country for the period 1980-2009. Net profit flows result from Foreign Direct Investment (FDI) stock and profit repatriation: inward stock creating a profit outflow and outward FDI stock a profit inflow. Profit flows,

  4. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  5. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-10-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  6. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  7. It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes

    Science.gov (United States)

    Armenio, Patricia M.; Bunnell, David B.; Adams, Jean V.; Watson, Nicole M.; Woelmer, Whitney

    2017-01-01

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

  8. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    Science.gov (United States)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  9. Net effects of nitrogen fertilization on the nutritive value and digestibility of oat forages

    Science.gov (United States)

    Applications of soil amendments containing N are part of routine forage management strategies for grasses, with a primary goal of increasing forage yield. However, the effects of N fertilization on forage nutritive value, estimates of energy density, and in-vitro DM or NDF disappearance often have b...

  10. Net effects of gasoline price changes on transit ridership in U.S. urban areas.

    Science.gov (United States)

    2014-12-01

    Using panel data of transit ridership and gasoline prices for ten selected U.S. urbanized areas over the time period of 2002 to 2011, : this study analyzes the effect of gasoline prices on ridership of the four main transit modesbus, light rail, h...

  11. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    Science.gov (United States)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  12. Effect of stroke rate on the distribution of net mechanical power in rowing

    NARCIS (Netherlands)

    Hofmijster, M.J.; Landman, E.H.; Smith, R.M.; van Soest, A.J.

    2007-01-01

    The aim of this study was to assess the effect of manipulating stroke rate on the distribution of mechanical power in rowing. Two causes of inefficient mechanical energy expenditure were identified in rowing. The ratio between power not lost at the blades and generated mechanical power (P̄

  13. A study of the effect of the FertilMate™ scrotum cooling patch on male fertility. SCOP trial (scrotal cooling patch - study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Osman M

    2012-04-01

    Full Text Available Abstract Background Male infertility is a significant contributor to the need for fertility treatment. Treatment currently involves correcting any identifiable adverse lifestyle factors in men with suboptimal sperm parameters, and if these measures are unsuccessful, assisted conception is offered, which can be quite expensive. Raised scrotal temperature is one of the least studied but easily corrected risk factors for male infertility. In a recent review of the literature, sperm count, motility and morphology improved with scrotal cooling devices. The devices used to achieve testicular cooling were, however, not practical for day-to-day use. A potentially more practical device for scrotal cooling has recently been developed. The Babystart® FertilMate™ Scrotum Cooling Patch is a hydrogel pad which allows for comfortable application. The aims of this study were to investigate whether exposing the scrotum to lower temperatures by means of these new patches could improve semen parameters, thereby improving fertility, and to assess the feasibility of a clinical trial. Methods/design This is a randomised controlled trial set in a university teaching hospital in the United Kingdom. The proposed sample size was 40 men with mild, moderate or severe oligoasthenospermia, of whom 20 would be randomised to wearing the scrotum cooling patch for 90 days and 20 men would be acting as controls and not wearing the patches. The primary outcome measure was the change in sperm concentration. Secondary outcome measures included the change in sperm volume, motility and morphology; endocrine parameters; metabolomic biomarkers; testicular volume and blood flow. Reasons for dropping out and non-compliance were also going to be noted and reported. Discussion The study started recruiting in October 2011 and as of November 2011 four men had been consented and were participating in the study. No operational challenges had been encountered at the time of the submission

  14. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia/Programa de Pos-Graduacao em Engenharia Civil, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana - UTFPR, Av. Sete de Setembro, 3165. Curitiba PR, CEP. 80230-901 (Brazil); Gonzalez Cruz, Eduardo [Instituto de Investigaciones de la Facultad de Arquitectura y Diseno (IFAD), Universidad del Zulia, Nucleo Tecnico de LUZ, Av. Goajira (16) con Calle 67, Maracaibo, CP 4011-A-526 (Venezuela); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles CA, USA, and Ben Gurion University (Israel)

    2010-06-15

    In this paper, we compare results of a long-term temperature monitoring in a building with high thermal mass to indoor temperature predictions of a second building that uses an indirect evaporative cooling system as a means of passive cooling (Vivienda Bioclimatica Prototipo -VBP-1), for the climatic conditions of Sde Boqer, Negev region of Israel (local latitude 30 52'N, longitude 34 46'E, approximately 480 m above sea level). The high-mass building was monitored from January through September 2006 and belongs to a student dormitory complex located at the Sde Boqer Campus of Ben-Gurion University. VBP-1 was designed and built in Maracaibo, Venezuela (latitude 10 34'N, longitude 71 44'W, elevation 66 m above sea level) and had its indoor air temperatures, below and above a shaded roof pond, as well as the pond temperature monitored from February to September 2006. Formulas were developed for the VBP-1, based on part of the whole monitoring period, which represent the measured daily indoor maximum, average and minimum temperatures. The formulas were then validated against measurements taken independently in different time periods. The developed formulas were here used for estimating the building's thermal and energy performance at the climate of Sde Boqer, allowing a comparison of two different strategies: indirect evaporative cooling and the use of thermal mass. (author)

  15. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study

    Science.gov (United States)

    Zhang, M.; Li, B.; Xiong, Z. Q.

    2016-11-01

    Organic fertilizer may not only improve soil quality but may also contribute to climate protection by increasing carbon sequestration in agricultural ecosystems. A 3-yr study was conducted with ten consecutive vegetable crops in intensively managed vegetable cropping systems in southeastern China to examine the effects of organic fertilizer application (ORGA) on net global warming potential (net GWP) after accounting for carbon dioxide equivalent emissions from all sources including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon (SOC) sequestration derived from the net ecosystem carbon budget). Results indicated that ORGA significantly increased ecosystem respiration by 13.9% without obvious effects on CH4 and N2O emissions as compared to local conventional chemical fertilization (CHEM). The SOC sequestration rates during the 3-year observation period were estimated at -0.52 t C ha-1 for the control, -0.42 t C ha-1 for the CHEM plot and 0.27 t C ha-1 for the ORGA plot, respectively, and thus contributed significantly to the net GWP. Overall, compared with CHEM, the ORGA significantly decreased net GWP and greenhouse gas intensity by 15.3% and 27.4%, respectively. Our findings suggest that higher yields and lower greenhouse gas intensities and carbon costs can be achieved by substituting chemical nitrogen fertilizers with organic fertilization strategies.

  16. Host pollination mode and mutualist pollinator presence: net effect of internally ovipositing parasite in the fig-wasp mutualism

    Science.gov (United States)

    Zhang, Fengping; Peng, Yanqiong; Compton, Stephen G.; Zhao, Yi; Yang, Darong

    2009-04-01

    The Ficus-their specific pollinating fig wasps (Chalcidoidea, Agaonidae) interaction presents a striking example of mutualism. Figs also shelter numerous non-pollinating fig wasps (NPFW) that exploit the fig-pollinator mutualism. Only a few NPFW species can enter figs to oviposit, they do not belong to the pollinating lineage Agaonidae. The internally ovipositing non-agaonid fig wasps can efficiently pollinate the Ficus species that were passively pollinated. However, there is no study to focus on the net effect of these internally ovipositing non-agaonid wasps in actively pollinated Ficus species. By collecting the data of fig wasp community and conducting controlled experiments, our results showed that internally ovipositing Diaziella bizarrea cannot effectively pollinate Ficus glaberrima, an actively pollinated monoecious fig tree. Furthermore, D. bizarrea failed to reproduce if they were introduced into figs without Eupristina sp., the regular pollinator, as all the figs aborted. Furthermore, although D. bizarrea had no effect on seed production in shared figs, it significantly reduced the number of Eupristina sp. progeny emerging from them. Thus, our experimental evidence shows that reproduction in Diaziella depends on the presence of agaonid pollinators, and whether internally ovipositing parasites can act as pollinators depends on the host fig’s pollination mode (active or passive). Overall, this study and others suggest a relatively limited mutualistic role for internally ovipositing fig wasps from non-pollinator (non-Agaonidae) lineages.

  17. Net benefits: assessing the effectiveness of clinical networks in Australia through qualitative methods

    Science.gov (United States)

    2012-01-01

    Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical network effectiveness at

  18. Net benefits: assessing the effectiveness of clinical networks in Australia through qualitative methods

    Directory of Open Access Journals (Sweden)

    Cunningham Frances C

    2012-11-01

    Full Text Available Abstract Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical

  19. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  20. Effects of winter temperature and summer drought on net ecosystem exchange of CO2 in a temperate peatland

    Science.gov (United States)

    Helfter, Carole; Campbell, Claire; Dinsmore, Kerry; Drewer, Julia; Coyle, Mhairi; Anderson, Margaret; Skiba, Ute; Nemitz, Eiko; Billett, Michael; Sutton, Mark

    2014-05-01

    Northern peatlands are one of the most important global sinks of atmospheric carbon dioxide (CO2); their ability to sequester C is a natural feedback mechanism controlled by climatic variables such as precipitation, temperature, length of growing season and period of snow cover. In the UK it has been predicted that peatlands could become a net source of carbon in response to climate change with climate models predicting a rise in global temperature of ca. 3oC between 1961-1990 and 2100. Land-atmosphere exchange of CO2in peatlands exhibits marked seasonal and inter-annual variations, which have significant short- and long-term effects on carbon sink strength. Net ecosystem exchange (NEE) of CO2 has been measured continuously by eddy-covariance (EC) at Auchencorth Moss (55° 47'32 N, 3° 14'35 W, 267 m a.s.l.), a temperate peatland in central Scotland, since 2002. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from 5 m and the site has a mean annual precipitation of 1155 mm. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The EC system consists of a LiCOR 7000 closed-path infrared gas analyser for the simultaneous measurement of CO2 and water vapour and of a Gill Windmaster Pro ultrasonic anemometer. Over the 10 year period, the site was a consistent yet variable sink of CO2 ranging from -34.1 to -135.9 g CO2-C m-2 yr-1 (mean of -69.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing seasons and mean winter air temperature explained 93% of the variability in summertime sink strength, indicating a phenological memory-effect. Plant development and productivity were stunted by colder winters causing a net reduction in the annual carbon sink strength of this peatland where autotrophic processes are thought to be

  1. The effect of peripheral opioid block and body cooling on sensitivity to heat in capsaicin-treated skin.

    Science.gov (United States)

    Drummond, P D

    2000-04-01

    We sought to determine whether stimulation of opioid receptors during body cooling would alter sensitivity to heat in the heat-sensitized, inflamed skin of 14 healthy volunteers. To investigate the contribution of opioid receptors to nociception, the opioid antagonist naloxone was introduced into the skin by iontophoresis after the topical application of capsaicin. For comparison, the same iontophoretic dose of saline was also administered. Shortly after the iontophoreses, sensitivity to heat was greater at the naloxone and saline sites than at iontophoresis-control sites in the capsaicin-treated skin, indicating that nonspecific aspects of the iontophoreses enhanced thermal hyperalgesia. The hyperalgesic effect of saline persisted during body cooling, whereas the naloxone site was less sensitive to heat (heat pain threshold 43.6 degrees +/- 1.0 degrees C) than either the saline site (40.8 degrees +/- 0.9 degrees C) or iontophoresis-control sites (41.7 degrees +/- 1.0 degrees C) (P heat-pain in inflamed skin during body cooling. The findings suggest that endogenous opioids release substances from nerves or other cells during inflammation, which heighten pain. Thus, opioids may fine-tune pain and the inflammatory response while healing takes place.

  2. Investigation of the effect of packing location on performance of closed wet cooling tower based on exergy analysis

    Science.gov (United States)

    Qasim, S. M.; Hayder, M. J.

    2016-08-01

    In this paper, the effect of packing location on thermal performance of Closed Wet Cooling Tower (CWCT) based on exergy analysis has been studied. The experimental study incorporates design, manufacture and testing of a modified counter flow forced draft CWCT prototype. The modification based on addition packing to the conventional CWCT. The variation of spray water temperature, air dry bulb temperature, air wet bulb temperature, enthalpy and relative humidity of air for different position along the tower are measured experimentally. Applying the exergy destruction method for the cooling tower; exergy destruction, exergy efficiency, exergy of water and air were calculated for two cases: CWCT with packing below the heat exchanger and CWCT with packing above the heat exchanger. It is highly important to analyze the exergy along the cooling tower height. Therefore, the exergy analysis of different elements along the height of the tower is carried out. Results show that the total exergy destruction of modified CWCT is higher when the heat exchanger is located above the packing at the highest point of the tower.

  3. Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T. L.; Pedden, M.; Gagliano, T.

    2002-11-01

    Factors such as technological advancements, steadily decreasing costs, consumer demand, and state and federal policies are combining to make wind energy the world's fastest growing energy source. State and federal policies are facilitating the growth of the domestic, large-scale wind power market; however, small-scale wind projects (those with a capacity of less than 100 kilowatts[kW]) still face challenges in many states. Net metering, also referred to as net billing, is one particular policy that states are implementing to encourage the use of small renewable energy systems. Net metering allows individual, grid-tied customers who generate electricity using a small renewable energy system to receive credit from their utility for any excess power they generate beyond what they consume. Under most state rules, residential, commercial, and industrial customers are eligible for net metering; however, some states restrict eligibility to particular customer classes. This paper illustrates how net metering programs in certain states vary considerably in terms of how customers are credited for excess power they generate; the type and size of eligible technologies and whether the utility; the state, or some other entity administers the program. This paper focuses on10 particular states where net metering policies are in place. It analyzes how the different versions of these programs affect the use of small-scale wind technologies and whether some versions are more favorable to this technology than others. The choice of citizens in some states to net meter with photovoltaics is also examined.

  4. Cost-effective sampling of ¹³⁷Cs-derived net soil redistribution: part 1--estimating the spatial mean across scales of variation.

    Science.gov (United States)

    Li, Y; Chappell, A; Nyamdavaa, B; Yu, H; Davaasuren, D; Zoljargal, K

    2015-03-01

    The (137)Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many (137)Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of (137)Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954-2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate (137)Cs-derived net soil redistribution across scales of variation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2014-02-01

    Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ -2 g C m-2 d-1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m-2 d-1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ -4 g C m-2 d-1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (-609 g C m-2) to 2005 (-373 g C m-2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a

  6. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  7. Net effects of nitrogen fertilization on the nutritive value and digestibility of oat forages.

    Science.gov (United States)

    Coblentz, W K; Akins, M S; Cavadini, J S; Jokela, W E

    2017-03-01

    Applications of soil amendments containing N are part of routine forage-management strategies for grasses, with a primary goal of increasing forage yield. However, the effects of N fertilization on forage nutritive value, estimates of energy density, and in vitro dry matter or neutral detergent fiber disappearance sometimes have been erratic or inconsistent. Our objectives were to evaluate the effects of N fertilization on the nutritive value of a single cultivar (ForagePlus, Kratz Farms, Slinger, WI) of fall-grown oat fertilized at planting with 20, 40, 60, 80, or 100 kg of N/ha of urea or 2 rates of dairy slurry (42,300 or 84,600 L/ha). Nitrogen fertilization exhibited consistent effects on fiber components; forages fertilized with urea or dairy slurry had greater concentrations of fiber components compared with those harvested from unfertilized check plots (0 kg of N/ha), and fiber concentrations increased linearly with urea fertilization rate. In contrast, concentrations of water-soluble carbohydrates were greatest for unfertilized forages (21.2%), but declined linearly with urea fertilization, exhibiting a minimum of 13.5% at the 80 kg of N/ha urea application rate. Similarly, nonfiber carbohydrates also declined linearly, from 34.8% for unfertilized check plots to a minimum of 24.6% at the 80 kg of N/ha urea application rate. Fertilization with urea resulted in consistent linear increases in crude protein (CP), neutral detergent soluble CP, neutral detergent insoluble CP, and acid detergent insoluble CP; however, the partitioning of CP on the basis of association with specific fiber fractions could not be related to N fertilization when concentrations were expressed on a percentage of CP basis. The summative calculation of energy, expressed as total digestible nutrients was closely related to N fertilization rate during both the 2013 (y = -0.038x + 72.2; R2 = 0.961) and 2014 (y = -0.040x + 69.2; R2 = 0.771) production years. Following 30- or 48-h incubations

  8. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  9. Effect of propolis ethanol extract on myostatin gene expression and muscle morphometry of Nile tilapia in net cages.

    Science.gov (United States)

    Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M

    2017-03-16

    Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers 30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.

  10. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    Science.gov (United States)

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  11. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    Science.gov (United States)

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  12. Effectiveness and costs of specialised physiotherapy given via ParkinsonNet: a retrospective analysis of medical claims data.

    Science.gov (United States)

    Ypinga, Jan H L; de Vries, Nienke M; Boonen, Lieke H H M; Koolman, Xander; Munneke, Marten; Zwinderman, Aeilko H; Bloem, Bastiaan R

    2018-02-01

    Parkinson's disease is a complex condition that is best managed by specialised professionals. Trials show that specialised allied health interventions are cost-effective, as compared with usual care. We aimed to study the long-term benefits of specialised physiotherapy using the ParkinsonNet approach in real-world practice. We did an observational study, retrospectively analysing a database of health insurance claims that included a representative population of Dutch patients with Parkinson's disease, who were followed for up to 3 years (Jan 1, 2013, to Dec 31, 2015). Eligibility criteria included having both a diagnosis of Parkinson's disease and having received physiotherapy for the disease. Allocation to specialised or usual care physiotherapy was based on the choices of patients and referring physicians. We used a mixed-effects model to compare health-care use and outcomes between patients treated by specialised or usual care physiotherapists. The primary outcome was the percentage of patients with a Parkinson's disease-related complication (ie, visit or admission to hospital because of fracture, other orthopaedic injuries, or pneumonia) adjusted for baseline variables. We compared physiotherapist caseload, the number of physiotherapy sessions, physiotherapy costs, and total health-care costs (including hospital care, but excluding community care, long-term care, and informal care) between the groups, and used a Cox's proportional hazard model for survival time to establish whether mortality was influenced by treatment by a specialised physiotherapist. We analysed 2129 patients (4649 observations) receiving specialised physiotherapy and 2252 patients (5353 observations) receiving usual care physiotherapy. Significantly fewer patients treated by a specialised physiotherapist had a Parkinson's disease-related complication (n=368 [17%]) than patients treated by a usual care physiotherapist (n=480 [21%]; odds ratio 0·67, 95% CI 0·56-0·81, plower for specialised

  13. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  14. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell Net Carbohydrate and Protein System

    National Research Council Canada - National Science Library

    Tedeschi, L. O; Fox, D. G; Russell, J. B

    2000-01-01

    .... The Cornell Net Carbohydrate and Protein System (CNCPS) prediction of fiber digestion and microbial mass production from ruminally degraded carbohydrate has been adjusted to accommodate a ruminal N deficiency...

  15. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell Net Carbonhydrate and Protein System

    National Research Council Canada - National Science Library

    L O Tedeschi; D G Fox; J B Russell

    2000-01-01

      The Cornell Net Carbohydrate and Protein System (CNCPS) prediction of fiber digestion and microbial mass production from ruminally degraded carbohydrate has been adjusted to accommodate a ruminal N deficiency...

  16. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  17. Comparison of radiant and convective cooling of office room: effect of workstation layout

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Rezgals, Lauris

    2014-01-01

    The impact of heat source location (room layout) on the thermal environment generated in a double office room with four cooling ventilation systems - overhead ventilation, chilled ceiling with overhead ventilation, active chilled beam and active chilled beam with radiant panels was measured...... and compared. The room was furnished with two workstations, two laptops and two thermal manikins resembling occupants. Two heat load levels, design (65 W/m2) and usual (39 W/m2), were generated by adding heat from warm panels simulating solar radiation. Two set-ups were studied: occupants sitting...

  18. Overall Effectiveness Measurement at Engine Temperatures with Reactive Film Cooling and Surface Curvature

    Science.gov (United States)

    2015-03-26

    the exhaust flow. Details of the startup procedure can be seen in Appendix A. Figure 3-12: Assembled Film Cooling Rig 44 3.3 Test Block...first objective. The test channel flow was supplied using a propane/air well-stirred reactor capable of providing fuel rich or fuel lean air at...Flip switch to DAQ tower on. 4) Turn on the lower propane vaporizer in the tank farm and allow it 30 minutes to warm up, continue with startup

  19. Comparison of the effects of two bongo net mesh sizes on the estimation of abundance and size of Engraulidae eggs

    Directory of Open Access Journals (Sweden)

    Jana Menegassi del Favero

    2015-06-01

    Full Text Available Abstract Studies of ichthyoplankton retention by nets of different mesh sizes are important because they help in choosing a sampler when planning collection and the establishment of correction factors. These factors make it possible to compare studies performed with nets of different mesh sizes. In most studies of mesh retention of fish eggs, the taxonomic identification is done at the family level, resulting in the loss of detailed information. We separated Engraulidae eggs, obtained with 0.333 mm and 0.505 mm mesh bongo nets at 172 oceanographic stations in the southeastern Brazilian Bight, into four groups based on their morphometric characteristics. The difference in the abundance of eggs caught by the two nets was not significant for those groups with highest volume, types A and B, but in type C (Engraulis anchoita, the most eccentric, and in type D, of the smallest volume, the difference was significant. However, no significant difference was observed in the egg size sampled with each net for E. anchoita and type D, which exhibited higher abundance in the 0.333 mm mesh net and minor axis varying from 0.45-0.71 mm, smaller than the 0.505 mm mesh aperture and the mesh diagonal.

  20. Pre-hospital cooling of patients following cardiac arrest is effective using even low volumes of cold saline.

    Science.gov (United States)

    Skulec, Roman; Truhlár, Anatolij; Seblová, Jana; Dostál, Pavel; Cerný, Vladimír

    2010-01-01

    Pre-hospital induction of therapeutic mild hypothermia (TH) may reduce post-cardiac arrest brain injury in patients resuscitated from out-of-hospital cardiac arrest. Most often, it is induced by a rapid intravenous administration of as much as 30 ml/kg of cold crystalloids. We decided to assess the pre-hospital cooling effectivity of this approach by using a target dose of 15-20 ml/kg of 4°C cold normal saline in the setting of the physician-staffed Emergency Medical Service. The safety and impact on the clinical outcome have also been analyzed. We performed a prospective observational study with a retrospective control group. A total of 40 patients were cooled by an intravenous administration of 15-20 ml/kg of 4°C cold normal saline during transport to the hospital (TH group). The pre-hospital decrease of tympanic temperature (TT) was analyzed as the primary endpoint. Patients in the control group did not undergo any pre-hospital cooling. In the TH group, administration of 12.6 ± 6.4 ml/kg of 4°C cold normal saline was followed by a pre-hospital decrease of TT of 1.4 ± 0.8°C in 42.8 ± 19.6 min (p cold saline. In the TH group, a trend toward a reduced need for catecholamines during transport was detected (35.0 vs. 52.5%, p = 0.115). There were no differences in demographic variables, comorbidities, parameters of the cardiopulmonary resuscitation and in other post-resuscitation characteristics. The coupling of pre-hospital cooling with subsequent in-hospital TH predicted a favorable neurological outcome at hospital discharge (OR 4.1, CI95% 1.1-18.2, p = 0.046). Pre-hospital induction of TH by the rapid intravenous administration of cold normal saline has been shown to be efficient even with a lower dose of coolant than reported in previous studies. This dose can be associated with a favorable impact on circulatory stability early after the return of spontaneous circulation and, when coupled with in-hospital continuation of cooling, can potentially improve the

  1. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    Science.gov (United States)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  2. Synergistic effect of embryo vaccination with Eimeria profilin and Clostridium perfringens NetB proteins on inducing protective immunity against necrotic enteritis in broiler chickens

    Science.gov (United States)

    The effects of embryo vaccination with Eimeria profilin plus Clostridium perfringens NetB toxin proteins in combination with the Montanide IMS-OVO adjuvant on the chicken immune response to necrotic enteritis were investigated using an E. maxima/C. perfringens co-infection model. Eighteen-day-old br...

  3. The effects of substitution of incandescent light bulbs over the energy net; Os efeitos da substituicao de lampadas incandescentes sobre a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Juergen [A-Eberle GmbH (Germany)

    2010-11-15

    Fluorescent compact lamps and LED light require reactors to work. Analyzing the consumed power by these lamps, complex effects with no positive consequences over the electric energy net is observed. In the context of the harmonics, should be considered mainly the reactive power of distortion. The article clarifies the related concepts and presents practical examples.

  4. Effects of permethrin-treated bed nets on immunity to malaria in western Kenya II. Antibody responses in young children in an area of intense malaria transmission

    NARCIS (Netherlands)

    Kariuki, Simon K.; Lal, Altaf A.; Terlouw, Dianne J.; ter Kuile, Feiko O.; Ong'echa, John M. O.; Phillips-Howard, Penelope A.; Orago, Alloys S. S.; Kolczak, Margarette S.; Hawley, William A.; Nahlen, Bernard L.; Shi, Ya Ping

    2003-01-01

    As part of a large community-based trial on the impact of insecticide (permethrin)-treated bed nets (ITNs) on childhood morbidity and mortality in an area of intense perennial malaria transmission in western Kenya, we assessed the effects of ITNs on malaria-specific humoral responses in young

  5. The use of mediation analysis to assess the effects of a behaviour change communication strategy on bed net ideation and household universal coverage in Tanzania.

    Science.gov (United States)

    Ricotta, Emily E; Boulay, Marc; Ainslie, Robert; Babalola, Stella; Fotheringham, Megan; Koenker, Hannah; Lynch, Matthew

    2015-01-21

    SBCC campaigns are designed to act on cognitive, social and emotional factors at the individual or community level. The combination of these factors, referred to as 'ideation', play a role in determining behaviour by reinforcing and confirming decisions about a particular health topic. This study introduces ideation theory and mediation analysis as a way to evaluate the impact of a malaria SBCC campaign in Tanzania, to determine whether exposure to a communication programme influenced universal coverage through mediating ideational variables. A household survey in three districts where community change agents (CCAs) were active was conducted to collect information on ITN use, number of ITNs in the household, and perceptions about ITN use and ownership. Variables relating to attitudes and beliefs were combined to make 'net ideation'. Using an ideational framework, a mediation analysis was conducted to see the impact exposure to a CCA only, mass media and community (M & C) messaging only, or exposure to both, had on household universal coverage, through the mediating variable net ideation. All three levels of exposure (CCA, M & C messaging, or exposure to both) were significantly associated with increased net ideation (CCA: 0.283, 95% CI: 0.136-0.429, p-value: effects between any exposure and universal coverage when controlling for net ideation. The results of this study indicate that mediation analysis is an applicable new tool to assess SBCC campaigns. Ideation as a mediator of the effects of communication exposure on household universal coverage has implications for designing SBCC to support both mass and continuous distribution efforts, since both heavily rely on consumer participation to obtain and maintain ITNs. Such systems can be strengthened by SBCC programming, generating demand through improving social norms about net ownership and use, perceived benefits of nets, and other behavioural constructs.

  6. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved Andalusian donkey (Equus asinus) spermatozoa.

    Science.gov (United States)

    Dorado, J; Acha, D; Ortiz, I; Gálvez, M J; Carrasco, J J; Gómez-Arrones, V; Calero-Carretero, R; Hidalgo, M

    2014-04-01

    The main aim of this study was to evaluate the efficacy of two commercially available liquid stallion semen extenders for the preservation of Andalusian donkey semen at 5°C for up to 72h, and to evaluate the effect of amino acid addition on sperm quality of cooled donkey semen. In addition, this study investigated the effect of seasons on semen characteristics of Andalusian jackasses. Throughout a year, 50 ejaculates were collected from ten adult donkeys and a complete semen evaluation was performed immediately after collection. In Experiment 1, semen samples (n=32) were pooled, divided into two aliquots, and cooled in either Gent(®) A or INRA 96(®). In Experiment 2, pooled semen samples (n=9) were cooled in Gent A(®) supplemented with 0 (as control), 20, 40, or 60mM for each glutamine, proline, or taurine. Fresh semen and chilled samples were assessed for sperm motility, morphology, acrosome integrity, and plasma membrane integrity. Sperm motility variables were greater (P<0.05) in Gent(®) A than in INRA 96(®). The presence of glutamine, proline, or taurine in Gent(®) A improved (P<0.001) the motility of Andalusian donkey spermatozoa. Differences (P<0.05) in some sperm variables were observed among seasons. In conclusion, Gent(®) A maintained sperm motility characteristics after 72h of cold storage to a greater extent than INRA 96(®). Moreover, motility was greater when Gent(®) A supplemented at different concentrations of amino acids than Gent(®) A with no supplementation. An effect of seasons on the semen quality of the Andalusian donkey was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2017-11-01

    Full Text Available In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF, with primary attention paid to the horizontal traveling-wave electrothermal (TWET vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.

  8. Analysis of the Effect of Cooling Intensity Under Volume-Surface Hardening on Formation of Hardened Structures in Steel 20GL

    Science.gov (United States)

    Evseev, D. G.; Savrukhin, A. V.; Neklyudov, A. N.

    2018-01-01

    Computer simulation of the kinetics of thermal processes and structural and phase transformations in the wall of a bogie side frame produced from steel 20GL is performed with allowance for the differences in the cooling intensity under volume-surface hardening. The simulation is based on the developed method employing the diagram of decomposition of austenite at different cooling rates. The data obtained are used to make conclusion on the effect of the cooling intensity on propagation of martensite structure over the wall section.

  9. Landscape Scale Study of the Net Effect of Proximity to a Neonicotinoid-Treated Crop on Bee Colony Health.

    Science.gov (United States)

    Balfour, Nicholas J; Al Toufailia, Hasan; Scandian, Luciano; Blanchard, Héloïse E; Jesse, Matthew P; Carreck, Norman L; Ratnieks, Francis L W

    2017-09-19

    Since 2013, the European Commission has restricted the use of three neonicotinoid insecticides as seed dressings on bee-attractive crops. Such crops represent an important source of forage for bees, which is often scarce in agro-ecosystems. However, this benefit has often been overlooked in the design of previous field studies, leaving the net impact of neonicotinoid treated crops on bees relatively unknown. Here, we determine the combined benefit (forage) and cost (insecticide) of oilseed rape grown from thiamethoxam-treated seeds on Bombus terrestris and Apis mellifera colonies. In April 2014, 36 colonies per species were located adjacent to three large oilseed rape fields (12 colonies per field). Another 36 were in three nearby locations in the same agro-ecosystem, but several kilometers distant from any oilseed rape fields. We found that Bombus colony growth and reproduction were unaffected by location (distant versus adjacent) following the two month flowering period. Apis colony and queen survival were unaffected. However, there was a small, but significant, negative relationship between honey and pollen neonicotinoid contamination and Apis colony weight gain. We hypothesize that any sublethal effects of neonicotinoid seed dressings on Bombus colonies are potentially offset by the additional foraging resources provided. A better understanding of the ecological and agronomic factors underlying neonicotinoid residues is needed to inform evidence-based policy.

  10. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Rosener, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  11. NA-NET numerical analysis net

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science Oak Ridge National Lab., TN (United States)); Rosener, B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  12. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...... and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature...... is found to be mostly affected by the inlet humidity ratio. Manufacturer data are used to tune the model. The tuned DPC model is characterized by an area effectiveness coefficient which is kept constant at 0.55. The cooling capacity and water consumption estimated by the tuned model deviate within 3% and 8...

  13. Effect of fuel burnup and cross sections on modular HTGR (High-Temperature Gas-cooled Reactor) reactivity coefficients

    Science.gov (United States)

    Lefler, W.; Baxter, A.; Mathews, D.

    1987-12-01

    The temperature dependence of the reactivity coefficient in a prismatic block Modular High-Temperature Gas-Cooled Reactor (MHTGR) design is examined and found to be large and negative. Temperature coefficient results obtained with the ENDF/B-V data library were almost the same as results obtained with the earlier versions of the ENDF/B data library usually used at GA Technologies Inc., in spite of a significant eigenvalue increase with the ENDF/B-V data. The effects of fuel burnup and arbitrarily assumed cross section variations were examined and tabulated.

  14. Effects of changing mosquito host searching behaviour on the cost effectiveness of a mass distribution of long-lasting, insecticidal nets: a modelling study.

    Science.gov (United States)

    Briët, Olivier J T; Chitnis, Nakul

    2013-06-26

    The effectiveness of long-lasting, insecticidal nets (LLINs) in preventing malaria is threatened by the changing biting behaviour of mosquitoes, from nocturnal and endophagic to crepuscular and exophagic, and by their increasing resistance to insecticides. Using epidemiological stochastic simulation models, we studied the impact of a mass LLIN distribution on Plasmodium falciparum malaria. Specifically, we looked at impact in terms of episodes prevented during the effective life of the batch and in terms of net health benefits (NHB) expressed in disability adjusted life years (DALYs) averted, depending on biting behaviour, resistance (as measured in experimental hut studies), and on pre-intervention transmission levels. Results were very sensitive to assumptions about the probabilistic nature of host searching behaviour. With a shift towards crepuscular biting, under the assumption that individual mosquitoes repeat their behaviour each gonotrophic cycle, LLIN effectiveness was far less than when individual mosquitoes were assumed to vary their behaviour between gonotrophic cycles. LLIN effectiveness was equally sensitive to variations in host-searching behaviour (if repeated) and to variations in resistance. LLIN effectiveness was most sensitive to pre-intervention transmission level, with LLINs being least effective at both very low and very high transmission levels, and most effective at around four infectious bites per adult per year. A single LLIN distribution round remained cost effective, except in transmission settings with a pre-intervention inoculation rate of over 128 bites per year and with resistant mosquitoes that displayed a high proportion (over 40%) of determined crepuscular host searching, where some model variants showed negative NHB. Shifts towards crepuscular host searching behaviour can be as important in reducing LLIN effectiveness and cost effectiveness as resistance to pyrethroids. As resistance to insecticides is likely to slow down the

  15. How cool is Uchimizu?

    Science.gov (United States)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Ven, Frans; van de Giesen, Nick

    2017-04-01

    The Urban Heat Island (UHI) was first described 200 years ago, but ways to mitigate heat in urban areas reach much further into the past. Uchimizu is a 17th century Japanese tradition, in which water is sprinkled around houses, temples, and in gardens to cool the ground surface and the air, and to settle the dust. Nowadays, megacities such as Tokyo are aiming to revive the - by modern technology suppressed - method, and uchimizu is promoted by local authorities as a "clever way to feel cool". Unfortunately, the number of published studies that have quantified the cooling effects of uchimizu is limited, and only uses measurements of the surface temperature, or air temperature at a single height, as a measure of the cooling effect. In this research a dense 3D Distributed Temperature Sensing (DTS) setup was used to measure air temperature within once cubic meter of air above an urban surface with high spatial and temporal resolution. Six experiments were performed to systematically study the effect of (1) applied water amount, (2) initial surface temperature, and (3) shading on the cooling effect of uchimizu. We present the results and the subsequent analyses of these experiments, done during summer in Delft, The Netherlands. We show that this simple water sprinkling method has the potential to decrease extreme temperatures in impervious and paved parts of urban areas considerably. Besides mitigating the UHI, uchimizu practice is also an opportunity to increase awareness among citizens, and stimulate citizen participation in solving heat stress problems and energy saving. By providing refreshing insights on the cooling effect of uchimizu, we aim to contribute to the modern revival of this old tradition.

  16. Couette-Taylor crystallizer: Effective control of crystal size distribution and recovery of L-lysine in cooling crystallization

    Science.gov (United States)

    Nguyen, Anh-Tuan; Yu, Taekyung; Kim, Woo-Sik

    2017-07-01

    A Couette-Taylor crystallizer is developed to enhance the L-Lysine crystal size distribution and recovery in the case of continuous cooling crystallization. When using the proposed Couette-Taylor (CT) crystallizer, the size distribution and crystal product recovery were much narrower and higher, respectively, than those from a conventional stirred tank (ST) crystallizer. Here, the coefficient of the size distribution for the crystal product from the CT crystallizer was only 0.45, while it was 0.78 in the case of the conventional ST crystallizer at an agitation speed of 700 rpm, mean residence time of 20 min, and feed concentration of 900 (g/L). Furthermore, when using the CT crystallizer, the crystal product recovery was remarkably enhanced up to 100%wt with a mean residence time of only 20 min, while it required a mean residence time of at least 60 min when using the conventional ST crystallizer. This result indicates that the CT crystallizer was much more effective than the conventional ST crystallizer in terms of controlling a narrower size distribution and achieving a 100%wt L-lysine crystal product recovery from continuous cooling crystallization. The advantage of the CT crystallizer over the conventional ST crystallizer was explained based on the higher energy dissipation of the Taylor vortex flow and larger surface area for heat transfer of the CT crystallizer. Here, the energy dissipation of the Taylor vortex flow in the CT crystallizer was 13.6 times higher than that of the random fluid motion in the conventional ST crystallizer, while the surface area per unit volume for heat transfer of the CT crystallizer was 8.0 times higher than that of the conventional ST crystallizer. As a result, the mixing condition and heat transfer of the CT crystallizer were much more effective than those of the conventional ST crystallizer for the cooling crystallization of L-lysine, thereby enhancing the L-lysine crystal size distribution and product recovery.

  17. Cool Flame Quenching

    Science.gov (United States)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  18. Effect of Intensive Cooling of Alloy AZ91 with a Chromium Addition on the Microstructure and Mechanical Properties of the Casting

    Directory of Open Access Journals (Sweden)

    Rapiejko C.

    2017-12-01

    Full Text Available The work presents the results of the investigations of the effect of intensive cooling of alloy AZ91 with an addition of chromium on the microstructure and mechanical properties of the obtained casts. The experimental castings were made in ceramic moulds preliminarily heated to 180°C, into which alloy AZ91 with the addition was poured. Within the implementation of the research, a comparison was made of the microstructure and mechanical properties of the castings obtained in ceramic moulds cooled at room temperature and the ones intensively cooled in a cooling liquid. The kinetics and dynamics as well as the thermal effects recorded by the TDA method were compared. Metallographic tests were performed with the use of an optical microscope and the strength properties of the obtained castings were examined: UTS (Rm, elongation (A%, and HB hardness.

  19. Effects of climate change on regional energy systems focussing on space heating and cooling: A case study of Austria

    Directory of Open Access Journals (Sweden)

    Hausl Stephan

    2014-01-01

    Full Text Available Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050 and - strongly differing between regions - higher cooling demand in summer (up to +355%. Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.

  20. Effects of Simulated Heat Waves with Strong Sudden Cooling Weather on ApoE Knockout Mice

    Science.gov (United States)

    Zhang, Shuyu; Kuang, Zhengzhong; Zhang, Xiakun

    2015-01-01

    This study analyzes the mechanism of influence of heat waves with strong sudden cooling on cardiovascular diseases (CVD) in ApoE−/− mice. The process of heat waves with strong sudden cooling was simulated with a TEM1880 meteorological-environment simulation chamber according to the data obtained at 5 a.m. of 19 June 2006 to 11 p.m. of 22 June 2006. Forty-eight ApoE−/− mice were divided into six blocks based on their weight. Two mice from each block were randomly assigned to control, heat wave, temperature drop, and rewarming temperature groups. The experimental groups were transferred into the climate simulator chamber for exposure to the simulated heat wave process with strong sudden temperature drop. After 55, 59, and 75 h of exposure, the experimental groups were successively removed from the chamber to monitor physiological indicators. Blood samples were collected by decollation, and the hearts were harvested in all groups. The levels of heat stress factors (HSP60, SOD, TNF, sICAM-1, HIF-1α), cold stress factors (NE, EPI), vasoconstrictor factors (ANGII, ET-1, NO), and four items of blood lipid (TC, TG, HDL-C, and LDL-C) were measured in each ApoE−/− mouse. Results showed that the heat waves increased the levels of heat stress factors except SOD decreased, and decreased the levels of vasoconstrictor factors and blood lipid factors except TC increased. The strong sudden temperature drop in the heat wave process increased the levels of cold stress factors, vasoconstrictor factors and four blood lipid items (except the level of HDL-C which decreased) and decreased the levels of heat stress factors (except the level of SOD which increased). The analysis showed that heat waves could enhance atherosclerosis of ApoE−/− mice. The strong sudden temperature drop during the heat wave process increased the plasma concentrations of NE and ANGII, which indicates SNS activation, and resulted in increased blood pressure. NE and ANGII are vasoconstrictors

  1. The effects of cranial cooling during recovery on subsequent uncompensable heat stress tolerance.

    Science.gov (United States)

    Wallace, Phillip J; Masbou, Anaïs T; Petersen, Stewart R; Cheung, Stephen S

    2015-08-01

    This study compared cranial (CC) with passive (CON) cooling during recovery on tolerance to subsequent exercise while wearing firefighting protective ensemble and self-contained breathing apparatus in a hot-humid environment. Eleven males (mean ± SD; age, 30.9 ± 9.2 years; peak oxygen consumption, 49.5 ± 5.1 mL · kg(-1) · min(-1)) performed 2 × 20 min treadmill walks (5.6 km · h(-1), 4% incline) in 35 °C and 60% relative humidity. During a 20-min recovery (rest), participants sat and removed gloves, helmets, and flash hoods but otherwise remained encapsulated. A close-fitting liquid-perfused hood pumped 13 °C water at ∼ 500 mL · min(-1) through the head and neck (CC) or no cooling hood was worn (CON). During rest, neck temperature was lower in CC compared with CON from 4 min (CC: 35.73 ± 3.28 °C, CON: 37.66 ± 1.35 °C, p = 0.025) until the end (CC: 33.06 ± 4.70 °C, CON: 36.85 ± 1.63 °C, p = 0.014). Rectal temperature rose in both CC (0.11 ± 0.19 °C) and CON (0.26 ± 0.15 °C) during rest, with nonsignificant interaction between conditions (p = 0.076). Perceived thermal stress was lower (p = 0.006) from 5 min of CC (median: 3 (quartile 1: 3, quartile 3: 4)) until the end of rest compared with CON (median: 4 (quartile 1: 4, quartile 3: 4)). However, there were no significant differences (p = 0.906) in tolerance times during the second exercise between CC (16.55 ± 1.14 min) and CON (16.60 ± 1.31 min), nor were there any difference in rectal temperature at the start (CC: 38.30 ± 0.40 °C, CON: 38.40 ± 0.16 °C, p = 0.496) or at the end (CC: 38.82 ± 0.23 °C, CON: 39.07 ± 0.22 °C, p = 0.173). With high ambient heat and encapsulation, cranial and neck cooling during recovery decreases physiological strain and perceived thermal stress, but is ineffective in improving subsequent uncompensable heat stress tolerance.

  2. Estimating Damage Cost of Net Primary Production due to Climate Change and Ozone(O3) Effect

    Science.gov (United States)

    Park, J. H.; Lee, D. K.; Park, C.; Sung, S.; Kim, H. G.; Mo, Y.; Kim, S.; Kil, S.

    2016-12-01

    productivity, net primary productivity (NPP), in Korea is about 622 gC/m2/yr in the results. And the result shows that NPP decreases about 2.3% by O3 negative effect. The NPP in the future also decreases about 1-2% and the negative effect of O3 is similar. Finally, damage cost by O3 in the future is bigger than damage by climate change.

  3. Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers

    Science.gov (United States)

    Mulholland, T.; Goris, S.; Boxleitner, J.; Osswald, T. A.; Rudolph, N.

    2018-01-01

    Fused filament fabrication (FFF) is a type of additive manufacturing based on material extrusion that has long been considered a prototyping technology. However, the right application of material, process, and product can be used for manufacturing of end-use products, such as air-cooled heat exchangers made by adding fillers to the base polymer, enhancing the thermal conductivity. Fiber fillers lead to anisotropic thermal conductivity, which is governed by the process-induced fiber orientation. This article presents an experimental study on the microstructure-property relationship for carbon fiber-filled polyamide used in FFF. The fiber orientation is measured by micro-computed tomography, and the thermal conductivity of manufactured samples is measured. Although the thermal conductivity is raised by more than three times in the fiber orientation direction at a load of only 12 vol.%, the enhancement is low in the other directions, and this anisotropy, along with certain manufacturing restrictions, influences the final part performance.

  4. Air pollution oxidant effects on cool-season and warm-season turfgrasses

    Energy Technology Data Exchange (ETDEWEB)

    Youngner, V.B.; Nudge, F.J.

    Although turfgrasses are grown extensively in urban areas where air pollution is a problem, little is known about their reaction to air pollutant oxidants. Cultivars of common turfgrass species were started in a green house with charcoal-filtered air. One lot of each was fumigated with 0.50 ppm ozone and another with 0.50 ppb peroxyacetyl nitrate (PAN) for 3 hours. A third lot was retained in the greenhouse as a control. Significant variations in leaf injury were noted among the species and cultivars. Injuries to a cultivar from ozone and PAN were often of different magnitudes. All Lolium perenne L. cultivars showed severe injury while Poa pratensis L. cultivars ranged in sensitivity between the extremes for both pollutants. Agrostis tenuis Sibth. and Festuca rubra L. cultivars had moderate injury. Warm-season grasses, in general, were less sensitive than the cool-season; only Emerald Zoysiagrass and Tifgreen Bermuda grass showed injury. 8 references, 2 tables.

  5. Permeable pavements and its contribution to cooling effect of surrounding temperature

    Science.gov (United States)

    Buyung, Nurul Rezuana; Ghani, Abdul Naser Abdul

    2017-10-01

    Generally, the pavement surface temperature usually is higher compared to air temperature. It is caused by the absorption of solar energy onto the surface. The pavements temperature strongly influences the urban climate as an urbanization result. The increase of heat in the urban area are partly contributed by the pavement. Permeable pavement can be seen as a way of reducing the temperature of the pavement. This study reviews the existing technology and mechanism of permeable pavements cooling properties. There are various factors that could affect the pavement's temperature such as the solar reflectance, thermal properties, permeability, evaporation and others. However, previous researchers have found out that, permeable pavement tends to be hotter than conventional pavement during dry seasons. It was found that the presence of water could reduce the temperature of the pavement. Future studies can be conducted towards finding ways to maintain the wet condition within the pavement.

  6. Pharmacovigilance in hospice/palliative care: the net immediate and short-term effects of dexamethasone for anorexia.

    Science.gov (United States)

    Hatano, Yutaka; Moroni, Matteo; Wilcock, Andrew; Quinn, Stephen; Csikós, Ágnes; Allan, Simon G; Agar, Meera; Clark, Katherine; Clayton, Josephine M; Currow, David C

    2016-09-01

    Loss of appetite is prevalent in palliative care and distressing for patients and families. Therapies include corticosteroids or progestogens. This study explores the net effect of dexamethasone on anorexia. Prospective data were collected when dexamethasone was started for anorexia as part of routine care. The National Cancer Institute's Common Toxicity Criteria for Adverse Events (NCICTCAE) Likert scales assessed severity of anorexia and immediate and short-term harms at 2 time points: baseline and 7 days. This study (41 sites, 8 countries) collected data (July 2013 to July 2014) from 114 patients (mean age 71 (SD 11), 96% with cancer). Median Australian-modified Karnofsky Performance Scale was 50% (range 20-70). Mean baseline NCICTCAE anorexia score was 2.7 (SD 0.6; median 3). 6 patients died by day 7. Of 108 evaluable patients, 74 (68.5%; 95% CI 59.0% to 76.7%) reported ≥1 reduction anorexia scores by day 7, of whom 30 were 0. Mean dexamethasone dose on day 7 was 4.1 mg/day (SD 3.4; median 4; range 0-46 mg). 24 patients reported ≥1 harms (32.4% CI 22.6% to 44.1%; insomnia n=10, depression n=7, euphoria n=7 and hyperglycaemia n=7). Of 24 patients with no benefit, 10 reported ≥1 harms. This study shows positive and negative effects of 7 days of dexamethasone as an appetite stimulant in patients with advanced life-limiting illnesses. Identifying clinicodemographic characteristics of people most at risk of harms with no benefit is a crucial next step. Longer term follow-up will help to understand longer term and cumulative harms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  8. Comparative experiments to assess the effects of accumulator nitrogen injection on passive core cooling during small break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Li, YuQuan; Hao, Botao; Zhong, Jia; Wan Nam [State Nuclear Power Technology R and D Center, South Park, Beijing Future Science and Technology City, Beijing (China)

    2017-02-15

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME)—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative

  9. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    Directory of Open Access Journals (Sweden)

    Li Yuquan

    2017-02-01

    Full Text Available The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA, the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the

  10. Effects of leg covering in humans on muscle activity and thermal responses in a cool environment.

    Science.gov (United States)

    Rissanen, S; Oksa, J; Rintamäki, H; Tokura, H

    1996-01-01

    Thermal responses and muscle performance in humans were studied during rest and exercise in a cool environment with different clothing distributions over the legs. Nine female subjects were exposed to 5 degrees C wearing shorts (SS), trousers with long legs (LL) or trousers with one long leg and one short leg (LS: LSc covered leg, LSu uncovered leg). The subjects also wore T-shirts and long-sleeved shirts. The subjects were seated for 60 min and after this they performed light stepping exercise for a further 60 min. Rectal temperature (T(re)) and skin temperature from seven (LL, SS) or nine sites (LS) were measured continuously. Surface electromyography (EMG) from three muscles (biceps femoris, gastrocnemius and tibialis anterior) were recorded during the exercise from six subjects. Integrated EMG (iEMG) and mean power frequency (MPF) were used to describe muscle activity. The T(re) was virtually unchanged during rest in every ensemble, whereas during exercise T(re) was significantly lower in SS than in LL. Mean skin temperature (T(sk)) decreased during rest in every ensemble, being significantly lower in SS than in LL. After the rest period local T(sk) of thigh and calf were significantly lower in SS than in LL and they were also lower in LSu than in LSc. At the beginning of the exercise the iEMG of the tibialis anterior muscle in SS and LL averaged 84 (SEM 7) and 64 (SEM 3) mu V (P muscle was significantly higher in LL 102 (SEM 5) Hz than in SS 90 (SEM 5) Hz (P muscle was also higher in LL 111 (SEM 5) Hz than in SS 100 (SEM 5) Hz (P muscle strain in comparison with wearing long trousers. Our results showing a unilateral increase in EMG activity during unilateral cooling suggest that the increase of strain is restricted to the uncovered part of the limb.

  11. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  12. Cool collapsible

    OpenAIRE

    Linnér, Fredrik

    2010-01-01

    Cool collabsible är ett projekt som har handlat om att skapa ett hopfällbart utomhusbord. Arbetet har utförts tillsammans med aka buna design consult. Projektet har fokuserats på att hitta en funktion, teknik och material för att sedan transformera detta till ett innovativt utomhusbord. Genom ett utförligt arbete med att definiera målgruppen skapades ramar som format ett bord till den typiska brukaren. Resultatet blev ett hopfällbart bord som hämtat sin inspiration från naturen. Ett bord som ...

  13. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  14. Cooling effects of artificial water facilities by using a moving type turbulence promoter; Kudo ranryu sokushintai ni yoru suireikyaku jikkenho

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K.; Nomura, T.; Nishimura, N.; Iyota, H. [Osaka City University, Osaka (Japan)

    1996-10-27

    Artificial water facilities present an effective means to alleviate trying micrometeorological phenomena such as warming of the urban space. For the reproduction of such an alleviating means by use of a model in a wind tunnel, a moving disturbance promoter (moving spire) was developed so as to render disturbances in a wind tunnel current similar in scale to ones in the real atmosphere, and an air current cooling experiment was conducted using a model fountain. The effort was intended for a small-size wind tunnel without a space large enough for disturbance promoter installation, and a moving type spire was developed for promoting disturbance effectively. The new spire is driven by a driving unit consisting of a motor and cam and can change its angle relative to the main current by 140{degree} at a rotation cycle of 1.7Hz., and this changes the flow direction of the main current periodically. As compared with the generally used combination of a roughness block and stationery spire, this new spire produced a disturbance intensity two times greater and a disturbance scale three times larger. When the disturbance intensity and scale were increased, the cooling characteristics of the air current changed in response to changes in the state of flow. 8 refs., 7 figs., 1 tab.

  15. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  16. Improvement of thermal comfort by cooling clothing in warm climate

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Melikov, Arsen Krikor; Kolencíková, Sona

    2014-01-01

    comfort compared to convective cooling alone. The supply of a small amount of water allowed the cooling clothing to provide a continuous cooling effect, whereas the effect of convective cooling alone decreased as sweat dried. However, the controllability of the cooling clothing needs to be improved....

  17. Cost effectiveness and resource allocation of Plasmodium falciparum malaria control in Myanmar: a modelling analysis of bed nets and community health workers.

    Science.gov (United States)

    Drake, Tom L; Kyaw, Shwe Sin; Kyaw, Myat Phone; Smithuis, Frank M; Day, Nicholas P J; White, Lisa J; Lubell, Yoel

    2015-09-29

    Funding for malaria control and elimination in Myanmar has increased markedly in recent years. While there are various malaria control tools currently available, two interventions receive the majority of malaria control funding in Myanmar: (1) insecticide-treated bed nets and (2) early diagnosis and treatment through malaria community health workers. This study aims to provide practical recommendations on how to maximize impact from investment in these interventions. A simple decision tree is used to model intervention costs and effects in terms of years of life lost. The evaluation is from the perspective of the service provider and costs and effects are calculated in line with standard methodology. Sensitivity and scenario analysis are undertaken to identify key drivers of cost effectiveness. Standard cost effectiveness analysis is then extended via a spatially explicit resource allocation model. Community health workers have the potential for high impact on malaria, particularly where there are few alternatives to access malaria treatment, but are relatively costly. Insecticide-treated bed nets are comparatively inexpensive and modestly effective in Myanmar, representing a low risk but modest return intervention. Unlike some healthcare interventions, bed nets and community health workers are not mutually exclusive nor are they necessarily at their most efficient when universally applied. Modelled resource allocation scenarios highlight that in this case there is no "one size fits all" cost effectiveness result. Health gains will be maximized by effective targeting of both interventions.

  18. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  19. Solenoidal ionization cooling lattices

    Directory of Open Access Journals (Sweden)

    R. C. Fernow

    2007-06-01

    Full Text Available We explore a practical approach for designing ionization cooling channels with periodic solenoidal focusing. We examine the lattice characteristics in terms of the properties of the coils and the cell geometry. The peak magnetic field in the coils is an important engineering constraint in lattice design. We examine the dependence of the peak field, momentum passband locations, and the beta function on the coil parameters. We make a systematic examination of all allowed lattice configurations taking into account the symmetry properties of the current densities and the beta function. We introduce a unique classification for comparing cooling lattice configurations. While solutions with a single coil per cell illustrate most of the effects that are important for cooling channel design, the introduction of additional coils allows more flexibility in selecting the lattice properties. We look at example solutions for the problem of the initial transverse cooling stage of a neutrino factory or muon collider and compare our results with the properties of some published cooling lattice designs. Scaling laws are used to compare solutions from different symmetry classes.

  20. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    Junjiong Shao

    2016-08-01

    Full Text Available Climatic variables not only directly affect the interannual variability (IAV in net ecosystem exchange of CO2 (NEE but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP, which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE, the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.

  1. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  2. Retrofitting the Southeast. The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W. [Steven Winter Associates, Inc., Norwalk, CT (United States); Shapiro, C. [Steven Winter Associates, Inc., Norwalk, CT (United States); Vijayakumar, G. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  3. Retrofitting the Southeast: The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  4. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    Science.gov (United States)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  5. Applying the net-benefit framework for analyzing and presenting cost-effectiveness analysis of a maternal and newborn health intervention.

    Science.gov (United States)

    Hounton, Sennen; Newlands, David

    2012-01-01

    Coverage of maternal and newborn health (MNH) interventions is often influenced by important determinants and decision makers are often concerned with equity issues. The net-benefit framework developed and applied alongside clinical trials and in pharmacoeconomics offers the potential for exploring how cost-effectiveness of MNH interventions varies at the margin by important covariates as well as for handling uncertainties around the ICER estimate. We applied the net-benefit framework to analyze cost-effectiveness of the Skilled Care Initiative and assessed relative advantages over a standard computation of incremental cost effectiveness ratios. Household and facility surveys were carried out from January to July 2006 in Ouargaye district (where the Skilled Care Initiative was implemented) and Diapaga (comparison site) district in Burkina Faso. Pregnancy-related and perinatal mortality were retrospectively assessed and data were collected on place of delivery, education, asset ownership, place, and distance to health facilities, costs borne by households for institutional delivery, and cost of standard provision of maternal care. Descriptive and regression analyses were performed. There was a 30% increase in institutional births in the intervention district compared to 10% increase in comparison district, and a significant reduction of perinatal mortality rates (OR 0.75, CI 0.70-0.80) in intervention district. The incremental cost for achieving one additional institutional delivery in Ouargaye district compared to Diapaga district was estimated to be 170 international dollars and varied significantly by covariates. However, the joint probability distribution (net-benefit framework) of the effectiveness measure (institutional delivery), the cost data and covariates indicated distance to health facilities as the single most important determinant of the cost-effectiveness analysis with implications for policy making. The net-benefit framework, the application of which

  6. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  7. Effect of Reynolds Number and Property Variation on Fluid Flow and Heat Transfer in the Entrance Region of a Turbine Blade Internal-Cooling Channel

    Directory of Open Access Journals (Sweden)

    Ben-Mansour R.

    2005-01-01

    Full Text Available Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNG k−ϵ model. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios ( 1/1 and 1/2 for the same cooling channel. The Reynolds number was varied between 10 000 and 50 000 . The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of 8.9 % in the heat transfer rate between the top and bottom surfaces occurs at Re=10 000 while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as 9.6 % reduction in the heat transfer rate.

  8. The Effect of Mass Media Campaign on the Use of Insecticide-Treated Bed Nets among Pregnant Women in Nigeria

    Directory of Open Access Journals (Sweden)

    A. Ankomah

    2014-01-01

    Full Text Available Background. Malaria during pregnancy is a major public health problem in Nigeria especially in malaria-endemic areas. It increases the risk of low birth weight and child/maternal morbidity/mortality. This paper addresses the impact of radio campaigns on the use of insecticide-treated bed nets among pregnant women in Nigeria. Methods. A total of 2,348 pregnant women were interviewed during the survey across 21 of Nigeria’s 36 states. Respondents were selected through a multistage sampling technique. Analysis was based on multivariate logistic regression. Results. Respondents who knew that sleeping under ITN prevents malaria were 3.2 times more likely to sleep under net (OR: 3.15; 95% CI: 2.28 to 4.33; P<0.0001. Those who listened to radio are also about 1.6 times more likely to use ITN (OR: 1.56; 95% CI: 1.07 to 2.28; P=0.020, while respondents who had heard of a specific sponsored radio campaign on ITN are 1.53 times more likely to use a bed net (P=0.019. Conclusion. Pregnant women who listened to mass media campaigns were more likely to adopt strategies to protect themselves from malaria. Therefore, behavior change communication messages that are aimed at promoting net use and antenatal attendance are necessary in combating malaria.

  9. Pore pressure effects on fracture net pressure and hydraulic fracture containment : Insights from an empirical and simulation approach

    NARCIS (Netherlands)

    Prabhakaran, R.; de Pater, C.J.; Shaoul, Josef

    2017-01-01

    Pore pressure and its relationship with fracture net pressure has been reported qualitatively from both field and experimental observations. From a modeling perspective, the ubiquitously used pseudo 3D (P3D) models that are based on linear elastic fracture mechanics (LEFM) do not include the

  10. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  11. Low doses of urethane effectively inhibit spinal seizures evoked by sudden cooling of toad isolated spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Pina-crespo, J.C.; Dalo, N.L. (Univ. Centroccidental Lisandro Alvarado, Barquisimeto (Venezuela))

    1992-01-01

    The effect of low doses of urethane on three phases of spinal seizures evoked by sudden cooling (SSSC) of toad isolated spinal cord was studied. In control toads, SSSC began with a latency of 91[plus minus]3 sec exhibiting brief tremors, followed by clonic muscle contractions and finally reaching a tonic contraction. The latency of onset of seizures was significantly enhanced. The tonic phase was markedly abolished in toads pretreated intralymphaticaly with 0.15 g/kg of urethane. Tremors were the only phase observed in 55% of toads that received doses of 0.2 g/kg, and a total blockage of seizures was seen after doses of 0.25 g/kg of urethane in 50% of the preparations. A possible depressant effect of urethane on transmission mediated by excitatory amino acids is suggested.

  12. Radiation Effects in a Semitransparent Gray Coating Heated by Convection and Cooled by Radiation

    Science.gov (United States)

    Spuckler, Charles M.

    2002-01-01

    A parametric study using a one dimensional model of a semitransparent gray thermal barrier coating was performed to gain an understanding of the role thermal radiation can play in the heat transferred. Some ceramic materials are semitransparent in the wavelength ranges were thermal radiation is important. Therefore, absorption, emission, and scattering of thermal radiation can affect the he at transfer through the coating. In this paper, a one dimensional layer was used to model the heat transfer process occurring, in a burner test rig. The semitransparent layer is heated by a hot gas flowing over its surface. The layer and substrate at a cooled by radiation to the surroundings. The back side of the substrate is insulated. The coating is assumed to be gray (absorption and scattering coefficients are not function of wavelength). An absorption coefficient of 0.3/cm and scatter a rig coefficients of 0 (no scattering) and 100/cm (isotropic scattering) were used. The thickness and thermal conductivity of the layer are varied. The results show that the temperatures are affected by the properties of the semitransparent .ever and the emissivity of the substrate. The substrate and surface temperatures are presented. The apparent temperature an optical pyrometer would read for the emitted energy is also given. An apparent thermal conductivity was calculated for the layer.

  13. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  14. Effect of Cryogenic Cooling for Gallium Nitride Film Placed in Argon Plasma

    Science.gov (United States)

    Ogawa, Daisuke; Nakano, Yoshitaka; Nakamura, Keiji

    2014-10-01

    There is no doubt for a gallium nitride (GaN) film to have plasma-induced damage (PID) when exposed in a plasma discharge. Our technique to make in-situ monitoring on a GaN film exposed in argon plasma is valuable toward to reveal the evolution of the damage. We evaluated the PID with photoluminescence (PL) that is excited with a ultra-violet light source. Our preliminary result showed that the PL intensity at the blue luminescence band (BL: 400--480 nm) increased while the intensity at yellow luminescence (YL: 480--700 nm) decreased as the plasma exposure time increased. Chen et al. previously found that PL spectrum changes due to both PID and substrate temperature. However, BL intensity is independent from the substrate temperature, while BL intensity is dependent on the degree of PID. In this experiment, we performed the plasma exposure to a GaN film under the situation when the substrate temperature was cooled with liquid nitrogen. The substrate temperature is set at -110 degC and exposed plasma in 15 minutes. In this condition, our BL stayed almost constant. This is an indication that we might be able to avoid the damage in the wavelength shorter than 480 nm. We will show more details from this results and further progresses in this presentation.

  15. Cool visitors

    CERN Document Server

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  16. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  17. Integrated Cooling-Vacuum-Assisted Non-Fractional 1540 nm Erbium:Glass Laser is Effective in Treating Acne Scars.

    Science.gov (United States)

    Politi, Yael; Levi, Assi; Lapidoth, Moshe

    2016-11-01

    Acne scars are a common result of in ammatory acne, affecting many patients worldwide. Among which, atrophic scars are the most prevalent form, presenting as dermal depressions caused by inflammatory degeneration of dermal collagen. Mid-infrared laser skin interaction is characterized by its modest absorption in water and nite penetration to the mid-dermis. Since collagen is a desirable laser target, 1540-nm wavelength is amenable for collagen remodeling within the depressed area of atrophic scars. To evaluate the safety and efficacy of acne scars treatment using an integrated cooling-vacuum-assisted 1540 nm Erbium: Glass Laser. This interventional prospective study included 25 volunteers (10 men, 15 women) with post acne atrophic scars. Patients were treated with a mid-infrared non-fractional 1540 nm Er:Glass laser (Alma Lasers Ltd. Caesarea, Israel) with integrat- ed cooling- vacuum assisted technology. Acne scars were exposed to 3 stacked laser pulses (400-600 mJ/pulse, 4 mm spot size, frequency of 3 Hz). Patients underwent 3-6 treatment sessions with a 2-3 week interval and were followed-up 1 month and 3 months after the last treatment. Clinical photographs were taken by high resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists and results were graded on a scale of 0 (exacerbation) to 4 (76%-100% improvement). Patients' and physicians' satisfaction were also recorded (on a 1-5 scale). Pain perception and adverse effects were evaluated as well. Almost all patients (24/25) demonstrated a moderate to significant improvement. Average improvement was 3.9 and 4.1 points on the quartile scale used for outcome assessment 1 and 3 months following the last session, respectively. Patient satisfaction rate was 4.2. Side effects were minimal and transient: erythema, mild transient vesicles, and mild pain or inconvenience. CONCLUSION Cooling-Vacuum-Assisted mid-infrared non-fractional Er:Glass 1540 nm laser

  18. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    Science.gov (United States)

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of In-core Blockage by Debris during Post-LOCA Long Term Core Cooling Phase of Kori-2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taewan [Incheon National University, Incheon (Korea, Republic of); Jin, Chang-Yong; Bang, Young-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Generic Safety Issue (GSI) 191 concerns the degradation of heat transfer in the core during Post loss-of-coolant-accident (LOCA) long term core cooling (LTCC) phase by debris which may go through the sump strainer and could be deposited at the core inlet and fuel surface. United State Nuclear Regulatory Commission (US NRC) approved a generic and conservative methodology described in WCAP-16793-NP Rev. 2, and has made use of it for GSI-191 resolution. In Korea, as a part of periodic safety review of Kori-2, an evaluation of thermal hydraulic effect of in-core blockage by debris has carried out based on a conservative emergency core cooling system (ECCS) evaluation method (EM). This paper describes a realistic approach to evaluate the thermal hydraulic effect of in-core blockage by debris during post-LOCA LTCC of Kori-2. The MARS-KS 1.3 code has been employed for the thermal hydraulic analysis. The effect of in-core blockage by debris has been evaluated by thermal hydraulic analyses with MARS-KS. In order to evaluate the heat transfer degradation by debris deposition a conservative and realistic fuel models has been developed, respectively. The analysis indicates that the PCT during the post-LOCA LTCC phase increases due to the heat transfer degradation by debris deposition and flow reduction by in-core blockage. It is also found that the PCT increases more in hot leg break case because of a larger reduction in core flow by higher pressure drop at the core inlet.

  20. Effects of Intermittent Neck Cooling During Repeated Bouts of High-Intensity Exercise

    Directory of Open Access Journals (Sweden)

    Andrew J. Galpin

    2016-06-01

    Full Text Available The purpose of this investigation was to determine the influence of intermittent neck cooling during exercise bouts designed to mimic combat sport competitions. Participants (n = 13, age = 25.3 ± 5.0 year height = 176.9 ± 7.5 cm, mass = 79.3 ± 9.0 kg, body fat = 11.8% ± 3.1% performed three trials on a cycle ergometer. Each trial consisted of two, 5-min high-intensity exercise (HEX intervals (HEX1 and HEX2—20 s at 50% peak power, followed by 15 s of rest, and a time to exhaustion (TTE test. One-minute rest intervals were given between each round (RI1 and RI2, during which researchers treated the participant’s posterior neck with either (1 wet-ice (ICE; (2 menthol spray (SPRAY; or (3 no treatment (CON. Neck (TNECK and chest (TCHEST skin temperatures were significantly lower following RI1 with ICE (vs. SPRAY. Thermal sensation decreased with ICE compared to CON following RI1, RI2, TTE, and a 2-min recovery. Rating of perceived exertion was also lower with ICE following HEX2 (vs. CON and after RI2 (vs. SPRAY. Treatment did not influence TTE (68.9 ± 18.9s. The ability of intermittent ICE to attenuate neck and chest skin temperature rises during the initial HEX stages likely explains why participants felt cooler and less exerted during equivalent HEX bouts. These data suggest intermittent ICE improves perceptual stress during short, repeated bouts of vigorous exercise.

  1. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian

    2010-01-01

    ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151 ± 55 and 135 ± 29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal p...

  2. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  3. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  4. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, M.; Lanfranchi, C. [Univ. di Firenze (Italy). Dept. di Energetica; Boggio, V. [CRIT S.r.l., Prato (Italy)

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  5. Effectiveness of essential amino acid supplementation in stimulating whole body net protein anabolism is comparable between COPD patients and healthy older adults.

    Science.gov (United States)

    Jonker, Renate; Deutz, Nicolaas Ep; Erbland, Marcia L; Anderson, Paula J; Engelen, Mariëlle Pkj

    2017-04-01

    The development of effective nutritional strategies in support of muscle growth for patients with chronic obstructive pulmonary disease (COPD) remains challenging. Dietary essential amino acids (EAAs) are the main driver of postprandial net protein anabolism. In agreement, EAA supplements in healthy older adults are more effective than supplements with the composition of complete proteins. In patients with COPD it is still unknown whether complete protein supplements can be substituted with only EAAs, and whether they are as effective as in healthy older adults. According to a double-blind randomized crossover design, we examined in 23 patients with moderate to very severe COPD (age: 65±2 years, FEV1: 40±2% of predicted) and 19 healthy age-matched subjects (age: 64±2 years), whether a free EAA mixture with a high proportion (40%) of leucine (EAA mixture) stimulated whole body net protein gain more than a similar mixture of balanced free EAAs and non-EAAs as present in whey protein (TAA mixture). Whole body net protein gain and splanchnic extraction of phenylalanine (PHE) were assessed by continuous IV infusion of L-[ring-2H5]-PHE and L-[ring-2H2]-tyrosine, and enteral intake of L-[15N]-PHE (added to the mixtures). Besides an excellent positive linear relationship between PHE intake and net protein gain in both groups (r=0.84-0.91, Panabolism more than free amino acid supplements with the composition of complete proteins. Therefore, free EAA supplements may aid in the prevention and treatment of muscle wasting in this patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of intramuscular injection of butafosfan and cobalamin on the quality of Fresh and Cooled Stallion Semen

    Directory of Open Access Journals (Sweden)

    Nicolás Cazales Penino

    2015-08-01

    Full Text Available The use of butafosfan in combination with cobalamin modulates many cellular metabolic functions in several species. Its use enhances productive and reproductive performance and reduces stress responses in animals. Despite all these attributes, so far there have been no controlled studies to evaluate the effects of butafosfan and cobalamin on the quality of stallion semen. The purpose of this study was to evaluate the action of butafosfan in combination with cobalamin on the quality of fresh and cooled stallion semen. Four healthy stallions were kept in the same place and under the same management conditions during the entire experiment. Stallions were randomly assigned to two treatment groups in a 2x2 crossover design. Group A stallions were treated with an intramuscular injection of butafosfan twice a week for 80 days, while group B did not receive any treatment. After that, both groups were not treated for another 80 days allowing a washout period for the treated group. Then, the groups were reversed, and group B was treated with butafosfan and group A acted as the control for another 80 days. Semen was collected twice a week, diluted in skim milk and evaluated for total sperm count, total and progressive sperm motility, membrane integrity (CFDA/PI staining and membrane functionality (HOS test at 0 and 24 hours after preservation at 5ºC. Data were analyzed by comparing the values obtained from the treated stallions between the 60th and 84th days of treatment and the values obtained from the same stallion during the control period. The ejaculates of the washout period and between days 1 and 63 of treatment were not considered. A total of 85 ejaculates were analyzed by one-way ANOVA. Means were compared by the Tukey test at the 5% level of significance. No significant differences were observed in fresh and cooled semen regarding the total sperm count, total motility, progressive motility, membrane integrity and membrane functionality in the

  7. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  8. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...... use of CP-nets — because it means that the function representation and the translations (which are a bit mathematically complex) no longer are parts of the basic definition of CP-nets. Instead they are parts of the invariant method (which anyway demands considerable mathematical skills...

  10. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  11. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  12. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    -net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...

  13. Effects of content and surface hydrophobic modification of BaTiO3 on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)

    Science.gov (United States)

    Xiang, Bo; Zhang, Jun

    2018-01-01

    For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.

  14. Effects of a clearcut on the net rates of nitrification and N mineralization in a northern hardwood forest, Catskill Mountains, New York, USA

    Science.gov (United States)

    Burns, Douglas A.; Murdoch, Peter S.

    2005-01-01

    The Catskill Mountains of southeastern New York receive among the highest rates of atmospheric nitrogen (N) deposition in eastern North America, and ecosystems in the region may be sensitive to human disturbances that affect the N cycle. We studied the effects of a clearcut in a northern hardwood forest within a 24-ha Catskill watershed on the net rates of N mineralization and nitrification in soil plots during 6 years (1994-1999) that encompassed 3-year pre- and post-harvesting periods. Despite stream NO3- concentrations that increased by more than 1400 ??mol l-1 within 5 months after the clearcut, and three measures of NO3- availability in soil that increased 6- to 8-fold during the 1st year after harvest, the net rates of N mineralization and nitrification as measured by in situ incubation in the soil remained unchanged. The net N-mineralization rate in O-horizon soil was 1- 2 mg N kg-1 day-1 and the net nitrification rate was about 1 mg N kg-1 day-1, and rates in B-horizon soil were only one-fifth to one-tenth those of the O-horizon. These rates were obtained in single 625 m2 plots in the clearcut watershed and reference area, and were confirmed by rate measurements at 6 plots in 1999 that showed little difference in N-mineralization and nitrification rates between the treatment and reference areas. Soil temperature increased 1 ?? 0.8??C in a clearcut study plot relative to a reference plot during the post-harvest period, and soil moisture in the clearcut plot was indistinguishable from that in the reference plot. These results are contrary to the initial hypothesis that the clearcut would cause net rates of these N-cycling processes to increase sharply. The in situ incubation method used in this study isolated the samples from ambient roots and thereby prevented plant N uptake; therefore, the increases in stream NO3- concentrations and export following harvest largely reflect diminished uptake. Changes in temperature and moisture after the clearcut were

  15. Effect of cryoprotectants and cooling rates on fertility potential of sperm in the giant freshwater prawn, Macrobrachium rosenbergii (De Man).

    Science.gov (United States)

    Valentina Claudet, P; Narasimman, Selvakumar; Natesan, Munuswamy

    2016-08-01

    This study evaluates freezing protocol with suitable cryoprotectants and their effects on the fertility potential of sperm in the cryopreserved spermatophores of Macrobrachium rosenbergii. Spermatophores, collected using electroejaculation, were suspended in dimethyl sulfoxide (DMSO), propylene glycol (PG), methanol, glycerol and ethylene glycol (EG) at different concentrations (10, 15 & 20% v/v), prepared in sterile-filtered pond water. Based on the cryoprotectant toxicity assay, DMSO and PG were used individually as well as in combination with three freezing protocols (i.e. -1.5, -3 and -5°C/min and to final temperature of -39°C) and plunged into liquid nitrogen at -196°C. After 90 days of storage (-196°C) thawing was done at 35°C in a water bath for 1min. Results showed that fresh and cryopreserved spermatophores held for 90 days registered sperm viability of 91.4±2.9% and 50.4±1.9% respectively. Further, fertility potential of sperm was assessed based on acrosome reactivity using calcium ionopho