WorldWideScience

Sample records for net co2 sink

  1. Net Heterotrophy in the Amazon Continental Shelf Changes Rapidly to a Sink of CO2 in the Outer Amazon Plume

    Directory of Open Access Journals (Sweden)

    Nathalie Lefèvre

    2017-09-01

    Full Text Available The Amazon continental shelf and adjacent oceanic area were sampled for inorganic and organic carbon parameters in order to improve data coverage and understanding of carbon cycling dynamics within this important region. Seasonal coverage of the Amazon plume on the French Guiana continental shelf further north, was provided by CO2 monitoring using a merchant ship sailing from France to French Guiana (2006–2016. Salinity ranged from 1 to 36 (transects in April 2013, and May 2014. At salinity below 10, strong outgassing was observed with fugacity of CO2 (fCO2 over 2,000 μatm. This region displayed net heterotrophy, fueled by organic matter with terrestrial origin, as shown by δ13C and δ15N values of suspended particles. A δ13C cross shelf average of −31% was measured during May 2014, contrasting with oceanic values in excess of −20%. The reactivity of this terrestrial material resulted in the local production of dissolved inorganic and organic carbon as well as fluorescent humic compounds. Further offshore, the dilution of freshwater by ocean waters created a sink for CO2, enhanced by biological activity. The strongest CO2 drawdowns, associated with high chlorophyll a concentrations, were observed on the French Guiana continental shelf in the outer Amazon plume, with fCO2 values below 150 μatm. Here, a CO2 sink was present almost throughout the year, with a seasonal maximum of −9.2 mmol CO2 m−2d−1 observed in June 2015. However, both the CO2 and salinity distributions could vary significantly within a few days, confirming the presence of many eddies in this region. The Amazon continental shelf hence behaved as a transition zone between an inshore source of CO2 to the atmosphere and an offshore sink. Some marine phytoplankton production was detected but occurred mainly close to the French Guiana shelf. A mean net CO2 outgassing of 44 ± 43.6 mmol m−2d−1 was estimated for the area. Quantifying the CO2 flux for the entire Amazon

  2. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  3. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  4. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  5. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier

    2014-01-01

    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...... by Antarctic sea ice. Over the spring- summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean....... undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer...

  6. Two decades of ocean CO2 sink and variability

    International Nuclear Information System (INIS)

    Quere, C. Le; Bopp, L.; Heimann, M.; Prentice, I.C.; Aumont, O.; Bousquet, P.; Ciais, P.; Francey, R.; Rayner, P.J.; Keeling, C.D.; Keeling, R.F.; Piper, S.C.; Kheshgi, H.; Peyliln, P.

    2003-01-01

    Atmospheric CO 2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C/yr for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C/yr. Thus, the sum of the ocean and land CO 2 sinks was 1 Pg C/yr larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C/yr larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C/yr for the 1990s based on O 2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of ±0.7 Pg C/yr remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades

  7. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  8. Recent Changes to the Strength of the CO2 Sink in Boreal Land Regions (Invited)

    Science.gov (United States)

    Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.; Gurney, K. R.; Melillo, J. M.

    2009-12-01

    Studies suggest that high-latitude terrestrial ecosystems have had a significant influence on the global carbon budget by acting as a substantial sink of atmospheric CO2 over the latter part of the 20th Century. However, recent changes in the controlling factors of this sink, including surface air temperature warming and increases in the frequency and severity of disturbances, have the potential to alter the C balance of boreal land regions. Whether these ecosystems continue to sequester atmospheric CO2 in the face of these changes is a key question in global change science and policy, as any changes to the strength of this major terrestrial sink will have important implications for the global C budget and climate system. Here, we diagnose and attribute contemporary terrestrial CO2 sink strength in the boreal land regions using a biogeochemical process model within a simulation framework that incorporates the impacts of recent changes in atmospheric chemistry and climate variability, as well as fire, forest management and agricultural land use regimes. The simulations estimate that the boreal land regions acted as a net sink of 102 TgC yr-1 from 1960 to 1980 that declined in strength to 28 TgC yr-1 for the 1990s and switched to a source of 99 TgC yr-1 from years 2000 to 2006. The weakening sink strength in the 1990s was largely a result of C losses from Boreal North American tundra and forest ecosystems through increasing decomposition of soil organic matter in response to warmer temperatures. Compared to previous decades, a near doubling of fire emissions was the major factor causing the boreal land regions to switch to a net C source since 2000 when large burn years occurred across the region, particularly in forests of Boreal Asia. A steady sink averaging 23 TgC yr-1 was estimated for Boreal European ecosystems from 1960 to 2006, with the ‘fertilization’ effects of increasing atmospheric CO2 concentration and N deposition primarily responsible for the

  9. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  10. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  11. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2016-08-01

    Full Text Available Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1 the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2 economic level (S was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E and energy efficiency (C significantly reduced the net CO2 emission.

  12. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks

    International Nuclear Information System (INIS)

    House, J.I.; Prentice, I.C.; Heimann, M.; Ramankutty, N.

    2003-01-01

    The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO 2 fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO 2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a 'missing' terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO 2 fertilisation and climate change in addition to

  13. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  14. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  15. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  16. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  17. A large CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)

    Science.gov (United States)

    Cotovicz, L. C., Jr.; Knoppers, B. A.; Brandini, N.; Costa Santos, S. J.; Abril, G.

    2015-03-01

    In contrast to its small surface area, the coastal zone plays a disproportionate role in the global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are still poorly known, especially in tropical regions. Surface water pCO2 and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, SE-Brazil. Water pCO2 varied between 22 and 3715 ppmv in the Bay showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and Chlorophyll a (Chl a). Marked pCO2 undersaturation was prevalent in the shallow, confined and thermally stratified waters of the upper bay, whereas pCO2 oversaturation was restricted to sites close to the small river mouths and small sewage channels, which covered only 10% of the bay's area. Substantial daily variations in pCO2 (up to 395 ppmv between dawn and dusk) were also registered and could be integrated temporally and spatially for the establishment of net diurnal, seasonal and annual CO2 fluxes. In contrast to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO2, a property enhanced by the concomitant effects of strong radiation intensity, thermal stratification, and high availability of nutrients, which promotes phytoplankton development and net autotrophy. In the inner part of the bay, the calculated annual CO2 sink (-19.6 mol C m2 yr-1) matched the organic carbon burial in the sediments reported in the literature. The carbon sink and autotrophy of Guanabara Bay was driven by planktonic primary production promoted by eutrophication, and by its typology of marine embayment lacking the classical extended estuarine mixing zone, in contrast to river-dominated estuarine systems, which are generally net heterotrophic and CO2 emitters. Our results show that global CO2

  18. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  19. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  20. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  1. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, Atsushi; Nadaoka, Kazuo; Prayitno, Hanif; Adi, Novi; Suharsono, Suharsono; Muchtar, Muswerry; Triyulianti, Iis; Setiawan, Agus; Suratno, Suratno; Khasanah, Elly

    2015-01-01

    condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year

  2. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    Science.gov (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    stations are different in summer and winter, distributed in four typical regions. The CO2 net fluxes in these representative areas show obvious seasonal cycles with similar trends but different varying ranges and different time of the strongest sink. The intensities and uncertainties of the CO2 fluxes are different at different stations in different months and source-sink sectors. Overall, the WLG station is almost a carbon sink, but the other three stations present stronger carbon sources for most of the year. These findings could be conducive to the application of multi-source CO2 data and the understanding of regional CO2 source-sink characteristics and patterns over China.

  3. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  4. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  5. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-11-05

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  6. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, A.; Nadaoka, K.; Adi, N. S.; Prayitno, H. B.; Suharsono, S.; Muchtar, M.; Triyulianti, I.; Setiawan, A.; Suratno, S.; Khasanah, E. N.

    2015-01-01

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  7. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements

    Science.gov (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.

    2009-04-01

    Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D

  8. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  9. Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm

    International Nuclear Information System (INIS)

    Cagampan, J.P.; Waddington, J.M.

    2008-01-01

    Peatlands are an important long-term sink for atmospheric carbon dioxide (CO 2 ). The storage function of peatland ecosystems is significantly impacted by drainage and extraction processes, which can result in the release of significant amounts of CO 2 . This paper investigated the net ecosystem CO 2 exchange of a newly developed extraction-restoration technique that preserved the acrotelm and replaced it directly on the cut surface of the peatlands. The technique used a modified block-cut method with a back-hoe to create a drainage ditch. Actrotelm and surface vegetation were removed and placed to one side, and the peat was mechanically removed. The acrotelm was then transplanted over the older and more decomposed catotelm peat to create a trench topography in which the natural peatland was higher than the extracted zone. Air temperatures, water table levels, and volumetric moisture content levels were measured throughout the experiment. Measurements of CO 2 exchange were taken for the duration of a Spring and summer growing season at 12 sampling locations. Results of the experiment showed that the technique was successful in maintaining moisture conditions similar to those observed in the natural peatlands. However, the peatlands where the technique was used were still net emitters of CO 2 . Recommendations for improving the technique included using more care when removing upper peat layers; limiting surface damage; and reducing spaces and gaps between the transplanted acrotelm. 34 refs., 8 figs

  10. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)

    Science.gov (United States)

    Cotovicz, L. C., Jr.; Knoppers, B. A.; Brandini, N.; Costa Santos, S. J.; Abril, G.

    2015-10-01

    In contrast to its small surface area, the coastal zone plays a disproportionate role in the global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are significant at the global scale but still poorly known, especially in tropical regions. Surface water pCO2 and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, southeast Brazil. Water pCO2 varied between 22 and 3715 ppmv in the bay, showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and chlorophyll a (Chl a). Marked pCO2 undersaturation was prevalent in the shallow, confined and thermally stratified waters of the upper bay, whereas pCO2 oversaturation was restricted to sites close to the small river mouths and small sewage channels, which covered only 10 % of the bay's area. Substantial daily variations in pCO2 (up to 395 ppmv between dawn and dusk) were also registered and could be integrated temporally and spatially for the establishment of net diurnal, seasonal and annual CO2 fluxes. In contrast to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO2, a property enhanced by the concomitant effects of strong radiation intensity, thermal stratification, and high availability of nutrients, which promotes phytoplankton development and net autotrophy. The calculated CO2 fluxes for Guanabara Bay ranged between -9.6 and -18.3 mol C m-2 yr-1, of the same order of magnitude as the organic carbon burial and organic carbon inputs from the watershed. The positive and high net community production (52.1 mol C m-2 yr-1) confirms the high carbon production in the bay. This autotrophic metabolism is apparently enhanced by eutrophication. Our results show that global CO2 budgetary assertions still lack information on tropical

  11. Searching Sinks and Sources: CO2 Fluxes Before and After Partial Deforestation of a Spruce Forest

    Science.gov (United States)

    Ney, P.; Graf, A.; Druee, C.; Esser, O.; Klosterhalfen, A.; Valler, V.; Pick, K.; Vereecken, H.

    2017-12-01

    Forest ecosystems in the northern mid-latitudes act as a sink for atmospheric carbon dioxide (CO2) and hence play an important role in the terrestrial carbon cycle. Disturbances of these landscapes may have a significant impact on their ecosystem carbon budget. We present seven years of eddy covariance (EC) measurements (September 2013 to September 2017) over a 70 year old spruce stock, including three years prior to and four years after partial deforestation. We analyzed the seasonal and inter-annual changes of carbon fluxes as affected mainly by the forest transition. The measurements were carried out in a small headwater catchment (38.5 ha) within the TERENO (TERrestrial Environmental Observatories) network in the Eifel National Park Germany (50°30'N, 06°19'E, 595-629 m a.s.l.). An EC system, mounted on the top of a 38 m high tower, continuously samples fluxes of momentum, sensible heat, latent heat and CO2. In August and September 2013, more than 20% of the catchment was deforested and planned for regeneration towards natural deciduous vegetation, and a second EC station (2.5 m height) was installed in the middle of this clearcut. Flux partitioning and gap filling methods were used to calculate full time series and annual carbon budgets of the measured net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco). Additionally, soil respiration was measured with manual chambers on a monthly to bi-monthly basis at 25 transect points in the forest and deforested area. Annual sums of NEE represent the forest as a carbon sink with small inter-annual variability. In contrast, the deforested area showed a clear trend. In the first year after partial deforestation, regrowth on the deforested area consisted mainly of grasses and red foxglove (Digitalis purpurea L.), while since the second year also growth of mountain ash (Sorbus aucuparia L.) and broom (Cytisus scoparius L.) increased. The regrowth of biomass is

  12. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  13. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan

    International Nuclear Information System (INIS)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi

    2004-01-01

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2 , releasing an average of 16.7 g C m -2 month -1 . Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  14. A young afforestation area in Iceland was a moderate sink to CO2 only a decade after scarification and establishment

    Directory of Open Access Journals (Sweden)

    B. D. Sigurdsson

    2009-12-01

    Full Text Available This study reports on three years (2004–2006 of measurements of net ecosystem exchange (NEE over a young Siberian larch plantation in Iceland established on previously grazed heathland pasture that had been scarified prior to planting. The study evaluated the variation of NEE and its component fluxes, gross primary production (GPP and ecosystem respiration (Re, with the aim to clarify how climatic factors controlled the site's carbon balance. The young plantation acted as a relatively strong sink for CO2 during all of the three years, with an annual net sequestration of −102, −154, and −67 g C m−2 for 2004, 2005, and 2006, respectively. This variation was more related to variation in carbon efflux (Re than carbon uptake (GPP. The abiotic factors that showed the strongest correlation to Re were air temperature during the growing season and soil water potential. The GPP mostly followed the seasonal pattern in irradiance, except in 2005, when the plantation experienced severe spring frost damage that set the GPP back to zero. It was not expected that the rather slow-growing Siberian larch plantation would be such a strong sink for atmospheric CO2 only twelve years after site preparation and afforestation.

  15. Increasing efficiency of CO2 uptake by combined land-ocean sink

    Science.gov (United States)

    van Marle, M.; van Wees, D.; Houghton, R. A.; Nassikas, A.; van der Werf, G.

    2017-12-01

    Carbon-climate feedbacks are one of the key uncertainties in predicting future climate change. Such a feedback could originate from carbon sinks losing their efficiency, for example due to saturation of the CO2 fertilization effect or ocean warming. An indirect approach to estimate how the combined land and ocean sink responds to climate change and growing fossil fuel emissions is based on assessing the trends in the airborne fraction of CO2 emissions from fossil fuel and land use change. One key limitation with this approach has been the large uncertainty in quantifying land use change emissions. We have re-assessed those emissions in a more data-driven approach by combining estimates coming from a bookkeeping model with visibility-based land use change emissions available for the Arc of Deforestation and Equatorial Asia, two key regions with large land use change emissions. The advantage of the visibility-based dataset is that the emissions are observation-based and this dataset provides more detailed information about interannual variability than previous estimates. Based on our estimates we provide evidence that land use and land cover change emissions have increased more rapidly than previously thought, implying that the airborne fraction has decreased since the start of CO2 measurements in 1959. This finding is surprising because it means that the combined land and ocean sink has become more efficient while the opposite is expected.

  16. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    Science.gov (United States)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  17. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    Forestry may have an important role to play in attempts to reduce atmospheric CO 2 levels, since countries may choose to account for forest management activities to fulfil their commitments under the Kyoto Protocol. However, the effectiveness of such efforts may depend on the forest management strategies applied. This thesis is based on four separate studies in which the potential for forest management strategies to decrease net CO 2 emissions was considered. Long-term field experiments and models were used to: evaluate the impact of different thinning regimes; study broad-leaved stands growing on abandoned farmland with different rotation lengths; predict the effects of using different rotation lengths on carbon accumulation and fossil fuel substitution; and perform an integrated analysis of forest management practices and the potential to substitute fossil fuels by wood products. To evaluate the effects of the management regimes considered, carbon stocks in the investigated stands and the potential of the resulting biomass to substitute fossil fuel were estimated. No significant differences were found in biomass production between the thinning regimes for Norway spruce (Picea abies (L.) Karst.) stands, but the standing biomass was significantly larger in unthinned stands, indicating that to maximize the carbon stock in tree biomass thinnings should be avoided. For Scots pine (Pinus sylvestris L.), thinned and fertilized stands produced significantly more biomass (2.60-2.72 ton d.w./ha/yr) than unthinned and unfertilized stands (2.17-2.34 ton d.w./ha/yr) in the northern regions. These findings indicate that fertilization might be a viable measure to increase production of biomass with the potential to replace fossil fuel and energy-intensive material. In addition, for broad-leaved trees stands on abandoned farmland, management regimes with a short rotation were found to be better for maximizing the substitution of fossil fuel than regimes with a long rotation

  18. Climate dependence of the CO2 fertilization effect on terrestrial net primary production

    International Nuclear Information System (INIS)

    Alexandrov, G.A.; Yamagata, Y.; Oikawa, T.

    2003-01-01

    The quantitative formulation of the fertilization effect of CO 2 enrichment on net primary production (NPP) introduced by Keeling and Bacastow in 1970s (known as Keeling's formula) has been recognized as a summary of experimental data and has been used in various assessments of the industrial impact on atmospheric chemistry. Nevertheless, the magnitude of the formula's key coefficient, the so-called growth factor, has remained open to question. Some of the global carbon cycle modelers avoid this question by tuning growth factor and choosing the value that fits the observed course of atmospheric CO 2 changes. However, for mapping terrestrial sinks induced by the CO 2 fertilization effect one needs a geographical pattern of the growth factor rather than its globally averaged value. The earlier approach to this problem involved formulating the climate dependence of the growth factor and the derivation of its global pattern from climatic variables (whose geographical distribution is known). We use a process-based model (TsuBiMo) for this purpose and derive the values of growth factor for major biomes for comparison our approach with the earlier studies. Contrary to the earlier prevailing opinion, TsuBiMo predicts that these values decrease with mean annual temperature (excluding biomes of limited water supply). We attribute this result to the effect of light limitation caused by mutual shading inside a canopy, which was considered earlier as unimportant, and conclude that current hypotheses about CO 2 fertilization effect (and thus projections of the related carbon sink) are very sensitive to the choice of driving forces taken into account

  19. Dual character of Sundarban estuary as a source and sink of CO2 during summer: an investigation of spatial dynamics.

    Science.gov (United States)

    Akhand, Anirban; Chanda, Abhra; Dutta, Sachinandan; Manna, Sudip; Sanyal, Pranabes; Hazra, Sugata; Rao, K H; Dadhwal, V K

    2013-08-01

    A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3 ± 2.2 mg m(-3)) compared to the middle (6.4 ± 0.6 mg m(-3)) and inner parts (1.6 ± 0.2 mg m(-3)), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg CO2 m(-2) day(-1), respectively, whereas the outer station behaved as a net sink of -33.37 mg CO2 m(-2) day(-1). The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.

  20. Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget

    Science.gov (United States)

    Tian, H.

    2017-12-01

    The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.

  1. Empirically constrained estimates of Alaskan regional Net Ecosystem Exchange of CO2, 2012-2014

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Miller, S. M.; Henderson, J.; Karion, A.; Miller, J. B.; Sweeney, C.; Miller, C. E.; Lin, J. C.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.; Iwata, H.; Ueyama, M.; Harazono, Y.; Veraverbeke, S.; Randerson, J. T.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2015-12-01

    We present data-driven estimates of the regional net ecosystem exchange of CO2 across Alaska for three years (2012-2014) derived from CARVE (Carbon in the Arctic Reservoirs Vulnerability Experiment) aircraft measurements. Integrating optimized estimates of annual NEE, we find that the Alaskan region was a small sink of CO2 during 2012 and 2014, but a significant source of CO2 in 2013, even before including emissions from the large forest fire season during 2013. We investigate the drivers of this interannual variability, and the larger spring and fall emissions of CO2 in 2013. To determine the optimized fluxes, we couple the Polar Weather Research and Forecasting (PWRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, to produce footprints of surface influence that we convolve with a remote-sensing driven model of NEE across Alaska, the Polar Vegetation Photosynthesis and Respiration Model (Polar-VPRM). For each month we calculate a spatially explicit additive flux (ΔF) by minimizing the difference between the measured profiles of the aircraft CO2 data and the modeled profiles, using a framework that combines a uniform correction at regional scales and a Bayesian inversion of residuals at smaller scales. A rigorous estimate of total uncertainty (including atmospheric transport, measurement error, etc.) was made with a combination of maximum likelihood estimation and Monte Carlo error propagation. Our optimized fluxes are consistent with other measurements on multiple spatial scales, including CO2 mixing ratios from the CARVE Tower near Fairbanks and eddy covariance flux towers in both boreal and tundra ecosystems across Alaska. For times outside the aircraft observations (Dec-April) we use the un-optimized polar-VPRM, which has shown good agreement with both tall towers and eddy flux data outside the growing season. This approach allows us to robustly estimate the annual CO2 budget for Alaska and investigate the drivers of both the

  2. A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre

    Directory of Open Access Journals (Sweden)

    W. Geibert

    2008-09-01

    Full Text Available Circumpolar Deep Water (CDW, locally called Warm Deep Water (WDW, enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2 and dissolved inorganic carbon (DIC in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 μatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3 in melting sea ice may play a minor role in this rapid reduction of surface water fCO2.

  3. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  4. Intelligence in Ecology: How Internet of Things Expands Insights into the Missing CO2 Sink

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-01-01

    Full Text Available Arid region characterizes more than 30% of the Earth’s total land surface area and the area is still increasing due to the trends of desertification, yet the extent to which it modulates the global C balance has been inadequately studied. As an emerging technology, IoT monitoring can combine researchers, instruments, and field sites and generate archival data for a better understanding of soil abiotic CO2 uptake in arid region. Images’ similarity analyses based on IoT monitoring can help ecologists to find sites where the abiotic uptake can temporally dominate and how the negative soil respiration fluxes were produced, while IoT monitoring with a set of intelligent video recognition algorithms enables ecologists to revisit these sites and the experiments details through the videos. Therefore, IoT monitoring of geospatial images, videos, and associated optimization and control algorithms should be a research priority towards expanding insights for soil abiotic CO2 uptake and a better understanding of how the uptake happens in arid region. Nevertheless, there are still considerable uncertainties and difficulties in determining the overall perspective of IoT monitoring for insights into the missing CO2 sink.

  5. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    Science.gov (United States)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  6. Rapid establishment of the CO2 sink associated with Kerguelen's bloom observed during the KEOPS2/OISO20 cruise

    Science.gov (United States)

    Lo Monaco, C.; Metzl, N.; D'Ovidio, F.; Llort, J.; Ridame, C.

    2014-12-01

    Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air-sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October-November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air-sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air-sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air-sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom

  7. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  8. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    Science.gov (United States)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  9. Performance Estimation of Supercritical CO2 Cycle for the PG-SFR application with Heat Sink Temperature Variation

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    The heat sink temperature conditions are referred from the annual database of sea water temperature in East sea. When the heat sink temperature increases, the compressor inlet temperature can be influenced and the sudden power decrease can happen due to the large water pumping power. When designing the water pump, the pumping margin should be considered as well. As a part of Prototype Generation IV Sodium-cooled Fast Reactor (PG-SFR) development, the Supercritical CO 2 cycle (S-CO 2 ) is considered as one of the promising candidate that can potentially replace the steam Rankine cycle. S-CO 2 cycle can achieve distinctively high efficiency compared to other Brayton cycles and even competitive performance to the steam Rankine cycle under the mild turbine inlet temperature region. Previous studies explored the optimum size of the S-CO 2 cycle considering component designs including turbomachinery, heat exchangers and pipes. Based on the preliminary design, the thermal efficiency is 31.5% when CO 2 is sufficiently cooled to the design temperature. However, the S-CO 2 compressor performance is highly influenced by the inlet temperature and the compressor inlet temperature can be changed when the heat sink temperature, in this case sea water temperature varies. To estimate the S-CO 2 cycle performance of PG-SFR in the various regions, a Quasi-static system analysis code for S-CO 2 cycle is developed by the KAIST research team. A S-CO 2 cycle for PG-SFR is designed and assessed for off-design performance with the heat sink temperature variation

  10. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    Science.gov (United States)

    Bastos, Ana; Janssens, Ivan A.; Gouveia, Célia M.; Trigo, Ricardo M.; Ciais, Philippe; Chevallier, Frédéric; Peñuelas, Josep; Rödenbeck, Christian; Piao, Shilong; Friedlingstein, Pierre; Running, Steven W.

    2016-01-01

    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO–EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models. PMID:26777730

  11. Effects of winter temperature and summer drought on net ecosystem exchange of CO2 in a temperate peatland

    Science.gov (United States)

    Helfter, Carole; Campbell, Claire; Dinsmore, Kerry; Drewer, Julia; Coyle, Mhairi; Anderson, Margaret; Skiba, Ute; Nemitz, Eiko; Billett, Michael; Sutton, Mark

    2014-05-01

    Northern peatlands are one of the most important global sinks of atmospheric carbon dioxide (CO2); their ability to sequester C is a natural feedback mechanism controlled by climatic variables such as precipitation, temperature, length of growing season and period of snow cover. In the UK it has been predicted that peatlands could become a net source of carbon in response to climate change with climate models predicting a rise in global temperature of ca. 3oC between 1961-1990 and 2100. Land-atmosphere exchange of CO2in peatlands exhibits marked seasonal and inter-annual variations, which have significant short- and long-term effects on carbon sink strength. Net ecosystem exchange (NEE) of CO2 has been measured continuously by eddy-covariance (EC) at Auchencorth Moss (55° 47'32 N, 3° 14'35 W, 267 m a.s.l.), a temperate peatland in central Scotland, since 2002. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from 5 m and the site has a mean annual precipitation of 1155 mm. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The EC system consists of a LiCOR 7000 closed-path infrared gas analyser for the simultaneous measurement of CO2 and water vapour and of a Gill Windmaster Pro ultrasonic anemometer. Over the 10 year period, the site was a consistent yet variable sink of CO2 ranging from -34.1 to -135.9 g CO2-C m-2 yr-1 (mean of -69.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing seasons and mean winter air temperature explained 93% of the variability in summertime sink strength, indicating a phenological memory-effect. Plant development and productivity were stunted by colder winters causing a net reduction in the annual carbon sink strength of this peatland where autotrophic processes are thought to be

  12. Effect of CO2 on the properties and sinking velocity of aggregates of the coccolithophore Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    A. Engel

    2010-03-01

    Full Text Available Coccolithophores play an important role in organic matter export due to their production of the mineral calcite that can act as ballast. Recent studies indicated that calcification in coccolithophores may be affected by changes in seawater carbonate chemistry. We investigated the influence of CO2 on the aggregation and sinking behaviour of the coccolithophore Emiliania huxleyi (PML B92/11 during a laboratory experiment. The coccolithophores were grown under low (~180 μatm, medium (~380 μatm, and high (~750 μatm CO2 conditions. Aggregation of the cells was promoted using roller tables. Size and settling velocity of aggregates were determined during the incubation using video image analysis. Our results indicate that aggregate properties are sensitive to changes in the degree of ballasting, as evoked by ocean acidification. Average sinking velocity was highest for low CO2 aggregates (~1292 m d−1 that also had the highest particulate inorganic to particulate organic carbon (PIC/POC ratio. Lowest PIC/POC ratios and lowest sinking velocity (~366 m d−1 at comparable sizes were observed for aggregates of the high CO2 treatment. Aggregates of the high CO2 treatment showed a 4-fold lower excess density (~4.2×10−4 g cm−3 when compared to aggregates from the medium and low CO2 treatments (~1.7 g×10−3 cm−3. We also observed that more aggregates formed in the high CO2 treatment, and that those aggregates contained more bacteria than aggregates in the medium and low CO2 treatment. If applicable to the future ocean, our findings suggest that a CO2 induced reduction of the calcite content of aggregates could weaken the deep export of organic matter in the ocean, particularly in areas dominated by coccolithophores.

  13. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    Science.gov (United States)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  14. An analysis of the global spatial variability of column-averaged CO2 from SCIAMACHY and its implications for CO2 sources and sinks

    Science.gov (United States)

    Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo

    2014-01-01

    Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.

  15. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009

    DEFF Research Database (Denmark)

    Pilegaard, Kim; Ibrom, Andreas; Courtney, Michael

    2011-01-01

    and atmospheric CO2 concentration. The net CO2 exchange (NEE) was measured by the eddy covariance method. Ecosystem respiration (RE) was estimated from nighttime values and gross ecosystem exchange (GEE) was calculated as the sum of RE and NEE. Over the years the beech forest acted as a sink of on average of 157...... g C m−2 yr−1. In one of the years only, the forest acted as a small source. During 1996–2009 a significant increase in annual NEE was observed. A significant increase in GEE and a smaller and not significant increase in RE was also found. Thus the increased NEE was mainly attributed to an increase...... in GEE. The overall trend in NEE was significant with an average increase in uptake of 23 g C m−2 yr−2. The carbon uptake period (i.e. the period with daily net CO2 gain) increased by 1.9 days per year, whereas there was a non significant tendency of increase of the leafed period. This means...

  16. Impact of climate change and variability on the global oceanic sink of CO2

    OpenAIRE

    Le Quéré, Corinne; Takahashi, Taro; Buitenhuis, Erik T.; Rödenbeck, Christian; Sutherland, Stewart C.

    2010-01-01

    About one quarter of the CO2 emitted to the atmosphere by human activities is absorbed annually by the ocean. All the processes that influence the oceanic uptake of CO2 are controlled by climate. Hence changes in climate (both natural and human-induced) are expected to alter the uptake of CO2 by the ocean. However, available information that constrains the direction, magnitude, or rapidity of the response of ocean CO2 to changes in climate is limited. We present an analysis of oceanic CO2 tre...

  17. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain)

    Science.gov (United States)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.

    2015-04-01

    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  18. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective

    International Nuclear Information System (INIS)

    Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G.

    1998-01-01

    Significant reduction of CO 2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO 2 . A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO 2 . Biosphere sinks are attractive because they can sequester CO 2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO 2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales - global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam

  19. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    Science.gov (United States)

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  20. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  1. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  2. Nutrient Addition Leads to a Weaker CO2 Sink and Higher CH4 Emissions through Vegetation-Microclimate Feedbacks at Mer Bleue Bog, Canada

    Science.gov (United States)

    Bubier, J. L.; Arnkil, S.; Humphreys, E.; Juutinen, S.; Larmola, T.; Moore, T. R.

    2015-12-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands globally, affecting plant community composition, carbon (C) cycling, and microbial dynamics. Nutrient-limited boreal bogs are long-term sinks of carbon dioxide (CO2), but sources of methane (CH4), an important greenhouse gas. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, for 10-15 years with N as NO3 and NH4 at 5, 10 and 20 times ambient N deposition (0.6-0.8 g N m-2 y-1), with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured net ecosystem CO2 exchange (NEE), ecosystem photosynthesis and respiration, and CH4 flux with climate-controlled chambers; leaf-level CO2 exchange and biochemistry; substrate-induced respiration, CH4 production and consumption potentials with laboratory incubations; plant species composition and abundance; and microclimate (peat temperature, moisture, light interception). After 15 years, we have found that NEE has decreased, and CH4 emissions have increased, in the highest nutrient treatments owing to changes in vegetation, microtopography, and peat characteristics. Vegetation changes include a loss of Sphagnum moss and introduction of new deciduous species. Simulated atmospheric N deposition has not benefitted the photosynthetic apparatus of the dominant evergreen shrubs, but resulted in higher foliar respiration, contributing to a weaker ecosystem CO2 sink. Loss of moss has led to wetter near-surface substrate, higher rates of decomposition and CH4 emission, and a shift in microbial communities. Thus, elevated atmospheric deposition of nutrients may endanger C storage in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial communities.

  3. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and gene...... show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling....

  4. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

    International Nuclear Information System (INIS)

    Canadella, J.G.; Raupacha, M.R.; Le Quere, C.; Buitenhuis, E.T.; Gillett, N.P.; Field, C.B.; Ciais, P.; Conway, T.J.; Houghton, R.A.; Marland, G.

    2007-01-01

    The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3%/y. The third process is indicated by increasing evidence (P 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ∼65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. airborne fraction anthropogenic carbon emissions carbon-climate feedback terrestrial and ocean carbon emissions vulnerabilities of the carbon cycle

  5. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  6. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    Science.gov (United States)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact

  7. Sea Ice as a Sink for CO2 and Biogeochemical Material: a Novel Sampling Method and Astrobiological Applications

    Science.gov (United States)

    Wilner, J.; Hofmann, A.; Hand, K. P.

    2017-12-01

    Accurately modelling the intensification of greenhouse gas effects in the polar regions ("polar amplification") necessitates a thorough understanding of the geochemical balance between atmospheric, sea ice, and oceanic layers. Sea ice is highly permeable to CO2 and therefore represents a major sink of oceanic CO2 in winter and of atmospheric CO2 in summer, sinks that are typically either poorly constrained in or fully absent from global climate models. We present a novel method for sampling both trapped and dissolved gases (CO2, CH4 and δ13CH4) in sea ice with a Picarro 2132-i Methane Analyzer, taking the following sampling considerations into account: minimization of water and air contamination, full headspace sampling, prevention of inadvertent sample bag double-puncturing, and ease of use. This method involves melting of vacuum-sealed ice cores to evacuate trapped gases to the headspace and sampling the headspace gas with a blunt needle sheathed by a beveled puncturing needle. A gravity catchment tube prevents input of dangerous levels of liquid water to the Picarro cavity. Subsequent ultrasonic degassing allows for dissolved gas measurement. We are in the process of using this method to sample gases trapped and dissolved in Arctic autumn sea ice cores and atmospheric samples collected during the 2016 Polarstern Expedition and during a May 2017 field campaign north of Barrow, Alaska. We additionally employ this method, together with inductively coupled plasma mass spectrometry (ICP-MS), to analyze the transfer of potential biogeochemical signatures of underlying hydrothermal plumes to sea ice. This has particular relevance to Europa and Enceladus, where hypothetical hydrothermal plumes may deliver seafloor chemicals to the overlying ice shell. Hence, we are presently investigating the entrainment of methane and other hydrothermal material in sea ice cores collected along the Gakkel Ridge that may serve as biosignatures of methanogenic organisms in seafloor

  8. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Directory of Open Access Journals (Sweden)

    L. R. Welp

    2016-07-01

    Full Text Available Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena. Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W–63° E, neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50–60° N, again excluding Europe, showed a trend of 8–11 Tg C yr−2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170–230 Tg C yr−1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by

  9. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  10. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  11. Net CO2 exchange rates in three different successional stages of the 'Dark Taiga' of central Siberia

    International Nuclear Information System (INIS)

    Roeser, C.; Schulze, E.D.; Montagnani, L.

    2002-01-01

    The net ecosystem exchange (NEE) of successional stages of the Abies-dominated dark taiga was measured in central Siberia (61 deg N, 90 deg E) during the growing season of the year 2000 using the eddy covariance technique. Measurements started before snow melt and canopy activity in spring on day of year (DOY) 99 and lasted until a permanent snow cover had developed and respiration had ceased in autumn DOY 299. Three stands growing in close vicinity were investigated: 50 yr-old Betula pubescens ('Betula stand', an early successional stage after fire), 250 yr-old mixed boreal forest, representing the transition from Betula-dominated to Abies-dominated canopies, and 200-yr-old Abies sibirica ('Abies stand', representing a late successional stage following the mixed boreal forest). The mixed boreal forest had a multi-layered canopy with dense under story and trees of variable height and age below the main canopy, which was dominated by Abies sibirica, Picea obovata and few old Betula pubescens and Populus tremula trees. The Abies stand had a uniform canopy dominated by Abies sibirica. This stand appears to have established not after fire but after wind break or insect damage in a later successional stage. The stands differed with respect to the number of days with net CO 2 uptake (Betula stand 89 days, mixed boreal forest 109 days, and Abies stand 135 days), maximum measured LAI (Betula 2.6 m 2 /m 2 , mixed boreal forest 3.5 m 2 /m 2 and Abies stand 4.1 m 2 /m 2 ) and basal area (Betula stand 30.2 m 2 /ha, mixed boreal forest 35.7 m 2 /ha, and Abies stand 46.5 m 2 /ha). In the mixed boreal forest, many days with net daytime CO 2 release were observed in summer. Both other sites were almost permanent sinks in summer. Mean daytime CO 2 exchange rates in July were 8.45 mol/m 2 /s in the Betula stand, 4.65 mol/m 2 /s in the mixed boreal forest and 6.31 mol/m 2 /s in the Abies stand. Measured uptake for the growing season was 247.2 g C/m 2 in the Betula stand, 99.7 g C/m 2

  12. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    Science.gov (United States)

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  13. Net Energy Payback and CO2 Emissions from Three Midwestern Wind Farms: An Update

    International Nuclear Information System (INIS)

    White, Scott W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO 2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO 2 analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO 2 emissions, in tonnes of CO 2 per GW e h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively

  14. Net energy payback and CO2 emissions from three midwestern wind farms: An update

    Science.gov (United States)

    White, S.W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.

  15. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    Science.gov (United States)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  16. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  17. Traveltime and waveform tomography analysis of synthetic borehole seismic data based on the CO2SINK project site, Germany

    Science.gov (United States)

    Yang, Can; Fan, Wenfang; Juhlin, Christopher

    2010-05-01

    Time lapse analysis of seismic data is very important for CO2 storage projects. Therefore, we have tested traveltime and waveform tomography methods to detect velocity changes in a CO2 injection reservoir using synthetic time lapse data. The structural model tested is based on the CO2SINK injection site at Ketzin, Germany where CO2 is being injected at about 630-650 m into a saline aquifer. First, we created synthetic time lapse moving source profiling (MSP) data, also known as walkaway profiling. The velocity model used for modeling was based on well logging and lithological information in the injection borehole. Gassmann fluid substitution was used to calculate the reservoir velocity after injection. In this substitution, we assumed a saturation of CO2 of 30%. The model velocity of the reservoir changed from 2750 m/s (before injection) to 2150 m/s (after injection). A 2D finite difference code available in Seismic Unix (www.cwp.mines.edu) was used. 60 source points were distributed along a surface line. The distance from the injection well was between 150m and 858m, with an interval of 12m. We recorded 21 channels at receiver depths from 470m to 670m, with an interval of 10m. The injection layer was assumed to be between 629m and 650m depth. The wavelet used for the synthetic data was a Gaussian derivative with an average frequency of 60Hz. Then first arrivals were picked on both data sets and used as input data for traveltime tomography. For traveltime tomography, the PS_tomo program was used. Since no data were recorded above 470m, the initial velocity model used above this depth was the true velocity model. Below 470m, the initial velocity model increases linearly from 3000m/s to 3250m/s. After inversion, the reservoir velocity and an anhydrite layer (high velocity layer) can be seen clearly in the final inverted velocity models. Using these velocity models as starting models, we performed waveform tomography in the frequency domain using a program supplied by

  18. Multi-Year Estimates of Regional Alaskan Net CO2 Exchange: Constraining a Remote-Sensing Based Model with Aircraft Observations

    Science.gov (United States)

    Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2014-12-01

    The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.

  19. Natural bog pine ecosystem in southern Germany is a steady and robust sink of CO2 but a minor source of CH4

    Science.gov (United States)

    Hommeltenberg, Janina; Schmid, Hans Peter; Droesler, Matthias; Werle, Peter

    2013-04-01

    -hour time scale of the measurements, the ensemble mean diurnal variation method over a suitable number of days is considered the most practical choice of gap filling method for methane fluxes at Schechenfilz site for estimating daily and annual sums. Overall, the annual CO2 uptake is estimated at a magnitude between -50 and -80 g C m-2 a-1, whereas the annual methane emissions are estimated to be about +6 g C m-2 a-1. Since N2O emissions can be neglected at natural peatland sites, the natural bog-pine ecosystem Schechenfilz is indicated to be a weak net sink of greenhouse gases in the past year, even if the higher global warming potential of methane is considered.

  20. Pengaruh Aerasi dan Sumber Nutrien terhadap Kemampuan Alga Filum Chlorophyta dalam Menyerap Karbon (Carbon Sink untuk Mengurangi Emisi CO2 di Kawasan Perkotaan

    Directory of Open Access Journals (Sweden)

    Lancur Setoaji

    2013-09-01

    Full Text Available Penelitian terkait mitigasi pemanasan global, khususnya dalam penyerapan karbon dioksida (CO2, menjadi fokus utama di kalangan ilmuwan dunia. Secara alamiah, karbon dioksida dapat diserap oleh tumbuhan hijau, laut, karbonasi batuan kapur, dan alga. Pigmen hijau dalam alga atau klorofil dapat menyerap karbon dioksida dalam proses fotosintesis. Alga memiliki pertumbuhan yang sangat cepat sehingga cocok digunakan sebagai carbon sink. Penelitian terkait carbon sink ini bertujuan untuk menentukan kemampuan rata-rata serapan CO2 oleh alga di kawasan perkotaan dan menentukan pengaruh aerasi dan variasi sumber N terhadap pertumbuhan dan perkembangan alga. Penelitian ini dilakukan dalam skala laboratorium menggunakan reaktor dengan proses batch. Sampel alga yang digunakan didapatkan dari hasil pengembangbiakan yang bersumber dari perairan di kawasan perkotaan. Penelitian ini menggunakan dua variabel uji, yaitu aerasi dan sumber nutrien. Jumlah karbon dioksida yang diserap didapatkan dari perbandingan stoikiometri pada reaksi fotosintesis.  Berdasarkan perbandingan stoikiometri tersebut diketahui bahwa 1 gram sel alga yang terbentuk sebanding dengan 1,92 gram CO2 yang diserap. Dari hasil penelitian, alga dengan penambahan pupuk urea dapat menyerap 4,87 mg CO2/hari dalam kondisi tanpa aerasi atau 3,84 mg CO2/hari dengan aerasi. Sedangkan alga dengan penambahan pupuk NPK dapat menyerap 3,61 mg CO2/hari dalam kondisi tanpa aerasi atau 3,01 mg CO2/hari dengan aerasi.

  1. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2).

    Science.gov (United States)

    Drake, B; Raschke, K

    1974-06-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO(2) exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO(2) concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO(2) concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO(2) concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO(2) concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO(2); they responded to changes in CO(2) concentration in the range from 100 to 1000 microliters per liter.

  2. Regional Atmospheric CO2 Inversion Reveals Seasonal and Geographic Differences in Amazon Net Biome Exchange

    Science.gov (United States)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid; Touma, Danielle; Andrews, Arlyn; Basso, Luana G.; hide

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (Approx.1-8 x 10(exp -6) km2) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  3. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components

    Science.gov (United States)

    Menzer, Olaf; McFadden, Joseph P.

    2017-12-01

    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  4. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  5. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    seasonal and interannual variations in net ecosystem productivity (NEP). These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2 ˜ 0.8, slopes ˜ 1 ± 0.1, intercepts ˜ 0.05 µmol m-2 s-1), hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2 ˜ 0.7, slopes ˜ 1 ± 0.1, intercepts ˜ 0.4 µmol m-2 s-1), and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP ˜ 160 g C m-2 yr-1) to carbon neutrality (NEP ˜ 10 g C m-2 yr-1) should the water table deepen by a further ˜ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.

  6. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    GPP and Re caused no significant WTD effects on modeled seasonal and interannual variations in net ecosystem productivity (NEP. These modeled trends were corroborated well by eddy covariance measured hourly net CO2 fluxes (modeled vs. measured: R2  ∼  0.8, slopes  ∼ 1 ± 0.1, intercepts  ∼ 0.05 µmol m−2 s−1, hourly measured automated chamber net CO2 fluxes (modeled vs. measured: R2  ∼ 0.7, slopes  ∼ 1 ± 0.1, intercepts  ∼ 0.4 µmol m−2 s−1, and other biometric and laboratory measurements. Modeled drainage as an analog for WTD drawdown induced by climate-change-driven drying showed that this boreal peatland would switch from a large carbon sink (NEP  ∼  160 g C m−2 yr−1 to carbon neutrality (NEP  ∼  10 g C m−2 yr−1 should the water table deepen by a further  ∼ 0.5 m. This decline in projected NEP indicated that a further WTD drawdown at this fen would eventually lead to a decline in GPP due to water limitation. Therefore, representing the effects of interactions among hydrology, biogeochemistry and plant physiological ecology on ecosystem carbon, water, and nutrient cycling in global carbon models would improve our predictive capacity for changes in boreal peatland carbon sequestration under changing climates.

  7. The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: insights from natural reedbeds and mine water treatment wetlands

    OpenAIRE

    Younger, Paul L.; Mayes, William M.

    2015-01-01

    Abandoned surface mine voids are often left to flood, forming pit lakes. Drawing simple but important lessons from experiences with compost-based passive remediation systems for acidic mine waters, an alternative end-use for open pit mine voids is proposed: gradual infilling with organic material, which can serve as a long-term sink for atmospheric CO2, whilst ameliorating or eventually eliminating sustained evaporative water loss and acidic water pollution. Key to the success of this approac...

  8. The Influence of CO2 Enrichment on Net Photosynthesis of Seagrass Zostera marina in a Brackish Water Environment

    OpenAIRE

    Pajusalu, Liina; Martin, Georg; Põllumäe, Arno; Paalme, Tiina

    2016-01-01

    Seagrasses are distributed across the globe and their communities may play key roles in the coastal ecosystems. Seagrass meadows are expected to benefit from the increased carbon availability which might be used in photosynthesis in a future high CO2 world. The main aim of this study was to examine the effect of elevated pCO2 on the net photosynthesis of seagrass Zostera marina in a brackish water environment. The short-term mesocosm experiments were conducted in Kõiguste Bay (northern part o...

  9. Greenhouse effect gases sources and sinks (CO2, CH4, N2O) in grasslands and reduction strategies. Greenhouse effect gases prairies. Final report of the second part of the project. April 2004

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2004-04-01

    emission factors that are relatively stable for the different grid cells across Europe wit values ranging between 1 and 2% in cut systems and between 3 and 4% under grazing (with organic N application through faeces and urine deposition). Under cutting, the simulations predict a important annual C storage (varying between 0.5 to 6 t C ha-1 y-1). However one must consider that an important part of this storage occurs in the harvested forage. C storage in grazed grasslands (0.3 to 2 t C ha-1 y-1) is lower than in cut grasslands. The simulations indicates therefore that cut grassland could represent an important net GHG sink. In France, the amplitude of this sink could vary between 0.5 and 2 t C CO 2 equivalent ha-1 y-1. The simulations combining cut and grazed grassland, in proportion to the dietary needs, show that,in France, these systems would be a net GHG sink of 2 to 3 t C CO 2 equivalent ha-1 y-1. More realistic results would be obtained if the differences between farming systems were taken into account more specifically. (author)

  10. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  11. The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment

    Directory of Open Access Journals (Sweden)

    Liina Pajusalu

    2016-11-01

    Full Text Available Seagrasses are distributed across the globe and their communities may play key roles in the coastal ecosystems. Seagrass meadows are expected to benefit from the increased carbon availability which might be used in photosynthesis in a future high CO2 world. The main aim of this study was to examine the effect of elevated pCO2 on the net photosynthesis of seagrass Zostera marina in a brackish water environment. The short-term mesocosm experiments were conducted in Kõiguste Bay (northern part of Gulf of Riga, the Baltic Sea in June-July 2013 and 2014. As the levels of pCO2 naturally range from ca. 150 μatm to well above 1000 μatm under summer conditions in Kõiguste Bay we chose to operate in mesocosms with the pCO2 levels of ca. 2000, ca. 1000 and ca. 200 μatm. Additionally, in 2014 the photosynthesis of Z. marina was measured outside of the mesocosm in the natural conditions. In the shallow coastal Baltic Sea seagrass Z. marina lives in a highly variable environment due to seasonality and rapid changes in meteorological conditions. This was demonstrated by the remarkable differences in water temperatures between experimental years of ca. 8°C. Thus, the current study also investigated the effect of elevated pCO2 in combination with short-term natural fluctuations of environmental factors, i.e. temperature and PAR on the photosynthesis of Z. marina. Our results show that elevated pCO2 alone did not enhance the photosynthesis of the seagrass. The photosynthetic response of Z. marina to CO2 enrichment was affected by changes in water temperature and light availability.

  12. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  13. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  14. A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature

    International Nuclear Information System (INIS)

    Floyd, J.; Alpy, N.; Moisseytsev, A.; Haubensack, D.; Rodriguez, G.; Sienicki, J.; Avakian, G.

    2013-01-01

    Highlights: • Year-round behaviour of the supercritical CO 2 recompression cycle is simulated. • Behaviour of the system was uncertain due to large changes in the fluid properties. • Cycle thermodynamic optimisation and component preliminary designs were performed. • No off design cycle stability issues, compressors operate away from surge region. • Independent speed control of compressors maintains power and cycle efficiency. -- Abstract: Supercritical CO 2 cycles are particularly attractive for Generation IV Sodium-Cooled Fast Reactors (SFRs) as they can be simple and compact, but still offer steam-cycle equivalent efficiency while also removing potential for Na/H 2 O reactions. However, CO 2 thermophysical properties are very sensitive close to the critical point which raises, in particular, questions about the compressor and so cycle off-design behaviour when subject to inevitable temperature increases that result from seasonal variations in the heat sink temperature. This publication reports the numerical investigation of such an issue that has been performed using the Plant Dynamics Code (ANL, USA), the cycle being optimised for the next French SFR, ASTRID (1500 MW th ), as a test-case. On design, the net plant efficiency is 42.2% for a high pressure (25 MPa) turbine with an inlet temperature of 515 °C and considering a cycle low temperature of 35 °C. The off-design cycle behaviour is studied based on preliminary designs for the main components and assuming the use of a fixed heat sink flow rate. First results obtained using a common fixed shaft speed for all turbomachines, without any other active control, show no stability issues and roughly constant density (and volumetric flow rate) at the main compressor inlet for the range of heat sink temperature considered (21–40 °C). This occurs because the new stationary states are found without requiring a significant shift of mass to the higher pressure level, meaning the compressor inlet pressure

  15. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    Science.gov (United States)

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  16. Influence of high-latitude warming and land-use changes in the early 20th century northern Eurasian CO2 sink

    Science.gov (United States)

    Bastos, Ana; Peregon, Anna; Gani, Érico A.; Khudyaev, Sergey; Yue, Chao; Li, Wei; Gouveia, Célia M.; Ciais, Philippe

    2018-06-01

    While the global carbon budget (GCB) is relatively well constrained over the last decades of the 20th century [1], observations and reconstructions of atmospheric CO2 growth rate present large discrepancies during the earlier periods [2]. The large uncertainty in GCB has been attributed to the land biosphere, although it is not clear whether the gaps between observations and reconstructions are mainly because land-surface models (LSMs) underestimate inter-annual to decadal variability in natural ecosystems, or due to inaccuracies in land-use change reconstructions. As Eurasia encompasses about 15% of the terrestrial surface, 20% of the global soil organic carbon pool and constitutes a large CO2 sink, we evaluate the potential contribution of natural and human-driven processes to induce large anomalies in the biospheric CO2 fluxes in the early 20th century. We use an LSM specifically developed for high-latitudes, that correctly simulates Eurasian C-stocks and fluxes from observational records [3], in order to evaluate the sensitivity of the Eurasian sink to the strong high-latitude warming occurring between 1930 and 1950. We show that the LSM with improved high-latitude phenology, hydrology and soil processes, contrary to the group of LSMs in [2], is able to represent enhanced vegetation growth linked to boreal spring warming, consistent with tree-ring time-series [4]. By compiling a dataset of annual agricultural area in the Former Soviet Union that better reflects changes in cropland area linked with socio-economic fluctuations during the early 20th century, we show that land-abadonment during periods of crisis and war may result in reduced CO2 emissions from land-use change (44%–78% lower) detectable at decadal time-scales. Our study points to key processes that may need to be improved in LSMs and LUC datasets in order to better represent decadal variability in the land CO2 sink, and to better constrain the GCB during the pre-observational record.

  17. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael

    2008-01-01

    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  18. Petrophysical laboratory invertigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group

    2009-04-01

    Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure

  19. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  20. Forest carbon sinks in the Northern Hemisphere

    Science.gov (United States)

    Christine L. Goodale; Michael J. Apps; Richard A. Birdsey; Christopher B. Field; Linda S. Heath; Richard A. Houghton; Jennifer C. Jenkins; Gundolf H. Kohlmaier; Werner Kurz; Shirong Liu; Gert-Jan Nabuurs; Sten Nilsson; Anatoly Z. Shvidenko

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together...

  1. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2

    Science.gov (United States)

    Donald R. Zak; Kurt S. Pregitzer; Mark E. Kubiske; Andrew J. Burton

    2011-01-01

    The accumulation of anthropogenic CO2 in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO2. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to...

  2. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Tong

    Full Text Available To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE, CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max was 46.6 ± 4.0 µmol CO2 m(-2 s(-1 and initial light use efficiency (α 0.059 ± 0.006 µmol µmol(-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI, canopy conductance (g c and air temperature (T a but declined with increasing vapor pressure deficit (VPD (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001, indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1 in March and May and 26 mm s(-1 in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01, implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  3. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  4. Microbiological monitoring of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Wandrey, M.; Morozova, D.; Zemke, K.; Lerm, S.; Scherf, A.-K.; Vieth, A.; Würdemann, H.; Co2SINK Group

    2009-04-01

    Within the scope of the EU project CO2SINK (www.co2sink.org) a research facility in Ketzin (Germany, west of Berlin) is operated to store CO2 in a saline subsurface aquifer (Würdemann et al., EGU General Assembly 2009). In order to examine the influence of CO2 storage on the environment a comprehensive monitoring program is applied at this site including molecular and microbiological investigations. With the injection of CO2 into the geological formation chemical and physical reservoir characteristics are changed. This may influence the composition and activities of the deep biosphere at the storage horizon. Mineral precipitation, dissolution and corrosion of reservoir casing may be consequences, influencing permeability and long-term stability of the reservoir. The objective of the microbial monitoring program is the characterisation of the microbial community (biocenosis) in fluid samples, as well as in samples from reservoir and cap rock before and during CO2storage using molecular biological methods. 16S rRNA taxonomic studies, Fluorescence in situ hybridisation (FISH), and RealTime PCR are used to examine the composition of the biocenosis. First results of fluid sampling revealed that the microbial community of the saline aquifer is dominated by haloalkaliphilic fermentative bacteria and extremophilic organisms, coinciding with reduced conditions, high salinity and pressure. RealTime RT-PCR of selected genes and the creation and analysis of cDNA libraries will allow the prediction of microbial metabolic activities. In addition, the analysis of organic and inorganic components of the samples will add to the knowledge of possible metabolic shifts during CO2 storage. In order to simulate the storage conditions in situ, long term laboratory experiments in high pressure incubators have been set up using original rock cores from Ketzin. Since DNA and RNA analysis techniques are very sensitive, contamination entries from the adjacent environment have to be excluded

  5. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland.

    Science.gov (United States)

    Järveoja, Järvi; Nilsson, Mats B; Gažovič, Michal; Crill, Patrick M; Peichl, Matthias

    2018-04-30

    The net ecosystem CO 2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching-/vegetation removal plots to partition NEE into its production (i.e. gross and net primary production; GPP and NPP) and respiration (i.e. ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above-/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle. This article is protected by

  6. Net CO2 and water exchanges of trees and grasses in a semi-arid region (Gourma, Mali)

    Science.gov (United States)

    Le Dantec, Valérie; Kergoat, Laurent; Timouk, Franck; Hiernaux, Pierre; Mougin, Eric

    2010-05-01

    An improved understanding of plant and soil processes is critical to predict land surface-atmosphere water exchanges, especially in semi-arid environments, where knowledge is still severely lacking. Within the frame of the African Monsoon Multidisciplinary Project (AMMA), eddy covariance and sapflow stations have been installed to document the intensity, the temporal variability and the main drivers of net CO2 fluxes, water fluxes and contribution of the trees to these fluxes in a pastoral Sahelian landscape. Indeed, although the importance of vegetation in the West African monsoon system has long been postulated, extremely few data were available sofar to test and develop land surface models. In particular, data documenting seasonal and inter-annual dynamics of vegetation/atmosphere exchanges did not exist at 15° N in West Africa before AMMA. The site is located in the Gourma, Mali. Vegetation in this area is sparse and mainly composed of annual grasses and forbs, and trees. Vegetation is organized according to soil type and lateral water redistribution, with bare soil with scattered trees on shallow soils and rocky outcrops (35% of the area), annual grasses and scattered trees on sandy soils (65% of the area), and more dense canopies of grasses and trees growing in valley bottoms over clay soil. To quantify tree transpiration in the overall evapotranspiration flux, sapflow measurements, associated to soil moisture measurements, have been conducted on the main tree species (Acacia senegal, A. seyal, A. raddiana, Combretum glutinosum, Balanites aegyptiaca) in a grassland site and in an open forest site, where eddy covariance fluxes measured the total flux. Using this dataset, we have studied the effects of plant diversity on carbon and water fluxes at the foot-print scale and seasonal dynamics of fluxes due to plant phenology and variations of soil water content (SWC). Carbon fluxes were documented as well, over two years. NEE was close to 0 during the dry season

  7. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  8. Developments in greenhouse gas emissions and net energy use in Danish agriculture - How to achieve substantial CO2 reductions?

    International Nuclear Information System (INIS)

    Dalgaard, T.; Olesen, J.E.; Petersen, S.O.; Petersen, B.M.; Jorgensen, U.; Kristensen, T.; Hutchings, N.J.; Gyldenkaerne, S.; Hermansen, J.E.

    2011-01-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. - Highlights: → GHG emissions from Danish agriculture 1990-2010 are calculated, including carbon sequestration. → Effects of measures to further reduce GHG emissions are listed. → Land use scenarios for a substantially reduced GHG emission by 2050 are presented. → A 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable. → Via bioenergy production Danish agriculture could achieve a positive energy balance. - Scenario studies of greenhouse gas mitigation measures illustrate the possible realization of CO 2 reductions for Danish agriculture by 2050, sustaining current food production.

  9. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui

    2005-01-01

    [1]Aubinet, M., Heinesch, B., Longdoz, B., Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections,heterogeneity of the site and inter-annual variability, Global Change Biology, 2002, 8:1053-1071.[2]Charlotte, L.R., Nigel, T.R., Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog, Global Biogeochemical Cycles, 2003, 171029, doi: 10.1029/20029B001889.[3]Baldocchi, D.D., Hicks, B.B., Meyers, T. P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 1988, 69:1331-1340.[4]Baldocchi, D.D., Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique, Global change biology, 2003, 9: 478-492.[5]Canadell, J. G., Mooney, H. A., Baldocchi, D. D. et al., Carbon metabolism of the terrestrial biosphere: A multi technique approach for improved understanding, Ecosystems, 2000, 3:115-130.[6]Schmid, H. P., Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agricultural and Forest Meteorology, 2002, 113: 159-183.[7]Wofsy, S. C., Goulden, M. L., Munger, J. W. et al., Net exchange on CO2 in a mid-latitude forest, Science, 1993, 260: 1314-1317.[8]Massman, W. J., Lee, X. H., Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges,Agricultural and Forest Meteorology, 2002, 113: 121-144.[9]Baldocchi, D. D., Finnigan, J., Wilson, K. et al., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain, Boundary-Layer Meteorology, 2000, 96: 257-291.[10]Anthoni, P. M., Unsworth, M. H., Law, B. E. et al., Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems, Agricultural and Forest Meteorology, 2002, 111: 203-222.[11]Paw U, K. T., Baldocchi, D. D., Meyers, T. P. et al., Correction of eddy-covariance measurements incorporating both advective

  10. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests

    Science.gov (United States)

    Renchon, A.; Pendall, E.

    2017-12-01

    Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These

  11. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains

    Science.gov (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  12. Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber

    Science.gov (United States)

    Held, A. A.; Steduto, P.; Orgaz, F.; Matista, A.; Hsiao, T. C.

    1990-12-01

    This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration ( ET) and net CO2 flux ( NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns of NCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similar NCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes

  13. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    Science.gov (United States)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  14. Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: The Estonian-Latvian cross-border case study

    NARCIS (Netherlands)

    Shogenova, A.; Shogenov, K.; Pomeranceva, R.; Nulle, I.; Neele, F.; Hendriks, C.

    2011-01-01

    Industrial CO2 emissions and opportunities for CO2 geological storage in the Baltic Region were studied within the EU GeoCapacity project supported by the European Union Framework Programme 6. Estonia produces the largest amounts of CO2 emissions in the region, due to the combustion of Estonian oil

  15. Sink Potential of Canadian Agricultural Soils

    International Nuclear Information System (INIS)

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.

    2004-01-01

    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  16. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China].

    Science.gov (United States)

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan

    2012-04-01

    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  17. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration

    Science.gov (United States)

    To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...

  18. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  19. [Effects of drying and wetting cycles induced by tides on net ecosystem exchange of CO2 over a salt marsh in the Yellow River Delta, China.

    Science.gov (United States)

    He, Wen Jun; Han, Guang Xuan; Xu, Yan Ning; Zhang, Xi Tao; Wang, An Dong; Che, Chun Guang; Sun, Bao Yu; Zhang, Xiao Shuai

    2018-01-01

    As a unique hydrological characteristic, the tidal action can strongly affect carbon balance in a salt marsh despite their short duration. Using the eddy covariance technique, we measured the net ecosystem CO 2 exchange (NEE) and its environmental factors and tidal change over a salt marsh in the Yellow River Delta. It aimed to investigate the effect of tidal process and drying and wetting cycles induced by tides on NEE. The results showed that the tidal process promoted the daytime CO 2 uptake, but it didn't clearly affect the nighttime CO 2 release. Tidal inundation was a major factor influencing daytime NEE. The diurnal change of NEE showed a distinct U-shaped curve on both drought and wet stages, but not with substantial variation in its amplitude during the drought stage. The drying and wetting cycles enhanced the absorption of daytime CO 2 . Under drought stage, the mean of the maximum photosynthetic rate (A max ), apparent quantum yield (α) and ecosystem respiration (R eco ) were higher than those in wet stage. In addition, the drying and wetting cycles suppressed the nighttime CO 2 release from the salt marsh but increased its temperature sensitivity.

  20. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    Science.gov (United States)

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the

  1. Interannual variations of net community production and air-sea CO2 flux from winter to spring in the western subarctic North Pacific

    International Nuclear Information System (INIS)

    Midorikawa, Takashi; Ogawa, Kan; Nemoto, Kazuhiro; Kamiya, Hitomi; Umeda, Takafumi; Hiraishi, Naotaka; Wada, Akira; Ishii, Masao

    2003-01-01

    The role of spring biological production for the air-sea CO 2 flux was quantified in the Western Subarctic Gyre (48 deg N, 165 deg E), where the vertical profile of temperature revealed the existence of a temperature minimum (Tmin) layer in the North Pacific. The vertical profiles of temperature, salinity, dissolved oxygen, nutrients and dissolved inorganic carbon, DIC, in the upper water column were significantly variable year by year in spring, 1996-2000. Correspondingly, surface seawater at this site in spring was supersaturated with CO 2 in 1997, 1999 and 2000, but was undersaturated in 1996 and 1998. The concentrations of DIC and nutrients in the winter mixed layer were estimated from those in the Tmin layer in spring with a correction for particle decomposition based on the apparent oxygen utilization. The net community production (NCP) and air-sea CO 2 flux from winter to spring were calculated from the vertically integrated deficits of DIC and nutrients in the upper water column between the two seasons. The calculation of the carbon budget indicated large interannual variations of NCP (0-13 mmol/m 2 /d) and CO 2 efflux (4-16 mmol/m 2 /d) for this period. The CO 2 efflux was generally low in the year when NCP was high. The close coupling between biological production and CO 2 efflux suggested the important role of the changes in the mixed-layer depth, as a key process controlling both processes, especially of the timing, so that a decrease in the mixed-layer depth could result in the activation of biological production. The early biological consumption of the surface DIC concentration could shorten the period for acting as a source for atmospheric CO 2 and depress the CO 2 efflux in the Western Subarctic Gyre from winter to spring in 1996 and 1998. On the contrary, in 1997, persistently deep vertical mixing until late spring could suppress the biological activity and give rise to long-lasting CO 2 efflux

  2. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer

    Science.gov (United States)

    Siqueira, M. B.; Katul, G. G.

    2009-12-01

    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured

  3. Ménage-à-trois: The ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs

    Directory of Open Access Journals (Sweden)

    Christian Maueröder

    2016-12-01

    Full Text Available In this study we identified and characterized the potential of a high ratio of bicarbonate to CO2 and a moderately alkaline pH to render neutrophils prone to undergo neutrophil extracellular trap (NET formation. Both experimental settings increased the rate of spontaneous NET release and potentiated the NET-inducing capacity of phorbol esters (PMA, ionomycin, monosodium urate and LPS. In contrast, an acidic environment impaired neutrophil extracellular trap formation both spontaneous and induced. Our findings indicate that intracellular alkalinization of neutrophils in response to an alkaline environment leads to an increase of intracellular calcium and neutrophil activation. We further found that the anion channel blocker DIDS strongly reduced NET formation induced by bicarbonate. This finding suggests that the effects observed are due to a molecular program that renders neutrophils susceptible to neutrophil extracellular trap formation. Inflammatory foci are characterized by an acidic environment. Our data indicates that NET formation is favored by the higher pH at the border regions of inflamed areas. Moreover our findings highlight the necessity for strict pH control during assays of neutrophil extracellular trap formation.

  4. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    producing streams for use as a feedstock or by product for subsequent utilization in industrial processes, this paper will also review existing methods of CO2 utilization and the future scope for utilization as a sink that could prevent the release of anthropogenic CO2 emissions into the atmosphere. In order to be effective as a sink, the process or product that uses CO2 must take cognisance of the type of energy use, energy penalties and net greenhouse gas emissions associated with the 'capture' and 'fixation' of carbon, as well as significantly prolonging the period between CO2 production from fossil fuels and the stage of its final discharge into the atmosphere from any degradation or release of the 'fixed' carbon. Hence, the manufacturing of various chemicals, materials or products using CO2 as a raw material will be reviewed and evaluated in terms of these criteria as well as their chemical/thermodynamic stability relative to CO2

  5. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero

    2013-05-01

    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  6. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.

    2006-01-01

    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  7. Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014 on the Net Primary Productivity in Arid and Semiarid China

    Directory of Open Access Journals (Sweden)

    Xia Fang

    2017-02-01

    Full Text Available Although the net primary productivity (NPP of arid/semiarid ecosystem is generally thought to be controlled by precipitation, other factors like CO2 fertilization effect and temperature change may also have important impacts, especially in the cold temperate areas of the northern China, where significant warming was reported in the recent decades. However, the impacts of climate and atmospheric CO2 changes to the NPP dynamics in the arid and semiarid areas of China (ASA-China is still unclear, hindering the development of climate adaptation strategy. Based on numeric experiments and factorial analysis, this study isolated and quantified the effects of climate and CO2 changes between 1980–2014 on ASA-China’s NPP, using the Arid Ecosystem Model (AEM that performed well in predicting ecosystems’ responses to climate/CO2 change according to our evaluation based on 21 field experiments. Our results showed that the annual variation in NPP was dominated by changes in precipitation, which reduced the regional NPP by 10.9 g·C/(m2·year. The precipitation-induced loss, however, has been compensated by the CO2 fertilization effect that increased the regional NPP by 14.9 g·C/(m2·year. The CO2 fertilization effect particularly benefited the extensive croplands in the Northern China Plain, but was weakened in the dry grassland of the central Tibetan Plateau due to suppressed plant activity as induced by a drier climate. Our study showed that the climate change in ASA-China and the ecosystem’s responses were highly heterogeneous in space and time. There were complex interactive effects among the climate factors, and different plant functional types (e.g., phreatophyte vs. non-phreatophyte could have distinct responses to similar climate change. Therefore, effective climate-adaptive strategies should be based on careful analysis of local climate pattern and understanding of the characteristic responses of the dominant species. Particularly, China

  8. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  9. Aboveground net primary productivity and rainfall use efficiency of grassland on three soils after two years of exposure to a subambient to superambient CO2 gradient.

    Science.gov (United States)

    Fay, P. A.; Polley, H. W.; Jin, V. L.

    2008-12-01

    Atmospheric CO2 concentrations (CA) have increased by about 100 μL L-1 over the last 250 years to ~ 380 μL L-1, the highest values in the last half-million years, and CA is expected to continue to increase to greater than 500 μL L-1 by 2100. CO2 enrichment has been shown to affect many ecosystem processes, but experiments typically examine only two or a few levels of CA, and are typically constrained to one soil type. However, soil hydrologic properties differ across the landscape. Therefore, variation in the impacts of increasing CA on ecosystem function on different soil types must be understood to model and forecast ecosystem function under future CA and climate scenarios. Here we evaluate the aboveground net primary productivity (ANPP) of grassland plots receiving equal rainfall inputs (from irrigation) and exposed to a continuous gradient (250 to 500 μL L-1) of CA in the Lysimeter CO2 Gradient Experiment in central Texas, USA. Sixty intact soil monoliths (1 m2 x 1.5 m deep) taken from three soil types (Austin silty clay, Bastrop sandy loam, Houston clay) and planted to seven native tallgrass prairie grasses and forbs were exposed to the CA gradient beginning in 2006. Aboveground net primary productivity was assessed by end of season (November) harvest of each species in each monolith. Total ANPP of all species was 35 to 50% greater on Bastrop and Houston soils compared to Austin soils in both years (p Solidago canadensis strongly increased with increasing CA, with S. nutans responding more strongly on Bastrop and Houston soils (p = 0.053), indicating that increased greater rainfall use efficiency at high CA on these productive soils was associated with increased dominance by these species. In contrast, the grass Bouteloua curtipendula decreased in biomass with increasing CA, especially on Austin and Bastrop soils. The least productive species were the grass Tridens albescens, the legume Desmanthus illinoensis, and the forb Salvia azurea, and these showed

  10. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Carbon dioxide (CO2 exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE of a cultivated pasture in the Three-River Source Region (TRSR on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1 and July 28 (5.04 g C m-2 day-1, respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI, air temperature (Ta, soil water content (SWC and vapor pressure deficit (VPD. Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10 was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon

  11. Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment

    DEFF Research Database (Denmark)

    Järvi, L.; Mammarella, I.; Eugster, W.

    2009-01-01

    and their suitability to accurately measure CO2 exchange in such non-ideal landscape. In addition, this study examined the effect of open-path sensor heating on measured fluxes in urban terrain, and these results were compared with similar measurements made above a temperate beech forest in Denmark. The correlation...... between the two fluxes was good (R2 = 0.93) at the urban site, but during the measurement period the open-path net surface exchange (NSE) was 17% smaller than the closed-path NSE, indicating apparent additional uptake of CO2 by open-path measurements. At both sites, sensor heating corrections evidently...... improved the performance of the open-path analyzer by reducing discrepancies in NSE at the urban site to 2% and decreasing the difference in NSE from 67% to 7% at the forest site. Overall, the site-specific approach gave the best results at both sites and, if possible, it should be preferred in the sensor...

  12. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study

    Science.gov (United States)

    Olchev, Alexander; Kurbatova, Julia

    2014-05-01

    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  13. Plant functional types define magnitude of drought response in peatland CO2 exchange

    NARCIS (Netherlands)

    Kuiper, J.J.; Mooij, W.M.; Bragazza, L.; Robroek, B.J.M.

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during

  14. Plant functional types define magnitude of drought response in peatland CO2 exchange

    NARCIS (Netherlands)

    Kuiper, J.J.; Mooij, W.M.; Bragazza, L.; Robroek, B.J.M.

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during

  15. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage

    International Nuclear Information System (INIS)

    Kirby, C.S.; Dennis, A.; Kahler, A.

    2009-01-01

    Passive treatment systems for mine drainage use no energy other than gravity, but they require greater area than active treatment systems. Researchers are considering 'hybrid' systems that have passive and active components for increased efficiency, especially where space limitations render passive-only technology ineffective. Flow-through reactor field experiments were conducted at two large net-alkaline anthracite mine discharges in central Pennsylvania. Assuming an Fe removal rate of 20 g m -2 day -1 and Fe loading from field data, 3.6 x 10 3 and 3.0 x 10 4 m 2 oxidation ponds would be required for the passive treatment of Site 21 and Packer 5 discharges, respectively. However, only a small area is available at each site. This paper demonstrates aeration to drive off CO 2 , increase pH, and increase Fe(II) oxidation rates, enabling treatment within a small area compared to passive treatment methods, and introduces a geochemical model to accurately predict these rates as well as semi-passive treatment system sizing parameters. Both net-alkaline discharges were suboxic with a pH of ∼5.7, Fe(II) concentration of ∼16 mg L -1 , and low Mn and Al concentrations. Flow rates were ∼4000 L min -1 at Site 21 and 15,000 L min -1 at Packer 5. Three-h aeration experiments with flow rates scaled to a 14-L reactor resulted in pH increases from 5.7 to greater than 7, temperature increases from 12 to 22 deg. C, dissolved O 2 increases to saturation with respect to the atmosphere, and Fe(II) concentration decreases from 16 to -1 . A 17,000-L pilot-scale reactor at Site 21 produced similar results although aeration was not as complete as in the smaller reactor. Two non-aerated experiments at Site 21 with 13 and 25-h run times resulted in pH changes of ≤0.2 and Fe(II) concentration decreases of less than 3 mg L -1 . An Fe(II) oxidation model written in a differential equation solver matched the field experiments very well using field-measured pH, temperature, dissolved O 2

  16. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  17. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean

    International Nuclear Information System (INIS)

    Druffel, E.M.; Suess, H.E.

    1983-01-01

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the 14 C/ 12 C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing 14 C levels with dead CO 2 from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend was observed in the distribution of bomb-produced 14 C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic δ 14 C in the surface during post-bomb times, the approximate annual rate of net input of 14 CO 2 to the ocean waters is calculated to be about 8% of the prevailing 14 C difference between atmosphere and ocean. From this input and from preanthropogenic δ 14 C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream

  18. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    Science.gov (United States)

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Divergent NEE balances from manual-chamber CO2 fluxes linked to different measurement and gap-filling strategies: A source for uncertainty of estimated terrestrial C sources and sinks?

    DEFF Research Database (Denmark)

    Huth, Vytas; Vaidya, Shrijana; Hoffmann, Mathias

    2017-01-01

    Manual closed-chamber measurements are commonly used to quantify annual net CO2 ecosystem exchange (NEE) in a wide range of terrestrial ecosystems. However, differences in both the acquisition and gap filling of manual closed-chamber data are large in the existing literature, complicating inter...... measurements from sunrise to noon (sunrise approach) to capture a span of light conditions for measurements of NEE with transparent chambers. (2) The second level included three different methods of pooling measured ecosystem respiration (RECO) fluxes for empirical modeling of RECO: campaign-wise (19 single...... RECO fluxes (direct GPP modeling) or empirically modeled RECO fluxes from measured NEE fluxes (indirect GPP modeling). Measurements were made during 2013–2014 in a lucerne-clover-grass field in NE Germany. Across the different combinations of measurement and gap-filling options, the NEE balances...

  20. Impact of climate and CO2 change on net primary productivity of Pinus tabulaeformis forest in Beijing mountain area%气候和CO2变化对北京山区油松林NPP的影响

    Institute of Scientific and Technical Information of China (English)

    张文海; 吕锡芝; 余新晓; 范敏锐

    2012-01-01

    应用BIOME-BGC模型模拟估算了1974-2010年北京十三陵油松林的净初级生产力(NPP),并分析了不同CO2浓度和气候变化情景对NPP的影响.结果表明:模型模拟所得NPP与实际测定值相差8.9%,变化趋势基本一致;表现出低值高值的波浪形年际变化,年际变动率为30.69%;油松林模拟NPP与降水量呈现显著的线性相关关系(相关系数为0.85),与平均温度无线性相关关系(相关系数为-0.18);油松林NPP对单独的CO2的浓度加倍、降水增加表现出正向响应,而单独的温度增加不利于油松林NPP的积累:CO2浓度加倍、降水增加和温度增加三因子共同作用降低了油松林NPP,各因子之间表现出较强的交互作用.

  1. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  2. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  3. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    Science.gov (United States)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  4. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2010-09-01

    Full Text Available CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively, growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km for carbon fixation (dissolved inorganic carbon, DIC increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM. In the high CO2 grown cells, the electron transport rate from photosystem II (PSII was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

  5. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    Science.gov (United States)

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  6. The potential effects of concurrent increases in temperature, CO2 and O3 on net photosynthesis, as mediated by rubisCO

    International Nuclear Information System (INIS)

    Long, S.; Essex Univ., Colchester

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO 2 concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0 2 on carbon gain, but also the basic interactions of temperature, C0 2 and 0 3 . Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO 2 concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis

  7. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  8. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  9. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  10. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  11. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  12. Sudden Exposure to Solar UV-B Radiation Reduces Net CO2 Uptake and Photosystem I Efficiency in Shade-Acclimated Tropical Tree Seedlings1

    Science.gov (United States)

    Krause, G. Heinrich; Grube, Esther; Virgo, Aurelio; Winter, Klaus

    2003-01-01

    Tree seedlings developing in the understory of the tropical forest have to endure short periods of high-light stress when tree-fall gaps are formed, and direct solar radiation, including substantial UV light, reaches the leaves. In experiments simulating the opening of a tree-fall gap, the response of photosynthesis in leaves of shade-acclimated seedlings (Anacardium excelsum, Virola surinamensis, and Calophyllum longifolium) to exposure to direct sunlight (for 20–50 min) was investigated in Panama (9°N). To assess the effects of solar UV-B radiation (280–320 nm), the sunlight was filtered through plastic films that selectively absorbed UV-B or transmitted the complete spectrum. The results document a strong inhibition of CO2 assimilation by sun exposure. Light-limited and light-saturated rates of photosynthetic CO2 uptake by the leaves were affected, which apparently occurred independently of a simultaneous inhibition of potential photosystem (PS) II efficiency. The ambient UV-B light substantially contributed to these effects. The photochemical capacity of PSI, measured as absorbance change at 810 nm in saturating far-red light, was not significantly affected by sun exposure of the seedlings. However, a decrease in the efficiency of P700 photooxidation by far-red light was observed, which was strongly promoted by solar UV-B radiation. The decrease in PSI efficiency may result from enhanced charge recombination in the reaction center, which might represent an incipient inactivation of PSI, but contributes to thermal dissipation of excessive light energy and thereby to photoprotection. PMID:12586898

  13. Rice Field Geochemistry and Hydrology: An Explanation for Why Groundwater Irrigated Fields in Bangladesh are Net Sinks of Arsenic from Groundwater

    Science.gov (United States)

    Neumann, Rebecca B.; St. Vincent, Allison P.; Roberts, Linda C.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Harvey, Charles F.

    2011-01-01

    Irrigation of rice fields in Bangladesh with arsenic-contaminated groundwater transfers tens of cubic kilometers of water and thousands of tons of arsenic from aquifers to rice fields each year. Here we combine observations of infiltration patterns with measurements of porewater chemical composition from our field site in Munshiganj Bangladesh to characterize the mobility of arsenic in soils beneath rice fields. We find that very little arsenic delivered by irrigation returns to the aquifer, and that recharging water mobilizes little, if any, arsenic from rice field subsoils. Arsenic from irrigation water is deposited on surface soils and sequestered along flow paths that pass through bunds, the raised soil boundaries around fields. Additionally, timing of flow into bunds limits the transport of biologically available organic carbon from rice fields into the subsurface where it could stimulate reduction processes that mobilize arsenic from soils and sediments. Together, these results explain why groundwater irrigated rice fields act as net sinks of arsenic from groundwater. PMID:21332196

  14. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation

    Science.gov (United States)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan

    2018-06-01

    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  15. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  16. CO2 and Carbon Balance of an Intensively Grazed Temperate Pasture: Response to Cultivation

    Science.gov (United States)

    Rutledge, S.; Mudge, P. L.; Wallace, D.; Campbell, D.; Wall, A.; Hosking, C. L.; Schipper, L. A.

    2012-12-01

    Recent soil resampling studies have shown that soils on flat land used for intensive dairy farming in New Zealand have lost large amounts of carbon (~1 t C ha-1y-1) over the past few decades, and the causes of these losses are poorly understood. One of the management practices potentially contributing to the C losses from these dairy soils is the periodic cultivation commonly associated with pasture renewal or the rotation through summer or winter crops. Here we report the results of three experiments aimed at quantifying the effect of cultivation as part of pasture renewal on the CO2 and C balances of permanent pastures. In the first experiment, the net ecosystem CO2 exchange (NEE) of an intensively grazed dairy pasture was measured before, during and after cultivation using eddy covariance (EC) from 2008 to 2011 at a dairy farm in the Waikato region on the North Island of New Zealand. The net ecosystem carbon balance (NECB) was determined by combining NEE data with measurements and estimates of other C imports (feed) and C exports (milk, methane, silage and leaching). The other two experiments took place on the same farm and monitored two different cultivation events in 2008. We made chamber measurements of soil CO2 losses between spraying and seedling emergence. One of the cultivations took place in summer 2008 during a drought, whereas the other took place in spring 2008 when soil water was not limiting. For the first two years of experiment 1 the site was under permanent pasture and it was a sink for both CO2 (1.6 and 2.3 t C ha-1y-1 for 2008 and 2009, respectively) and C (0.59 and 0.90 t C ha-1y-1 for 2008 and 2009, respectively), despite a severe drought in summer 2008 which had led to a loss of approximately 1.1 t C ha-1 as CO2 over the three summer months. Pasture renewal took place in March 2010 and CO2 losses during this event were approximately 1.7 t C ha-1. However, the site seemed to recover quickly and was a sink of CO2 at an annual time scale of

  17. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  18. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  19. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  20. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

    Science.gov (United States)

    Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik

    2017-08-01

    Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.

  1. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.

    Science.gov (United States)

    Demmig-Adams, B; Adams, W W; Winter, K; Meyer, A; Schreiber, U; Pereira, J S; Krüger, A; Czygan, F C; Lange, O L

    1989-03-01

    During the "midday depression" of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and β-carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.

  2. Changes in terrestrial CO2 budget in Siberia in the past three decades

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Ito, A.; Kobayashi, H.; Maksyutov, S. S.; Maki, T.; Nakamura, T.; Niwa, Y.; Patra, P. K.; Saeki, T.; Sato, H.; Sasai, T.; Saigusa, N.; Tian, H.; Yanagi, Y.; Zhang, B.

    2015-12-01

    Siberia is one of the regions where significant warming is proceeding, and the warming might cause changes in terrestrial carbon cycle. We analyzed interannual and decadal changes in terrestrial CO2 fluxes in the regions using multiple data sets, such as empirically estimated carbon fluxes based on multiple eddy-covariance sites (empirical upscaling; Support Vector Regression with AsiaFlux data), satellite-based vegetation index data, multiple terrestrial carbon cycle models from Asia-MIP (e.g. BEAMS, Biome-BGC, SEIB-DGVM, and VISIT), and atmospheric inverse models (e.g. ACTM, JMA, NICAM-TM) for the past 3 decades (1980s, 1990s, and 2000s). First, we checked the consistency in interannual variation of net carbon exchange between empirical upscaling and Asia-MIP model for 2001-2011 period, and found these two estimations show overall consistent interannual variation. Second, we analyzed net carbon exchange form Asia-MIP models and atmospheric inversions for the past three decades, and found persistent increases in terrestrial CO2 sink from two estimates. Magnitudes of estimated terrestrial CO2 sinks are also consistent (e.g. Asia-MIP: 0.2 PgC yr-1 in 1980s and 0.3 PgC yr-1 in 2000s and Inversions: 0.2 PgC yr-1 in 1980s and 0.5 PgC/yr in 2000s). We further analyzed the cause of persistent increases in CO2 uptake in the region using Asia-MIP model outputs, and climate changes (both warming and increases in water availability) and CO2 fertilization plays almost equivalent roles in sink increases. In addition, both gross primary productivity (GPP) and ecosystem respiration (RE) were increased, but increase in GPP was larger than that in RE.

  3. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    : the ULCOS program; CO 2 capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO 2 geologic storage; CO2SINK, CO 2 geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO 2 storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO 2 capture, geologic storage and carbon market; economic aspects of CO 2 capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  4. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  5. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  6. Interannual variability in CO2 and CH4 exchange in a brackish tidal marsh in Northern California

    Science.gov (United States)

    Knox, S. H.; Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.

    2017-12-01

    Carbon (C) cycling in coastal wetlands is difficult to measure and model due to extremely dynamic atmospheric and hydrologic fluxes, as well as sensitivities to dynamic land- and ocean-based drivers. To date, few studies have begun continuous measurements of net ecosystem CO2 exchange (NEE) in these systems, and as such our understanding of the key drivers of NEE in coastal wetlands remain poorly understood. Recent eddy covariance measurements of NEE in these environments show considerable variability both within and across sites, with daily CO2 uptake and annual net CO2 budgets varying by nearly an order of magnitude between years and across locations. Furthermore, measurements of CH4 fluxes in these systems are even more limited, despite the potential for CH4 emissions from brackish and freshwater coastal wetlands. Here we present 3 years of near-continuous eddy covariance measurements of CO2 and CH4 fluxes from a brackish tidal marsh in Northern California and explore the drivers of interannual variability in CO2 and CH4 exchange. CO2 fluxes showed significant interannual variability; net CO2 uptake was near-zero in 2014 (6 ± 26 g C-CO2 m-2 yr-1), while much greater uptake was observed in 2015 and 2016 (209 ± 27 g C- CO2 m-2 yr-1 and 243 ± 26 g C-CO2 m-2 yr-1, respectively). Conversely, annual CH4 emissions were small and consistent across years, with the wetland emitting on average 1 ± 0.1 g C-CH4 m-2 yr-1. With respect to the net atmospheric GHG budget (assuming a sustained global warming potential (SGWP) of 45, expressed in units of CO2 equivalents), the wetland was near neutral in 2014, but a net GHG sink of 706 ± 105 g CO2 eq m-2 yr-1 and 836 ± 83 g CO2 eq m-2 yr-1 in 2015 and 2016, respectively. The large interannual variability in CO2 exchange was driven by notable year-to-year differences in temperature and precipitation as California experienced a severe drought and record high temperatures from 2012 to 2015. The large interannual variability in

  7. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  8. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  9. Variation in salt marsh CO2 fluxes across a latitudinal gradient along the US Atlantic coast

    Science.gov (United States)

    Forbrich, I.; Nahrawi, H. B.; Leclerc, M.; O'Connell, J. L.; Mishra, D. R.; Fogarty, M. C.; Edson, J. B.; Lule, A. V.; Vargas, R.; Giblin, A. E.; Alber, M.

    2017-12-01

    Salt marshes occur at the dynamic interface of land and ocean, where they play an important role as sink and source of nutrients, carbon (C) and sediment. They often are strong carbon sinks, because they continuously accumulate soil organic matter and sediment to keep their position relative to sea level. Decadal average C sequestration rates can be inferred from soil carbon density and mass accumulation rates, but little information about biological and climatic controls on C cycling and storage in these systems exists. In this study, we report measurements of atmospheric CO2 exchange from salt marshes along the US Atlantic coast from Massachusetts to Georgia. These measurements were made over periods from one to five years. Spartina alterniflora is the dominant vegetation at all sites. At the northern most site, Plum Island Ecosystems (PIE) LTER, and the southern most site, Georgia Coastal Ecosystems (GCE) LTER, flux measurements over several years have shown variations in the net CO2 flux influenced by the local climate. For example, annual net C uptake at the PIE LTER over 5 years (2013-2017) depends on rainfall in the growing season (June-August) which modulates soil salinity levels. This pattern is not as evident at the GCE LTER (2014-2015). Furthermore, the growing season length differs between both sites. Based on the CO2 flux measurements, a temperature threshold of 15o C limits the net C uptake at both sites and daily rates of net C uptake are generally smaller during the longer growing season in Georgia. Nevertheless, gross primary production (GPP) is similar for both sites. We will extend this analysis to include sites from Delaware and North Carolina to assess controls (e.g. leaf area using MODIS vegetation indices, temperature, photoperiod) on Spartina phenology and CO2 exchange.

  10. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data

    International Nuclear Information System (INIS)

    Lefevre, Nathalie; Watson, Andrew J.; Watson, Adam R.

    2005-01-01

    Using about 138,000 measurements of surface pCO 2 in the Atlantic subpolar gyre (50-70 deg N, 60-10 deg W) during 1995-1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO 2 constructed using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric CO 2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring and summer due to biological activity. As an annual average the surface pCO 2 is higher than estimates based on available syntheses of surface pCO 2 . This supports earlier suggestions that the sink of CO 2 in the Atlantic subpolar gyre has decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well on the average values of pCO 2 and derived fluxes. However, when both techniques are used with a subset of the data, the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard deviation ranging from 3 to 11 μatm. The subpolar gyre is a net sink of CO 2 of 0.13 Gt-C/yr using the multiple linear regressions and 0.15 Gt-C/yr using the neural network, on average between 1995 and 1997. Both calculations were made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using the gas exchange coefficient of Wanninkhof

  11. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Kim, Min Seok; Ahn, Yoonhan; Kim, Beomjoo; Lee, Jeong Ik

    2016-01-01

    In this paper, a comparison of nine supercritical carbon dioxide (S-CO 2 ) bottoming power cycles in conjunction with a topping cycle of landfill gas (LFG) fired 5MWe gas turbine is presented. For the comparison purpose, a sensitivity study of the cycle design parameters for nine different cycles was conducted and each cycle thermodynamic performance is evaluated. In addition, the cycle performance evaluation dependency on the compressor inlet temperature variation is performed to investigate how S-CO 2 cycles sensitive to the heat sink temperature variation. Furthermore, the development of new S-CO 2 cycle layouts is reported and the suggested cycles' performances are compared to the existing cycle layouts. It was found that a recompression cycle is not suitable for the bottoming cycle application, but a partial heating cycle has relatively higher net produced work with a simple layout and small number of components. Although a dual heated and flow split cycle has the highest net produced work, it has disadvantages of having numerous components and complex process which requires more sophisticated operational strategies. This study identified that the recuperation process is much more important than the intercooling process to the S-CO 2 cycle design for increasing the thermal efficiency and the net produced work point of view. - Highlights: • Study of nine S-CO 2 power cycle layouts for a small scale landfill gas power generation application. • Development of new S-CO 2 cycle layouts. • Sensitivity analysis of S-CO 2 cycles to evaluate and compare nine cycles' performances.

  12. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  13. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  14. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  15. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2.

    Science.gov (United States)

    Kumar, Sumit; Chaitanya, Bharatula S K; Ghatty, Sreenivas; Reddy, Attipalli R

    2014-11-01

    Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world. © 2014 Scandinavian Plant Physiology Society.

  16. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  17. Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring

    Directory of Open Access Journals (Sweden)

    Macarena Burgos

    2015-08-01

    Full Text Available Sea surface partial pressure of CO2 (pCO2 was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W and Vigo, Spain (41.9° N, 11.8° W during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.

  18. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    Science.gov (United States)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.

    2018-03-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.

  19. CO2 impulse response curves for GWP calculations

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.

    1993-01-01

    The primary purpose of Global Warming Potential (GWP) is to compare the effectiveness of emission strategies for various greenhouse gases to those for CO 2 , GWPs are quite sensitive to the amount of CO 2 . Unlike all other gases emitted in the atmosphere, CO 2 does not have a chemical or photochemical sink within the atmosphere. Removal of CO 2 is therefore dependent on exchanges with other carbon reservoirs, namely, ocean and terrestrial biosphere. The climatic-induced changes in ocean circulation or marine biological productivity could significantly alter the atmospheric CO 2 lifetime. Moreover, continuing forest destruction, nutrient limitations or temperature induced increases of respiration could also dramatically change the lifetime of CO 2 in the atmosphere. Determination of the current CO 2 sinks, and how these sinks are likely to change with increasing CO 2 emissions, is crucial to the calculations of GWPs. It is interesting to note that the impulse response function is sensitive to the initial state of the ocean-atmosphere system into which CO 2 is emitted. This is due to the fact that in our model the CO 2 flux from the atmosphere to the mixed layer is a nonlinear function of ocean surface total carbon

  20. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  1. Spatial distribution of carbon sources and sinks in Canada's forests

    International Nuclear Information System (INIS)

    Chen, Jing M.; Weimin, Ju; Liu, Jane; Cihlar, Josef; Chen, Wenjun

    2003-01-01

    Annual spatial distributions of carbon sources and sinks in Canada's forests at 1 km resolution are computed for the period from 1901 to 1998 using ecosystem models that integrate remote sensing images, gridded climate, soils and forest inventory data. GIS-based fire scar maps for most regions of Canada are used to develop a remote sensing algorithm for mapping and dating forest burned areas in the 25 yr prior to 1998. These mapped and dated burned areas are used in combination with inventory data to produce a complete image of forest stand age in 1998. Empirical NPP age relationships were used to simulate the annual variations of forest growth and carbon balance in 1 km pixels, each treated as a homogeneous forest stand. Annual CO 2 flux data from four sites were used for model validation. Averaged over the period 1990-1998, the carbon source and sink map for Canada's forests show the following features: (i) large spatial variations corresponding to the patchiness of recent fire scars and productive forests and (ii) a general south-to-north gradient of decreasing carbon sink strength and increasing source strength. This gradient results mostly from differential effects of temperature increase on growing season length, nutrient mineralization and heterotrophic respiration at different latitudes as well as from uneven nitrogen deposition. The results from the present study are compared with those of two previous studies. The comparison suggests that the overall positive effects of non-disturbance factors (climate, CO 2 and nitrogen) outweighed the effects of increased disturbances in the last two decades, making Canada's forests a carbon sink in the 1980s and 1990s. Comparisons of the modeled results with tower-based eddy covariance measurements of net ecosystem exchange at four forest stands indicate that the sink values from the present study may be underestimated

  2. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  3. Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements

    DEFF Research Database (Denmark)

    Nilsson, Erik; Bergström, Hans; Rutgersson, Anna

    2018-01-01

    Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usual...

  4. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  5. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  6. Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska

    Science.gov (United States)

    Pilcher, Darren J.; Siedlecki, Samantha A.; Hermann, Albert J.; Coyle, Kenneth O.; Mathis, Jeremy T.; Evans, Wiley

    2018-01-01

    The Gulf of Alaska (GOA) receives substantial summer freshwater runoff from glacial meltwater. The alkalinity of this runoff is highly dependent on the glacial source and can modify the coastal carbon cycle. We use a regional ocean biogeochemical model to simulate CO2 uptake in the GOA under different alkalinity-loading scenarios. The GOA is identified as a current net sink of carbon, though low-alkalinity tidewater glacial runoff suppresses summer coastal carbon uptake. Our model shows that increasing the alkalinity generates an increase in annual CO2 uptake of 1.9-2.7 TgC/yr. This transition is comparable to a projected change in glacial runoff composition (i.e., from tidewater to land-terminating) due to continued climate warming. Our results demonstrate an important local carbon-climate feedback that can significantly increase coastal carbon uptake via enhanced air-sea exchange, with potential implications to the coastal ecosystems in glaciated areas around the world.

  7. Using atmospheric CO2 data to assess a simplified carbon-climate simulation for the 20th century

    International Nuclear Information System (INIS)

    Law, Rachel M.; Kowalczyk, Eva A.; Wangs, Ying-Ping

    2006-01-01

    The CSIRO biosphere model has been coupled to an atmosphere model and a simulation has been performed for the 20th century. Both biosphere and atmosphere are forced with global CO 2 concentration and the atmosphere is also forced with prescribed sea surface temperatures. The simulation follows the C4MIP Phase 1 protocol. We assess the model simulation using atmospheric CO 2 data. Mauna Loa growth rate is well simulated from 1980 but overestimated before that time. The interannual variations in growth rate are reasonably reproduced. Seasonal cycles are underestimated in northern mid-latitudes and are out of phase in the southern hemisphere. The north-south gradient of annual mean CO 2 is substantially overestimated due to a northern hemisphere net biosphere source and a southern tropical sink. Diurnal cycles at three northern hemisphere locations are larger than observed in many months, most likely due to larger respiration than observed

  8. Large CO2 and CH4 release from a flooded formerly drained fen

    Science.gov (United States)

    Sachs, T.; Franz, D.; Koebsch, F.; Larmanou, E.; Augustin, J.

    2016-12-01

    Drained peatlands are usually strong carbon dioxide (CO2) sources. In Germany, up to 4.5 % of the national CO2 emissions are estimated to be released from agriculturally used peatlands and for some peatland-rich northern states, such as Mecklenburg-Western Pomerania, this share increases to about 20%. Reducing this CO2 source and restoring the peatlands' natural carbon sink is one objective of large-scale nature protection and restoration measures, in which 37.000 ha of drained and degraded peatlands in Mecklenburg-Western Pomerania are slated for rewetting. It is well known, however, that in the initial phase of rewetting, a reduction of the CO2 source strength is usually accompanied by an increase in CH4 emissions. Thus, whether and when the intended effects of rewetting with regard to greenhouse gases are achieved, depends on the balance of CO2 and CH4 fluxes and on the duration of the initial CH4 emission phase. In 2013, a new Fluxnet site went online at a flooded formerly drained river valley fen site near Zarnekow, NE Germany (DE-Zrk), to investigate the combined CO2 and CH4 dynamics at such a heavily degraded and rewetted peatland. The site is dominated by open water with submerged and floating vegetation and surrounding Typha latifolia.Nine year after rewetting, we found large CH4 emissions of 53 g CH4 m-2 a-1 from the open water area, which are 4-fold higher than from the surrounding vegetation zone (13 g CH4 m-2 a-1). Surprisingly, both the open water and the vegetated area were net CO2 sources of 158 and 750 g CO2 m-2 a-1, respectively. Unusual meteorological conditions with a warm and dry summer and a mild winter might have facilitated high respiration rates, particularly from temporally non-inundated organic mud in the vegetation zone.

  9. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Science.gov (United States)

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.

    Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal

  10. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  11. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  12. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Yang Hong; Xing Yangping; Xie Ping; Ni Leyi; Rong Kewen

    2008-01-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO 2 and CH 4 causing a net release of CO 2 and CH 4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO 2 and CH 4 ) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  13. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  14. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  15. Biophysical remote sensing and terrestrial CO2 exchange at Cape Bounty, Melville Island

    Science.gov (United States)

    Gregory, Fiona Marianne

    Cape Bounty, Melville Island is a partially vegetated High Arctic landscape with three main plant communities: polar semi-desert (47% of the study area), mesic tundra (31%) , and wet sedge meadows (7%). The objective of this research was to relate biophysical measurements of soil, vegetation, and CO2 exchange rates in each vegetation type to high resolution satellite data from IKONOS-2, extending plot level measurements to a landscape scale. Field data was collected through six weeks of the 2008 growing season. Two IKONOS images were acquired, one on July 4th and the other on August 2nd. Two products were generated from the satellite data: a land-cover classification and the Normalized Difference Vegetation Index (NDVI). The three vegetation types were found to have distinct soil and vegetation characteristics. Only the wet sedge meadows were a net sink for CO2; soil respiration tended to exceed photosynthesis in the sparsely vegetated mesic tundra and polar semi-desert. Scaling up the plot measurements by vegetation type area suggested that Cape Bounty was a small net carbon source (0.34 +/- 0.47 g C m-2 day-1) in the summer of 2008. NDVI was strongly correlated with percent vegetation cover, vegetation volume, soil moisture, and moderately with soil nitrogen, biomass, and leaf area index (LAI). Photosynthesis and respiration of CO2 both positively correlated with NDVI, most strongly when averaged over the season. NDVI increased over time in every vegetation type, but this change was not reflected in any significant measured changes in vegetation or CO2 flux rates. A simple spatial model was developed to estimate Net Ecosystem Exchange (NEE) at every pixel on the satellite images based on NDVI, temperature and incoming solar radiation. It was found that the rate of photosynthesis per unit NDVI was higher early in the growing season. The model estimated a mean flux to the atmosphere of 0.21 g C m-2 day-1 at the time of image acquisition on July 4th, and -0.07 g C m

  16. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  17. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state

    Science.gov (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.

    2018-01-01

    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  18. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  19. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  20. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  1. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  2. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    Science.gov (United States)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  3. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes

    Science.gov (United States)

    Xu, Xuemei; Zang, Kunpeng; Zhao, Huade; Zheng, Nan; Huo, Cheng; Wang, Juying

    2016-07-01

    Based upon 21 field surveys conducted from March 2011 to November 2013, monthly variation of carbon dioxide partial pressure (pCO2) and other carbon system parameters were investigated for the first time (to our knowledge) at A4HDYD station (38°40‧N, 122°10‧E) located in the North Yellow Sea, a region with a seasonal thermocline. Surface pCO2 was undersaturated from March to May and nearly in equilibrium with the atmosphere from June to August. During September and November, pCO2 declined to a lower level than that from June to August, but reached the highest level in December. In contrast, pCO2 declined to atmospheric CO2 levels in February. Overall, the study area was a net CO2 sink at a rate of 0.85 ± 0.59 mol C m- 2 yr- 1. The underlying processes governing the variation of pCO2 were also examined. In general, temperature had an important influence on the monthly variation of pCO2, but its effect was counterbalanced by biological production in spring and vertical mixing in early winter. Our study indicated that dynamic mechanism studies based on high temporal resolution observations are urgently needed to understand the complexity of the carbon cycle and detect biogeochemical changes or ecosystem responses to climate change on continental margins.

  4. Carbon sequestration by afforestation and revegetation as a means of limiting net-CO2 emissions in Iceland. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Sigurdsson B.D.

    2000-01-01

    Full Text Available Iceland has lost about 95/ of its woodlands and 50/ of its vegetative cover during the 1,100 years of human settlement. Efforts to reclaim lost woodlands and herbaceous ecosystems have been continuing since the early 20th century. It is emphasised that for Icelandic conditions, effective carbon sequestration can be achieved by restoring (reclaiming herbaceous ecosystems on carbon-poor soils. Since 1990, about 4,000 ha per year have been afforested or revegetated. In 1995, the estimated C-sequestration of those areas was 65,100 t CO2, or 2.9/ of the national emissions for that year. In 1999, the estimated sequestration was up in 127,600 t CO2, or 4.7/ of the predicted CO2 emissions for the year 2000.

  5. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone

    Science.gov (United States)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor

    2018-03-01

    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  6. Economics show CO2 EOR potential in central Kansas

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.; Pancake, R.E.; Willhite, G.P.; Schoeling, L.G.

    2000-01-01

    Carbon dioxide (CO2) enhanced oil recovery (EOR) may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. Preliminary economic analysis indicates that CO2 EOR should provide an internal rate of return (IRR) greater than 20%, before income tax, assuming oil sells for \\$20/bbl, CO2 costs \\$1/Mcf, and gross utilization is 10 Mcf of CO2/bbl of oil recovered. If the CO2 cost is reduced to \\$0.75/Mcf, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling indicates that IRR is most sensitive to oil price and CO2 cost. A project requires a minimum recovery of 1,500 net bbl/acre (about 1 million net bbl/1-mile section) under a best-case scenario. Less important variables to the economics are capital costs and non-CO2 related lease operating expenses.

  7. The ins and outs of CO2

    Science.gov (United States)

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  8. Measurement and modeling of CO2 exchange over forested landscapes in India: an overview

    Science.gov (United States)

    Kushwaha, S.; Dadhwal, V.

    2009-04-01

    The increasing atmospheric CO2 concentration and its potential impact on global climate change is the subject of worldwide studies, political debates and international discussions. The concern led to the establishment of the Kyoto Protocol to curtail emissions and mitigate the possible global warming. The studies so far suggest that terrestrial biological sinks might be the low cost options for carbon sequestration, which can be used to partially offset the industrial CO2 emissions globally. In past, the effectiveness of terrestrial sink and the quantitative estimates of their sink strengths have relied mainly on the measurements of changes in carbon stocks across the world. Recent developments in flux tower based measurement techniques such as Eddy Covariance for assessing the CO2, H2O and energy fluxes provide tools for quantifying the net ecosystem exchange (NEE) of CO2 on a continuous basis. These near real time measurements, when integrated with remote sensing, enable the up-scaling of the carbon fluxes to regional scale. More than 470 towers exist worldwide as of now. Indian subcontinent was not having any tower-based CO2 flux measurement system so far. The Indian Space Research Organization under its Geosphere Biosphere Programme is funding five eddy covariance towers for terrestrial CO2 flux measurements in different ecological regions of the country. The tower sites already planned are: (i) a mixed forest plantation (Dalbergia sissoo, Acacia catechu, Holoptelia integrifolia) at Haldwani in collaboration with DISAFRI, University of Tuscia, Italy and the Indian Council for Forestry Research and Education (ICFRE), Dehradun, (ii) a sal (Shorea robusta) forest in Doon valley Himalayan state of Uttarakhand in northern India, (ii) a teak (Tectona grandis) mixed forest at Betul in Madhya Pradesh in central India, (iv) an old teak plantation at Dandeli, and (v) a semi-evergreen forest at Nagarhole in Karnataka state in southern India. The three towers have been

  9. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...

  10. Assessment of model estimates of land-atmosphere CO2 exchange across northern Eurasia

    Science.gov (United States)

    Rawlins, M.A.; McGuire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D.P.; Miller, P.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model

  11. Assessment of carbon dioxide sink/source in the oceanic areas: the results of 1982-84 investigation. Final technical report

    International Nuclear Information System (INIS)

    Takahashi, T.; Chipman, D.W.; Smethie, W. Jr.; Goddard, J.; Trumbore, S.; Mathieu, G.G.; Sutherland, S.

    1985-07-01

    The oceanic CO 2 sink/source relationships over the tropical Atlantic Ocean, the eastern North and South Pacific Ocean, and the Ross Sea were investigated. The net CO 2 flux across the air-sea interface over these areas was estimated. Measurements of the Kr-85 in atmospheric samples collected over the central Pacific along the 155 0 W meridian were initiated. Based on the measurements of the difference between the pCO 2 values in the surface ocean water and the atmosphere and of the radon-222 distribution in the upper water column, we have found that the average net flux for the Atlantic equatorial belt, 10 0 N-10 0 S, is 1.3 moles CO 2 /m 2 .y out of the ocean, when our measurements were made in November 1982 through February 1983. The surface water pCO 2 data obtained over the eastern North and South Pacific during the period, October 1983 through January 1984, show that the equatorial zone between 2 0 N and 8 0 S is an intense CO 2 source area, whereas a 10 0 wide belt coinciding with the area between the Subtropical and Antarctic Convergence Zones is a strong CO 2 sink area. The temperate gyre area located north of about 5 0 N and that located between 8 0 S and 35 0 S are nearly in equilibrium with atmospheric CO 2 . The surface water pCO 2 data obtained in the Southern Ocean during the past ten or more years suggest strongly the existence of an intense CO 2 sink zone, the Circumpolar Low pCO 2 Zone, which is about 10 0 wide in latitude and centered at about 50 0 S surrounding the Antarctica Continent. The surface water of the Ross Sea is found to be a strong CO 2 sink during the period January 23 through February 12, 1984. Because of contamination problems, no reliable data for atmospheric krypton-85 have been obtained. 23 refs., 22 figs., 3 tabs

  12. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    Science.gov (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright

  13. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    Science.gov (United States)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  14. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  15. Influence of soil erosion on CO2 exchange within the CarboZALF manipulation experiment

    Science.gov (United States)

    Hoffmann, Mathias; Augustin, Jürgen; Sommer, Michael

    2014-05-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of the time limited land cover and the vigorous crop growth. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore we established the interdisciplinary project 'CarboZALF' in 2009. In our field experiment CarboZALF-D we are monitoring CO2 fluxes for soil-plant systems, which cover all landscape relevant soil states in respect to erosion and deposition, like Albic Cutanic Luvisol, Calcic Cutanic Luvisol, Calcaric Regosol and Endogleyic Colluvic Regosol. Furthermore, we induced erosion / deposition in a manipulation experiment. Automated chamber systems (2.5 m, basal area 1 m2, transparent) are placed at the manipulated sites as well as at one site neither influenced by erosion, nor by deposition. CO2 flux modelling of high temporal resolution includes ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Modelling includes gap filling which is needed in case of chamber malfunctions and abrupt disturbances by farming practice. In our presentation we would like to show results of the CO2 exchange measurements for one year. Differences are most pronounced between the non-eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco and NEE compared to the Albic Cutanic Luvisol. The eroded soil (Calcic Cutanic Luvisol) demonstrated CO2fluxes intermediate between the non-affected and depositional site. Site-specific consequences for the soil C stocks will be also discussed in the presentation.

  16. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  17. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  18. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    Science.gov (United States)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  19. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  20. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Daniel J. Hayes; David P. Turner; Graham Stinson; A. David Mcguire; Yaxing Wei; Tristram O. West; Linda S. Heath; Bernardus Dejong; Brian G. McConkey; Richard A. Birdsey; Werner A. Kurz; Andrew R. Jacobson; Deborah N. Huntzinger; Yude Pan; W. Mac Post; Robert B. Cook

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2,...

  1. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  2. [Review of lime carbon sink.

    Science.gov (United States)

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  3. Recent trends and drivers of regional sources and sinks of carbon dioxide

    Science.gov (United States)

    Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S. D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S. C.; Graven, H.; Heinze, C.; Huntingford, C.; Levis, S.; Levy, P. E.; Lomas, M.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Arneth, A.; Bonan, G.; Bopp, L.; Canadell, J. G.; Chevallier, F.; Ciais, P.; Ellis, R.; Gloor, M.; Peylin, P.; Piao, S. L.; Le Quéré, C.; Smith, B.; Zhu, Z.; Myneni, R.

    2015-02-01

    The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 ± 0.7 Pg C yr-1 with a small significant trend of -0.06 ± 0.03 Pg C yr-2 (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 ± 0.2 Pg C yr-1 with a trend in the net C uptake that is indistinguishable from zero (-0.01 ± 0.02 Pg C yr-2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of -0.02 ± 0.01 Pg C yr-2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr-2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr-2 - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (-0.04 ± 0.01 Pg C yr-2), with almost no trend over the northern land region

  4. The study of the impact of elevated CO2 concentration and climate change on net primary productivity of Quercus variabilis forest in Beijing Mountain Area%CO2倍增和气候变化对北京山区栓皮栎林NPP影响研究

    Institute of Scientific and Technical Information of China (English)

    范敏锐; 余新晓; 张振明; 史宇; 吕锡芝; 周彬

    2010-01-01

    应用生物地球化学过程模型BIOME-BGC估算了1977-1992年北京妙峰山栓皮栎(Quercus variabilis)林的净第一性生产力(NPP),并分析气候对NPP年际变化的影响以及未来气候变化情景下对NPP的影响.结果表明:1977-1992年15年间栓皮栎的NPP(以C计)平均值为340.17 g·m-2·a-1.NPP(以C计)变化在143.56~431.56 g·m-2·a-1之间,并无明显的整体变化趋势,但表现出明显的年际变化,年际变动率达18%.在这段时间内降水量成为控制栓皮栎林NPP年际变化的主要气候因子.通过设置18种不同未来气候方案进行栓皮栎林NPP模拟表明,CO2浓度加倍会降低栓皮栎林的NPP但降低幅度较小.在CO2浓度不变的情况下,温度升高2.0℃和降水的协同增加以及单个因子的增加都有利于NPP的积累,但协同增加不如单个因子的增加对NPP的积累效应明显;在CO2和气候同时改变的情况下,CO2浓度加倍、温度升高2.0℃和降水的协同增加有利于NPP的积累且协同增加比单个因子的增加对NPP的积累效应明显,但各因子之间交互作用较弱.

  5. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost

    2011-01-01

    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1–2 years after the climate...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  6. CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Thomas, D. N.

    2014-01-01

    We present CH4 concentration [CH4] and the partial pressure of CO2 (pCO2) in bulk sea ice from subarctic, land-fast sea ice in the Kapisillit fjord, Greenland. The bulk ice [CH4] ranged from 1.8 to 12.1 nmol L−1, which corresponds to a partial pressure range of 3 to 28 ppmv. This is markedly higher......-saturated compared to the atmosphere (390 ppmv). Our study adds to the few existing studies of CH4 and CO2 in sea ice and concludes that sub-arctic sea can be a sink for atmospheric CO2, while being a net source of CH4. Processes related to the freezing and melting of sea ice represents large unknowns...... to the exchange of CO2 but also CH4. It is therefore imperative to assess the consequences of these unknowns through further field campaigns and targeted research under other sea ice conditions at both hemispheres....

  7. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    Science.gov (United States)

    Knox, Sara Helen; Sturtevant, Cove; Matthes, Jaclyn Hatala; Koteen, Laurie; Verfaillie, Joseph; Baldocchi, Dennis

    2015-02-01

    Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions. © 2014 John Wiley & Sons Ltd.

  8. Quantifying the magnitude and spatiotemporal variation of aquatic CO2 fluxes in a sub-tropical karst catchment, Southwest China

    Science.gov (United States)

    Ding, Hu; Waldron, Susan; Newton, Jason; Garnett, Mark H.

    2017-04-01

    The role played by rivers in regional and global C budgets is receiving increasing attention. A large portion of the carbon transported via inland waters is returned to the atmosphere by carbon dioxide evasion from rivers and lakes. Karst landscapes represent an important C store on land, and are also considered to play an important role in climate regulation by consuming atmospheric CO2 during chemical weathering. However, we cannot be certain how effective this sink is if we do not know how efficiently the rivers draining karst landscapes remobilise weathered C to the atmosphere as CO2. pCO2 in karst waters is generally greater than atmospheric equilibrium, indicating that there can be a net CO2 efflux to the atmosphere. However, measurement confirming this and quantifying flux rates has been rarely conducted. Using a floating chamber method, in 2016 we directly measured CO2 fluxes from spatially distributed freshwaters (springs, sinkholes, streams and reservoirs/ponds) in the Houzhai Catchment, a karst region in SW China. Fluxes ranged from -0.5 to +267.4 μmol CO2 m-2s-1, and most sites showed seasonal variations with higher CO2 efflux rates in the wet (April - September) than dry season (October - March). There was a significant positive relationship between CO2 efflux and flow velocity, indicating that hydraulic controls on CO2 efflux from flowing water are important, while for water with little movement (sinkholes and reservoirs/ponds), pCO2 appears a more important control on efflux rates. Conditions similar to this study area may exist in many sub-tropical rivers that drain karst landscapes in South China. These waters are rich in DIC which can be an order of magnitude greater than some non-karst catchments. The large DIC pool has the potential to be a considerable source of free CO2 to the atmosphere. Considering that carbonate lithology covers a significant part of the Earth's surface, CO2 evasion in fluvial water from these regions is expected to

  9. Three dimensional global modeling of atmospheric CO2. Final technical report

    International Nuclear Information System (INIS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A modeling effort has been initiated to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO 2 variations. The approach uses a three-dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO 2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO 2 at the surface. This report identifies the 3-D model employed in this study and discusses biosphere, ocean and fossil fuel sources and sinks. Some preliminary model results are presented. 14 figures

  10. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  11. CO2 maximum in the oxygen minimum zone (OMZ)

    OpenAIRE

    Paulmier, Aurélien; Ruiz-Pino, D.; Garcon, V.

    2011-01-01

    International audience; Oxygen minimum zones (OMZs), known as suboxic layers which are mainly localized in the Eastern Boundary Upwelling Systems, have been expanding since the 20th "high CO2" century, probably due to global warming. OMZs are also known to significantly contribute to the oceanic production of N2O, a greenhouse gas (GHG) more efficient than CO2. However, the contribution of the OMZs on the oceanic sources and sinks budget of CO2, the main GHG, still remains to be established. ...

  12. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago

    DEFF Research Database (Denmark)

    Luërs, J.; Westermann, Signe; Piel, K.

    2014-01-01

    -lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a high Arctic tundra area at the west coast of Svalbard based on eddy covariance flux measurements. The annual cumulative CO2 budget is close to 0 g C m-2 yr-1...

  13. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  14. CO2 and water vapor exchange of a larch forest in northern Japan

    International Nuclear Information System (INIS)

    Hirano, Takashi; Hirata, Ryuichi; Harazono, Yoshinobu

    2003-01-01

    In the northern part of East Asia, forests dominated by larch are extensively distributed and probably play an important role in the global carbon cycle. However, a knowledge of the CO 2 balance of larch forests based on long-term flux measurements is very restricted in East Asia. Thus, a long-term flux measurement has been started in 2000 at a larch plantation on a flat terrain in Hokkaido, Japan to obtain more information on the CO 2 and energy balances of larch forests. From September 2000 to August 2001 the net ecosystem CO 2 exchange (NEE) changed seasonally in accordance with the annual cycles of phenology and climate. NEE was negative for six months of the growing season, May-September; the larch ecosystem was a carbon sink with a peak intensity of -0.38 mol m 2 d1 for this period. In the leafless season from November to April the forest ecosystem was a carbon source with an intensity ranging between 0 and 0.05 mol/m 2 /d. Annual NEE from September 2000 to August 2001 was 24.4 to 32.4 mol m 2 /yr (= 293 to 389 gC/m 2 /yr); this value is compatible with those reported from other temperate forests. Annual evapotranspiration for the same period was 367 mm, which was only 29% of annual precipitation

  15. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    Science.gov (United States)

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P 0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.

  16. Re-evaluating the 1940s CO2 plateau

    Science.gov (United States)

    Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.

    2016-09-01

    The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). Since the fossil-fuel emissions did not decrease during the period, this stalling implies the persistence of a strong sink, perhaps sustained for as long as a decade or more. Double-deconvolution analyses have attributed this sink to the ocean, conceivably as a response to the very strong El Niño event in 1940-1942. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil-fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project to identify the most likely causes of the 1940s plateau. We find that they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s, in spite of giving a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940-1950 ranges between 0.9 and 2.0 Pg C yr-1, depending on the LUC dataset considered. This mismatch may be explained by (i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used, (ii) a further terrestrial sink currently missing in the estimates by land-surface models, or (iii) LUC processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr-1 uptake, but it is unlikely to be higher. The impact of the 1940-1942 El Niño on the

  17. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage

    2014-01-01

    of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day......) and in the range of open ocean values, indicating that allochtonous carbon did not stimulate CR. The in the surface water was below atmospheric levels (September average 25.0 ± 0.71 Pa, February 35.4 ± 0.40 Pa, and May 19.8 ± 1.21 Pa), rendering the ecosystem a sink of atmospheric CO2. NCP was identified...

  18. Verification of Carbon Sink Assessment. Can We Exclude Natural Sinks?

    International Nuclear Information System (INIS)

    Alexandrov, G.; Yamagata, Y

    2004-01-01

    Any human-induced terrestrial sink is susceptible to the effects of elevated atmospheric CO2 concentration, nitrogen deposition, climate variability and other natural or indirect human-induced factors. It has been suggested in climate negotiations that the effects of these factors should be excluded from estimates of carbon sequestration used to meet the emission reduction commitments under the Kyoto Protocol. This paper focuses on the methodologies for factoring out the effects of atmospheric and climate variability/change. We estimate the relative magnitude of the non-human induced effects by using two biosphere models and discuss possibilities for narrowing estimate uncertainty

  19. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    Science.gov (United States)

    Wang, James S.; Kawa, S. Randolph; Collatz, G. James; Baker, David F.; Ott, Lesley

    2015-01-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in

  20. Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland

    International Nuclear Information System (INIS)

    McNamara, N.P.; Plant, T.; Oakley, S.; Ward, S.; Wood, C.; Ostle, N.

    2008-01-01

    Peatlands are long term carbon catchments that sink atmospheric carbon dioxide (CO 2 ) and source methane (CH 4 ). In the uplands of the United Kingdom ombrotrophic blanket peatlands commonly exist within Calluna vulgaris (L.) dominated moorland ecosystems. These landscapes contain a range of topographical features that influence local hydrology, climate and plant community composition. In this study we examined the variation in ecosystem CO 2 respiration and net CH 4 fluxes from typical plant-soil systems in dendritic drainage gullies and adjacent blanket peat during the growing season. Typically, Eriophorum spp., Sphagnum spp. and mixed grasses occupied gullies while C. vulgaris dominated in adjacent blanket peat. Gross CO 2 respiration was highest in the areas of Eriophorum spp. (650 ± 140 mg CO 2 m -2 h -1 ) compared to those with Sphagnum spp. (338 ± 49 mg CO 2 m -2 h -1 ), mixed grasses (342 ± 91 mg CO 2 m -2 h -1 ) and C. vulgaris (174 ± 63 mg CO 2 m -2 h -1 ). Measurements of the net CH 4 flux showed higher fluxes from the Eriophorum spp (2.2 ± 0.6 mg CH 4 m -2 h -1 ) locations compared to the Sphagnum spp. (0.6 ± 0.4 mg CH 4 m -2 h -1 ), mixed grasses (0.1 ±0.1 mg CH 4 m -2 h -1 ) and a negligible flux detected from C. vulgaris (0.0 ± 0.0 mg CH 4 m -2 h -1 ) locations. A GIS approach was applied to calculate the contribution of gullies to landscape scale greenhouse gas fluxes. Findings from the Moor House National Nature Reserve in the UK showed that although gullies occupied only 9.3% of the total land surface, gullies accounted for 95.8% and 21.6% of the peatland net CH 4 and CO 2 respiratory fluxes, respectively. The implication of these findings is that the relative contribution of characteristic gully systems need to be considered in estimates of landscape scale peatland greenhouse gas fluxes

  1. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    Science.gov (United States)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a

  2. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  3. Photosynthate supply and utilization in alfalfa: a developmental shift from a source to a sink limitation of photosynthesis

    International Nuclear Information System (INIS)

    Baysdorfer, C.; Bassham, J.A.

    1985-01-01

    Long-term carbon dioxide enrichment, 14 CO 2 feeding, and partial defoliation were employed as probes to investigate source/sink limitations of photosynthesis during the development of symbiotically grown alfalfa. In the mature crop, long-term CO 2 enrichment does not affect the rates of net photosynthesis, relative growth, 14 C export to nonphotosynthetic organs, or the rates of 14 C label incorporation into leaf sucrose, starch, or malate. The rate of glycolate labeling is, however, substantially reduced under these conditions. When the mature crop was partially defoliated, a considerable increase in net photosynthesis occurred in the remaining leaves. In the seedling crop, long-term CO 2 enrichment increased dry matter accumulation, primarily as a result of increases in leaf starch content. Although the higher rates of starch synthesis are not maintained, the growth enhancement of the enriched plants persisted throughout the experimental period. These results imply a source limitation of seedling photosynthesis and a sink limitation of photosynthesis in more mature plants. Consequently, both the supply and the utilization of photosynthate may limit seasonal photosynthesis in alfalfa

  4. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  5. Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance

    Science.gov (United States)

    López-Blanco, Efrén; Lund, Magnus; Williams, Mathew; Tamstorf, Mikkel P.; Westergaard-Nielsen, Andreas; Exbrayat, Jean-François; Hansen, Birger U.; Christensen, Torben R.

    2017-10-01

    An improvement in our process-based understanding of carbon (C) exchange in the Arctic and its climate sensitivity is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analysed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in 8 consecutive years, and characterized the key processes of net ecosystem exchange and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating -30 g C m-2 on average (range of -17 to -41 g C m-2) during the years 2008-2015, except 2011 (source of 41 g C m-2), which was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high interannual variability in the timing of snowmelt and the start and duration of the growing season. The ranges in annual GPP (-182 to -316 g C m-2) and Reco (144 to 279 g C m-2) were > 5 fold larger than the range in NEE. Gross fluxes were also more variable (coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperature, and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to meteorology was a result of the correlated response of GPP and Reco. During the snow-free season of the anomalous year of 2011, a biological disturbance related to a larvae outbreak reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling. However, shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge our forecasting of C states.

  6. Possible impacts of CO2 storage on the marine environment

    International Nuclear Information System (INIS)

    Poremski, H.J.

    2005-01-01

    This study examined the potential impacts of deep-sea carbon dioxide (CO 2 ) sequestration on the marine environment. The upper layers of oceans are currently saturated with CO 2 , while deeper ocean waters remain undersaturated. Arctic and Antarctic waters have higher uptake rates of CO 2 due to their lower temperatures. CO 2 deposited in Arctic and Antarctic waters sinks to the bottom of the ocean, and is then transported to equatorial latitudes, where stored amounts of CO 2 that are not fixed by biochemical processes will be released and enter the atmosphere again after a period of approximately 1000 years. Nearly 50 per cent of CO 2 fixation occurs as a result of phytoplankton growth, which is dependent on the availability of a range of nutrients, essential trace metals, and optimal physical conditions. Fertilization-induced CO 2 fixation in the sediments of southern oceans will result in nutrient depletion of bottom layers, which will in turn result in lower primary production levels at equatorial latitudes. Current modelling approaches to CO 2 injection assume that the injected CO 2 will dissolve in a plume extending 100 m around a riser. Retention times of several hundred years are anticipated. However, further research is needed to investigate the efficacy of CO 2 deep ocean storage technologies. Increased CO 2 uptake can also increase the formation of bicarbonate (HCO 3 ) acidification, decrease pH values, and inhibit the formation of biomass in addition to impacting on the calcification of many organisms. It was concluded that ocean storage by injection or deep storage is an untenable option at present due to the fact that the effects of excessive CO 2 in marine environments are not fully understood. 22 refs., 2 tabs

  7. Is phloem loading a driver of plant photosynthetic responses to elevated atmospheric [CO2]? 

    Science.gov (United States)

    A better understanding of the interactions between photosynthesis, photoassimilate translocation and sink activity is necessary to improve crop productivity. Rising atmospheric [CO2] is perturbing source-sink balance in a manner not experienced by crops during the history of their cultivation, so ne...

  8. Million Trees Los Angeles: Carbon dioxide sink or source?

    Science.gov (United States)

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  9. CO2 supply from an integrated network : the opportunities and challenges

    International Nuclear Information System (INIS)

    Heath, M.

    2006-01-01

    Strategies for using carbon dioxide (CO 2 ) from an integrated network were discussed. The oil and gas industry is currently considering carbon capture and storage (CCS) scenarios for Alberta. Integrated scenarios are aimed at providing business solution for CO 2 currently being produced in the province as well as optimizing the amounts of CO 2 that can be stored in geologic sinks. The scenarios hope to transform CCS into a value-added market capable of providing optimal returns to stakeholders along the CO 2 supply chain through the creation of an infrastructure designed to transport CO 2 in sufficient volumes. The storage of CO 2 in geologic sinks is expected to remove optimal amounts of anthropogenic CO 2 from larger stationary point sources. Interest in an integrated CO 2 market in Alberta has arisen from both economic and environmental concerns. The most effective CO 2 sources are fertilizer, gas processing, and hydrogen plants. Petrochemical facilities also produce high purity CO 2 . CO 2 capture approaches include post- and pre-combustion capture technologies as well as oxyfuel conversion. It was concluded that the cost of capturing CO 2 depends on concentration and purity levels obtained at the point of capture. Major CO 2 sources in the Western Canadian Sedimentary Basin (WCSB) were provided. tabs., figs

  10. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant–interspace heterogeneity

    Directory of Open Access Journals (Sweden)

    J. Gong

    2018-01-01

    Full Text Available We used process-based modelling to investigate the roles of carbon-flux (C-flux components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation. The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  11. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  12. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity

    Science.gov (United States)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli

    2018-01-01

    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  13. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  14. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M

    2009-03-01

    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  15. Distribution of dissolved green-house gases (CO2, CH4, N2O) in Lakes Edward and George: Results from the first field cruise of the HIPE project

    Science.gov (United States)

    Borges, Alberto V.; Morana, Cédric D. T.; Lambert, Thibault; Okello, William; Bouillon, Steven

    2017-04-01

    Inland waters (streams, rivers, lakes, reservoirs) are quantitatively important components of the global budgets of atmospheric emissions of long-lived greenhouse gases (GHGs) (CO2, CH4, N2O). Available data indicate that a very large fraction of CO2 and CH4 emissions from rivers and reservoirs occurs at tropical latitudes. Data on GHGs at tropical latitudes from lakes however are much more scarse, and the relative importance of emissions, in particular in Africa, remains to be determined. Large tropical lakes are net autotrophic (hence potentially sinks for atmospheric CO2) due generally low dissolved organic carbon concentrations, seasonally near constant light and temperature conditions, and generally deep water columns favourable for export of organic matter to depth. This sharply contrasts with their much better documented temperate and boreal counterparts, usually considered as CO2 sources to the atmosphere sustained by net heterotrophy. Here, we report a data-set of dissolved CO2, CH4, N2O obtained in October 2016 in Lakes Edward and George and adjacent streams and crater lakes in the frame of Belgian Science Policy (BELSPO) HIPE (Human impacts on ecosystem health and resources of Lake Edward, http://www.co2.ulg.ac.be/hipe/) project. Lake George and part of Lake Edward were sinks for atmospheric CO2 and N2O due to high primary production and denitrification in sediments, respectively, and modest sources of CH4 to the atmosphere. Sampled rivers and streams were oversaturated in CO2 and CH4 and close to atmospheric equilibrium with regards to N2O. Spatial variations within rivers and streams were related to elevation and vegetation characteristics on the catchments (savannah versus forest). Levels of CO2, CH4, and N2O were within the range of those we reported in other African rivers. Crater lakes acted as sinks for atmospheric CO2 and N2O but were extremely over-saturated in CH4, due to intense primary production sustained by cyanobacteria. These CH4 levels

  16. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  17. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  18. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  19. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  20. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler

    2013-04-01

    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  1. A case of the tail wagging the dog? Reverse weathering and Earth's CO2 thermostat.

    Science.gov (United States)

    Higgins, J. A.

    2017-12-01

    Feedbacks between climate, the global carbon cycle, and the chemistry of seawater stabilize Earth's surface temperature on geologic timescales and are likely responsible for its habitability over billions of years of Earth history. The most important component of the geologic carbon cycle is the precipitation and burial of carbonate sediments. The amount of carbonate sediment produced depends, in turn, on the alkalinity generated during silicate weathering less the amount consumed during the formation of secondary clay minerals both on the continents and in the ocean. In marine enviroments this process, often referred to as reverse weathering, consumes seawater alkalinity (and cations) via reaction with degraded Al-silicate minerals. Because these reactions constitute a sink of seawater alkalinity, changes in the amount of reverse weathering will lead to imbalances between alkalinity sources and sinks. The net effect is that on timescales greater than the timescale of carbonate compensation (< 10 kyr), changes in reverse weathering will lead to changes in the rate of continental silicate weathering through the dependence of continental silicate weathering on atmospheric CO2 and climate. This mechanism is capable of changing rates of continental silicate weathering without changing either the rate of volcanic outgassing or the rate constant for continental silicate weathering (i.e. through mountain-building or the exposure of different rock types) and as a result represents a unique way of modulating the global carbon cycle and Earth's climate on geologic timescales.

  2. Plant functional types define magnitude of drought response in peatland CO2 exchange.

    Science.gov (United States)

    Kuiper, Jan J; Mooij, Wolf M; Bragazza, Luca; Robroek, Bjorn J M

    2014-01-01

    Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during (i.e., resistance) and after (i.e., recovery) an experimental drought. The removal of PFTs caused a decrease of NEE, but the rate differed between microhabitats (i.e., hummocks and lawns) and the type of PFTs. Ericoid removal had a large effect on NEE in hummocks, while the graminoids played a major role in the lawns. The removal of PFTs did not affect the resistance or the recovery after the experimental drought. We argue that the response of Sphagnum mosses (the only PFT present in all treatments) to drought is dominant over that of coexisting PFTs. However, we observed that the moment in time when the system switched from C sink to C source during the drought was controlled by the vascular PFTs. In the light of climate change, the shifts in species composition or even the loss of certain PFTs are expected to strongly affect the future C dynamics in response to environmental stress.

  3. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  4. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  5. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  6. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    EC procedures were applied to the raw 10-Hz data, including time-lag compensation, block average, WPL-correction, planar fit, low- and high-frequency corrections etc. in EddyPro software (LI-COR Inc., USA). Calculated fluxes with bad quality flags (more than 6 of 9) were excluded. Spikes due to rains, instrument malfunction were removed too. Storage of CO2 from the surface to the measurement level which is very significant in tall tropical forest was added to the flux. Then low-turbulence correction was applied with u*-threshold of 0.178 m s-1. After these steps only 43 % of 30-min data of 2012 still presented, so the rate of gaps was 57 % (mainly at night and in rains). Data were gapfilled using on-line tool at the web-site of Max-Plank Institute, Germany and Flux-Analysis Tool, Japan. Different gap-filling procedures (non-linear regressions, look-up tables, model evaluation, artificial gaps-method) as well as u*-threshold shifting from 0 to 0.25 resulted in drift of 2012 net carbon exchange total from -296 to -612 g C m-2 (strong carbon sink still remain). Unfortunately, the situation of more then 50 % of gaps in CO2 flux is usual for tropical EC stations because of frequent calm nights. So, a gap-filling algorithm is extremely important for evaluation of long-term totals. We found for Vietnamese data that even few spikes which were not removed before gap-filling can change all-year total by up to 20-50 g m-2 year-1. Especially 'powerful' are big positive values at night in rare-occurred good turbulence. Possibly these values are physical. But they influence regressions in look-up table method dramatically because amount of data in peak of rainy season in night-time is too small. So, the gap-filling algorithm happened to be very sensitive to spikes. Additionally, striking was the fact that storage of CO2 appeared to be the main factor influencing 1-year totals after gap-filling procedure. Taking storage into account shifted the 2012 sum from +182 to -402 g m-2 year

  7. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    Science.gov (United States)

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  8. Analysis of top-down and bottom-up North American CO2 and CH4 emissions estimates in the second State of the Carbon Cycle Report

    Science.gov (United States)

    Miller, J. B.; Jacobson, A. R.; Bruhwiler, L.; Michalak, A.; Hayes, D. J.; Vargas, R.

    2017-12-01

    In just ten years since publication of the original State of the Carbon Cycle Report in 2007, global CO2 concentrations have risen by more than 22 ppm to 405 ppm. This represents 18% of the increase over preindustrial levels of 280 ppm. This increase is being driven unequivocally by fossil fuel combustion with North American emissions comprising roughly 20% of the global total over the past decade. At the global scale, we know by comparing well-known fossil fuel inventories and rates of atmospheric CO2 increase that about half of all emissions are absorbed at Earth's surface. For North America, however, we can not apply a simple mass balance to determine sources and sinks. Instead, contributions from ecosystems must be estimated using top-down and bottom-up methods. SOCCR-2 estimates North American net CO2 uptake from ecosystems using bottom-up (inventory) methods as 577 +/- 433 TgC/yr and 634 +/- 288 TgC/yr from top-down atmospheric inversions. Although the global terrestrial carbon sink is not precisely known, these values represent possibly 30% of the global values. As with net sink estimates reported in SOCCR, these new top-down and bottom-up estimates are statistically consistent with one another. However, the uncertainties on each of these estimates are now substantially smaller, giving us more confidence about where the truth lies. Atmospheric inversions also yield estimates of interannual variations (IAV) in CO2 and CH4 fluxes. Our syntheses suggest that IAV of ecosystem CO2 fluxes is of order 100 TgC/yr, mainly originating in the conterminous US, with lower variability in boreal and arctic regions. Moreover, this variability is much larger than for inventory-based fluxes reported by the US to the UNFCCC. Unlike CO2, bottom-up CH4 emissions are larger than those derived from large-scale atmospheric data, with the continental discrepancy resulting primarily from differences in arctic and boreal regions. In addition to the current state of the science, we

  9. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity). However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.

  10. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    plant growth has different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity. However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.

  11. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes

    International Nuclear Information System (INIS)

    Arneth, A.; Kolle, O.; Lloyd, J.; Schulze, E.D.; Kurbatova, J.; Vygodskaya, N.N.

    2002-01-01

    Net ecosystem-atmosphere exchange of CO 2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol/m 2 /d), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO 2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO 2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO 2 -C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO 2 -C uptake are discussed, including associated uncertainties

  12. CO2 and CH4 fluxes from oil palm plantations in Sumatra, Indonesia: effects of palm age and environmental conditions

    Science.gov (United States)

    Meijide, A.; Hassler, E.; Corre, M. D.; June, T.; Sabajo, C.; Veldkamp, E.; Knohl, A.

    2015-12-01

    Global increasing demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia, which in Sumatran lowlands has resulted in a 21% forest area loss. Large photosynthesis rates are expected for oil palms, due to their high growth and yield production. However, there is very limited information on their effect on carbon dioxide (CO2) fluxes and their sink or source strength at ecosystem scale. For methane (CH4) fluxes, research has mainly focused in oil palm plantations located on peatlands, but no information is available at ecosystem level from plantations on mineral soils. With the aim of studying CO2 fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2 year old oil palm plantation, where it was measuring for 8 months, and was subsequently moved to a 12 year old plantation, both in the province of Jambi, Sumatra. The EC system consisted of a Licor 7500A and an ultrasonic Metek anemometer, operating at 10 Hz, installed on a 7m and 22m tower respectively. In the 12 year old plantation, the tower was also equipped with a Los Gatos FGGA-24EP, to assess CH4 fluxes. Chamber measurements were also carried out to obtain information on respiration and CH4 fluxes from the soil. Radiation was the major driver controlling net carbon uptake, while soil moisture did not play a significant role. Average net ecosystem exchange in the hours of the day with higher radiation for the whole measurement period was 10 μmol m-2 s-1 for the 2 year old plantation and -22 μmol m-2 s-1 in the 12 year old. The analysis of the cumulative fluxes show that the non-productive plantation was a carbon source of around 636 g CO2 m-2 during the 8 months of measurements, while in the productive period, it acted as a strong carbon sink (-794 g CO2 m-2 yr-1). Methane uptake was observed in the soil in both plantations and also for the whole ecosystem in the 12 year old one, but its

  13. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  14. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  15. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  16. Contributions of fallow lands in the Brazilian Amazon to CO2 balance, deforestation and the agrarian economy: Inequalities among competing land use trajectories

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Costa

    2016-10-01

    Full Text Available Abstract Development of regulations limiting greenhouse gas emissions is creating demands and new markets for land-based carbon sinks. Expectations of development of clean technologies and new sources of clean energy are affecting the supply side, creating opportunities for remuneration for sustainable development of natural resources. This paper[1] presents a model developed to gain a realistic understanding of the heterogeneous roles of capoeira (fallow agricultural land in land use dynamics and CO2 balance in the Brazilian Amazon. The model estimates the areas and CO2 balance of different types of capoeira in association with different farming activities and also monitors carbon intensity over time in the context of technological trajectories (distinct farming systems. Modeling with agricultural census data compared six different, competing technological trajectories of capoeira for changes in major land use variables and impacts on CO2 balance from 1990 to 2011. Results revealed that: a technological trajectories contribute differently to net emissions of CO2, with livestock for meat enterprises being the highest net emitters and peasant agroforestry and plantation enterprises the lower emitters; b carbon intensity tends to diminish over time because of increased weight of trajectories with lower carbon intensity, in combination with reduced carbon intensity of trajectories with higher carbon intensity; and c for most trajectories, reuse of “old land” becomes increasingly more important for explaining the essence of agricultural dynamics, including CO2 balance, than is deforestation for opening up new agricultural land. These results draw attention to the role of capoeiras in modernization and intensification of the agricultural sector through renovation of deforested land. The model allows evaluation of deforestation and CO2 emissions as functions of the evolution of markets for agricultural products and of deforestation dynamics

  17. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  18. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.

    2009-01-01

    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  19. Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture.

    Science.gov (United States)

    Gomez-Casanovas, Nuria; DeLucia, Nicholas J; Bernacchi, Carl J; Boughton, Elizabeth H; Sparks, Jed P; Chamberlain, Samuel D; DeLucia, Evan H

    2018-03-01

    The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO 2 and CH 4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (R eco ) and gross primary productivity (GPP). As the decrease in R eco was larger than the reduction in GPP, grazing consistently increased the net CO 2 sink strength of subtropical pastures (55, 219 and 187 more C/m 2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH 4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH 4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH 4 emissions can be greater than CH 4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH 4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH 4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO 2 sink strength. © 2017 by the Ecological Society of America.

  20. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    Science.gov (United States)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  1. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  2. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  3. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  4. Characteristics of Atmosphere-Ocean CO2 Exchange due to Typhoon Activities over the East Asian Region

    Science.gov (United States)

    Lee, G.; Cho, C. H.; Lim, D. H.; Sun, M.; Lee, J.; Byun, Y. H.; Lee, J.

    2014-12-01

    Although the oceans are generally known as a net carbon sink in global sense, it is expected that CO₂release from oceans can occur locally depending on specific weather. This study addresses investigation of change in CO2 exchange between atmosphere and ocean due to typhoon activities, using "Carbon Tracker-Asia (CTA)". The CTA has constructed and managed at National Institute of Meteorological Research(NIMR) based on Carbon Tracker developed by NOAA. In order to examine effect of typhoon on change in air-sea CO2 exchange, we selected several cases which typhoon approached to Korean peninsula in the summertime and their tracks are similar to each other. Also, we analyzed difference between CO2 flux along typhoon tracks and other adjacent region not to be directly affected by typhoon in these cases. There is a difference in ocean fluxes around 15 gC/m²yr over strong typhoon areas compared to other areas. This difference varied with the wind speeds, the correlation coefficient between the ocean and the wind flux was found 0.7. Changes in carbon flux to affect the concentration of CO₂ in the atmosphere near surface instantly.

  5. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  6. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  7. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Kirschbaum, M.U.F. [Environmental Biology Group, RSBS, Australian National University, GPO Box 475, Canberra, ACT 2601 (Australia); Kurz, W.A. [Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5 (Canada); Sanz, M.J. [Fundacion CEAM, Parque Tecnologico, Charles H. Darwin 14, 46980 Paterna, Valencia (Spain); Schlamadinger, B. [Joanneum Research, Elisabethstrasse 11, Graz A-8010 (Austria); Yamagata, Y. [Center for Global Environmental Research, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan)

    2007-06-15

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system.

  8. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    International Nuclear Information System (INIS)

    Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y.

    2007-01-01

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system

  9. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  10. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  11. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels

    International Nuclear Information System (INIS)

    Kirschbaum, M.U.F.

    2003-01-01

    Forests can affect net CO 2 emissions by increasing or decreasing the amount of stored carbon, or by supplying biofuels for power generation to substitute for fossil fuels. However, forests store the most carbon when they remain undisturbed and are allowed to grow to maturity, whereas using wood for bioenergy requires wood removal from forests, which reduces on-site carbon storage. Hence, it is difficult to manage a forest simultaneously for maximum carbon storage and supplying fuelwood. For developing optimal strategies for the use of vegetation sinks, it is necessary to consider the feedbacks via the inherent natural adjustments in the global carbon cycle. Increased atmospheric CO 2 currently provides a driving force for carbon uptake by natural carbon reservoirs, such as the world's oceans. When carbon is removed from the atmosphere and stored in biomass, it lowers the concentration gradient between the atmosphere and these other reservoirs. This reduces the subsequent inherent rate of CO 2 removal from the atmosphere. This means that transferring a quantity of CO 2 from the atmosphere to a biomass pool lowers the atmospheric concentration the most immediately after the initial removal, but subsequently, the atmospheric concentration trends back towards the values without biospheric removal. The optimal timing for the use of vegetation sinks therefore depends on a number of factors: the length of time over which forest growth can be maintained, whether biomass is used for energy generation and on the nature of the most detrimental aspects of climate-change impacts. Climate-change impacts related to the instantaneous effect of temperature are mitigated less by vegetation sinks than impacts that act via the cumulative effect of increased temperature. It also means that short-term carbon storage in temporary sinks is not generally beneficial in mitigating climate change

  12. Potential gains from CO2 trading in the EU

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2003-01-01

    A new Green Paper from the European Commission on emissions trading foresees the setting-up of a CO2 trading system within the EU for the energy sector. Because any such international environmental agreement is self-enforcing, the participants must have an economic net gain from joining the propo......A new Green Paper from the European Commission on emissions trading foresees the setting-up of a CO2 trading system within the EU for the energy sector. Because any such international environmental agreement is self-enforcing, the participants must have an economic net gain from joining...... the proposed system. Our contribution is therefore to follow the Green Paper proposal and investigate whether member countries and the largest industrial boilers in the electricity sector actually will get significant net gains from CO2 trade in the European Union rather than undertaking domestic actions...... solely. We show, based on PRIMES model, that a full CO2 emission trading system between Annex B countries suggest overall cost savings in the order of 40 % compared to a situation with no trading at all between Member States. A tradable CO2 permit scheme with comprehensive coverage of emissions within...

  13. Trends in the sources and sinks of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom; Raupach, Mike [GCP, Canberra, Australia; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Marland, Gregg [ORNL; Bopp, Laurent [National Center for Scientific Research, Gif-sur-Yvette, France; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environement, France; Friedlingstein, Pierre [National Center for Scientific Research, Gif-sur-Yvette, France; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Conway, T.J. [NOAA, Boulder, CO; Doney, Scott C. [Woods Hole Oceanographic Institution; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Foster, Pru [University of Bristol, UK; House, Joanna I [University of Bristol, UK; Prentice, Colin I. [University of Bristol, UK; Gurney, Kevin [Purdue University; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Huntingford, Chris [Center for Ecology and Hydrology, Oxon, England; Levy, Peter E. [Center for Ecology and Hydrology, Midlothian, Scotland; Lomas, M. R. [University of Sheffield; Woodward, F. I. [University of Sheffield; Majkut, Joseph [Princeton University; Sarmiento, Jorge L. [Princeton University; Metzl, Nicolas [University of Paris; Ometto, Jean P [ORNL; Randerson, James T. [University of California, Irvine; Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Running, Steven [University of Montana, Missoula; Sitch, Stephen [University of Leeds, UK; Takahashi, Taro [Columbia University; Van der Werf, Guido [Universitate Amsterdam

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  14. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  15. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.

    2007-01-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  16. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  17. What's Up with Sinking?

    Science.gov (United States)

    Blintz, William

    2005-01-01

    In Hamlet, Shakespeare invites readers to ponder a famous philosophical question: To be or not to be? That is the question. In this issue, two trade books invite students to explore the question: To sink or not to sink? That is the experiment. Though both books are targeted for younger children, teachers can use these books with elementary…

  18. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  19. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  20. The potential contribution of sinks to meeting Kyoto Protocol commitments

    DEFF Research Database (Denmark)

    Missfeldt, F.; Haites, E.

    2001-01-01

    scenario, at least some of the sinks have costs lower than the market price, so the larger the eligible sinks, the lower the compliance costs for industrialised countries. Greater use of sinks also reduces the net income received by the economies in transition and developing countries. Increased use......, a range of average costs is used with the lowest cost allowing maximum use of sinks. The effects considered are the impacts on compliance costs for OECD countries, economies in transition, and developing countries and the mix of actions used by industrialised countries to achieve compliance. In every...

  1. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    Science.gov (United States)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent

  2. The effect to the water stress to soil CO2 efflux in the Siberian boreal forest

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.

    2017-12-01

    The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more

  3. CO2 and CH4 exchange by Phragmites australis under different climates

    Science.gov (United States)

    Serrano Ortiz, Penélope; Chojnickic, Bogdan H.; Sánchez-Cañete, Enrique P.; Kowalska, Natalia; López-Ballesteros, Ana; Fernández, Néstor; Urbaniak, Marek; Olejnik, Janusz; Kowalski, Andrew S.

    2015-04-01

    The key role of wetlands regarding global warming is the resulting balance between net CO2 assimilation, via photosynthesis, and CO2 and CH4 emissions, given the potential to release stored carbon, because of the high temperature sensitivity of heterotrophic soil respiration and anoxic conditions. However, it is still unknown whether wetlands will convert from long-term carbon sinks to sources as a result of climate change and other anthropogenic effects such as land use changes. Phragmites australis is one of the most common species found in wetlands and is considered the most globally widespread and productive plant species in this type of ecosystem. In this context, the main objective of this study is to analyse the GHG exchange (CO2 and CH4) of two wetlands with Phragmites australis as the dominant species under different climates using the eddy covariance (EC) technique. The first site, Padul, is located in southern Spain, with a sub-humid warm climate, characterised by a mean annual temperature of 16°C and annual precipitation of ca. 470 mm, with a very dry summer. The second site, Rzecin is located in Poland with a mean annual temperature of 8°C, and annual precipitation around 600mm with no dry season. The Padul EC station is equipped with two infrared gas analysers to measure CO2 and CH4 fluxes (LI-7200 and LI-7700 respectively) while the Rzecin EC station has the same CH4 sensor as Padul, but also a sensor measuring both GHG fluxes (DLT-100 Fast Methane Analyser, Los Gatos). In this study, we present: i) the results of a CH4 analyser inter-comparison campaign (LI-7700 vs. Los Gatos), ii) a comparative analysis of the functional behaviour of respiration and photosynthesis in both sites testing relationships between CO2 fluxes measured with the EC technique and meteorological variables such as temperature and direct or diffuse radiation and iii) the CH4 dynamicsat both sites by identifying, when possible, annual, seasonal and diurnal patterns.

  4. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Directory of Open Access Journals (Sweden)

    Yann Salmon

    Full Text Available Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence. Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  5. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Science.gov (United States)

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  6. On a CO2 ration

    International Nuclear Information System (INIS)

    De Wit, P.

    2003-01-01

    In 2 years all the large energy companies in the European Union will have a CO2 ration, including a system to trade a shortage or surplus of emission rights. A cost effective system to reduce emission, provided that the government does not auction the emission rights [nl

  7. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  8. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  9. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  10. Opportunities for low-cost CO2 storage demonstration projects in China

    International Nuclear Information System (INIS)

    Meng, Kyle C.; Williams, Robert H.; Celia, Michael A.

    2007-01-01

    Several CO 2 storage demonstration projects are needed in a variety of geological formations worldwide to prove the viability of CO 2 capture and storage as a major option for climate change mitigation. China has several low-cost CO 2 sources at sites that produce NH 3 from coal via gasification. At these plants, CO 2 generated in excess of the amount needed for other purposes (e.g., urea synthesis) is vented as a relatively pure stream. These CO 2 sources would potentially be economically interesting candidates for storage demonstration projects if there are suitable storage sites nearby. In this study a survey was conducted to estimate CO 2 availability at modern Chinese coal-fed ammonia plants. Results indicate that annual quantities of available, relatively pure CO 2 per site range from 0.6 to 1.1 million tonnes. The CO 2 source assessment was complemented by analysis of possible nearby opportunities for CO 2 storage. CO 2 sources were mapped in relation to China's petroliferous sedimentary basins where prospective CO 2 storage reservoirs possibly exist. Four promising pairs of sources and sinks were identified. Project costs for storage in deep saline aquifers were estimated for each pairing ranging from $15-21/t of CO 2 . Potential enhanced oil recovery and enhanced coal bed methane recovery opportunities near each prospective source were also considered

  11. Carbon balance of CO2-EOR for NCNO classification

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Gil-Egui, Ramon; Gonzalez-Nicolas, Ana; Hovorka, Susan D

    2017-03-18

    The question of whether carbon dioxide enhanced oil recovery (CO2-EOR) constitutes a valid alternative for greenhouse gas emission reduction has been frequently asked by the general public and environmental sectors. Through this technology, operational since 1972, oil production is enhanced by injecting CO2 into depleted oil reservoirs in order displace the residual oil toward production wells in a solvent/miscible process. For decades, the CO2 utilized for EOR has been most commonly sourced from natural CO2 accumulations. More recently, a few projects have emerged where anthropogenic CO2 (A-CO2) is captured at an industrial facility, transported to a depleted oil field, and utilized for EOR. If carbon geologic storage is one of the project objectives, all the CO2 injected into the oil field for EOR could technically be stored in the formation. Even though the CO2 is being prevented from entering the atmosphere, and permanently stored away in a secured geologic formation, a question arises as to whether the total CO2 volumes stored in order to produce the incremental oil through EOR are larger than the CO2 emitted throughout the entire CO2-EOR process, including the capture facility, the EOR site, and the refining and burning of the end product. We intend to answer some of these questions through a DOE-NETL funded study titled “Carbon Life Cycle Analysis of CO2-EOR for Net Carbon Negative Oil (NCNO) Classification”. NCNO is defined as oil whose carbon emissions to the atmosphere, when burned or otherwise used, are less than the amount of carbon permanently stored in the reservoir in order to produce the oil. In this paper, we focus on the EOR site in what is referred to as a gate-to-gate system, but are inclusive of the burning of the refined product, as this end member is explicitly stated in the definition of NCNO. Finally, we use Cranfield, Mississippi, as a case study and come to the conclusion that the incremental oil produced is net carbon negative.

  12. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  13. Long-term effects of ozone on CO2 exchange in peatland microcosms

    DEFF Research Database (Denmark)

    Haapala, JK; Mörsky, SK; Rinnan, Riikka

    2011-01-01

    Effects of elevated tropospheric ozone concentration on the CO2 exchange of peatland microcosms and the photosynthetic capacity of the dominating sedge, Eriophorum vaginatum, were studied in a four-year open-field experiment. The net ecosystem CO2 exchange and the dark respiration rate of the mic......Effects of elevated tropospheric ozone concentration on the CO2 exchange of peatland microcosms and the photosynthetic capacity of the dominating sedge, Eriophorum vaginatum, were studied in a four-year open-field experiment. The net ecosystem CO2 exchange and the dark respiration rate...... exchange of the peatland microcosms....

  14. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  15. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    Science.gov (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  16. Modeling the transformation of atmospheric CO2 into microalgal biomass.

    Science.gov (United States)

    Hasan, Mohammed Fahad; Vogt, Frank

    2017-10-23

    Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in

  17. CO2 Losses from Terrestrial Organic Matter through Photodegradation

    Science.gov (United States)

    Rutledge, S.; Campbell, D. I.; Baldocchi, D. D.; Schipper, L. A.

    2010-12-01

    Net ecosystem exchange (NEE) is the sum of CO2 uptake by plants and CO2 losses from both living plants and dead organic matter. In all but a few ecosystem scale studies on terrestrial carbon cycling, losses of CO2 from dead organic matter are assumed to be the result of microbial respiration alone. Here we provide evidence for an alternative, previously largely underestimated mechanism for ecosystem-scale CO2 emissions. The process of photodegradation, the direct breakdown of organic matter by solar radiation, was found to contribute substantially to the ecosystem scale CO2 losses at both a bare peatland in New Zealand, and a summer-dead grassland in California. Comparisons of daytime eddy covariance (EC) data with data collected at the same time using an opaque chamber and the CO2 soil gradient technique, or with night-time EC data collected during similar moisture and temperature conditions were used to quantify the direct effect of exposure of organic matter to solar radiation. At a daily scale, photodegradation contributed up to 62% and 92% of summer mid-day CO2 fluxes at the de-vegetated peatland and at the grassland during the dry season, respectively. Irradiance-induced CO2 losses were estimated to be 19% of the total annual CO2 loss at the peatland, and almost 60% of the dry season CO2 loss at the grassland. Small-scale measurements using a transparent chamber confirmed that CO2 emissions from air-dried peat and grass occurred within seconds of exposure to light when microbial activity was inhibited. Our findings imply that photodegradation could be important for many ecosystems with exposed soil organic matter, litter and/or standing dead material. Potentially affected ecosystems include sparsely vegetated arid and semi-arid ecosystems (e.g. shrublands, savannahs and other grasslands), bare burnt areas, agricultural sites after harvest or cultivation (especially if crop residues are left on the surface), deciduous forests after leaf fall, or ecosystems

  18. Inference of past atmospheric delta13C and P/sub CO2/ from 13C/12C measurements in tree rings

    International Nuclear Information System (INIS)

    Leavitt, S.W.

    1982-01-01

    Carbon dioxide release from fossil-fuel burning is significant enough that we may soon experience perceptible changes in climate with important human consequences. An accurate reconstruction of past 13 C/ 12 C ratios of atmospheric CO 2 may provide key constraints on the historical activity of the biosphere as CO 2 source or sink. Tree rings appear to be a repository of this information but there is much noise in the collection of previous reconstructions, presumably associated with site selection, radial variability, choice of representative wood chemical constituent, and subtle effects of climate on fractionation. This study attempts to avoid these pitfalls and develop a 50-yr delta 13 C/sub ATM/ record from juniper trees (genus Juniperus), in fact, by taking advantage of the influence of climate on fractionation. Trees were harvested from suitable sites in close proximity to weather stations with monthly records of temperature and precipitation. The most useful relationships for at most 7 of the 10 sites were delta 13 C with December temperature or precipitation, because the coefficients were nearly constant from one interval to the next and the intercepts differed. Local pollution effects are believed responsible for the three anomalous sites. The separation of these regression lines of different intervals is interpreted as the response of the trees to the changing delta 13 C of atmospheric CO 2 so that delta 13 C/sub ATM/ curves are constructed from this spacing. The shape of the best-fit reconstruction suggests the biosphere has acted as CO 2 source to about 1965 and may now be a net sink

  19. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Science.gov (United States)

    F. Deng; J.M. Chen; Y. Pan; W. Peters; R. Birdsey; K. McCullough; J. Xiao

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2...

  20. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    DEFF Research Database (Denmark)

    Landschützer, P.; Gruber, N.; Bakker, D.C.E.

    2013-01-01

    The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from ......, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (–0.14 Pg C yr–1 decade–1). The Atlantic carbon sink varies relatively little on inter-annual time-scales (±0.04 Pg C yr–1; 1σ)......The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from (i...... poleward of 40° N, but many other parts of the North Atlantic increased more slowly, resulting in a barely changing Atlantic carbon sink north of the equator (–0.007 Pg C yr–1 decade–1). Surface ocean pCO2 was also increasing less than that of the atmosphere over most of the Atlantic south of the equator...

  1. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  2. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  3. Future Expansion of Agriculture and Pasture Acts to Amplify Atmospheric CO2 Levels in Response to Fossil-Fuel and Land-Use Change Emissions

    International Nuclear Information System (INIS)

    Gitz, V.; Ciais, P.

    2004-01-01

    The expansion of crop and pastures to the detriment of forests results in an increase in atmospheric CO2. The first obvious cause is the loss of forest biomass and soil carbon during and after conversion. The second, generally ignored cause, is the reduction of the residence time of carbon when, for example, forests or grasslands are converted to cultivated land. This decreases the sink capacity of the global terrestrial biosphere, and thereby may amplify the atmospheric CO2 rise due to fossil and land-use carbon release. For the IPCC A2 future scenario, characterized by high fossil and high land-use emissions, we show that the land-use amplifier effect adds 61 ppm extra CO2 in the atmosphere by 2100 as compared to former treatment of land-use processes in carbon models. Investigating the individual contribution of each of the six land-use transitions (forest crop, forest pasture, grassland crop) to the amplifier effect indicates that the clearing of forest and grasslands to arable lands explains most of the CO2 amplification. The amplification effect is 50% higher than in a previous analysis by the same authors which considered neither the deforestation of pastures nor the ploughing of grasslands. Such an amplification effect is further examined in sensitivity tests where the net primary productivity is considered independent of the atmospheric CO2. We also show that the land-use changes, which have already occurred in the recent past, have a strong inertia at releasing CO2, and will contribute to about 1/3 of the amplification effect by 2100. These results suggest that there is an additional atmospheric benefit of preserving pristine ecosystems with high turnover times

  4. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)

    2002-04-01

    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  5. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  6. Outsourcing CO2 within China.

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-07-09

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  7. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available Biological soil crusts (BSC contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between –11.31 and –17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, –26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards

  8. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  9. Drought stress and tree size determine stem CO2 efflux in a tropical forest.

    Science.gov (United States)

    Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick

    2018-06-01

    CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  10. Inter annual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements

    International Nuclear Information System (INIS)

    Rayner, P.J.; Pickett-Heaps, C.; Law, R.M.; Allison, C.E.; Francey, R.J.; Trudinger, C.M.

    2008-01-01

    We present estimates of the surface sources and sinks of CO 2 for 1992 - 2005 deduced from atmospheric inversions. We use atmospheric CO 2 records from 67 sites and 10 δ 13 CO 2 records. We use two atmospheric models to increase the robustness of the results. The results suggest that inter annual variability is dominated by the tropical land. Statistically significant variability in the tropical Pacific supports recent ocean modeling studies in that region. The northern land also shows significant variability. In particular, there is a large positive anomaly in 2003 in north Asia, which we associate with anomalous biomass burning. Results using δ 13 CO 2 and CO 2 are statistically consistent with those using only CO 2 , suggesting that it is valid to use both types of data together. An objective analysis of residuals suggests that our treatment of uncertainties in CO 2 is conservative, while those for δ 13 CO 2 are optimistic, highlighting problems in our simple isotope model. Finally, δ 13 CO 2 measurements offer a good constraint to nearby land regions, suggesting an ongoing value in these measurements for studies of inter annual variability. (authors)

  11. Growth strategy of Norway spruce under air elevated [CO2

    Science.gov (United States)

    Pokorny, R.; Urban, O.; Holisova, P.; Sprtova, M.; Sigut, L.; Slipkova, R.

    2012-04-01

    Plants will respond to globally increasing atmospheric CO2 concentration ([CO2]) by acclimation or adaptation at physiological and morphological levels. Considering the temporal onset, physiological responses may be categorized as short-term and morphological ones as long-term responses. The degree of plant growth responses, including cell division and cell expansion, is highly variable. It depends mainly on the specie's genetic predisposition, environment, mineral nutrition status, duration of CO2 enrichment, and/or synergetic effects of other stresses. Elevated [CO2] causes changes in tissue anatomy, quantity, size, shape and spatial orientation and can result in altered sink strength. Since, there are many experimental facilities for the investigation of elevated [CO2] effects on trees: i) closed systems or open top chambers (OTCs), ii) semi-open systems (for example glass domes with adjustable lamella windows - DAWs), and iii) free-air [CO2] enrichments (FACE); the results are still unsatisfactory due to: i) relatively short-term duration of experiments, ii) cultivation of young plants with different growth strategy comparing to old ones, iii) plant cultivation under artificial soil and weather conditions, and iv) in non-representative stand structure. In this contribution we are discussing the physiological and morphological responses of Norway spruce trees cultivated in DAWs during eight consecutive growing seasons in the context with other results from Norway spruce cultivation under air-elevated [CO2] conditions. On the level of physiological responses, we discuss the changes in the rate of CO2 assimilation, assimilation capacity, photorespiration, dark respiration, stomatal conductance, water potential and transpiration, and the sensitivity of these physiological processes to temperature. On the level of morphological responses, we discuss the changes in bud and growth phenology, needle and shoot morphology, architecture of crown and root system, wood

  12. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.

    Science.gov (United States)

    Dorchin, Netta; Cramer, Michael D; Hoffmann, John H

    2006-07-01

    Although insect galls are widely known to influence source-sink relationships in plants, the relationship between photosynthesis and gall activity has not been extensively studied. In this study we used 14CO2, photosynthesis, and respiration measurements to examine the capacity of bud galls induced by the wasp Trichilogaster signiventris (Pteromalidae) as carbon sinks in Acacia pycnantha. Galls of this species develop either in vegetative or reproductive buds, depending on the availability of tissues at different times of the year, and effectively eliminate seed production by the plant. Photosynthetic rates in phyllodes subtending clusters of galls were greater than rates in control phyllodes, a result we attributed to photosynthesis compensating for increased carbon demand by the galls. Contrary to previous studies, we found that photosynthesis within galls contributed substantially to the carbon budgets of the galls, particularly in large, mature galls, which exhibited lower specific respiration rates allowing for a net carbon gain in the light. To determine the sink capacity and competitive potential of galls, we measured the proportion of specific radioactivity in galls originating from either vegetative or reproductive buds and found no difference between them. The proportion of the total amount of phyllode-derived 14C accumulated in both clustered and solitary galls was less than that in fruits. Galls and fruits were predominantly reliant on subtending rather than on distant phyllodes for photosynthate. Solitary galls that developed in vegetative buds constituted considerably stronger sinks than galls in clusters on inflorescences where there was competition between galls or fruits for resources from the subtending phyllode. Wasps developing in solitary vegetative galls were correspondingly significantly larger than those from clustered galls. We conclude that, in the absence of inflorescence buds during summer and fall, the ability of the wasps to cause gall

  13. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  14. Southern Hemisphere bog persists as a strong carbon sink during droughts

    Science.gov (United States)

    Goodrich, Jordan P.; Campbell, David I.; Schipper, Louis A.

    2017-10-01

    Peatland ecosystems have been important global carbon sinks throughout the Holocene. Most of the research on peatland carbon budgets and effects of variable weather conditions has been done in Northern Hemisphere Sphagnum-dominated systems. Given their importance in other geographic and climatic regions, a better understanding of peatland carbon dynamics is needed across the spectrum of global peatland types. In New Zealand, much of the historic peatland area has been drained for agriculture but little is known about rates of carbon exchange and storage in unaltered peatland remnants that are dominated by the jointed wire rush, Empodisma robustum. We used eddy covariance to measure ecosystem-scale CO2 and CH4 fluxes and a water balance approach to estimate the sub-surface flux of dissolved organic carbon from the largest remaining raised peat bog in New Zealand, Kopuatai bog. The net ecosystem carbon balance (NECB) was estimated over four years, which included two drought summers, a relatively wet summer, and a meteorologically average summer. In all measurement years, the bog was a substantial sink for carbon, ranging from 134.7 to 216.9 gC m-2 yr-1, owing to the large annual net ecosystem production (161.8 to 244.9 gCO2-C m-2 yr-1). Annual methane fluxes were large relative to most Northern Hemisphere peatlands (14.2 to 21.9 gCH4-C m-2 yr-1), although summer and autumn emissions were highly sensitive to dry conditions, leading to very predictable seasonality according to water table position. The annual flux of dissolved organic carbon was similar in magnitude to methane emissions but less variable, ranging from 11.7 to 12.8 gC m-2 yr-1. Dry conditions experienced during late summer droughts led to significant reductions in annual carbon storage, which resulted nearly equally from enhanced ecosystem respiration due to lowered water tables and increased temperatures, and from reduced gross primary production due to vapor pressure deficit-related stresses to the

  15. Framework for Assessing Biogenic CO2 Emissions from ...

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s

  16. Evaluation of Deep Learning Models for Predicting CO2 Flux

    Science.gov (United States)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  17. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  18. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  19. LBA-ECO CD-01 Simulated Atmospheric Circulation, CO2 Variation, Tapajos: August 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set consists of a single NetCDF file containing simulated three dimensional winds and CO2 concentrations centered on the Tapajos National Forest...

  20. LBA-ECO CD-01 Simulated Atmospheric Circulation, CO2 Variation, Tapajos: August 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of a single NetCDF file containing simulated three dimensional winds and CO2 concentrations centered on the Tapajos National Forest in Brazil...

  1. The Economics of Root Distributions of Terrestrial Biomes in Response to Elevated CO2

    Science.gov (United States)

    Lu, M.; Hedin, L. O. O.

    2017-12-01

    Belowground root distributions of terrestrial biomes are central to understanding soil biogeochemical processes and land carbon sink. Yet models are thus far not able to predict root distributions across plant functional groups and major biomes, limiting our ability to predict the response of land systems to elevated CO2 concentration. Of particular concern is the apparent lack of stimulation of the aboveground carbon sink despite 30% increase of atmospheric CO2 over the past half-century, and despite the clear acceleration of the land carbon sink over the same period. This apparent discrepancy in land ecosystem response has led to the proposition that changes in belowground root dynamics might be responsible for the overlooked land sink. We here present a new modeling approach for predicting the response of root biomass and soil carbon storage to increased CO2. Our approach considers the first-principle mechanisms and tradeoffs by which plants and plant roots invest carbon to gain belowground resources, in collaboration with distinct root symbioses. We allow plants to locally compete for nutrients, with the ability to allocate biomass at different depths in the soil profile. We parameterized our model using an unprecedented global dataset of root traits, and validated our biome-level predictions with a recently updated global root biomass database. Our results support the idea that plants "dig deeper" when exposed to increased CO2, and we offer an economic-based mechanism for predicting the plant root response across soil conditions, plant functional groups and major biomes. Our model also recreates the observed responses across a range of free-air CO2 enrichment experiments, including a distinct response between plants associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Most broadly, our findings suggest that roots may be increasingly important in the land carbon sink, and call for a greater effort to quantify belowground responses to elevated

  2. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  3. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  4. Outsourcing CO2 within China

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  5. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    Science.gov (United States)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  6. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.

    2006-01-01

    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  7. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  8. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Science.gov (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  9. Low impact of dry conditions on the CO2 exchange of a Northern-Norwegian blanket bog

    International Nuclear Information System (INIS)

    Lund, Magnus; Parmentier, F J W; Bjerke, J W; Tømmervik, H; Drake, B G; Engelsen, O; Hansen, G H; Powell, T L; Silvennoinen, H; Weldon, S; Rasse, D P; Sottocornola, M

    2015-01-01

    Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink functioning. This study presents a 4.5 year record of land–atmosphere carbon dioxide (CO 2 ) exchange from the Andøya blanket bog in northern Norway. Compared with other peatlands, the Andøya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on the CO 2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andøya blanket bog retained its C uptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate. (letter)

  10. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    Science.gov (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  11. Sea anemones may thrive in a high CO2 world.

    Science.gov (United States)

    Suggett, David J; Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Boatman, Toby G; Payton, Ross; Tye Pettay, D; Johnson, Vivienne R; Warner, Mark E; Lawson, Tracy

    2012-10-01

    Increased seawater pCO 2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G ) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2 , which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2 . Understanding how CO 2 -enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. © 2012 Blackwell Publishing Ltd.

  12. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan

    2007-01-01

    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  13. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Science.gov (United States)

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  14. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies

    International Nuclear Information System (INIS)

    Huang, Jianxiong; Chen, Yuanquan; Sui, Peng; Gao, Wansheng

    2013-01-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (− 1315 kg CO 2 −eq ha −1 ), whereas maize–soybean intercropping (MS) was a sink (107 kg CO 2 −eq ha −1 ). When estimated by the soil-based approach, both cropping systems were sources (− 3410 for M and − 2638 kg CO 2 −eq ha −1 for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO 2 −eq ha −1 , respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: − 3533 for MP and − 2241 kg CO 2 −eq ha −1 for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in agricultural systems. - Highlights: • Net greenhouse gas balance (NGHGB) of

  15. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment

    KAUST Repository

    Burdett, HL

    2017-11-23

    The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to ‘bounce back’ if subjected to repeated acute high-CO2 events.

  16. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  17. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  18. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  19. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  20. Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Reithmaier, Karl

    2015-01-01

    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earth’s climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-µm band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-?m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-?m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed.

  1. Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Jeong, Yong Hoon

    2013-01-01

    Highlights: • Supercritical CO 2 -based gas mixture Brayton cycles were investigated for a SFR. • The critical point of CO 2 is the lowest cycle operating limit of the S-CO 2 cycles. • Mixing additives with CO 2 changes the CO 2 critical point. • CO 2 –Xe and CO 2 –Kr cycles achieve higher cycle efficiencies than the S-CO 2 cycles. • CO 2 –H 2 S and CO 2 –cyclohexane cycles perform better at higher heat sink temperatures. -- Abstract: The supercritical carbon dioxide Brayton cycle (S-CO 2 cycle) has attracted much attention as an alternative to the Rankine cycle for sodium-cooled fast reactors (SFRs). The higher cycle efficiency of the S-CO 2 cycle results from the considerably decreased compressor work because the compressor behaves as a pump in the proximity of the CO 2 vapor–liquid critical point. In order to fully utilize this feature, the main compressor inlet condition should be controlled to be close to the critical point of CO 2 . This indicates that the critical point of CO 2 is a constraint on the minimum cycle condition for S-CO 2 cycles. Modifying the CO 2 critical point by mixing additive gases could be considered as a method of enhancing the performance and broadening the applicability of the S-CO 2 cycle. Due to the drastic fluctuations of the thermo-physical properties of fluids near the critical point, an in-house cycle analysis code using the NIST REFPROP database was implemented. Several gases were selected as potential additives considering their thermal stability and chemical interaction with sodium in the temperature range of interest and the availability of the mixture property database: xenon, krypton, hydrogen sulfide, and cyclohexane. The performances of the optimized CO 2 -containing binary mixture cycles with simple recuperated and recompression layouts were compared with the reference S-CO 2 , CO 2 –Ar, CO 2 –N 2 , and CO 2 –O 2 cycles. For the decreased critical temperatures, the CO 2 –Xe and CO 2

  2. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data

    Science.gov (United States)

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  3. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Science.gov (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  4. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  5. Anomalous CO2 Emissions in Different Ecosystems Around the World

    Science.gov (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  6. Electrolysis byproduct D2O provides a third way to mitigate CO2

    International Nuclear Information System (INIS)

    Schenewerk, William Ernest

    2009-01-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective

  7. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  8. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    Adam eMonier

    2014-09-01

    Full Text Available Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

  9. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    Science.gov (United States)

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  10. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO2 and CH4 Exchange Responds to Changes in Temperature and Precipitation

    Science.gov (United States)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Arora, B.; Torn, M. S.

    2017-12-01

    Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO2 and CH4 exchange. Here we test hypotheses in ecosys for topographic controls on CO2 and CH4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO2 influxes and CH4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) than in higher (rims) within LCPs and FCPs. Spatially aggregated CO2 and CH4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52-56 g C m-2 yr-1) and CH4 sources (4-6 g C m-2 yr-1), and higher features as near C neutral (-2-15 g C m-2 yr-1) and CH4 neutral (0.0-0.1 g C m-2 yr-1). Much of the spatial and temporal variations in CO2 and CH4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.

  11. Effect of recent observations on Asian CO2 flux estimates by transport model inversions

    International Nuclear Information System (INIS)

    Maksyutov, Shamil; Patra, Prabir K.; Machida, Toshinobu; Mukai, Hitoshi; Nakazawa, Takakiyo; Inoue, Gen

    2003-01-01

    We use an inverse model to evaluate the effects of the recent CO 2 observations over Asia on estimates of regional CO 2 sources and sinks. Global CO 2 flux distribution is evaluated using several atmospheric transport models, atmospheric CO 2 observations and a 'time-independent' inversion procedure adopted in the basic synthesis inversion by the Transcom-3 inverse model intercomparison project. In our analysis we include airborne and tower observations in Siberia, continuous monitoring and airborne observations over Japan, and airborne monitoring on regular flights on Tokyo-Sydney route. The inclusion of the new data reduces the uncertainty of the estimated regional CO 2 fluxes for Boreal Asia (Siberia), Temperate Asia and South-East Asia. The largest effect is observed for the emission/sink estimate for the Boreal Asia region, where introducing the observations in Siberia reduces the source uncertainty by almost half. It also produces an uncertainty reduction for Boreal North America. Addition of the Siberian airborne observations leads to projecting extra sinks in Boreal Asia of 0.2 Pg C/yr, and a smaller change for Europe. The Tokyo-Sydney observations reduce and constrain the Southeast Asian source

  12. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in th Greenland Sea and the Barents Sea

    International Nuclear Information System (INIS)

    Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Yoshikawa-Inoue, Hisayuki

    2006-01-01

    In order to elucidate the seasonal and inter annual variations of oceanic CO 2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO 2 in the surface ocean (pCO 2 sea ) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO 2 sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO 2 sea and air-sea CO 2 flux in these seas. The pCO 2 sea values were normalized to the year 1995 by assuming that pCO 2 sea increased at the same growth rate (1.5 μatm/yr) of the pCO 2 in the air (pCO 2 air ) between 1992 and 2001. In 1995, the annual net air-sea CO 2 fluxes were evaluated to be 52 ± 20 gC/m 2 /yr in the Greenland Sea and 46 ± 18 gC/m 2 /yr in the Barents Sea. The CO 2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and (delta)pCO 2 (=pCO 2 air -pCO 2 sea ) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO 2 uptake examined in this study (70-80 deg N, 20 deg W-40 deg E) was estimated to be 0.050 ± 0.020 GtC/yr in 1995. The inter annual variation in the annual CO 2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with (delta)pCO 2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in (delta)pCO 2 plays a minor role, in determining the interannual variation of CO 2 uptake in this area

  13. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  14. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment

    International Nuclear Information System (INIS)

    Pérez-Fortes, Mar; Schöneberger, Jan C.; Boulamanti, Aikaterini; Tzimas, Evangelos

    2016-01-01

    Highlights: • A carbon utilisation plant that synthesise methanol is simulated in CHEMCAD. • The total amount of CO 2 demand is 1.46 t/t methanol . • The CO 2 not-produced compared to a conventional plant is 0.54 t/t methanol . • Production costs results too high for a financially attractive project. • There is a net potential for CO 2 emissions reduction of 2.71 MtCO 2 /yr in Europe. - Abstract: The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H 2 and captured CO 2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO 2 emissions and (ii) the cost of production, in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD, and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO 2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr, and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However, raw materials prices, i.e. H 2 and captured CO 2 , do not allow such a project to be financially viable. In order to make the CCU plant financially attractive, the price of MeOH should increase in a factor of almost 2, or H 2 costs should decrease almost 2.5 times, or CO 2 should have a value of around 222 €/t, under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO 2 emissions of a pulverised coal (PC) power plant that produces 550 MW net of electricity. The net CO 2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional Me

  15. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  16. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

    International Nuclear Information System (INIS)

    Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M; Kicklighter, David W; David McGuire, A; Prinn, Ronald G

    2015-01-01

    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO 2 ) and methane (CH 4 ) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH 4 yr −1 , which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH 4 yr −1 ). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO 2 sink of −1.28 ± 0.03 Pg C yr −1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr −1 and a upland sink from −0.82 to −0.98 Pg C yr −1 . Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO 2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH 4 emissions, but lower summer CO 2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further

  17. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  18. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  19. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  20. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak

    2017-01-01

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  1. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  2. Automated CO2, CH4 and N2O Fluxes from Tree Stems and Soils: Magnitudes, Temporal Patterns and Drivers

    Science.gov (United States)

    Barba, J.; Poyatos, R.; Vargas, R.

    2017-12-01

    The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem

  3. How Burying Biomass Can Contribute to CO2 Stabilization

    Science.gov (United States)

    Cook, B.; Zeng, N.; Zaitchik, B.; Gregg, J.

    2008-12-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  4. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Science.gov (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  5. Forest succession at elevated CO2; TOPICAL

    International Nuclear Information System (INIS)

    Clark, James S.; Schlesinger, William H.

    2002-01-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response

  6. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...... index (LAI) and Rubisco capacity (v(cmax)). Furthermore, this ecosystem was found to be functioning close to its optimum temperature regarding carbon accumulation rates. During the modeling period from May to October, the net assimilation was greater than the respiration, leading to a net accumulation...

  7. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  8. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  9. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  10. CO2 clearance by membrane lungs.

    Science.gov (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H

    2018-05-01

    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.

  11. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  12. The role of metabolism in modulating CO2 fluxes in boreal lakes

    Science.gov (United States)

    Bogard, Matthew J.; del Giorgio, Paul A.

    2016-10-01

    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  13. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  14. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  15. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    Science.gov (United States)

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Relationship between synoptic scale weather systems and column averaged atmospheric CO2

    Science.gov (United States)

    Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.

    2005-12-01

    Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0

  17. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    International Nuclear Information System (INIS)

    Sharkey, T.D.; Berry, J.A.; Raschke, K.

    1985-01-01

    Phaseolus vulgaris L. leaves were subjected to various light, CO 2 , and O 2 levels and abscisic acid, then given a 10 minute pulse of 14 CO 2 followed by a 5 minute chase with unlabeled CO 2 . After the chase period, very little label remained in the ionic fractions except at low CO 2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO 2 in combination with low O 2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO 2 assimilation, with sucrose the preferred product at very low assimilation rates

  18. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  19. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  20. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.