WorldWideScience

Sample records for net cloud radiative

  1. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  2. Data error effects on net radiation and evapotranspiration estimation

    International Nuclear Information System (INIS)

    Llasat, M.C.; Snyder, R.L.

    1998-01-01

    The objective of this paper is to evaluate the potential error in estimating the net radiation and reference evapotranspiration resulting from errors in the measurement or estimation of weather parameters. A methodology for estimating the net radiation using hourly weather variables measured at a typical agrometeorological station (e.g., solar radiation, temperature and relative humidity) is presented. Then the error propagation analysis is made for net radiation and for reference evapotranspiration. Data from the Raimat weather station, which is located in the Catalonia region of Spain, are used to illustrate the error relationships. The results show that temperature, relative humidity and cloud cover errors have little effect on the net radiation or reference evapotranspiration. A 5°C error in estimating surface temperature leads to errors as big as 30 W m −2 at high temperature. A 4% solar radiation (R s ) error can cause a net radiation error as big as 26 W m −2 when R s ≈ 1000 W m −2 . However, the error is less when cloud cover is calculated as a function of the solar radiation. The absolute error in reference evapotranspiration (ET o ) equals the product of the net radiation error and the radiation term weighting factor [W = Δ(Δ1+γ)] in the ET o equation. Therefore, the ET o error varies between 65 and 85% of the R n error as air temperature increases from about 20° to 40°C. (author)

  3. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  4. Relationships between radiation, clouds, and convection during DYNAMO

    Science.gov (United States)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  5. Using ISCCP Weather States to Decompose Cloud Radiative Effects

    Science.gov (United States)

    Oreopoulos, L.; Rossow, W. B.

    2012-01-01

    The presentation will examine the shortwave (SW) and longwave (LW) cloud radiative effect CRE (aka "cloud radiative forcing") at the top-of-the-atmosphere and surface of ISCCP weather states (aka "cloud regimes") in three distinct geographical zones, one tropical and two mid-latitude. Our goal is to understand and quantify the contribution of the different cloud regimes to the planetary radiation budget. In the tropics we find that the three most convectively active states are the ones with largest SW, LW and net TOA CRE contributions to the overall daytime tropical CRE budget. They account for 59%, 71% and 55% of the total CRE, respectively. The boundary layer-dominated weather states account for only 34% of the total SW CRE and 41% of the total net CRE, so to focus only on them in cloud feedback studies may be imprudent. We also find that in both the northern and southern midlatitude zones only two weather states, the first and third most convectively active with large amounts of nimbostratus-type clouds, contribute ",40% to both the SW and net TOA CRE budgets, highlighting the fact that cloud regimes associated with frontal systems are not only important for weather (precipitation) but also for climate (radiation budget). While all cloud regimes in all geographical zones have a slightly larger SFC than TOA SW CRE, implying cooling of the surface and slight warming of the atmosphere, their LW radiative effects are more subtle: in the tropics the weather states with plentiful high clouds warm the atmosphere while those with copious amounts of low clouds cool the atmosphere. In both midlatitude zones only the weather states with peak cloud fractions at levels above 440 mbar warm the atmosphere while all the rest cool it. These results make the connection of the contrasting CRE effects to the atmospheric dynamics more explicit - "storms" tend to warm the atmosphere whereas fair weather clouds cool it, suggesting a positive feedback of clouds on weather systems. The

  6. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau

    Science.gov (United States)

    Liu, Y.; Yan, Y.; Lu, J.

    2017-12-01

    The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.

  7. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  8. Global Surface Net-Radiation at 5 km from MODIS Terra

    Directory of Open Access Journals (Sweden)

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  9. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An

  10. The effect of clouds on the earth's solar and infrared radiation budgets

    Science.gov (United States)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  11. A Science Cloud: OneSpaceNet

    Science.gov (United States)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage

  12. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    Science.gov (United States)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  13. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  14. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    International Nuclear Information System (INIS)

    Huang, Dong; Liu, Yangang

    2014-01-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models. (letter)

  15. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  16. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    Science.gov (United States)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, palbedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, palbedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  17. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data

    International Nuclear Information System (INIS)

    Li Jiming; Yi Yuhong; Minnis, Patrick; Huang Jianping; Yan Hongru; Ma Yuejie; Wang Wencai; Kirk Ayers, J.

    2011-01-01

    Clouds alter general circulation through modification of the radiative heating profile within the atmosphere. Their effects are complex and depend on height, vertical structure, and phase. The instantaneous cloud radiative effect (CRE) induced by multi-layered (ML) and single-layer (SL) clouds is estimated by analyzing data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Clouds and Earth's Radiation Energy Budget System (CERES) missions from March 2007 through February 2008. The CRE differences between ML and SL clouds at the top of the atmosphere (TOA) and at the surface were also examined. The zonal mean shortwave (SW) CRE differences between the ML and SL clouds at the TOA and surface were positive at most latitudes, peaking at 120 W m -2 in the tropics and dropping to -30 W m -2 at higher latitudes. This indicated that the ML clouds usually reflected less sunlight at the TOA and transmitted more to the surface than the SL clouds, due to their higher cloud top heights. The zonal mean longwave (LW) CRE differences between ML and SL clouds at the TOA and surface were relatively small, ranging from -30 to 30 W m -2 . This showed that the ML clouds only increased the amount of thermal radiation at the TOA relative to the SL clouds in the tropics, decreasing it elsewhere. In other words, ML clouds tended to cool the atmosphere in the tropics and warm it elsewhere when compared to SL clouds. The zonal mean net CRE differences were positive at most latitudes and dominated by the SW CRE differences.

  18. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not

  19. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    Science.gov (United States)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  20. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  1. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  2. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  3. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2012-01-01

    >. Therefore, smoke aerosols overlaying the decks of overcast marine stratocumulus clouds considered here yield a small net positive radiative forcing, which results from the difference of two larger effects.

  4. Atmospheric transport, clouds and the Arctic longwave radiation paradox

    Science.gov (United States)

    Sedlar, Joseph

    2016-04-01

    Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are

  5. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  6. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  7. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    Science.gov (United States)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  8. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  9. Coherent Radiation of Electron Cloud

    International Nuclear Information System (INIS)

    Heifets, S.

    2004-01-01

    The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper

  10. Simulation of cloud/radiation interaction using a second-order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.; Smith, W.S.

    1994-01-01

    Extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasi-permanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net shortwave flux entering the atmosphere, and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory. Future work includes sensitivity tests to ascertain the model validity as well as to systematically include all the possible ambient atmospheric and surface conditions. Detailed budget analyses are also useful in categorizing the cloud-capped boundary layers into a few classes

  11. Using a second-order turbulence radiative-convective model to study the cloud/radiation interaction with the FIRE data

    International Nuclear Information System (INIS)

    Kao, C.Y.J.

    1992-01-01

    It is well recognized that extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasipermanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net incoming shortwave flux into the atmosphere and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. Randall et al.[1984] estimated that an increase of a few percent of global low-level stratiform clouds may offset the warming caused by a doubling of the atmos-pheric CO 2 . The Atmospheric Radiation Measure-ment (ARM) Program, sponsored by the US Department of Energy, is envisioning a locale in the Eastern North Pacific for extensive measure-ments of stratiform boundary-layer clouds and their interaction with atmospheric radiation. Thus, a physically-based parameterization sheme for marine low-level stratiform clouds can be developed for general circulation models (GCMs). This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory

  12. Measuring Cloud Service Health Using NetFlow/IPFIX

    DEFF Research Database (Denmark)

    Drago, Idilio; Hofstede, Rick; Sadre, Ramin

    2015-01-01

    The increasing trend of outsourcing services to cloud providers is changing the way computing power is delivered to enterprises and end users. Although cloud services offer several advantages, they also make cloud consumers strongly dependent on providers. Hence, consumers have a vital interest...... to be immediately informed about any problems in their services. This paper aims at a first step toward a network-based approach to monitor cloud services. We focus on severe problems that affect most services, such as outages or extreme server overload, and propose a method to monitor these problems that relies...... solely on the traffic exchanged between users and cloud providers. Our proposal is entirely based on NetFlow/IPFIX data and, therefore, explicitly targets high-speed networks. By combining a methodology to reassemble and classify flow records with stochastic estimations, our proposal has the distinct...

  13. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  14. Petri net modeling of encrypted information flow in federated cloud

    Science.gov (United States)

    Khushk, Abdul Rauf; Li, Xiaozhong

    2017-08-01

    Solutions proposed and developed for the cost-effective cloud systems suffer from a combination of secure private clouds and less secure public clouds. Need to locate applications within different clouds poses a security risk to the information flow of the entire system. This study addresses this by assigning security levels of a given lattice to the entities of a federated cloud system. A dynamic flow sensitive security model featuring Bell-LaPadula procedures is explored that tracks and authenticates the secure information flow in federated clouds. Additionally, a Petri net model is considered as a case study to represent the proposed system and further validate the performance of the said system.

  15. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M; Laaksonen, A; Korhonen, P [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  16. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  17. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  18. Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

    Science.gov (United States)

    Li, Jiandong; Wang, Wei-Chyung; Dong, Xiquan; Mao, Jiangyu

    2017-11-01

    This study uses 2001-2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of - 40 W m- 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

  19. Cloud effects on the SW radiation at the surface at a mid-latitude site in southwestern Europe

    Science.gov (United States)

    Salgueiro, Vanda; João Costa, Maria; Silva, Ana Maria; Lanconelli, Christian; Bortoli, Daniele

    2017-04-01

    This work presents a study of cloud radiative effects on shortwave (CRESW) radiation at the surface in Évora region (southwestern Europe) during 2015 and a case study is analyzed. CRESW (in Wm-2) is defined as the difference between the net shortwave irradiance (downward minus upward shortwave irradiance) in cloudy and clear sky conditions. This measure is usually used to translate changes in the SW radiation that reaches the surface due to changes in clouds (type and/or cover). The CRESW is obtained using measured SW irradiance recorded with a Kipp&Zonen CM 6B pyranometer (broadband 305 - 2800 nm) during the period from January to December 2015, and is related with the cloud liquid water path (LWP) and with cloud ice water path (IWP) showing the importance of the different type of clouds in attenuating the SW radiation at the surface. The cloud modification factor, also a measure of the cloud radiative effects (CMF; ratio between the measured SW irradiance under cloudy conditions and the estimated SW irradiance in clear-sky conditions) is related with the cloud optical thickness (COT; obtained from satellite data). This relation between CMF and COT is shown for different cloud fractions revealing an exponential decreasing of CMF as COT increases. Reductions in the SW radiation of the order of 80% (CMF = 0.2) as well enhancements in the SW radiation larger than 30% (CMF = 1.3) were found for small COT values and for different cloud fractions. A case study to analyse the enhancement events in a cloudy day was considered and the cloud properties, COT and LWP (from satellite and surface measurements), were related with the CRESW.

  20. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  1. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  2. Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Klein, Stephen A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Taylor, Karl E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Andrews, Timothy [Met Office Hadley Center, Exeter (United Kingdom); Webb, Mark J. [Met Office Hadley Center, Exeter (United Kingdom); Gregory, Jonathan M. [Univ. of Reading, Exeter (United Kingdom). National Center for Atmospheric Science; Forster, Piers M. [Univ. of Leeds (United Kingdom)

    2013-07-01

    When using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. After CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m-2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. Furthermore, the authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m-2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m-2 K-1, whereas accounting for rapid adjustments reduces by 0.14 W m-2 K-1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

  3. Reassessing the effect of cloud type on Earth's energy balance

    Science.gov (United States)

    Hang, A.; L'Ecuyer, T.

    2017-12-01

    Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.

  4. "Analysis of the multi-layered cloud radiative effects at the surface using A-train data"

    Science.gov (United States)

    Viudez-Mora, A.; Smith, W. L., Jr.; Kato, S.

    2017-12-01

    Clouds cover about 74% of the planet and they are an important part of the climate system and strongly influence the surface energy budget. The cloud vertical distribution has important implications in the atmospheric heating and cooling rates. Based on observations by active sensors in the A-train satellite constellation, CALIPSO [Winker et. al, 2010] and CloudSat [Stephens et. al, 2002], more than 1/3 of all clouds are multi-layered. Detection and retrieval of multi-layer cloud physical properties are needed in understanding their effects on the surface radiation budget. This study examines the sensitivity of surface irradiances to cloud properties derived from satellite sensors. Surface irradiances were computed in two different ways, one using cloud properties solely from MODerate resolution Imaging Spectroradiometer (MODIS), and the other using MODIS data supplemented with CALIPSO and CloudSat (hereafter CLCS) cloud vertical structure information [Kato et. al, 2010]. Results reveal that incorporating more precise and realistic cloud properties from CLCS into radiative transfer calculations yields improved estimates of cloud radiative effects (CRE) at the surface (CREsfc). The calculations using only MODIS cloud properties, comparisons of the computed CREsfc for 2-layer (2L) overcast CERES footprints, CLCS reduces the SW CRE by 1.5±26.7 Wm-2, increases the LW CRE by 4.1±12.7 Wm-2, and increases the net CREsfc by 0.9±46.7 Wm-2. In a subsequent analysis, we classified up to 6 different combinations of multi-layered clouds depending on the cloud top height as: High-high (HH), high-middle (HM), high-low (HL), middle-middle (MM), middle-low (ML) and low-low (LL). The 3 most frequent 2L cloud systems were: HL (56.1%), HM (22.3%) and HH (12.1%). For these cases, the computed CREsfc estimated using CLCS data presented the most significant differences when compared using only MODIS data. For example, the differences for the SW and Net CRE in the case HH was 12.3±47

  5. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  6. Theoretical studies of radiative properties of broken clouds

    International Nuclear Information System (INIS)

    Titov, G.A.

    1994-01-01

    One of the three goals of the Atmospheric Radiation Measurement (ARM) Program is to improve the quality of radiation models under clear sky, homogeneous cloud, and broken cloud conditions. This report is concerned with the development of the theory of radiation transfer in the broken clouds. Our approach is based on a stochastic description of the interaction between the radiation and cloud field with stochastic geometry; In the following, we discuss (1) the mean radiation fluxes in the near IR spectral range 2.7 to 3.2 μm; (2) the influence of random geometry of individual cumulus clouds on the mean fluxes of visible solar radiation; (3) the equations of the mean radiance in the statistically inhomogeneous cloud fields

  7. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  8. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    Science.gov (United States)

    Xi, B.; Minnis, P.

    2006-01-01

    affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  9. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    Science.gov (United States)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as

  10. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  11. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    Science.gov (United States)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  12. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  13. An improved algorithm for calculating cloud radiation

    International Nuclear Information System (INIS)

    Yuan Guibin; Sun Xiaogang; Dai Jingmin

    2005-01-01

    Clouds radiation characteristic is very important in cloud scene simulation, weather forecasting, pattern recognition, and other fields. In order to detect missiles against cloud backgrounds, to enhance the fidelity of simulation, it is critical to understand a cloud's thermal radiation model. Firstly, the definition of cloud layer infrared emittance is given. Secondly, the discrimination conditions of judging a pixel of focal plane on a satellite in daytime or night time are shown and equations are given. Radiance such as reflected solar radiance, solar scattering, diffuse solar radiance, solar and thermal sky shine, solar and thermal path radiance, cloud blackbody and background radiance are taken into account. Thirdly, the computing methods of background radiance for daytime and night time are given. Through simulations and comparison, this algorithm is proved to be an effective calculating algorithm for cloud radiation

  14. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  15. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  16. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing

    Czech Academy of Sciences Publication Activity Database

    Geleyn, J.- F.; Mašek, Jan; Brožková, Radmila; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N.

    2017-01-01

    Roč. 143, č. 704 (2017), s. 1313-1335 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : numerical weather prediction * climate models * clouds * parameterization * atmospheres * formulation * absorption * scattering * accurate * database * longwave radiative transfer * broadband approach * idealized optical paths * net exchanged rate decomposition * bracketing * selective intermittency Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.444, year: 2016

  17. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  18. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  19. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    Science.gov (United States)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  20. The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds

    International Nuclear Information System (INIS)

    Kassianov, Evgueni; Ackerman, Thomas; Kollias, Pavlos

    2005-01-01

    Both individual and combined effects of the horizontal and vertical variability of cumulus clouds on solar radiative transfer are investigated using a two-dimensional (x- and z-directions) cloud radar dataset. This high-resolution dataset of typical fair-weather marine cumulus is derived from ground-based 94GHz cloud radar observations. The domain-averaged (along x-direction) radiative properties are computed by a Monte Carlo method. It is shown that (i) different cloud-scale resolutions can be used for accurate calculations of the mean absorption, upward and downward fluxes; (ii) the resolution effects can depend strongly on the solar zenith angle; and (iii) a few cloud statistics can be successfully applied for calculating the averaged radiative properties

  1. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  2. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources

    Directory of Open Access Journals (Sweden)

    E. G. Chapman

    2009-02-01

    resolution model domain (the extent of which corresponds to the typical size of a single global climate model grid cell and temporally over a three day analysis period, total rainfall in the sensitivity simulation increased by 31% over that in the baseline simulation. Fewer optically thin clouds, arbitrarily defined as a cloud exhibiting an optical depth less than 1, formed in the sensitivity simulation. Domain-averaged AODs dropped from 0.46 in the baseline simulation to 0.38 in the sensitivity simulation. The overall net effect of additional aerosols attributable to primary particulates and aerosol precursors from point source emissions above the surface was a domain-averaged reduction of 5 W m−2 in mean daytime downwelling shortwave radiation.

  3. Observational characteristics of cloud radiative effects over three arid regions in the Northern Hemisphere

    Science.gov (United States)

    Li, Jiandong; Wang, Tianhe; Habib, Ammara

    2017-08-01

    Cloud-radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects (CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia (CA), East Asia (EA), and North America (NA), based on recent satellite datasets. Our results show that the annual mean shortwave (SW) and net CREs (SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months (November-March), the longwave (LW) CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere-land surface system. The cold-season mean NCRE at the top of the atmosphere (TOA) averaged over EA is 4.1 W m-2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud-radiation processes over arid regions of the Northern Hemisphere.

  4. Radiative effects of clouds and cryosphere in the Antarctic

    Directory of Open Access Journals (Sweden)

    Takashi Yamanouchi

    1997-03-01

    Full Text Available Examination of the effects of clouds, ice sheet and sea ice on the radiation budget in the Antarctic using Earth Radiation Budget Experiment (ERBE data were reported. The continental ice sheet affects not only the albedo, but also the surface temperature because of elevation, and hence the OLR. Sea ice, which is a critical climate feedback factor, appears to have less impact on radiation than do clouds. However, these surfaces lie underneath clouds, and it was found that the independent effect of sea ice is as large as that of clouds, and clouds are masking the radiative effect of sea ice by more than half. The radiation budget at the top of the atmosphere from satellite observation and that at the surface from the surface radiation measurements at Syowa and South Pole Stations were compared. Cloud radiative forcing at both stations for the surface, atmosphere and top of the atmosphere was derived.

  5. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  6. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  7. Clouds and the earth's radiation balance

    Energy Technology Data Exchange (ETDEWEB)

    Schmetz, J; Raschke, E

    1986-01-01

    Cloud formation mechanisms and cloud effects must be known for all regions of the earth for two important purposes of weather and climate research: First, the circulation characteristics of the atmosphere can be defined and understood only if the energy transfer between the atmosphere and the earth's surface is known; secondly, the energy transfer calculations should be as realistic as possible. The article discusses the influence of clouds on the radiation balance of the earth/atmosphere radiation balance, and the effects on weather and climate.

  8. Three-dimensional transfer of solar radiation in clouds

    International Nuclear Information System (INIS)

    Davies, R.

    1976-01-01

    The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable

  9. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  10. SeaDataCloud - further developing the pan-European SeaDataNet infrastructure for marine and ocean data management

    Science.gov (United States)

    Schaap, Dick M. A.; Fichaut, Michele

    2017-04-01

    SeaDataCloud marks the third phase of developing the pan-European SeaDataNet infrastructure for marine and ocean data management. The SeaDataCloud project is funded by EU and runs for 4 years from 1st November 2016. It succeeds the successful SeaDataNet II (2011 - 2015) and SeaDataNet (2006 - 2011) projects. SeaDataNet has set up and operates a pan-European infrastructure for managing marine and ocean data and is undertaken by National Oceanographic Data Centres (NODC's) and oceanographic data focal points from 34 coastal states in Europe. The infrastructure comprises a network of interconnected data centres and central SeaDataNet portal. The portal provides users a harmonised set of metadata directories and controlled access to the large collections of datasets, managed by the interconnected data centres. The population of directories has increased considerably in cooperation with and involvement in many associated EU projects and initiatives such as EMODnet. SeaDataNet at present gives overview and access to more than 1.9 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. SeaDataNet is also active in setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), and OGC (WMS, WFS, CS-W and SWE). Standards and associated SeaDataNet tools are made available at the SeaDataNet portal for wide uptake by data handling and managing organisations. SeaDataCloud aims at further developing standards, innovating services & products, adopting new technologies, and giving more attention to users. Moreover, it is about implementing a cooperation between the SeaDataNet consortium of marine data centres and the EUDAT consortium of e-infrastructure service providers. SeaDataCloud aims at considerably advancing services and

  11. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  12. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  13. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    Science.gov (United States)

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  14. Aerosols, cloud physics and radiation

    International Nuclear Information System (INIS)

    Twomey, S.

    1990-01-01

    Some aspects of climate physics are discussed with special attention given to cases where cloud physics is relevant for the phase and microstructure of clouds and, therefore, in the optical properties of the planet. It is argued that aerosol particles, through their strong effect on cloud microphysics, influence the shortwave energy input to earth, and that cloud microphysics strongly influence rain formation. Therefore, through their influence on microphysics, the aerosols play a central role in the atmospheric water cycle and, thus, on the planet's outgoing radiation. 20 refs

  15. Aerosol microphysical and radiative effects on continental cloud ensembles

    Science.gov (United States)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  16. Trapping of pellet cloud radiation in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Miroshinikov, I.V.; Sudo, Shigeru; Namba, C.; Lisitsa, V.S.

    2001-01-01

    The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)

  17. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  18. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  19. Effects of aerosol/cloud interactions on the global radiation budget

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.

    1994-01-01

    Aerosols may modify the microphysics of clouds by acting as cloud condensation nuclei (CCN), thereby enhancing the cloud reflectivity. Aerosols may also alter precipitation development by affecting the mean droplet size, thereby influencing cloud lifetimes and modifying the hydrological cycle. Clouds have a major effect on climate, but aerosol/cloud interactions have not been accounted for in past climate model simulations. However, the worldwide steady rise of global pollutants and emissions makes it imperative to investigate how atmospheric aerosols affect clouds and the global radiation budget. In this paper, the authors examine the relationship between aerosol and cloud drop size distributions by using a detailed micro-physical model. They parameterize the cloud nucleation process in terms of local aerosol characteristics and updraft velocity for use in a coupled climate/chemistry model to predict the magnitude of aerosol cloud forcing. Their simulations indicate that aerosol/cloud interactions may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. This work is aimed at improving the assessment of the effects of anthropogenic aerosols on cloud optical properties and the global radiation budget

  20. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  1. Broken-cloud enhancement of solar radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.N. [Science Applications International Corporation, San Diego, CA (United States); Somerville, R.C. [Univ. of California, La Jolla, CA (United States); Subasilar, B. [Curtain Univ. of Technology, Perth (Australia)

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  2. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  3. Case studies of radiation in the cloud-capped atmospheric boundary layer

    International Nuclear Information System (INIS)

    Schmetz, J.; Raschke, E.

    1983-01-01

    This review presents observations of marine stratocumulus obtained by the three research aircraft that participated in the Joint Air-Sea Interaction Project (JASIN). Detailed measurements were made of the thermodynamic, cloud physics and radiation fields for a uniform cloud sheet on 8 August 1978. These show a well mixed boundary layer with cloud liquid water contents close to their adiabatic values. The longwave and shortwave radiative components of the cloud layer energy budget were measured and good agreement was obtained between the observations and several radiation schemes. In particular, the measured cloud shortwave absorption was close to the theoretical values. Observations of shortwave fluxes made from the Falcon aircraft beneath broken stratocumulus are also shown and compared with calculations made by using a Monte Carlo model. It is concluded that the radiative cloud-cloud interactions do not play a dominant role in the bulk radiative properties of cloud fields. These are mainly determined by cloud amount and the vertical and horizontal optical depths of the clouds within the field. (author)

  4. Research on cloud background infrared radiation simulation based on fractal and statistical data

    Science.gov (United States)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  5. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    Science.gov (United States)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  6. SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark

    Science.gov (United States)

    Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.

    2017-05-01

    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.

  7. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  8. MPL-net at ARM Sites

    Science.gov (United States)

    Spinhirne, J. D.; Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA MPL-net project goal is consistent data products of the vertical distribution of clouds and aerosol from globally distributed lidar observation sites. The four ARM micro pulse lidars are a basis of the network to consist of over twelve sites. The science objective is ground truth for global satellite retrievals and accurate vertical distribution information in combination with surface radiation measurements for aerosol and cloud models. The project involves improvement in instruments and data processing and cooperation with ARM and other partners.

  9. Improving Climate Projections by Understanding How Cloud Phase affects Radiation

    Science.gov (United States)

    Cesana, Gregory; Storelvmo, Trude

    2017-01-01

    Whether a cloud is predominantly water or ice strongly influences interactions between clouds and radiation coming down from the Sun or up from the Earth. Being able to simulate cloud phase transitions accurately in climate models based on observational data sets is critical in order to improve confidence in climate projections, because this uncertainty contributes greatly to the overall uncertainty associated with cloud-climate feedbacks. Ultimately, it translates into uncertainties in Earth's sensitivity to higher CO2 levels. While a lot of effort has recently been made toward constraining cloud phase in climate models, more remains to be done to document the radiative properties of clouds according to their phase. Here we discuss the added value of a new satellite data set that advances the field by providing estimates of the cloud radiative effect as a function of cloud phase and the implications for climate projections.

  10. New approaches to quantifying aerosol influence on the cloud radiative effect.

    Science.gov (United States)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  11. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    Science.gov (United States)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  12. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  13. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing

    Science.gov (United States)

    Li, Ying; Thompson, David W. J.; Huang, Yi; Zhang, Minghong

    2014-03-01

    The signature of the northern annular mode/North Atlantic Oscillation (NAM/NAO) in the vertical and horizontal distribution of tropospheric cloudiness is investigated in CloudSat and CALIPSO data from June 2006 to April 2011. During the Northern Hemisphere winter, the positive polarity of the NAM/NAO is marked by increases in zonally averaged cloud incidence north of ~60°N, decreases between ~25 and 50°N, and increases in the subtropics. The tripolar-like anomalies in cloud incidence associated with the NAM/NAO are largest over the North Atlantic Ocean basin/Middle East and are physically consistent with the NAM/NAO-related anomalies in vertical motion. Importantly, the NAM/NAO-related anomalies in tropospheric cloud incidence lead to significant top of atmosphere cloud radiative forcing anomalies that are comparable in amplitude to those associated with the NAM/NAO-related temperature anomalies. The results provide observational evidence that the most prominent pattern of Northern Hemisphere climate variability is significantly linked to variations in cloud radiative forcing. Implications for two-way feedback between extratropical dynamics and cloud radiative forcing are discussed.

  14. The effect of Arctic sea-ice extent on the absorbed (net solar flux at the surface, based on ISCCP-D2 cloud data for 1983–2007

    Directory of Open Access Journals (Sweden)

    C. Matsoukas

    2010-01-01

    Full Text Available We estimate the effect of the Arctic sea ice on the absorbed (net solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.

  15. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  16. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    Science.gov (United States)

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.

  17. Estimation of daily net radiation from synoptic meteorological data

    International Nuclear Information System (INIS)

    Lee, B.W.; Myung, E.J.; Kim, B.C.

    1991-01-01

    Five models for net radiation estimation reported by Linacre (1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/m 2 /day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea

  18. Impact of Antarctic mixed-phase clouds on climate.

    Science.gov (United States)

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  19. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  20. RadNet: Open network protocol for radiation data

    International Nuclear Information System (INIS)

    Rees, B.; Olson, K.; Beckes-Talcott, J.; Kadner, S.; Wenderlich, T.; Hoy, M.; Doyle, W.; Koskelo, M.

    1998-01-01

    Safeguards instrumentation is increasingly being incorporated into remote monitoring applications. In the past, vendors of radiation monitoring instruments typically provided the tools for uploading the monitoring data to a host. However, the proprietary nature of communication protocols lends itself to increased computer support needs and increased installation expenses. As a result, a working group of suppliers and customers of radiation monitoring instruments defined an open network protocol for transferring packets on a local area network from radiation monitoring equipment to network hosts. The protocol was termed RadNet. While it is now primarily used for health physics instruments, RadNet's flexibility and strength make it ideal for remote monitoring of nuclear materials. The incorporation of standard, open protocols ensures that future work will not render present work obsolete; because RadNet utilizes standard Internet protocols, and is itself a non-proprietary standard. The use of industry standards also simplifies the development and implementation of ancillary services, e.g. E-main generation or even pager systems

  1. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  2. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NARCIS (Netherlands)

    Lenaerts, JTM; Van Tricht, Kristof; Lhermitte, S.L.M.; L'Ecuyer, T.S.

    2017-01-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007–2010) to evaluate simulated clouds and radiation over both polar ice sheets

  3. OH radiation from the interstellar cloud medium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Q-Rieu,; Winnberg, A [Max-Planck-Institut fuer Radioastronomie, Bonn (F.R. Germany); Guibert, J [Observatoire de Paris, Section de Meudon, 92 (France); Lepine, J R.D. [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica; Johansson, L E.B. [Rymdobservatoriet, Onsala (Sweden); Goss, W M [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics

    1976-02-01

    We have detected OH in the direction of about 50% of the continuum sources investigated. The OH abundance is one order of magnitude less than usually found in dust clouds. Most of the OH features have HI counterparts. This suggests that the OH radiation arises from the HI interstellar cold clouds. Our observations allowed in some cases the determination of the excitation temperatures in all four lines. A pumping model involving far-infrared radiation and collisions with neutral and charged particles has been proposed. It explains the observed excitation temperatures.

  4. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia

    Science.gov (United States)

    de Oliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Bertani, Gabriel; dos Santos, Thiago V.; Shimabukuro, Yosio E.; Aragão, Luiz E. O. C.

    2016-01-01

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance. PMID:27347957

  5. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia.

    Science.gov (United States)

    de Oliveira, Gabriel; Brunsell, Nathaniel A; Moraes, Elisabete C; Bertani, Gabriel; Dos Santos, Thiago V; Shimabukuro, Yosio E; Aragão, Luiz E O C

    2016-06-24

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.

  6. Insights from a Regime Decomposition Approach on CERES and CloudSat-inferred Cloud Radiative Effects

    Science.gov (United States)

    Oreopoulos, L.; Cho, N.; Lee, D.

    2015-12-01

    Our knowledge of the Cloud Radiative Effect (CRE) not only at the Top-of-the-Atmosphere (TOA), but also (with the help of some modeling) at the surface (SFC) and within the atmospheric column (ATM) has been steadily growing in recent years. Not only do we have global values for these CREs, but we can now also plot global maps of their geographical distribution. The next step in our effort to advance our knowledge of CRE is to systematically assess the contributions of prevailing cloud systems to the global values. The presentation addresses this issue directly. We identify the world's prevailing cloud systems, which we call "Cloud Regimes" (CRs) via clustering analysis of MODIS (Aqua-Terra) daily joint histograms of Cloud Top Pressure and Cloud Optical Thickness (TAU) at 1 degree scales. We then composite CERES diurnal values of CRE (TOA, SFC, ATM) separately for each CR by averaging these values for each CR occurrence, and thus find the contribution of each CR to the global value of CRE. But we can do more. We can actually decompose vertical profiles of inferred instantaneous CRE from CloudSat/CALIPSO (2B-FLXHR-LIDAR product) by averaging over Aqua CR occurrences (since A-Train formation flying allows collocation). Such an analysis greatly enhances our understanding of the radiative importance of prevailing cloud mixtures at different atmospheric levels. We can, for example, in addition to examining whether the CERES findings on which CRs contribute to radiative cooling and warming of the atmospheric column are consistent with CloudSat, also gain insight on why and where exactly this happens from the shape of the full instantaneous CRE vertical profiles.

  7. Impact of cloud radiative heating on East Asian summer monsoon circulation

    International Nuclear Information System (INIS)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-01-01

    The impacts of cloud radiative heating on the East Asian Summer Monsoon (EASM) over southeastern China (105°–125°E, 20°–35°N) are addressed by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of clouds, the EASM circulation and precipitation would be much weaker than that in normal conditions. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which consequently enhances updraft. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance. (letter)

  8. Transport of infrared radiation in cuboidal clouds

    Science.gov (United States)

    Harshvardhan, MR.; Weinman, J. A.; Davies, R.

    1981-01-01

    The transport of infrared radiation in a single cuboidal cloud is modeled using a variable azimuth two-stream approximation. Computations are made at 10 microns for a Deirmendjian (1969) C-1 water cloud where the single scattering albedo is equal to 0.638 and the asymmetry parameter is 0.865. The results indicate that the emittance of the top face of the model cloud is always less than that for a plane parallel cloud of the same optical depth. The hemispheric flux escaping from the cloud top possesses a gradient from the center to the edges which are warmer when the cloud is over warmer ground. Cooling rate calculations in the 8-13.6 micron region demonstrate that there is cooling out of the sides of the cloud at all levels even when there is heating of the core from the ground below. The radiances exiting from model cuboidal clouds are computed by path integration over the source function obtained with the two-stream approximation. Results indicate that the brightness temperature measured from finite clouds will overestimate the cloud-top temperature.

  9. The effect of cloud shape on radiative characteristics

    International Nuclear Information System (INIS)

    Welch, R.M.; Zdunkowski, W.G.

    1981-01-01

    Cumulus cloud radiative characteristics are calculated using Monte-Carlo codes as a function of solar zenith angle for clouds approximated by hemispherical, cylindrical and combination-type geometries. Values of cloud reflectivity, transmissivity and absorptivity are compared with values computed from assuming cubic and rectangular geometries, the basis for most previous finite cloud calculations. Poor agreement is obtained at large cloud sizes and only marginal agreement is obtained at small cloud sizes. Two approximations based upon various scalings of cloud optical depth (extinction parameters) are also constructed, but with limited success in reproducing the values produced by the convex shaped clouds. Reasonable agreement among the various approximations occurs at large solar zenith angles, but extremely poor agreement may occur at small angles. (orig./WB) [de

  10. RadNet (Environmental Radiation Ambient Monitoring System)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet, formerly Environmental Radiation Ambient Monitoring System (ERAMS), is a national network of monitoring stations that regularly collect air, precipitation,...

  11. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  12. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  13. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    Science.gov (United States)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  14. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    Science.gov (United States)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star

  15. Radiation pressure - a stabilizing agent of dust clouds in comets?

    International Nuclear Information System (INIS)

    Froehlich, H.E.; Notni, P.

    1988-01-01

    The internal dynamics of an illuminated dust cloud of finite optical thickness is investigated. The dependence of the radiation pressure on the optical depth makes the individual particles oscillate, in one dimension, around the accelerated centre of gravity of the cloud. The cloud moves as an entity, irrespectively of the velocity dispersion of the particles and their efficiency for radiation pressure. If the optical depth does not change, i.e. if the cloud does not expand laterally, its lifetime is unlimited. A contraction caused by energy dissipation in mechanical collisions between the dust particles is expected. The range of particle sizes which can be transported by such a 'coherent cloud' is estimated, as well as the acceleration of the whole cloud. The structure of the cloud in real space and in velocity space is investigated. A comparison with the 'striae' observed in the dust tails of great comets shows that the parent clouds of these striae may have been of the kind considered. (author)

  16. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  17. Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects

    CERN Document Server

    Rumolo, Giovanni; Zimmermann, Frank; ECLOUD'12

    2013-01-01

    This report contains the Proceedings of the Joint INFN-Frascati, INFN-Pisa, CERN-LER and EuCARD-AccNet Mini-Workshop on Electron-Cloud Effects, “ECLOUD12”, held at La Biodola, Isola d’Elba, from 5 to 9 June 2012. The ECLOUD12 workshop reviewed many recent electron-cloud (EC) observations at existing storage rings, EC predictions for future accelerators, electron-cloud studies at DAFNE, EC mitigation by clearing electrodes and graphite/carbon coatings, modeling of incoherent EC effects, self-consistent simulations, synergies with other communities like the Valencia Space Consortium and the European Space Agency. ECLOUD12 discussed new EC observations at existing machines including LHC, CesrTA, PETRA-3, J-PARC, and FNAL MI; latest experimental efforts to characterize the EC – including EC diagnostics, experimental techniques, mitigation techniques such as coating and conditioning, advanced chemical and physical analyses of various vacuum-chamber surfaces, beam instabilities and emittance growth –; the...

  18. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  19. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    Science.gov (United States)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  1. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  2. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  3. Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Roger [Univ. of Washington, Seattle, WA (United States)

    2017-01-24

    Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.

  4. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  5. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  6. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  7. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    International Nuclear Information System (INIS)

    Kushita, K. N.

    2010-10-01

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  8. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, K. N., E-mail: Kushita.kouhei@iaea.go.j [Japan Atomic Energy Agency, Nuclear Human Resource Development Center, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 309-1195 (Japan)

    2010-10-15

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  9. An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wyser, K.; Willen, U. [Rossby Centre, SMHI, Norrkoeping (Sweden); Jones, C.G.; Du, P.; Girard, E.; Laprise, R. [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics Network, Montreal (Canada); Cassano, J.; Serreze, M.; Shaw, M.J. [University of Colorado, Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, Boulder, CO (United States); Christensen, J.H. [Danish Meteorological Institute, Copenhagen (Denmark); Curry, J.A. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Dethloff, K.; Rinke, A. [Alfred Wegener Institute for Polar and Marine Research, Research Unit, Potsdam (Germany); Haugen, J.-E.; Koeltzow, M. [Norwegian Meteorological Institute, Oslo (Norway); Jacob, D.; Pfeifer, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Lynch, A. [Monash University, School of Geography and Environmental Science, Melbourne (Australia); Tjernstroem, M.; Zagar, M. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2008-02-15

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic. (orig.)

  10. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  11. Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects

    Science.gov (United States)

    Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.

    2017-12-01

    Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.

  12. Effects of high altitude clouds on the earth's infrared radiation flux

    Science.gov (United States)

    Wang, W.-C.; Kaplan, L. D.

    1983-01-01

    Attention is given to the results of a study of cirrus cloud properties which employed the Goddard Laboratory for Atmospheric Sciences' general circulation model and concentrated on the effects of the nonblackness of high clouds on the IR radiation flux. Although the thermal radiation flux is very sensitive to the treatment of cirrus optical properties in the IR, a more realistic assessment will depend on better parameterizations for cirrus cloud formation, persistence, and dissipation.

  13. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  14. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  15. Radiation-hydrodynamics of HII regions and molecular clouds

    International Nuclear Information System (INIS)

    Sandford, M.T. II; Whitaker, R.W.; Klein, R.I.

    1981-01-01

    Two-dimensional calculations of ionization-shock fronts surrounding neutral cloud clumps reveal that a radiation-driven implosion of the clump can occur. The implosion of a cloud clump results in the formation of density enhancements that may eventually form low mass stars. The smaller globules produced may become Herbig-Haro objects, or maser sources

  16. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  17. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    Science.gov (United States)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  18. Ionization profile of beta radiation from radioactive cloud

    International Nuclear Information System (INIS)

    Vujovic, M.; Vojvodic, V.

    1978-01-01

    A method for calculation of the ionization profile induced by beta radiation from a radioactive cloud is given. The procedure can be applied for high altitudes of the could (H 75 km) as well as for lower ones, when the thickness of the cloud must be taken into account. The final result is given in the analytical form. (author)

  19. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  20. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  1. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  2. Satellite-based trends of solar radiation and cloud parameters in Europe

    Science.gov (United States)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  3. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  4. CloudSafetyNet: Detecting Data Leakage between Cloud Tenants

    OpenAIRE

    Pietzuch, PR; Priebe, C; Muthukumaran, D; O'Keeffe, D; Eyers, D; Shand, B; Kapitza, R

    2014-01-01

    01.12.14 KB. Ok to add accepted version to spiral. Copyright ? 2014 by the Association for Computing Machinery, Inc. (ACM).When tenants deploy applications under the control of third-party cloud providers, they must trust the providers security mechanisms for inter-tenant isolation, resource sharing and access control. Despite a providers best efforts, accidental data leakage may occur due to misconfigurations or bugs in the cloud platform. Especially in Platform-as-a-Service (PaaS) clouds...

  5. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, RT [University of Washington; Protat, A [Australian Bureau of Meterology; Alexander, SP [Australian Antarctic Division

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  6. Radiative properties of ice clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.L.; Koracin, D.; Carter, E. [Desert Research Institute, Reno, NV (United States)

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  7. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  8. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  9. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  10. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  11. How do the radiative effects of springtime clouds and water vapor modulate the melt onset of Arctic sea ice?

    Science.gov (United States)

    Huang, Y.; Dong, X.; Xi, B.; Deng, Y.

    2017-12-01

    Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.

  12. Shortwave radiative effects of unactivated aerosol particles in clouds

    International Nuclear Information System (INIS)

    Ackerman, T.; Baker, M.B.

    1977-01-01

    Clouds in some polluted areas may contain high concentrations of anthropogenic aerosol particles. The possible role of these particles in perturbing the optical and dynamical properties of the clouds is an important question for climate studies. The direct radiative effects of unactivated aerosol particles in stable stratus clouds have been calculated at lambda=0.5μm. Several simplifying asumptions have been made relating the behavior of such particles in the high humidity enviornment within the cloud to their physicochemical make-up. It is shown that the energy absorbed by particles within the clouds may be, for realistic concentrations, comparable to the latent heat released and thus may play a significant role in cloud dynamics in some areas. These results are shown to be relatively insensitive to the assumptions about the particle properties within the cloud

  13. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  14. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    International Nuclear Information System (INIS)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  15. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  16. The cloud radiation impact from optics simulation and airborne observation

    Science.gov (United States)

    Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles

    2017-02-01

    The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.

  17. Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery

    Science.gov (United States)

    Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.

    2017-12-01

    Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being

  18. Cloud classification in a mediterranean location using radiation data and sky images

    International Nuclear Information System (INIS)

    Martinez-Chico, M.; Batlles, F.J.; Bosch, J.L.

    2011-01-01

    Knowledge regarding the solar radiation reaching the earth's surface and its geographical distribution is very important for the use of solar energy as a resource to produce electricity. Therefore, a proper assessment of available solar resource is particularly important to determine the placement and operation of solar thermal power plants. To perform this analysis correctly, it is necessary to determine the main factors influencing the radiation reaching the earth's surface, such as the earth's geometry, terrain, and atmospheric attenuation by gases, particles and clouds. Among these factors, it is important to emphasise the role of clouds as the main attenuating factor of radiation. Information about the amount and type of clouds present in the sky is therefore necessary to analyse both their attenuation levels and the prevalence of different sky conditions. Cloud cover is characterised according to attenuation levels, using the beam transmittance (k b , ratio of direct radiation incident on the surface to the extraterrestrial solar radiation) and hemispherical sky images. An analysis of the frequency and duration of each type of cloud cover blocking the sun's disk is also performed. Results show prevailing sky situations that make the studied area very suitable for the use of solar energy systems. -- Highlights: → Beam transmittance index k b have been used successfully to classify the cloud cover. → The proposed classification has been used to study a Mediterranean location in south-eastern Spain. → Percentage of cloudless/cloudy situations showed a good potential for solar energy applications in the studied area.

  19. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  20. The impact of cloud inhomogeneities on the Earth radiation budget: the 14 October 1989 I.C.E. convective cloud case study

    Directory of Open Access Journals (Sweden)

    F. Parol

    1994-01-01

    Full Text Available Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%; it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.

  1. The impact of cloud inhomogeneities on the Earth radiation budget: the 14 October 1989 I.C.E. convective cloud case study

    Directory of Open Access Journals (Sweden)

    F. Parol

    Full Text Available Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%; it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.

  2. An example of radiation-education experiment using a new-type handy cloud chamber

    International Nuclear Information System (INIS)

    Kushita, Kouhei

    2005-01-01

    We have developed a new-type handy cloud chamber to overcome shortcomings in the conventional handy cloud chambers. The new-type handy cloud chamber has such advantages as: no dangerous parts or tools are used; can be assembled quickly; has a wider observation window; much less expensive, etc. We have also prepared a new text for this cloud-chamber kit to explain the basic theory of radiation and radioisotopes, which is divided into two levels for children and for adults. Using this new-type handy cloud chamber, we propose an example of an educational experiment on radiation and radioisotopes which can be carried out within one hour. (author)

  3. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    Science.gov (United States)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  4. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds

    Science.gov (United States)

    Yun, Yuxing; Penner, Joyce E.

    2012-04-01

    A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.

  5. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  6. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    Science.gov (United States)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  7. HYPERION NET - a distributed measurement system for monitoring background ionizing radiation

    International Nuclear Information System (INIS)

    Saponjic, Dj.; Zigic, A.; Arandjelovic, V.

    2003-01-01

    The distributed measurement system - HYPERION NET, based on the concept of FieldBus technology, has been developed, implemented, and tested as a pilot project, the first WEB enabled on-line networked ionizing radiation monitoring and measurement system. The Net has layered the structure, tree topology, and is based on the Internet infrastructure and TCP/IP communication protocol. The Net's core element is an intelligent GM transmitter, based on GM tube, used for measuring the absorbed dose in air, in the range of 0.087 to 720 μGy/h. The transmitter makes use of an advanced count rate measurement algorithm capable of suppressing the statistical fluctuations of the measured quantity, which significantly improves its measurement performance mailing it suitable for environmental radiation measurements. (author)

  8. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  9. New look at radiative association in dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.

    1980-01-01

    A corrected statistical theory of radiative association reactions is presented and discussed. Calculations are undertaken to determine the rate coefficients of a variety of radiative association reactions of possible importance in dense interstellar clouds. Our results confirm the suggestion of Smith and Adams that certain radiative association reactions occur quite rapidly at low temperature and are probably important in the synthesis of complex interstellar molecules

  10. Sulfates, Clouds and Radiation Brazil (SCAR-B) AERONET (AErosol RObotic NETwork) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCAR_B_AERONET data are Smoke, Clouds and Radiation Brazil (SCARB) Aerosol Robotic Network (AERONET) data for aerosol characterization.Smoke/Sulfates, Clouds and...

  11. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    Science.gov (United States)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be

  12. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  13. Saharan dust event impacts on cloud formation and radiation over Western Europe

    Directory of Open Access Journals (Sweden)

    M. Bangert

    2012-05-01

    Full Text Available We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties.

    The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l−1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds.

    Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected. This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m−2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m−2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m−2.

    The

  14. Earth cloud, aerosol, and radiation explorer optical payload development status

    Science.gov (United States)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  15. Global radiative effects of solid fuel cookstove aerosol emissions

    Science.gov (United States)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  16. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    Science.gov (United States)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  17. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    Science.gov (United States)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  18. Some results of radiative balance in atmospheres with clouds

    International Nuclear Information System (INIS)

    Anduckia Avila, Juan Carlos; Pelkowski, Joaquin

    2000-01-01

    Vertical profiles of temperature for a semi grey three-Layer atmosphere are established using a radiative equilibrium condition. The approximation contains the greenhouse effect, scattering by clouds in one direction and isotropic diffuse reflection at the planet's surface. Absorption of short- wave radiation is also considered in one of the three layers. Similar models are contained therein

  19. Evaluation of NetApp Cloud ONTAP and AltaVault using Amazon Web Services

    CERN Document Server

    Weisz, Michael

    2015-01-01

    As of now, the storage infrastructure at CERN almost exclusively consists of on-premise storage, i.e. storage which physically resides in the institution’s data center. While this offers certain advantages such as full control regarding data security, it also holds many challenges, most importantly in terms of flexibility and scalability. For instance, the provisioning of new on-site storage takes some time, since the required storage needs to be ordered, delivered, and installed first, before it can be used. Furthermore, there is certain maintenance work involved even after the initial setup inflicting ongoing costs of upkeep. At the same time, various cloud providers such as Amazon Web Services and Microsoft Azure have emerged during the last years, offering services to flexibly provision storage resources in the cloud in a scalable way. This project tries to explore and evaluate to what extend the on-site storage infrastructure at CERN could be extended using virtual NetApp storage offerings such as Clou...

  20. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  1. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  2. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Feingold, Graham [NOAA ESRL; McComiskey, Allison [CIRES, University of Colorado

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  3. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    Science.gov (United States)

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  4. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    Science.gov (United States)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  5. Sensitivity study of cloud/radiation interaction using a second order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.J.; Smith, W.S.

    1993-01-01

    A high resolution one-dimensional version of a second order turbulence convective/radiative model, developed at the Los Alamos National Laboratory, was used to conduct a sensitivity study of a stratocumulus cloud deck, based on data taken at San Nicolas Island during the intensive field observation marine stratocumulus phase of the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE IFO), conducted during July, 1987. Initial profiles for liquid water potential temperature, and total water mixing ratio were abstracted from the FIRE data. The dependence of the diurnal behavior in liquid water content, cloud top height, and cloud base height were examined for variations in subsidence rate, sea surface temperature, and initial inversion strength. The modelled diurnal variation in the column integrated liquid water agrees quite well with the observed data, for the case of low subsidence. The modelled diurnal behavior for the height of the cloud top and base show qualitative agreement with the FIRE data, although the overall height of the cloud layer is about 200 meters too high

  6. AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS/AMSU retrievals at AMSU footprints, CloudSat radar reflectivities,...

  7. A survey of theoretical fundamentals to radiative drying of sprays and of falling clouds

    International Nuclear Information System (INIS)

    Sandu, C.; Spiess, W.E.L.; Wolf, W.; Rasenescu, I.

    1976-01-01

    The present paper attempts to prepare a general description of the physical phenomena of the radiative drying of sprays and of falling clouds as an engineering application. Such an attempt remains unique in the frame work of special literature. The authors insist especially upon those aspects, which are going to be superposed over the classical, known aspects of the spray drying process, i.e.: a) the radiation extinction of the dense clouds, and b) the dynamic behaviour of the dense clouds under the influence of radiation. However, the authors believe that a lot of new studies and efforts are necessary to illuminate the whole feature of the process in a more applicable model. (orig.) [de

  8. A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes

    International Nuclear Information System (INIS)

    J. O. Pinto; A.H. Lynch

    2004-01-01

    The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles

  9. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  10. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  11. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    Science.gov (United States)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study

  12. Estimating net short-wave radiation with the Bellani pyranometer

    International Nuclear Information System (INIS)

    Bernier, Y.; Plamondon, A.P.

    1983-01-01

    Two methods were developed by which daily net short-wave radiation (K∗) can be evaluated from Bellani pyranometer readings. The first method involves a simple regression equation. The second method uses a physical approach taking into account the effect of the Bellani's geometry on its response to direct and diffuse radiation throughout the day. Both methods, when tested on experimental data, tended to underestimate the measured K∗, the regression approach exhibiting a higher variance of the error [fr

  13. Comparisons of solar radiation interception, albedo and net radiation as influenced by row orientations of crops

    International Nuclear Information System (INIS)

    Baten, Md.A.; Kon, H.

    1997-01-01

    Field experiments were conducted on soybean (Glycin max L.) in summer and potato (Solanum tuberosum L.) in autumn to evaluate the effect of row orientations of crops on some selected micro meteorological factors during 1994 and 1995. The intercepted solar radiation was the largest in the plants growing in bidirection in summer and it exhibited intermediate trend in autumn as compared to E-W or N-S row orientations. In summer, penetrated solar radiation between two plants and near the stem base of a N-S row was larger than that of E-W row. While in autumn, the observed solar radiation between two plants and near the stem base of a E-W row was markedly larger than that of N-S row. The area weighted mean of penetrated solar radiation was larger in E-W soybean rows but lower in potato rows as compared to N-S row orientations. Soil surface temperature between N-S potato rows was larger than that of E-W potato rows and the upper canopy surface temperature of potato was larger in E-W rows as compared to N-S rows. Net radiation observed over E-W potato rows was larger as compared to N-S potato rows but net radiation measured under canopy of E-W potato rows was smaller than that of in N-S rows. Net radiation measured over N-S soybean rows was larger than that of E-W soybean rows and it was smaller between N-S soybean rows when measured under canopy as compared to E-W rows. The albedo observed over potato was larger over E-W rows as compared to N-S rows. Albedos over soybean canopy showed opposite trend with the albedos observed over potato canopy. It was larger over N-S rows as compared to E-W rows. High harvest index was associated with larger interception of radiation. (author)

  14. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  15. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals

    International Nuclear Information System (INIS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If τ(1–ϖ) and τ(1–ϖg) are conserved where τ is optical thickness, ϖ the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1–ϖg) factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1–ϖ)/(1–ϖg)]"1"/"2, also tend to be similar. - Highlights: • Similarity relations are theoretically analyzed and validated. • Similarity relations are verified with the MODIS Level 2 Collection 5 and 6 ice cloud property products. • The product of ice cloud optical thickness and (1–ϖg) is approximately invariant. • The similarity parameter derived from the MODIS ice cloud effective radius retrieval tends to be invariant.

  16. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  17. Submillimeter and far infrared line observations of M17 SW: A clumpy molecular cloud penetrated by UV radiation

    Science.gov (United States)

    Stutzki, J.; Stacey, G. J.; Genzel, R.; Harris, A. I.; Jaffe, d. T.; Lugten, J. B.

    1987-01-01

    Millimeter, submillimeter, and far infrared spectroscopic observations of the M17 SW star formation region are discussed. The results require the molecular cloud near the interface to be clumpy or filamentary. As a consequence, far ultraviolet radiation from the central OB stellar cluster can penetrate into the dense molecular cloud to a depth of several pc, thus creating bright and extended (CII) emission from the photodissociated surfaces of dense atomic and molecular clumps or sheets. The extended (CII) emission throughout the molecular cloud SW of the M17 complex has a level 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. This suggests that the molecular cloud as a whole is penetrated by ultraviolet radiation and has a clumpy or filamentary structure. The number of B stars expected to be embedded in the M17 molecular cloud probably can provide the UV radiation necessary for the extended (CII) emission. Alternatively, the UV radiation could be external, if the interstellar radiation in the vicinity of M17 is higher than in the solar neighborhood.

  18. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    Science.gov (United States)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  19. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  20. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2010-08-01

    Full Text Available A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS in the new model setup, but outgoing long-wave radiation (OLR decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR is of similar magnitude for the new and the original scheme.

  1. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Science.gov (United States)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  2. 3D Cloud Radiative Effects on Polarized Reflectances

    Science.gov (United States)

    Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.

    2017-12-01

    As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced

  3. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  4. Radiation transport in dense interstellar dust clouds. II. Infrared emission from molecular clouds associated with H II regions

    International Nuclear Information System (INIS)

    Leung, C.M.

    1976-01-01

    Theoretical models are constructed to study the distribution of grain temperature (T/sub d/) and infrared emission from molecular clouds associated with H II regions (with embedded O: B stars). The effects of the following parameters on the temperature structure and the emergent spectrum are studied: grain type (graphite, silicate, and core-mantle grains), optical depth, density inhomogeneity, cloud size, anisotropic scattering, radiation field anisotropy, and characteristics of central heat source. T/sub d/ varies from approximately-greater-than100 K to approximately-less-than20 K throughout the major portion of a cloud, and dielectric grains attain lower temperatures. Due to an inward increase in T/sub d/, the radiation field is strongly forward-peaking, thereby producing a pronounced limb-darkening in the surface brightness. Important features of the computed emission spectra from typical models are compared with available observations, and the importance of beam dilution is emphasized. Theoretical surface brightnesses at selected infrared wavelengths are also presented. The outward radiation pressure on the dust grains is found to exceed the self-gravitational force of the gas over a large portion of a cloud, thus possibly causing the gas in the inner region to expand. Assumptions commonly used in the analysis of infrared observations are examined. Finally, observational methods of deriving the temperature structure (from color and brightness temperatures in the far-infrared), density distribution (from surface brightness at lambdaapproximately-greater-than1 mm), and optical depth (from multiaperture photometry) for the dust component in simple sources are discussed

  5. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    temperature advection in the warm and cold subsets to have near-median values in three layers of the troposphere. Across all of the seven clusters, we find that cloud fraction is smaller and cloud optical thickness is mostly larger for the warm subset. Cloud-top pressure is higher for the three low-level cloud regimes and lower for the cirrus regime. The net upwelling radiation flux at the top of the atmosphere is larger for the warm subset in every cluster except cirrus, and larger when averaged over all clusters. This implies that the direct response of midlatitude oceanic clouds to increasing temperature acts as a negative feedback on the climate system. Note that the cloud response to atmospheric dynamical changes produced by global warming, which we do not consider in this study, may differ, and the total cloud feedback may be positive.

  6. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    Science.gov (United States)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  7. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  8. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    Science.gov (United States)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  9. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  10. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. The role of clouds in the surface energy balance over the Amazon forest

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    effect on solar radiation fields. The net effect of clouds is to reduce net radiation; a 1% increase in cloudiness induces a reduction in net radiation of ca. 1 W/m 2 . The implications of this negative feedback on large-scale land-atmosphere interactions over rainforests are discussed. (author)

  12. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.; Tornero, M.T.T.

    1999-01-01

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (R g ) and solar reflected radiation (R r ) were used to estimate the albedo through the ratio between R r and R g . The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (R g ) and net short-waves radiation (R c ) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author) [pt

  13. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    Science.gov (United States)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  14. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L' Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  15. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2016-09-01

    Full Text Available Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = −0.01 ± 0.03, whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02.

  16. On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

    Directory of Open Access Journals (Sweden)

    B. Strauss

    Full Text Available The impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized one-dimensional radiative convective model (RCM. The influence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modified case. In order to study the sensitivity of this effect on the radiative characteristics of the ice cloud, two types of additional ice clouds were modelled: cirrus and contrails, the latter cloud type containing a higher number of smaller and less of the larger cloud particles. Ice cloud parameters are calculated on the basis of a particle size distribution which covers the range from 2 to 2000 µm, taking into consideration recent measurements which show a remarkable amount of particles smaller than 20 µm. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase in the order of 1K, ranging from 1.1 to 1.2K in July and from 0.8 to 0.9K in October depending on the radiative characteristics of the air-traffic-induced ice clouds. Modelling the current contrail cloud cover which is near 0.5% over Europe yields a surface temperature increase in the order of 0.05K.

  17. On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

    Directory of Open Access Journals (Sweden)

    B. Strauss

    1997-11-01

    Full Text Available The impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized one-dimensional radiative convective model (RCM. The influence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modified case. In order to study the sensitivity of this effect on the radiative characteristics of the ice cloud, two types of additional ice clouds were modelled: cirrus and contrails, the latter cloud type containing a higher number of smaller and less of the larger cloud particles. Ice cloud parameters are calculated on the basis of a particle size distribution which covers the range from 2 to 2000 µm, taking into consideration recent measurements which show a remarkable amount of particles smaller than 20 µm. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase in the order of 1K, ranging from 1.1 to 1.2K in July and from 0.8 to 0.9K in October depending on the radiative characteristics of the air-traffic-induced ice clouds. Modelling the current contrail cloud cover which is near 0.5% over Europe yields a surface temperature increase in the order of 0.05K.

  18. Proceedings of Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects

    International Nuclear Information System (INIS)

    Cimino, R; Rumolo, Giovanni; Zimmermann, Frank

    2013-01-01

    This report contains the Proceedings of the Joint INFN-Frascati, INFN-Pisa, CERN-LER and EuCARD-AccNet Mini-Workshop on Electron-Cloud Effects, “ECLOUD12”, held at La Biodola, Isola d’Elba, from 5 to 9 June 2012. The ECLOUD12 workshop reviewed many recent electron-cloud (EC) observations at existing storage rings, EC predictions for future accelerators, electron-cloud studies at DAFNE, EC mitigation by clearing electrodes and graphite/carbon coatings, modeling of incoherent EC effects, self-consistent simulations, synergies with other communities like the Valencia Space Consortium and the European Space Agency. ECLOUD12 discussed new EC observations at existing machines including LHC, CesrTA, PETRA-3, J-PARC, and FNAL MI; latest experimental efforts to characterize the EC – including EC diagnostics, experimental techniques, mitigation techniques such as coating and conditioning, advanced chemical and physical analyses of various vacuum-chamber surfaces, beam instabilities and emittance growth –; the status of EC physics models and (new, more versatile and additional) simulation codes and their comparison with recently acquired experimental data; and the mitigation requirements and potential performance limitations imposed by the EC on upgraded and future machines, including HL-LHC, FAIR, ILC, Project-X, SuperB and SuperKEKB. A dedicated session addressed problems related to RF breakdown and multipacting for space applications. A number of open questions and future R&D needs were identified

  19. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    Science.gov (United States)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  20. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  1. Greening the Cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, G.; Lago, P.; Grosso, Paola; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and lms (Spotify and Net ix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs). The cloud forms a massive storage and processing

  2. DOE ASR Final Report on “Use of ARM Observations to Investigate the Role of Tropical Radiative Processes and Cloud Radiative Effects in Climate Simulations”

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiang [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Comstock, Jennifer [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences

    2018-01-29

    The overall objective of this ASR funded project is to investigate the role of cloud radiative effects, especially those associated with tropical thin cirrus clouds in the tropical tropopause layer, by analyzing the ARM observations combined with numerical models. In particular, we have processed and analyzed the observations from the Raman lidar at the ARM SGP and TWP sites. In the tenure of the project (8/15/2013 – 8/14/2016 and with a no-cost extension to 8/14/2017), we have been concentrating on (i) developing an automated feature detection scheme of clouds and aerosols for the ARM Raman lidar; (ii) developing an automated retrieval of cloud and aerosol extinctions for the ARM Raman lidar; (iii) investigating cloud radiative effects based on the observations on the simulated temperatures in the tropical tropopause layer using a radiative-convective model; and (iv) examining the effect of changes of atmospheric composition on the tropical lower-stratospheric temperatures. In addition, we have examined the biases in the CALIPSO-inferred aerosol direct radiative effects using ground-based Raman lidars at the ARM SGP and TWP sites, and estimated the impact of lidar detection sensitivity on assessing global aerosol direct radiative effects. We have also investigated the diurnal cycle of clouds and precipitation at the ARM site using the cloud radar observations along with simulations from the multiscale modeling framework. The main results of our research efforts are reported in the six referred journal publications that acknowledge the DOE Grant DE-SC0010557.

  3. Quantifying the impact of cloud cover on ground radiation flux measurements using hemispherical images

    NARCIS (Netherlands)

    Roupioz, L.; Colin, J.; Jia, L.; Nerry, F.; Menenti, M.

    2015-01-01

    Linking observed or estimated ground incoming solar radiation with cloud coverage is difficult since the latter is usually poorly described in standard meteorological observation protocols. To investigate the benefits of detailed observation and characterization of cloud coverage and

  4. Effects of aerosol from biomass burning on the global radiation budget

    Science.gov (United States)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  5. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel

    OpenAIRE

    Stubenrauch , C.J.; Rossow , W.B.; Kinne , S.; Ackerman , S.; Cesana , G.; Chepfer , H.; Di Girolamo , L.; Getzewich , B.; Guignard , A.; Heidinger , A.; Maddux , B.C.; Menzel , W.P.; Minnis , P.; Pearl , C.; Platnick , S.

    2013-01-01

    International audience; The Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel initiated the GEWEX Cloud Assessment in 2005 to compare available, global, long-term cloud data products with the International Satellite Cloud Climatology Project (ISCCP). The GEWEX Cloud Assessment database included cloud properties retrieved from different satellite sensor measurements, taken at various local times and over various time periods. The relevant passive satellite sensors measured radia...

  6. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  7. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  8. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  9. Smoke/Sulfates, Clouds and Radiation Experiment in Brazil (SCAR-B) Data Set Version 5.5

    Data.gov (United States)

    National Aeronautics and Space Administration — SCAR_B_G8_FIRE data are Smoke/Sulfates, Clouds and Radiation Experiment in Brazil, GOES-8 ABBA Diurnal Fire Product (1995 Fire Season) data.Smoke/Sulfates, Clouds...

  10. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  11. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    Science.gov (United States)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a

  12. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    Science.gov (United States)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  13. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact

    International Nuclear Information System (INIS)

    Zhang, Hua; Chen, Qi; Xie, Bing

    2015-01-01

    A new parameterization of the solar and infrared optical properties of ice clouds that considers the multiple habits of ice particles was developed on the basis of a prescribed dataset. First, the fitting formulae of the bulk extinction coefficient, single-scatter albedo, asymmetry factor, and δ-function forward-peak factor at the given 65 wavelengths as a function of effective radius were created for common scenarios, which consider a greater number of wavelengths and are more accurate than those used previously. Then, the band-averaged volume extinction and absorption coefficients, asymmetry factor and forward-peak factor of ice cloud were derived for the BCC-RAD (Beijing Climate Center radiative transfer model) using a parameter reference table. Finally, the newly developed and the original schemes in the BCC-RAD and the commonly used Fu Scheme of ice cloud were all applied to the BCC-RAD. Their influences on radiation calculations were compared using the mid-latitude summer atmospheric profile with ice clouds under no-aerosol conditions, and produced a maximum difference of approximately 30.0 W/m 2 for the radiative flux, and 4.0 K/d for the heating rate. Additionally, a sensitivity test was performed to investigate the impact of the ice crystal density on radiation calculations using the three schemes. The results showed that the maximum difference was 68.1 W/m 2 for the shortwave downward radiative flux (for the case of perpendicular solar insolation), and 4.2 K/d for the longwave heating rate, indicating that the ice crystal density exerts a significant effect on radiation calculations for a cloudy atmosphere. - Highlights: • A new parameterization of the radiative properties of ice cloud was obtained. • More accurate fitting formulae of them were created for common scenarios. • The band-averaged of them were derived for our radiation model of BCC-RAD. • We found that there exist large differences of results among different ice schemes. • We found

  14. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1991-present, Net Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  17. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  18. The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba

    Directory of Open Access Journals (Sweden)

    B. Barja

    2011-08-01

    Full Text Available The effect of optically thin cirrus clouds on solar radiation is analyzed by numerical simulation, using lidar measurements of cirrus conducted at Camagüey, Cuba. Sign and amplitude of the cirrus clouds effect on solar radiation is evaluated. There is a relation between the solar zenith angle and solar cirrus cloud radiative forcing (SCRF present in the diurnal cycle of the SCRF. Maximums of SCRF out of noon located at the cirrus cloud base height are found for the thin and opaque cirrus clouds. The cirrus clouds optical depth (COD threshold for having double SCRF maximum out of noon instead of a single one at noon was 0.083. In contrast, the heating rate shows a maximum at noon in the location of cirrus clouds maximum extinction values. Cirrus clouds have a cooling effect in the solar spectrum at the Top of the Atmosphere (TOA and at the surface (SFC. The daily mean value of SCRF has an average value of −9.1 W m−2 at TOA and −5.6 W m−2 at SFC. The cirrus clouds also have a local heating effect on the atmospheric layer where they are located. Cirrus clouds have mean daily values of heating rates of 0.63 K day−1 with a range between 0.35 K day−1 and 1.24 K day−1. The principal effect is in the near-infrared spectral band of the solar spectrum. There is a linear relation between SCRF and COD, with −30 W m−2 COD−1 and −26 W m−2 COD−1, values for the slopes of the fits at the TOA and SFC, respectively, in the broadband solar spectrum.

  19. Evaluation of RRTMG and Fu-Liou RTM Performance against LBLRTM-DISORT Simulations and CERES Data in terms of Ice Clouds Radiative Effects

    Science.gov (United States)

    Gu, B.; Yang, P.; Kuo, C. P.; Mlawer, E. J.

    2017-12-01

    Evaluation of RRTMG and Fu-Liou RTM Performance against LBLRTM-DISORT Simulations and CERES Data in terms of Ice Clouds Radiative Effects Boyan Gu1, Ping Yang1, Chia-Pang Kuo1, Eli J. Mlawer2 Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA Atmospheric and Environmental Research (AER), Lexington, MA 02421, USA Ice clouds play an important role in climate system, especially in the Earth's radiation balance and hydrological cycle. However, the representation of ice cloud radiative effects (CRE) remains significant uncertainty, because scattering properties of ice clouds are not well considered in general circulation models (GCM). We analyze the strengths and weakness of the Rapid Radiative Transfer Model for GCM Applications (RRTMG) and Fu-Liou Radiative Transfer Model (RTM) against rigorous LBLRTM-DISORT (a combination of Line-By-Line Radiative Transfer Model and Discrete Ordinate Radiative Transfer Model) calculations and CERES (Clouds and the Earth's Radiant Energy System) flux observations. In total, 6 US standard atmospheric profiles and 42 atmospheric profiles from Atmospheric and Environmental Research (AER) Company are used to evaluate the RRTMG and Fu-Liou RTM by LBLRTM-DISORT calculations from 0 to 3250 cm-1. Ice cloud radiative effect simulations with RRTMG and Fu-Liou RTM are initialized using the ice cloud properties from MODIS collection-6 products. Simulations of single layer ice cloud CRE by RRTMG and LBLRTM-DISORT show that RRTMG, neglecting scattering, overestimates the TOA flux by about 0-15 W/m2 depending on the cloud particle size and optical depth, and the most significant overestimation occurs when the particle effective radius is small (around 10 μm) and the cloud optical depth is intermediate (about 1-10). The overestimation reduces significantly when the similarity rule is applied to RRTMG. We combine ice cloud properties from MODIS Collection-6 and atmospheric profiles from the Modern

  20. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  1. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  2. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    Energy Technology Data Exchange (ETDEWEB)

    Splitt, M.E. [Univ. of Oklahoma, Norman, OK (United States); Wesely, M.L. [Argonne National Lab., IL (United States)

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  3. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    Science.gov (United States)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  4. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  5. One-dimensional solar radiative transfer: Perturbation approach and its application to independent-pixel calculations for realistic cloud fields

    International Nuclear Information System (INIS)

    Jerg, Matthias; Trautmann, Thomas

    2007-01-01

    The radiative transfer perturbation theory (RTPT), which has already been introduced in atmospheric radiative transfer several years ago, is applied to cloud related problems. The RTPT requires the solution of the radiative transfer equation in the forward and the adjoint mode. The basic principles of this technique are presented as well as its extensions to isotropic surface reflection and its conjunction with the Hermite interpolation. This set of methods is applied to different atmospheric conditions including realistic cloud scenes. The results are compared with the usual (forward) independent-pixel calculations with respect to errors of individual pixels and domain-averaged values. The RTPT turns out to be sufficiently accurate in the case the clouds' internal vertical variations remain moderate. It is also shown that, depending on the specific radiative transfer problem, the RTPT can offer some advantages on computational speed. However, the limitations of the RTPT with regard to realistic clouds are addressed as well

  6. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  7. Initial Results from the Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Ginoux, Paul; Starr, David OC. (Technical Monitor)

    2001-01-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for full time monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the Gobi desert, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data products.

  8. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    Science.gov (United States)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  9. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Science.gov (United States)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an

  10. The cloud-radiative forcing of the U.S. landfalling atmospheric rivers

    Science.gov (United States)

    Luo, Qianwen

    Atmospheric rivers (ARs) are narrow channels in the atmosphere that transport an enormous amount of moisture from the tropics to the higher latitudes. Streaks of highly reflective clouds are observed along with the ARs in satellite imagery. These clouds both influence the moisture transport of ARs, as well as modify the Earth-Atmospheric energy budget through pathways such as cloud-radiative forcing (CRF). This dissertation studies the CRF of the U.S. Landfalling ARs in weather and climate scales. Three crucial questions are addressed. First, how do clouds produced by the ARs modulate the moisture and heat balance of the Earth-Atmospheric system? Even though studies of ARs date back to the 90s, past research has been primarily focused on their hydrological impacts. We addressed this research gap by comparing the dominant types of precipitating clouds and convection of two ARs. Through quantifying their effects on the energy balance in the midlatitudes, we found that when deep convection was the dominant cloud types of an AR, impressive CRF cooling was produced. Second, what are the sufficient climate conditions for the extensive CRF in the continental U.S.? We studied 60 ARs that reached the California coast (the Southwest ARs) and 60 ARs that reached Pacific Northwest during Nov-Mar, 2000-2008. It was found that when these West-Coast ARs were followed by the moisture surge from the Gulf of Mexico (the Gulf-Coast AR), it resulted in apparent statewide CRF. Such condition happened more frequently in the Southwest-AR scenario. Third, how does the subgrid-scale-convection-induced CRF influence the moisture transport of ARs?We ran two WRF ARW simulations for a Southwest-AR that was followed by a Gulf-Coast AR. The only difference between the two simulations was one considered the CRF of subgrid-scale clouds while the other did not. By comparing the two simulations, we found that the subgrid-scale-convection-induced CRF helped prolong the lifespan of clouds in an AR

  11. Characterization of the cloud conditions at Ny-Ålesund using sensor synergy and representativeness of the observed clouds across Arctic sites

    Science.gov (United States)

    Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion

    2017-04-01

    Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic

  12. The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets

    Science.gov (United States)

    Jakub, Fabian; Mayer, Bernhard

    2017-11-01

    The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large

  13. The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets

    Directory of Open Access Journals (Sweden)

    F. Jakub

    2017-11-01

    Full Text Available The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D. As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s−1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun, the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is

  14. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2015-07-01

    Full Text Available Based on airborne spectral imaging observations, three-dimensional (3-D radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength. The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0–200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500–1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field. The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500–1000 m cloud altitude, which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical

  15. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Science.gov (United States)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated

  16. Ionization profile of beta radiation from radioactive cloud; Jonizacioni profil beta zracenja radioaktivnog oblaka

    Energy Technology Data Exchange (ETDEWEB)

    Vujovic, M [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia); Vojvodic, V [VTI Belgrade (Yugoslavia)

    1978-07-01

    A method for calculation of the ionization profile induced by beta radiation from a radioactive cloud is given. The procedure can be applied for high altitudes of the could (H 75 km) as well as for lower ones, when the thickness of the cloud must be taken into account. The final result is given in the analytical form. (author)

  17. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    Science.gov (United States)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  18. Modification of cirrus clouds to reduce global warming

    International Nuclear Information System (INIS)

    Mitchell, David L; Finnegan, William

    2009-01-01

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m -2 and could neutralize the radiative forcing due to a CO 2 doubling (3.7 W m -2 ). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  19. Modification of cirrus clouds to reduce global warming

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David L; Finnegan, William, E-mail: david.mitchell@dri.ed [Desert Research Institute, Reno, NV 89512-1095 (United States)

    2009-10-15

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m{sup -2} and could neutralize the radiative forcing due to a CO{sub 2} doubling (3.7 W m{sup -2}). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  20. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, 2000-present, Net Longwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Net Longwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  1. Modification of cirrus clouds to reduce global warming

    Science.gov (United States)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous freezing nucleation dominates). Weather modification research has developed ice nucleating substances that are extremely effective at these cold temperatures, are non-toxic and are relatively inexpensive. The seeding material could be released in both clear and cloudy conditions to build up a background concentration of efficient ice nuclei so that non-contrail cirrus will experience these nuclei and grow larger ice crystals. Flight corridors are denser in the high- and mid-latitudes where global warming is more severe. A risk with any geoengineering experiment is that it could affect climate in unforeseen ways, causing more harm than good. Since seeding aerosol residence times in the troposphere are 1-2 weeks, the climate might return back to its normal state within a few months after stopping the geoengineering. A drawback to this approach is that it would not stop ocean acidification. It may not have many of the draw-backs that stratospheric injection of sulfur species has, such as ozone destruction, decreased solar radiation possibly altering the

  2. Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence

    Science.gov (United States)

    Seeley, J.; Jeevanjee, N.; Romps, D. M.

    2016-12-01

    Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.

  3. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment

    International Nuclear Information System (INIS)

    Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Hatfield, J.L.; Meek, D.

    1998-01-01

    Studies of surface energy and water balance generally require an accurate estimate of net radiation and its spatial distribution. A project quantifying both short term and seasonal water use of shrub and grass vegetation in the Jornada Experimental Range in New Mexico prompted a study to compare net radiation observations using two types of net radiometers currently being used in research. A set of 12 REBS net radiometers were compared with each other and one Swissteco, over wet and dry surfaces in an arid landscape under clear skies. The set of REBS exhibited significant differences in output over both surfaces. However, they could be cross calibrated to yield values within 10 W m −2 , on average. There was also a significant bias between the REBS and Swissteco over a dry surface, but not over a wet one. The two makes of instrument could be made to agree under the dry conditions by using regression or autoregression techniques. However, the resulting equations would induce bias for the wet surface condition. Thus, it is not possible to cross calibrate these two makes of radiometer over the range of environmental conditions observed. This result indicates that determination of spatial distribution of net radiation over a variable surface should be made with identical instruments which have been cross calibrated. The need still exists for development of a radiometer and calibration procedures which will produce accurate and consistent measurements over a range of surface conditions. (author)

  4. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  5. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2016-11-01

    Full Text Available Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5. Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m−2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m−2. Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m−2, while over Boreal Asia the overestimation is +43 % (−1.9 W m−2. The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.

  6. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  7. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    International Nuclear Information System (INIS)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-01-01

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring

  8. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Science.gov (United States)

    Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide

    2017-12-01

    This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  9. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Directory of Open Access Journals (Sweden)

    T. Ogura

    2017-12-01

    Full Text Available This study discusses how much of the biases in top-of-atmosphere (TOA radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5 generation. We used output of a perturbed parameter ensemble (PPE experiment conducted with an atmosphere–ocean general circulation model (AOGCM without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5 was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude–longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  10. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  11. Cirrus Cloud Optical Thickness and Effective Diameter Retrieved by MODIS: Impacts of Single Habit Assumption, 3-D Radiative Effects, and Cloud Inhomogeneity

    Science.gov (United States)

    Zhou, Yongbo; Sun, Xuejin; Mielonen, Tero; Li, Haoran; Zhang, Riwei; Li, Yan; Zhang, Chuanliang

    2018-01-01

    For inhomogeneous cirrus clouds, cloud optical thickness (COT) and effective diameter (De) provided by the Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 cloud products are associated with errors due to the single habit assumption (SHA), independent pixel assumption (IPA), photon absorption effect (PAE), and plane-parallel assumption (PPA). SHA means that every cirrus cloud is assumed to have the same shape habit of ice crystals. IPA errors are caused by three-dimensional (3D) radiative effects. PPA and PAE errors are caused by cloud inhomogeneity. We proposed a method to single out these different errors. These errors were examined using the Spherical Harmonics Discrete Ordinate Method simulations done for the MODIS 0.86 μm and 2.13 μm bands. Four midlatitude and tropical cirrus cases were studied. For the COT retrieval, the impacts of SHA and IPA were especially large for optically thick cirrus cases. SHA errors in COT varied distinctly with scattering angles. For the De retrieval, SHA decreased De under most circumstances. PAE decreased De for optically thick cirrus cases. For the COT and De retrievals, the dominant error source was SHA for overhead sun whereas for oblique sun, it could be any of SHA, IPA, and PAE, varying with cirrus cases and sun-satellite viewing geometries. On the domain average, the SHA errors in COT (De) were within -16.1%-42.6% (-38.7%-2.0%), whereas the 3-D radiative effects- and cloud inhomogeneity-induced errors in COT (De) were within -5.6%-19.6% (-2.9%-8.0%) and -2.6%-0% (-3.7%-9.8%), respectively.

  12. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    Science.gov (United States)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  13. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  14. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain). Estudio de la interaccin nubosidad-radiacion solar en Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Pablo-Davila, F. de, Labajo, J.L.; Tomas-Sanchez, C

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  15. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Science.gov (United States)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud

  16. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado

    2018-01-01

    Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP

  17. Inhomogeneities in cirrus clouds and their effects on solar radiative transfer; Inhomogenitaeten in Cirren und ihre Auswirkungen auf den solaren Strahlungstransport

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2001-07-01

    Inhomogeneities in cirrus clouds have an important impact on radiative transfer calculations in climate models. Compared to homogeneous clouds, inhomogeneities within clouds decrease reflectivity and result in an increased transmission of solar radiation through the cloud towards the surface. A quantitative investigation of this effect is still to be done. In-situ and remote sensing data of 11 cirrus clouds are used to investigate horizontal inhomogeneities. The 3-dimensional radiative transfer model GRIMALDI is used to calculate radiative flux densities and absorption for a cloudy atmosphere. Comparisons between homogeneous and heterogeneous calculations show, that the homogeneous assumption can cause relative errors up to {+-} 30% for radiative flux densities and absorption especially for tropical cirrus clouds. Mid-latitude cirrus clouds with mean optical thickness smaller than 5 and minor inhomogeneity result in relative errors smaller than {+-} 10% for radiative flux density and absorption. A correction scheme is developed to account for horizontal inhomogeneity in optically thick cirrus clouds in homogeneous radiative transfer calculations. This way, for a known horizontal distribution of optical thickness, relative errors of radiative properties can be reduced to a maximum of {+-} 10%. (orig.) [German] Inhomogenitaeten in Cirrus-Wolken spielen insbesondere bei Strahlungstransportrechnungen in Klimamodellen eine bedeutende Rolle. Im Vergleich zur homogenen Wolkenbetrachtung verringern Inhomogenitaeten die Reflektivitaet der Wolken und fuehren zu einer hoeheren Transmission solarer Strahlung durch die Wolke zum Erdboden. Eine quantitative Untersuchung dieses Effekts steht allerdings bislang aus. Flugzeugmessungen sowie Fernerkundungsdaten von insgesamt 11 Cirrus-Wolken werden auf ihre horizontale Inhomogenitaet untersucht. Das 3-dimensionale Strahlungstransportmodell GRIMALDI wird fuer die Berechnung solarer Strahlungsflussdichten und Absorption in bewoelkter

  18. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    International Nuclear Information System (INIS)

    Costa, Tassio S; Gonçalves, Fábio L T; Yamasoe, Marcia A; Martins, Jorge A; Morris, Cindy E

    2014-01-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as −2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties. (letter)

  19. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    Science.gov (United States)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  20. Introducing Subrid-scale Cloud Feedbacks to Radiation for Regional Meteorological and Cllimate Modeling

    Science.gov (United States)

    Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...

  1. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  2. Effects of 3-D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-train satellite data

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny

    2014-01-01

    Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.

  3. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  4. Effects of the El Chichon volcanic cloud on solar radiation received at Fairbanks, Alaska

    International Nuclear Information System (INIS)

    Wendler, G.

    1984-01-01

    Detailed insolation measurements have been carried out in Fairbanks for the last four years. Beginning on 15 November 1982, these measurements showed substantial changes, believed to be due to the dust cloud of El Chichon. The volcano, situated in Mexico, erupted most intensely on 4 April 1982, putting a large amount of material into the atmosphere. The long traveling time to the North is in line with results found by Rao and Bradley (1983). Compared to clear-day data for previous years, clear days for the time period 15 November 1982-31 May 1983 showed a decrease in the direct beam of 24.8% an increase in the ratio of diffuse to global radiation of 76% and a decrease in the global radiation of about 5%. A decrease in the direct beam, a substantial increase in the diffuse radiation, and a small decrease in the global radiation are typical for increased turbidity of the atmosphere, but the volcanic cloud caused changes greater than those due to ''normal'' turbidity changes

  5. Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds.

    Science.gov (United States)

    Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.;  Mlawer, E.;  Morcrette, J.-J.;  O'Hirok, W.;  Räisänen, P.;  Ramaswamy, V.;  Ritter, B.;  Rozanov, E.;  Schlesinger, M.;  Shibata, K.;  Sporyshev, P.;  Sun, Z.;  Wendisch, M.;  Wood, N.;  Yang, F.

    2003-08-01

    The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for

  6. Modeling Message Queueing Services with Reliability Guarantee in Cloud Computing Environment Using Colored Petri Nets

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-01-01

    Full Text Available Motivated by the need for loosely coupled and asynchronous dissemination of information, message queues are widely used in large-scale application areas. With the advent of virtualization technology, cloud-based message queueing services (CMQSs with distributed computing and storage are widely adopted to improve availability, scalability, and reliability; however, a critical issue is its performance and the quality of service (QoS. While numerous approaches evaluating system performance are available, there is no modeling approach for estimating and analyzing the performance of CMQSs. In this paper, we employ both the analytical and simulation modeling to address the performance of CMQSs with reliability guarantee. We present a visibility-based modeling approach (VMA for simulation model using colored Petri nets (CPN. Our model incorporates the important features of message queueing services in the cloud such as replication, message consistency, resource virtualization, and especially the mechanism named visibility timeout which is adopted in the services to guarantee system reliability. Finally, we evaluate our model through different experiments under varied scenarios to obtain important performance metrics such as total message delivery time, waiting number, and components utilization. Our results reveal considerable insights into resource scheduling and system configuration for service providers to estimate and gain performance optimization.

  7. Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2017-07-01

    Full Text Available Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixed-phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900 m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 ± 0.2 km (269 K; moderate to 6.2 ± 0.3 km (267 K; polluted, and of the upper boundary from 6.8 ± 0.2 km (263 K; moderate to 7.4 ± 0.4 km (259 K; polluted, as would be expected from theory.

  8. Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

    Science.gov (United States)

    Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee

    2018-01-01

    The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.

  9. Role of visualization of nuclear radiation in public education on atomic energy. Visualization of natural nuclear radiation using a cloud chamber

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Fujita, Fumiyuki; Narabayashi, Tadashi

    2008-01-01

    Nuclear radiation is indispensable tool, i.e., medical diagnostic systems and industrial nondestructive measurement systems, for our life. On the other hand, ordinary people sometimes have bad image for nuclear radiation. To improve this undesirable situation, many individuals and groups keep holding public educational meeting on nuclear radiation. For this purpose, visualization of natural nuclear radiation by a cloud chamber is very effective way; participants feel existence of nuclear radiation directly. In this talk, public educational activity of Hokkaido University and Japan Atomic Energy Society Hokkaido branch will be reported. (author)

  10. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  11. A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    Directory of Open Access Journals (Sweden)

    P. Trisolino

    2018-06-01

    Full Text Available Measurements of global and diffuse photosynthetically active radiation (PAR have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute

  12. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    Science.gov (United States)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  13. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    Science.gov (United States)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  14. The cloud radiative feedback of a midlatitude squall line system and implication for climate study

    International Nuclear Information System (INIS)

    Chin, H.N.S.

    1992-01-01

    The main objectives of this study are (1) to study the impact of longwave and shortwave radiation on the thermodynamic and kinematic structure of a midlatitude squall line; and (2) to explore the influence of specifically including the ice phase in the cloud-radiation feedback mechanism for climate models

  15. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  16. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2012-02-01

    Full Text Available Cloud Fraction (CF is the dominant modulator of radiative fluxes. In this study, we evaluate CF simulated in the IPCC AR4 GCMs against ARM long-term ground-based measurements, with a focus on the vertical structure, total amount of cloud and its effect on cloud shortwave transmissivity. Comparisons are performed for three climate regimes as represented by the Department of Energy Atmospheric Radiation Measurement (ARM sites: Southern Great Plains (SGP, Manus, Papua New Guinea and North Slope of Alaska (NSA. Our intercomparisons of three independent measurements of CF or sky-cover reveal that the relative differences are usually less than 10% (5% for multi-year monthly (annual mean values, while daily differences are quite significant. The total sky imager (TSI produces smaller total cloud fraction (TCF compared to a radar/lidar dataset for highly cloudy days (CF > 0.8, but produces a larger TCF value than the radar/lidar for less cloudy conditions (CF < 0.3. The compensating errors in lower and higher CF days result in small biases of TCF between the vertically pointing radar/lidar dataset and the hemispheric TSI measurements as multi-year data is averaged. The unique radar/lidar CF measurements enable us to evaluate seasonal variation of cloud vertical structures in the GCMs.

    Both inter-model deviation and model bias against observation are investigated in this study. Another unique aspect of this study is that we use simultaneous measurements of CF and surface radiative fluxes to diagnose potential discrepancies among the GCMs in representing other cloud optical properties than TCF. The results show that the model-observation and inter-model deviations have similar magnitudes for the TCF and the normalized cloud effect, and these deviations are larger than those in surface downward solar radiation and cloud transmissivity. This implies that other dimensions of cloud in addition to cloud amount, such as cloud optical thickness and

  17. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  18. Influence of clouds on the cosmic radiation dose rate on aircraft

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Goncalez, Odair L.; Cortes-Giraldo, Miguel A.; Quesada, Jose Manuel M.; Palomo, Francisco R.; Pinto, Marcos Luiz de A.

    2014-01-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. The paper presents first-order calculation about the influence of Cumulonimbus clouds on the flux and dose rate due to cosmic neutrons in the atmosphere, at aircraft flight altitudes. The simulations show variations of the order of 5.5 % in the neutrons flux and 3.6 % of the dose rate due to the presence of the cloud. Such variations can extend up to ∼1.5 km from the edge of the cloud. The spectrum of neutrons within a cloud formation was observed undergo changes due to the neutron absorption and scattering processes with the water content inside the cloud. To accomplish these simulations, it is important to have a proper knowledge of the data libraries and nuclear models to be applied, since the simulation processes are strongly dependent on these factors. These results emphasise the importance of conducting more detailed studies on this topic, since the influence of clouds can change the dose and flux on aircraft overflying such formations, as well as could explain some of the fluctuations in the experimental dose rate data obtained in aircraft flights. Future studies should extend such simulations to different types of

  19. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  20. WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT

    International Nuclear Information System (INIS)

    Moore, K; Kagadis, G; Xing, L; McNutt, T

    2014-01-01

    As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set against new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud

  1. WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K [University of California, San Diego, La Jolla, CA (United States); Kagadis, G [University Patras, Rion - Patras (Greece); Xing, L [Stanford University, Stanford, CA (United States); McNutt, T [Johns Hopkins University, Severna Park, MD (United States)

    2014-06-15

    As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set against new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.

  2. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    International Nuclear Information System (INIS)

    Stewart, J.B.; Watts, C.J.; Rodriguez, J.C.; Bruin, H.A.R. de; Berg, A.R. van den; Garatuza-Payán, J.

    1999-01-01

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  3. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  4. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  5. A simulation model for the actual, long wave and net solar radiation computing

    International Nuclear Information System (INIS)

    Kolev, B.; Stoilov, A.; Lyubomirov, L.

    2004-01-01

    The main purpose of this study is to present a calculating procedure for the components of the radiation balance - actual, long-wave and net radiation calculation, using the sunshine duration and the standard meteorological information, through a previously prepared program product.To calculate the actual solar radiation using the total cloudiness only, an empirical regression model has been developed. The results of the coefficient of correlation R(0.75-0.88), respectively for the spring and summer periods (March-May; June-August) show the adequacy of the chosen model. The verification of the model on the independent experimental material prove that the approach that authors suggested, can be successfully applied to the calculation of the actual radiation of the current place

  6. Low cloud investigations for project FIRE: Island studies of cloud properties, surface radiation, and boundary layer dynamics. A simulation of the reflectivity over a stratocumulus cloud deck by the Monte Carlo method. M.S. Thesis Final Report

    Science.gov (United States)

    Ackerman, Thomas P.; Lin, Ruei-Fong

    1993-01-01

    The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.

  7. Global aerosol transport and consequences for the radiation budget

    International Nuclear Information System (INIS)

    Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.

    1984-01-01

    Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels

  8. Influence of cloud radiative effects on tropical circulation and hydrological cycle in the Mid-Holocene

    Science.gov (United States)

    Izumi, Kenji; Kageyama, Masa; Bony, Sandrine; Braconnot, Pascale

    2016-04-01

    Paleoenvironmental data in particular, vegetation and lake-status at mid-Holocene (6,000 years ago) in Sahara shows that African monsoon extended much further north than today. Much of this change results from the changes in insolation driven by precession of the Earth's orbit, but in the state-of-the-art climate models, this factor alone is insufficient to explain the magnitude of the change. Previous studies showed that ocean and vegetation feedbacks affect the mid-Holocene monsoon and that the incorporation of these feedbacks in models improves the simulation of the hydrological cycle. However, it is not sufficient to reduce the discrepancies between simulated and reconstructed surface climates. In this study, we investigate the extent to which the simulation of cloud-radiative effects matters for the simulation of paleo-climatic changes, and past changes in the position and strength of the tropical rain belts in particular. This is done by running a general circulation model with and without clouds-radiation interactions using the IPSL model. The impact of cloud -radiative effects, which prevents the precipitation band to move north, on the tropical circulation and precipitation changes in mid-Holocene experiments will be discussed. Additionally, we will show the simulated effects of land cover change over Sahara.

  9. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    Science.gov (United States)

    Lohmann, U.; Hoose, C.

    2009-11-01

    Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit), which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m-2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  10. Trapping in stochastic mechanics and applications to covers of clouds and radiation belts

    International Nuclear Information System (INIS)

    Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1984-11-01

    It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas

  11. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb-scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-11-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in

  12. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  13. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2007-10-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the

  14. Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion

    International Nuclear Information System (INIS)

    Ding Shouguo; Xie Yu; Yang Ping; Weng Fuzhong; Liu Quanhua; Baum, Bryan; Hu Yongxiang

    2009-01-01

    The bulk-scattering properties of dust aerosols and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort of the Joint Center for Satellite Data Assimilation (JCSDA). The delta-fit method is employed to truncate the forward peaks of the scattering phase functions and to compute the Legendre expansion coefficients for re-constructing the truncated phase function. Use of more terms in the expansion gives more accurate re-construction of the phase function, but the issue remains as to how many terms are necessary for different applications. To explore this issue further, the bidirectional reflectances associated with dust aerosols, water clouds, and ice clouds are simulated with various numbers of Legendre expansion terms. To have relative numerical errors smaller than 5%, the present analyses indicate that, in the visible spectrum, 16 Legendre polynomials should be used for dust aerosols, while 32 Legendre expansion terms should be used for both water and ice clouds. In the infrared spectrum, the brightness temperatures at the top of the atmosphere are computed by using the scattering properties of dust aerosols, water clouds and ice clouds. Although small differences of brightness temperatures compared with the counterparts computed with 4, 8, 128 expansion terms are observed at large viewing angles for each layer, it is shown that 4 terms of Legendre polynomials are sufficient in the radiative transfer computation at infrared wavelengths for practical applications.

  15. Sulfates, Clouds and Radiation Brazil (SCAR-B) University of Washington C131A Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCAR_B_UWC131A data are Smoke/Sulfates, Clouds and Radiation Experiment in Brazil data from instruments on board the University of Washington C131A aircraft in...

  16. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  17. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  18. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  19. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  20. Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code

    International Nuclear Information System (INIS)

    Yi, Bingqi; Huang, Xin; Yang, Ping; Baum, Bryan A.; Kattawar, George W.

    2014-01-01

    In this study, a full-vector, adding–doubling radiative transfer model is used to investigate the influence of the polarization state on cloud property retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. Two sets of lookup tables (LUTs) are developed for the retrieval purposes, both of which provide water cloud and ice cloud reflectivity functions at two wavelengths in various sun-satellite viewing geometries. However, only one of the LUTs considers polarization. The MODIS reflectivity observations at 0.65 μm (band 1) and 2.13 μm (band 7) are used to infer the cloud optical thickness and particle effective diameter, respectively. Results indicate that the retrievals for both water cloud and ice cloud show considerable sensitivity to polarization. The retrieved water and ice cloud effective diameter and optical thickness differences can vary by as much as ±15% due to polarization state considerations. In particular, the polarization state has more influence on completely smooth ice particles than on severely roughened ice particles. - Highlights: • Impact of polarization on satellite-based retrieval of water/ice cloud properties is studied. • Inclusion of polarization can change water/ice optical thickness and effective diameter values by up to ±15%. • Influence of polarization on cloud property retrievals depends on sun-satellite viewing geometries

  1. Microphysical and Radiative Characteristics of Convective Clouds during COHMEX.

    Science.gov (United States)

    Fulton, Richard; Heymsfield, Gerald M.

    1991-01-01

    The use of passive remote microwave radiance measurements above cloud tops for rainrate estimation is complicated by the complex nature of cloud microphysics. The knowledge of the microphysical structure of clouds, specifically the hydrometeor types, shapes, sizes, and their vertical distribution, is important because radiative emission and scattering effects are dependent upon the hydrometeor distribution. This paper has two purposes: first, to document the structure and evolution of two strong thunderstorms in Alabama using radar multiparameter data; and second, to relate the inferred microphysics to the resulting upwelling microwave radiance observed concurrently by high altitude aircraft. These measurements were collected during the COHMEX field program in the summer of 1986. The radar analysis includes a description of the parameters reflectivity Z, differential reflectivity ZDR, linear depolarization ratio LDR, and hail signal HS for two thunderstorm cases on 11 July 1986. The simultaneous aircraft data includes passive microwave brightness temperature (TB) measurements at four frequencies ranging from 18 to 183 GHz as well as visible and infrared data.The remote radar observations reveal the existence of large ice particles within the storms which is likely to have caused the observed low microwave brightness temperatures. By relating the evolution of the radar measureables to the microwave TB's it has been found that knowledge of the storm microphysics and its evolution is important to adequately understand the microwave TB's.

  2. Brightening of the global cloud field by nitric acid and the associated radiative forcing

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-08-01

    Full Text Available Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO2. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m−2 and to the total indirect effect −0.46 W m−2. The contribution to the cloud albedo effect is shown to increase to −0.37 W m−2 by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO2 emissions and increasing NOx and greenhouse gases.

  3. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  4. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  5. CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  6. Role of Longwave Cloud-Radiation Feedback in the Simulation of the Madden-Julian Oscillation

    Science.gov (United States)

    Kim, Daehyun; Ahn, Min-Seop; Kang, In-Sik; Del Genio, Anthony D.

    2015-01-01

    The role of the cloud-radiation interaction in the simulation of the Madden-Julian oscillation (MJO) is investigated. A special focus is on the enhancement of column-integrated diabatic heating due to the greenhouse effects of clouds and moisture in the region of anomalous convection. The degree of this enhancement, the greenhouse enhancement factor (GEF), is measured at different precipitation anomaly regimes as the negative ratio of anomalous outgoing longwave radiation to anomalous precipitation. Observations show that the GEF varies significantly with precipitation anomaly and with the MJO cycle. The greenhouse enhancement is greater in weak precipitation anomaly regimes and its effectiveness decreases monotonically with increasing precipitation anomaly. The GEF also amplifies locally when convection is strengthened in association with the MJO, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). A robust statistical relationship is found among CMIP5 climate model simulations between the GEF and the MJO simulation fidelity. Models that simulate a stronger MJO also simulate a greater GEF, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). Models with a greater GEF in the strong precipitation anomaly regime (greater than 30 mm day(-1)) represent a slightly slower MJO propagation speed. Many models that lack the MJO underestimate the GEF in general and in particular in the weak precipitation anomaly regime. The results herein highlight that the cloud-radiation interaction is a crucial process for climate models to correctly represent the MJO.

  7. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    Science.gov (United States)

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  8. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  9. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.

    Science.gov (United States)

    Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei

    2013-09-21

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  10. Toward a web-based real-time radiation treatment planning system in a cloud computing environment

    International Nuclear Information System (INIS)

    Na, Yong Hum; Kapp, Daniel S; Xing, Lei; Suh, Tae-Suk

    2013-01-01

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm 2 ) from the Varian TrueBeam TM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  11. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    International Nuclear Information System (INIS)

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-01-01

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 μm in winter to 9.7 μm during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union

  12. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2018-03-01

    Full Text Available In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m−2 at surface and 0.007 W m−2 at top of the atmosphere and dust aerosol layers (0.7 W m−2 at surface and 0.85 W m−2 at top of the atmosphere. Data processing is further responsible for discrepancies in both thin (0.55 W m−2 at surface and 2.7 W m−2 at top of the atmosphere and opaque (7.7 W m−2 at surface and 11.8 W m−2 at top of the atmosphere cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20–150 sr than for clouds (20–35 sr. For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  13. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  14. THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Pineda, Jorge L.; Klein, Ulrich; Ott, Juergen; Wong, Tony; Muller, Erik; Hughes, Annie

    2009-01-01

    We present a complete 12 CO J = 1 → 0 map of the prominent molecular ridge in the Large Magellanic Cloud (LMC) obtained with the 22 m ATNF Mopra Telescope. The region stretches southward by ∼2 deg. (or 1.7 kpc) from 30 Doradus, the most vigorous star-forming region in the Local Group. The location of this molecular ridge is unique insofar as it allows us to study the properties of molecular gas as a function of the ambient radiation field in a low-metallicity environment. We find that the physical properties of CO-emitting clumps within the molecular ridge do not vary with the strength of the far-ultraviolet radiation field. Since the peak CO brightness of the clumps shows no correlation with the radiation field strength, the observed constant value for CO-to-H 2 conversion factor along the ridge seems to require an increase in the kinetic temperature of the molecular gas that is offset by a decrease in the angular filling factor of the CO emission. We find that the difference between the CO-to-H 2 conversion factor in the molecular ridge and the outer Milky Way is smaller than has been reported by previous studies of the CO emission: applying the same cloud identification and analysis methods to our CO observations of the LMC molecular ridge and CO data from the outer Galaxy survey by Dame et al., we find that the average CO-to-H 2 conversion factor in the molecular ridge is X CO ≅ (3.9 ± 2.5) x 10 20 cm -2 (K km s -1 ) -1 , approximately twice the value that we determine for the outer Galaxy clouds. The mass spectrum and the scaling relations between the properties of the CO clumps in the molecular ridge are similar, but not identical, to those that have been established for Galactic molecular clouds.

  15. Fast Cloud Adjustment to Increasing CO2 in a Superparameterized Climate Model

    Directory of Open Access Journals (Sweden)

    Marat Khairoutdinov

    2012-05-01

    Full Text Available Two-year simulation experiments with a superparameterized climate model, SP-CAM, are performed to understand the fast tropical (30S-30N cloud response to an instantaneous quadrupling of CO2 concentration with SST held fixed at present-day values.The greenhouse effect of the CO2 perturbation quickly warms the tropical land surfaces by an average of 0.5 K. This shifts rising motion, surface precipitation, and cloud cover at all levels from the ocean to the land, with only small net tropical-mean cloud changes. There is a widespread average reduction of about 80 m in the depth of the trade inversion capping the marine boundary layer (MBL over the cooler subtropical oceans.One apparent contributing factor is CO2-enhanced downwelling longwave radiation, which reduces boundary-layer radiative cooling, a primary driver of turbulent entrainment through the trade inversion. A second contributor is a slight CO2-induced heating of the free troposphere above the MBL, which strengthens the trade inversion and also inhibits entrainment. There is a corresponding downward displacement of MBL clouds with a very slight decrease in mean cloud cover and albedo.Two-dimensional cloud-resolving model (CRM simulations of this MBL response are run to steady state using composite SP-CAM simulated thermodynamic and wind profiles from a representative cool subtropical ocean regime, for the control and 4xCO2 cases. Simulations with a CRM grid resolution equal to that of SP-CAM are compared with much finer resolution simulations. The coarse-resolution simulations maintain a cloud fraction and albedo comparable to SP-CAM, but the fine-resolution simulations have a much smaller cloud fraction. Nevertheless, both CRM configurations simulate a reduction in inversion height comparable to SP-CAM. The changes in low cloud cover and albedo in the CRM simulations are small, but both simulations predict a slight reduction in low cloud albedo as in SP-CAM.

  16. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  17. Retrieval of water cloud characteristic from active sensor data using the analytical solution of radiative transfer equation

    International Nuclear Information System (INIS)

    Cai, W.; Gayen, S.K.

    2010-01-01

    An analytical forward model and numerical algorithm for retrieving the parameters of water cloud of earth atmosphere from optical measurements carried out by satellite-based lidars is presented. The forward model, based on the analytical solution of the radiative transfer equation, is used to fit the temporal profile of the laser light pulses backscattered from the cloud layers. The cloud parameters extracted from the analysis at each position on earth include the transport mean free path, the average radius of water drops, the density of drops, the scattering length, the scattering cross section, the anisotropy factor, and the altitude of top level of major clouds. Also estimated is the possible thickness of cloud layers. The efficacy of the approach is demonstrated by generating parameters of water cloud using the data collected by NASA's cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) satellite when it passed through North America on August 7, 2007.

  18. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  19. Global distributions of cloud properties for CERES

    Science.gov (United States)

    Sun-Mack, S.; Minnis, P.; Heck, P.; Young, D.

    2003-04-01

    The microphysical and macrophysical properties of clouds play a crucial role in the earth's radiation budget. Simultaneous measurement of the radiation and cloud fields on a global basis has long been recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. With the implementation of the NASA Clouds and Earth's Radiant Energy System (CERES) in 1998, this need is being met. Broadband shortwave and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth from the TRMM Visible Infrared Scanner and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The combined cloud-radiation product has already been used for developing new, highly accurate anisotropic directional models for converting broadband radiances to flux. They also provide a consistent measure of cloud properties at different times of day over the globe since January 1998. These data will be valuable for determining the indirect effects of aerosols and for linking cloud water to cloud radiation. This paper provides an overview of the CERES cloud products from the three satellites including the retrieval methodology, validation, and global distributions. Availability and access to the datasets will also be discussed.

  20. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  1. Measuring cloud service health using NetFlow/IPFIX: the WikiLeaks case

    NARCIS (Netherlands)

    Drago, Idilio; Hofstede, R.J.; Sadre, R.; Sperotto, Anna; Pras, Aiko

    The increasing trend of outsourcing services to cloud providers is changing the way computing power is delivered to enterprises and end users. Although cloud services offer several advantages, they also make cloud consumers strongly dependent on providers. Hence, consumers have a vital interest to

  2. NOAA Climate Data Record (CDR) of Cloud and Clear-Sky Radiation Properties, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA LaRC cloud and clear sky radiation properties dataset is generated using algorithms initially developed for application to TRMM and MODIS imagery within the...

  3. Evaluation of a combined modelling-remote sensing method for estimating net radiation in a wetland: a case study in the Nebraska Sand Hills, USA

    International Nuclear Information System (INIS)

    Goodin, D.G.

    1995-01-01

    Close-range measurement combined with modelling of incoming radiation is used to evaluate the prospect of remotely-measuring net radiation of a wetland environment located in the Sand Hills of Nebraska. Results indicate that net radiation can be measured with an accuracy comparable to that of conventional instruments. Sources of error are identified and discussed. Possible application of the methodology to satellite remote sensing is considered. (author)

  4. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    Science.gov (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.

  5. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  6. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  7. A multi-satellite analysis of the direct radiative effects of absorbing aerosols above clouds

    Science.gov (United States)

    Chang, Y. Y.; Christopher, S. A.

    2015-12-01

    Radiative effects of absorbing aerosols above liquid water clouds in the southeast Atlantic as a function of fire sources are investigated using A-Train data coupled with the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi NPP). Both the VIIRS Active Fire product and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies product (MYD14) are used to identify the biomass burning fire origin in southern Africa. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to assess the aerosol type, aerosol altitude, and cloud altitude. We use back trajectory information, wind data, and the Fire Locating and Modeling of Burning Emissions (FLAMBE) product to infer the transportation of aerosols from the fire source to the CALIOP swath in the southeast Atlantic during austral winter.

  8. Turkish Cloud-Radiation Database (CRD) and Its Application with CDR Bayesian Probability Algorithm

    Science.gov (United States)

    Oztopal, A.; Mugnai, A.; Casella, D.; Formenton, M.; Sano, P.; Sonmez, I.; Sen, Z.; Hsaf Team

    2010-12-01

    ABSTRACT It is rather a very difficult task to determine ground rainfall amounts from few Special Sensor Microwave Imager/Sounder (SSMI/S) channels. Although ground rainfall cannot be observed from the space directly, but knowledge about the cloud physics helps to estimate the amound of ground rainfall. SSMI/S includes so much information about the atmospheric structure, however it cannot provide cloud micro-physical structural information. In such a situation, in the rainfall algorithm, besides the SSMI/S data, it is necessary to incorporate cloud micro-physical properties from an external data source. These properties can be obtained quite simply by the help of Cloud Resolving Model (CRM). Later, in addition to all available data, also micro-physical properties obtained from Radiative Transfer Model (RTM) help to determine the SSMI/S brightness temperatures (Brightness temperatures - TBs), which can then be correlated with Cloud-Radiation Database (CRD) data generation. SSMI/S satellite data and CDR provide a common basis for rainfall prediction procedure through CDR Bayesian probability algorithm, which combines the two sets of data in a scientific manner. The first applications of this algorithm, which is being used up today, is due to various researchers. In this work, in order to establish a reflection of available data processing CDR CRM University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS) model is employed, which is first developed by Prof. Gregory J. Tripoli. It is also used by Turkish Meteorological Service by benefiting from radar network data, and finally 14 simulations are realized in this study. Moreover, one case study is fulfilled by using a 3X3 spatial filtering, and then radar data and result of CDR Bayesian probability algorithm are compared with each other. On 9 September 2009 at 03:40 GMT rainfall event on comparatively flat area matches far better with the retrieval values and hence the spatial rainfall occurrence extent and

  9. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  10. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  11. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  12. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    Energy Technology Data Exchange (ETDEWEB)

    McFarquhar, Greg [Univ. of Illinois, Urbana, IL (United States)

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  13. RadNet Air Data From Sacramento, CA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Houston, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Austin, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Orlando, FL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  19. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  20. How small is a small cloud?

    Directory of Open Access Journals (Sweden)

    I. Koren

    2008-07-01

    Full Text Available The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds.

    Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing.

    The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels.

    We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS the average "cloud-free" reflectance at 1.65 μm increases from 0.0095 to 0.0115 (>20%, the cloud reflectance decreases from 0.13 to 0.066 (~50%, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.

  1. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2009-11-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit, which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m−2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  2. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  3. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  4. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  5. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  6. Influence on the radiation regime and climate of dust aerosols and extensive cloud cover

    Energy Technology Data Exchange (ETDEWEB)

    Kondratev, K Ya; Binenko, V I; Zhavalev, V F; Ivonav, V A; Ter-Markaryants, N E

    1983-04-01

    The Global Aerosol/Radiation Experiment (GAREX) research programs, carried out in the Kara-Kum desert and in the Arctic and Kamchatka peninsula, has yielded the following conclusions: In the presence of liquid or particulate aerosols, the albedo of the underlying surface/atmosphere system increase over a weakly reflecting surface (water) and decreases over a highly reflecting surface (snow, ice). The albedo of ice of varying concentration and type ranges from 0.4 to 0.8 according to observations from an altitude of 200 m, reaching a maximum in the visible range of the spectrum. The albedo of clouds over the Arctic is noticeably greater than that of similar clouds over a city, over dry land, or over water in the European part of the USSR. The presence of particulates from volcanoes increases the albedo of clouds, but their influence is small in comparison with anthropogenic aerosols (mostly soot). The emissivity of clouds in the Arctic is less than unity, due to the predominance of ice crystals. In the Arctic, underlying surfaces typically have a large anisotropic reflection. 8 references, 3 figures, 2 tables.

  7. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  8. Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Burleyson, Casey D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Fast, Jerome D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2018-04-01

    We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our

  9. Sensitivity of regional meteorology and atmospheric composition during the DISCOVER-AQ period to subgrid-scale cloud-radiation interactions

    Science.gov (United States)

    Huang, X.; Allen, D. J.; Herwehe, J. A.; Alapaty, K. V.; Loughner, C.; Pickering, K. E.

    2014-12-01

    Subgrid-scale cloudiness directly influences global and regional atmospheric radiation budgets by attenuating shortwave radiation, leading to suppressed convection, decreased surface precipitation as well as other meteorological parameter changes. We use the latest version of WRF (v3.6, Apr 2014), which incorporates the Kain-Fritsch (KF) convective parameterization to provide subgrid-scale cloud fraction and condensate feedback to the rapid radiative transfer model-global (RRTMG) shortwave and longwave radiation schemes. We apply the KF scheme to simulate the DISCOVER-AQ Maryland field campaign (July 2011), and compare the sensitivity of meteorological parameters to the control run that does not include subgrid cloudiness. Furthermore, we will examine the chemical impact from subgrid cloudiness using a regional chemical transport model (CMAQ). There are several meteorological parameters influenced by subgrid cumulus clouds that are very important to air quality modeling, including changes in surface temperature that impact biogenic emission rates; changes in PBL depth that affect pollutant concentrations; and changes in surface humidity levels that impact peroxide-related reactions. Additionally, subgrid cumulus clouds directly impact air pollutant concentrations by modulating photochemistry and vertical mixing. Finally, we will compare with DISCOVER-AQ flight observation data and evaluate how well this off-line CMAQ simulation driven by WRF with the KF scheme simulates the effects of regional convection on atmospheric composition.

  10. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  11. Evaluation of three semi-empirical approaches to estimate the net radiation over a drip-irrigated olive orchard

    Directory of Open Access Journals (Sweden)

    Rafael López-Olivari

    2015-09-01

    Full Text Available The use of actual evapotranspiration (ETα models requires an appropriate parameterization of the available energy, where the net radiation (Rn is the most important component. Thus, a study was carried out to calibrate and evaluate three semi-empirical approaches to estimate net radiation (Rn over a drip-irrigated olive (Olea europaea L. 'Arbequina' orchard during 2009/2010 and 2010/2011 seasons. The orchard was planted in 2005 at high density in the Pencahue Valley, Maule Region, Chile. The evaluated models were calculated using the balance between long and short wave radiation. To achieve this objective it was assumed that Ts = Tα for Model 1, Ts = Tv for Model 2 and Ts = Tr for Model 3 (Ts is surface temperature; Tα is air temperature; and Tv is temperature inside of the tree canopy; Tr is radiometric temperature. For the three models, the Brutsaert's empirical coefficient (Φ was calibrated using incoming long wave radiation equation with the database of 2009/2010 season. Thus, the calibration indicated that Φ was equal to 1.75. Using the database from 2010/2011 season, the validation indicated that the three models were able to predict the Rn at a 30-min interval with errors lower than 6%, root mean square error (RMSE between 26 and 39 W m-2 and mean absolute error (MAE between 20 and 31 W m-2. On daily time intervals, validation indicated that models presented errors, RMSE and MAE between 2% and 3%, 1.22-1.54 and 1.04-1.35 MJ m-2 d-1, respectively. The three R„-Models would be evaluated and used in others Mediterranean conditions according to the availability of data to estimate net radiation over a drip-irrigated olive orchard planted at high density.

  12. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  13. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  14. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    International Nuclear Information System (INIS)

    Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.

  15. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    Science.gov (United States)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; hide

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  16. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  17. The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models

    Science.gov (United States)

    Jenney, A.; Randall, D. A.

    2014-12-01

    Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  18. CloudSat-Constrained Cloud Ice Water Path and Cloud Top Height Retrievals from MHS 157 and 183.3 GHz Radiances

    Science.gov (United States)

    Gong, J.; Wu, D. L.

    2014-01-01

    Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.

  19. Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun

    Science.gov (United States)

    Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu

    2017-10-01

    An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.

  20. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    Science.gov (United States)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation

  1. Examination of Regional Trends in Cloud Properties over Surface Sites Derived from MODIS and AVHRR using the CERES Cloud Algorithm

    Science.gov (United States)

    Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.

    2017-12-01

    Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.

  2. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  3. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Science.gov (United States)

    Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.

    2016-12-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  4. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Science.gov (United States)

    Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying

    2016-01-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  5. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2007-07-01

    Full Text Available The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and −35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient.

    The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to −1.9 W m−2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to −0.7 W m−2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  6. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  7. Radiation pressure: A possible cause for the superrotation of the Venusian atmosphere

    Science.gov (United States)

    Krause, J. L.

    1992-01-01

    The superrotation of the venusian atmosphere relative to the planet's surface has long been known. Yet the process by which this vigorous circulation is maintained is poorly understood. The purpose of this report is to show that a mechanism by which the solar radiation interacts with the cloudy atmosphere of Venus could be the principle cause of the superrotation. It has been long known that Venus has a high albedo due to the scattering (similar to the reflection process) of solar radiation by the cloud droplets in its atmosphere. The radiation not scattered, but intercepted by the planet and its atmosphere, is mainly absorbed within the cloud layers. Therefore, momentum (equal, more or less, to that of the solar radiation intercepted) is continually transferred to the venusian atmosphere. The atmospheric system presents a symmetrical surface (same radiation-matter interaction) toward the solar radiation at its morning and evening limbs. If the cross-sectional areas at both limbs were equal, the momentum transfer at the morning limb would decelerate the atmosphere's rotation while at the evening limb the same transfer would accelerate the rotation an equal amount. The net result of this is that the overall rate of rotation would be unchanged. Such a symmetrical configuration is not likely since the atmosphere must be warmed as it rotates across the planet's day hemisphere and cooled as it rotates across the planet's night hemisphere. This warming and cooling must result in a formation of an asymmetrical configuration. It is apparent that the momentum transfer at the evening limb must be greater than that at the morning limb because the atmosphere's greater cross section at the evening limb intercepts a greater amount of solar radiation. It should be noted that very little of the solar radiation is transmitted through the cloud layers, especially at or near the limbs where the atmospheric path length of the radiation is long. This net momentum transfer must be

  8. A stochastic cloud model for cloud and ozone retrievals from UV measurements

    International Nuclear Information System (INIS)

    Efremenko, Dmitry S.; Schüssler, Olena; Doicu, Adrian; Loyola, Diego

    2016-01-01

    The new generation of satellite instruments provides measurements in and around the Oxygen A-band on a global basis and with a relatively high spatial resolution. These data are commonly used for the determination of cloud properties. A stochastic model and radiative transfer model, previously developed by the authors, is used as the forward model component in retrievals of cloud parameters and ozone total and partial columns. The cloud retrieval algorithm combines local and global optimization routines, and yields a retrieval accuracy of about 1% and a fast computational time. Retrieved parameters are the cloud optical thickness and the cloud-top height. It was found that the use of the independent pixel approximation instead of the stochastic cloud model leads to large errors in the retrieved cloud parameters, as well as, in the retrieved ozone height resolved partial columns. The latter can be reduced by using the stochastic cloud model to compute the optimal value of the regularization parameter in the framework of Tikhonov regularization. - Highlights: • A stochastic radiative transfer model for retrieving clouds/ozone is designed. • Errors of independent pixel approximation (IPA) for O3 total column are small. • The error of IPA for ozone profile retrieval may become large. • The use of stochastic model reduces the error of ozone profile retrieval.

  9. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  10. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    Science.gov (United States)

    Gianotti, Rebecca L.

    demonstrates that: (1) moist convection strongly influences the near surface environment by mediating the incoming solar radiation and net radiation at the surface; (2) dissipation of convective cloud via rainfall plays an equally important role in the convectiveradiative feedback as the formation of that cloud; and (3) over parts of the Maritime Continent, rainfall is a product of diurnally-varying convective processes that operate at small spatial scales, on the order of 1 km. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  11. Reduction of radiation biases by incorporating the missing cloud variability by means of downscaling techniques: a study using the 3-D MoCaRT model

    Directory of Open Access Journals (Sweden)

    S. Gimeno García

    2012-09-01

    Full Text Available Handling complexity to the smallest detail in atmospheric radiative transfer models is unfeasible in practice. On the one hand, the properties of the interacting medium, i.e., the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, especially for climate modelling and operational remote-sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications.

    Three-dimensional radiation models can deal with complex scenarios providing an accurate solution to the radiative transfer. In contrast, one-dimensional models are computationally more efficient, but introduce biases to the radiation results.

    With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a higher resolution. Performing the radiative transfer within the cloud fields at higher spatial resolution noticeably helps to improve the radiation results.

    We present a new Monte Carlo model, MoCaRT, that computes the radiative transfer in three-dimensional inhomogeneous atmospheres. The MoCaRT model is validated by comparison with the consensus results of the Intercomparison of Three-Dimensional Radiation Codes (I3RC project.

    In the framework of this paper, we aim at characterising cloud heterogeneity effects on radiances and broadband fluxes, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias. First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic

  12. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  13. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  14. Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading

    Directory of Open Access Journals (Sweden)

    G. Dagan

    2017-06-01

    Full Text Available Large eddy simulations (LESs with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation and cooling of the upper part (net evaporation. Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect. On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability. The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.

  15. RadNet Air Data From Fort Smith, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Little Rock, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Mason City, IA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. A new algorithm combining geostatistics with the surrogate data approach to increase the accuracy of comparisons of point radiation measurements with cloud measurements

    Science.gov (United States)

    Venema, V. K. C.; Lindau, R.; Varnai, T.; Simmer, C.

    2009-04-01

    Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated on such a kriged field. Stochastic modelling aims at reproducing the structure of the data. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. However, while stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. Because radiative transfer through clouds is a highly nonlinear process it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately as well as the correlations in the cloud field because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. However, up to now we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. The algorithm is tested on cloud fields from large eddy simulations (LES). On these clouds a measurement is simulated. From the pseudo-measurement we estimated the distribution and power spectrum. Furthermore, the pseudo-measurement is kriged to a field the size of the final surrogate cloud. The distribution, spectrum and the kriged field are the inputs to the algorithm. This

  19. Three-dimensional cloud characterization from paired whole-sky imaging cameras

    International Nuclear Information System (INIS)

    Allmen, M.; Kegelmeyer, W.P. Jr.

    1994-01-01

    Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central Site radiative flux calculations. A full 3-D characterization will eventually require the integration of disparate Cloud and Radiation Testbed (CART) data sources: whole-sky imagers (WSIs), radar, satellites, ceilometers, volume-imaging lidar, and other sensors. In this paper, we demonstrate how an initial 3-D cloud property, cloud base height, can be determined from fusing paired times series of images from two whole-sky imagers

  20. A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations

    International Nuclear Information System (INIS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2013-01-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) was designed to measure the atmosphere and surface properties over the whole sunlit half of the Earth from the L1 Lagrangian point. It has 10 spectral channels ranging from the UV to the near-IR, including two pairs of oxygen (O 2 ) A-band (779.5 and 764 nm) and B-band (680 and 687.75 nm) reference and absorption channels selected for the cloud height measurements. This paper presents the radiative transfer analysis pertinent to retrieving cloud top height and cloud geometrical thickness with EPIC A- and B-band observations. Due to photon cloud penetration, retrievals from either O 2 A- or B-band channels alone gives the corresponding cloud centroid height, which is lower than the cloud top. However, we show both the sum and the difference between the retrieved cloud centroid heights in the A and B bands are functions of cloud top height and cloud geometrical thickness. Based on this fact, the paper develops a new method to retrieve cloud top height and cloud geometrical thickness simultaneously for fully cloudy scenes over ocean surface. First, cloud centroid heights are calculated for both A and B bands using the ratios between the reflectances of the absorbing and reference channels; then the cloud top height and the cloud geometrical thickness are retrieved from the two dimensional look up tables that relate the sum and the difference between the retrieved centroid heights for A and B bands to the cloud top height and the cloud geometrical thickness. This method is applicable for clouds thicker than an optical depth of 5. -- Highlights: ► EPIC onboard DSCOVR is equipped with O 2 A and B band channels. ► Photon cloud penetration depths of A and B bands contain information of cloud thickness. ► A method is developed to retrieve cloud top height and cloud geometrical thickness with EPIC O 2 A- and B-band

  1. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  2. Clouds and snowmelt on the north slope of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Stamnes, K.; Bowling, S.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  3. Evaluation of cumulus cloudradiation interaction effects on air quality –relevant meteorological variables from WRF, from a regional climate perspective

    Science.gov (United States)

    Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...

  4. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  5. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  6. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  7. Fast radiative transfer models for retrieval of cloud properties in the back-scattering region: application to DSCOVR-EPIC sensor

    Science.gov (United States)

    Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego

    2017-04-01

    In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior

  8. Cloud Impacts on Pavement Temperature in Energy Balance Models

    Science.gov (United States)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  9. Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    OpenAIRE

    Zhou, Jiantao; Sun, Chaoxin; Fu, Weina; Liu, Jing; Jia, Lei; Tan, Hongyan

    2014-01-01

    This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow.

  10. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  11. Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Diedenhoven, Bastiaan van; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TM+IGOM are considered as a benchmark because the II-TM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TM+IGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 μm) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  12. Automatic atlas based electron density and structure contouring for MRI-based prostate radiation therapy on the cloud

    International Nuclear Information System (INIS)

    Dowling, J A; Burdett, N; Chandra, S; Rivest-Hénault, D; Ghose, S; Salvado, O; Fripp, J; Greer, P B; Sun, J; Parker, J; Pichler, P; Stanwell, P

    2014-01-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  13. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    Science.gov (United States)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  14. Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover

    Science.gov (United States)

    Rose, B. E. J.

    2016-02-01

    Much recent work has pointed to the limitations of the global mean planetary energy budget as a useful diagnostic tool for understanding transient climate response, because the climate sensitivity (or radiative feedback) governing the relationships between ocean heat content, surface temperature and top-of-atmosphere energy imbalance depends sensitively on timescale, spatial pattern and nature of the climate forcing. Progress has been made by treating the slowly-evolving (and spatially complex) pattern of ocean heat uptake as a quasi-equilibrium forcing on the "fast" components of the climate system: the atmospheric radiative-dynamical processes that link air-sea heat exchange to the top-of-atmosphere energy budget. Differences between these feedbacks and those on CO2 radiative forcing can be expressed as an "efficacy" of ocean heat uptake. We use idealized slab ocean GCMs forced by prescribed steady energy sinks limited to specific latitude bands (representing heat exchange with the deep ocean) to quantify how (and why) the efficacy depends on the spatial pattern of ocean heat uptake. By repeating the experiment across several independent GCMs we identify robust and non-robust aspects of the response. We find that the efficacy of sub-polar heat uptake is 3 to 4 times larger than the efficacy of tropical heat uptake. Radiative kernel analysis allows an accurate partition into feedbacks due to temperature, water vapor and clouds. We find large and robust differences in clear-sky lapse rate feedbacks, associated with robust differences in large-scale atmospheric circulation and stratification driven by ocean heat uptake. A more novel and surprising result is the robustness across several independent GCMs of the differences in subtropical low cloud feedback (positive under high-latitude uptake, strongly negative under tropical uptake). We trace these robust differences to thermodynamic constraints associated with lower-tropospheric stability and boundary layer

  15. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  16. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  17. Albedo and transmittance of inhomogeneous stratus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  18. CAR FIREACE Level 1C Arctic Ice and Cloud Radiation (CAR_FIREACE_L1C) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The scientific objectives of FIRE/ACE are to study impact of Arctic clouds on radiation exchange between surface, atmosphere, and space, and the influence of surface...

  19. Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation

    Science.gov (United States)

    Stutzki, J.; Genzel, R.; Harris, A. I.; Stacey, G. J.; Jaffe, D. T.

    1988-01-01

    Millimeter, submillimeter, and far-IR spectroscopic observations of the M17 SW star formation region are reported. Strong forbidden C II 158 micron and CO J = 7 - 6 line emission arises in an H II region/molecular cloud interface of several pc thickness. Weaker forbidden C II emission appears to be extended over 15 pc throughout the molecular cloud. CO J = 14 - 13 and forbidden O I 145 micron spectra indicate high temperatures and densities for both molecular and atomic gas in the interface. The results require the molecular cloud near the interface to be clumpy or filamentary. The extended forbidden C II emission throughout the molecular cloud has a level around 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. The high gas temperature of molecular material in the UV-illuminated interface region suggests that CO self-shielding and heating of CO by photoelectrons are important.

  20. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  1. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  2. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  3. The impact of a non-uniform land surface on the radiation environment over an Arctic fjord - a study with a 3D radiative transfer model for stratus clouds over the Hornsund fjord, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Izabela Górecka

    2012-11-01

    Full Text Available This paper estimates the influence of land topography and cover on 3D radiativeeffects under overcast skies in the Arctic coastal environment, in particular in theHornsund fjord region, Spitsbergen. The authors focus on the impact of anon-uniform surface on: (1 the spatial distribution of solar fluxesreaching the fjord surface, (2 spectral shortwave cloud radiative forcing atthe fjord surface, (3 the solar flux anomaly at the domain surface resultingfrom the assumption of a uniform surface, i.e. the error due to plane parallelassumptions in climate models, and (4 remote sensing of cloud opticalthickness over the fjord. Their dependence on spectral channel, cloud opticalthickness, cloud type, cloud base height, surface albedo and solar zenithangle is discussed. The analysis is based on Monte Carlo simulations of solarradiation transfer over a heterogeneous surface for selected channels of theMODIS radiometer. The simulations showed a considerable impact of the landsurrounding the fjord on the solar radiation over the fjord. The biggestdifferences between atmospheric transmittances over the fjord surface and over theocean were found for a cloud optical thickness τ = 12, low solar zenith angle θ, high cloud base and snow-covered land. For τ = 12, θ = 53°, cloud base height 1.8 km andwavelength λ = 469 nm, the enhancement in irradiance transmittanceover the fjord was 0.19 for the inner fjords and 0.10 for the whole fjord(λ = 469 nm. The land surrounding the Hornsund fjord also hada considerable impact on the spectral cloud radiative forcing on the fjordsurface and the solar flux anomaly at the domain surface due to the uniformsurface assumption. For the mouth and central part of the fjord the error dueto the use of channel 2 of the MODIS radiometer (λ = 858 nm forcloud optical thickness retrieval was < 1 in the case of low-level clouds(cloud base height 1 km, nadir radiance, θ = 53°, cloudoptical thickness retrieved solely from MODIS

  4. Cloud and Radiation Studies during SAFARI 2000

    Science.gov (United States)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir

  5. Development of a cloud-based system for remote monitoring of a PVT panel

    Science.gov (United States)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  6. The Surface Radiation Budget over Oceans and Continents.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.

    1998-08-01

    An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

  7. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  8. Examining the controlling factors on Southern Ocean clouds and their radiative effects in the context of midlatitude weather systems

    Science.gov (United States)

    Kelleher, M. K.; Grise, K. M.

    2017-12-01

    Clouds and their associated radiative effects are one of the largest sources of uncertainty in the present generation of global climate models. One region where model biases are especially large is over the Southern Ocean, where many models systematically underestimate the climatological shortwave cloud radiative effects (CRE) and/or misrepresent the relationship between shortwave CRE and atmospheric dynamics. Previous research has shown that two "cloud controlling factors", estimated inversion strength (EIS) and mid-tropospheric vertical velocity, are helpful in explaining the relationship between CRE and atmospheric dynamics on monthly timescales. For example, when the Southern Hemisphere midlatitude jet shifts poleward on monthly timescales, the high clouds and their associated longwave CRE shift poleward with the jet, consistent with a poleward shift of the storm track and the attendant vertical velocity anomalies. However, the observed changes in shortwave CRE with a poleward jet shift are small due to a trade-off between the competing effects of opposing EIS and vertical velocity anomalies. This study extends these previous findings to examine the relationship between Southern Ocean cloud controlling factors and CRE on daily timescales. On a daily timescale, the relationship of EIS and vertical velocity with CRE is more complex, due in part to the presence of transient weather systems. Composites of EIS, vertical velocity, longwave CRE, and shortwave CRE around extratropical cyclones and anticyclones are constructed to examine how the CRE anomalies vary in different sectors of midlatitude weather systems and the role that EIS and vertical velocity play in determining those anomalies. The relationships between the cloud controlling factors and CRE on daily timescales provide key insight into the underlying physical processes responsible for the relationships between midlatitude cloud controlling factors and CRE previously documented on monthly timescales.

  9. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  10. Insights on the Feasibility, Modeling and Field Testing of Cirrus Cloud Thinning from Satellite Remote Sensing

    Science.gov (United States)

    Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.

    2016-12-01

    To date, it is not clear whether the climate intervention method known as cirrus cloud thinning (CCT) can be viable since it requires cirrus clouds to form through homogeneous ice nucleation (henceforth hom) and some recent GCM studies predict cirrus are formed primarily through heterogeneous ice nucleation (henceforth het). A new CALIPSO infrared retrieval method has been developed for single-layer cirrus cloud that measures the temperature dependence of their layer-averaged number concentration N, effective diameter De and ice water content for optical depths (OD) between 0.3 and 3.0. Based on N, the prevailing ice nucleation mechanism (hom or het) can be estimated as a function of temperature, season, latitude and surface type. These satellite results indicate that seeding cirrus clouds at high latitudes during winter may produce significant global surface cooling. This is because hom often appears to dominate over land during winter north of 30°N latitude while the same appears true for most of the Southern Hemisphere (south of 30°S) during all seasons. Moreover, the sampled cirrus cloud frequency of occurrence in the Arctic is at least twice as large during winter relative to other seasons, while frequency of occurrence in the Antarctic peaks in the spring and is second-highest during winter. During Arctic winter, a combination of frequent hom cirrus, maximum cirrus coverage and an extreme or absent sun angle produces the maximum seasonal cirrus net radiative forcing (warming). Thus a reduction in OD and coverage (via CCT) for these cirrus clouds could yield a significant net cooling effect. From these CALIPSO retrievals, De-T relationships are generated as a function of season, latitude and surface type (land vs. ocean). These will be used in CAM5 to estimate De and the ice fall speed, from which the cirrus radiative forcing will be estimated during winter north of 30°latitude, where hom cirrus are common. Another CAM5 simulation will replace the hom

  11. A CERES-like Cloud Property Climatology Using AVHRR Data

    Science.gov (United States)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  12. Fractal characteristics correlation between the solar total radiation and net radiation on the apple tree canopy

    International Nuclear Information System (INIS)

    Meng Ping; Zhang Jingsong

    2005-01-01

    The characteristics correlation between solar total radiations(Q) and net radiation(R n) on the apple tree canopy at mainly growth stage in the hilly of Taihang Mountain are analyzed with fractal theory based on regression analysis. The results showed that:1)Q and R n had good liner correlation. The regression function was as the following:R n=0.740 8Q-32.436, which coefficient r is 0.981 1(n=26 279), F cal= 343 665.2 F 0.01 36 277=6.63; 2)The fractal dimension curves of Q and R n both had two no s caling regions, which circumscription time value of the inflexion was 453 and 441 minutes respectively.In the first region, fractal dimensions of Q and R n was 1.112 6, 1.131 9 respectively,and 1.913 6@@@ 1.883 4 in the second region.Those information showed that fractal characteristics of Q and R n is similar. So R n can be calculated with Q on the apple tree canopy

  13. Trusted computing strengthens cloud authentication.

    Science.gov (United States)

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  14. Trusted Computing Strengthens Cloud Authentication

    Directory of Open Access Journals (Sweden)

    Eghbal Ghazizadeh

    2014-01-01

    Full Text Available Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM. Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  15. Trusted Computing Strengthens Cloud Authentication

    Science.gov (United States)

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149

  16. Data and image fusion for geometrical cloud characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L.R.; Buch, K.A.; Sun, Chen-Hui; Diegert, C.

    1997-04-01

    Clouds have a strong influence on the Earth`s climate and therefore on climate change. An important step in improving the accuracy of models that predict global climate change, general circulation models, is improving the parameterization of clouds and cloud-radiation interactions. Improvements in the next generation models will likely include the effect of cloud geometry on the cloud-radiation parameterizations. We have developed and report here methods for characterizing the geometrical features and three-dimensional properties of clouds that could be of significant value in developing these new parameterizations. We developed and report here a means of generating and imaging synthetic clouds which we used to test our characterization algorithms; a method for using Taylor`s hypotheses to infer spatial averages from temporal averages of cloud properties; a computer method for automatically classifying cloud types in an image; and a method for producing numerical three-dimensional renderings of cloud fields based on the fusion of ground-based and satellite images together with meteorological data.

  17. Cloud Detection by Fusing Multi-Scale Convolutional Features

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  18. Trade Study: Storing NASA HDF5/netCDF-4 Data in the Amazon Cloud and Retrieving Data Via Hyrax Server Data Server

    Science.gov (United States)

    Habermann, Ted; Gallagher, James; Jelenak, Aleksandar; Potter, Nathan; Lee, Joe; Yang, Kent

    2017-01-01

    This study explored three candidate architectures with different types of objects and access paths for serving NASA Earth Science HDF5 data via Hyrax running on Amazon Web Services (AWS). We studied the cost and performance for each architecture using several representative Use-Cases. The objectives of the study were: Conduct a trade study to identify one or more high performance integrated solutions for storing and retrieving NASA HDF5 and netCDF4 data in a cloud (web object store) environment. The target environment is Amazon Web Services (AWS) Simple Storage Service (S3). Conduct needed level of software development to properly evaluate solutions in the trade study and to obtain required benchmarking metrics for input into government decision of potential follow-on prototyping. Develop a cloud cost model for the preferred data storage solution (or solutions) that accounts for different granulation and aggregation schemes as well as cost and performance trades.We will describe the three architectures and the use cases along with performance results and recommendations for further work.

  19. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  20. POLDER/Parasol L2 Radiation Budget subset along CloudSat track V001 (PARASOLRB_CPR) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the POLDER/Parasol Level-2 Radiation Budget Subset, collocated with the CloudSat track. The subset is processed at the A-Train Data Depot of the GES DISC,...

  1. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  2. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  3. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  4. Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data

    International Nuclear Information System (INIS)

    Hanan, N.P.; Prince, S.D.; Begue, A.

    1995-01-01

    The amount of photosynthetically active radiation (PAR) absorbed by green vegetation is an important determinant of photosynthesis and growth. Methods for the estimation of fractional absorption of PAR (iff PAR ) for areas greater than 1 km 2 using satellite data are discussed, and are applied to sites in the Sahel that have a sparse herb layer and tree cover of less than 5%. Using harvest measurements of seasonal net production, net production efficiencies are calculated. Variation in estimates of seasonal PAR absorption (APAR) caused by the atmospheric correction method and relationship between surface reflectances and iff PAR is considered. The use of maximum value composites of satellite NDVI to reduce the effect of the atmosphere is shown to produce inaccurate APAR estimates. In this data set, however, atmospheric correction using average optical depths was found to give good approximations of the fully corrected data. A simulation of canopy radiative transfer using the SAIL model was used to derive a relationship between canopy NDVI and iff PAR . Seasonal APAR estimates assuming a 1:1 relationship between iff PAR and NDVI overestimated the SAIL modeled results by up to 260%. The use of a modified 1:1 relationship, where iff PAR was assumed to be linearly related to NDVI scaled between minimum (soil) and maximum (infinite canopy) values, underestimated the SAIL modeled results by up to 35%. Estimated net production efficiencies (ϵ n , dry matter per unit APAR) fell in the range 0.12–1.61 g MJ −1 for above ground production, and in the range 0.16–1.88 g MJ −1 for total production. Sites with lower rainfall had reduced efficiencies, probably caused by physiological constraints on photosynthesis during dry conditions. (author)

  5. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    Science.gov (United States)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  6. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  7. Cloud classification using whole-sky imager data

    Energy Technology Data Exchange (ETDEWEB)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  8. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  9. An Examination of the Nature of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  10. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  11. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao, E-mail: tdeng@grmc.gov.cn [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Deng, XueJiao; Li, Fei [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Wang, ShiQiang [Zhuhai Meteorological Administration, Zhuhai 519000 (China); Wang, Gang [Haizhu Meteorological Administration, Guangzhou, 510000 (China)

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2 km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72 K/d to 0.9 K/d below the height of 2 km, and the attenuation of net radiation flux at the ground surface was 97.7 W/m{sup 2}, and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2 W/m{sup 2} and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4 W/m{sup 2} and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. - Highlights: • Large amount of aerosols dramatically attenuated solar radiation in Guangzhou region. • Investigated the aerosol extinction coefficient profile distribution and inverted the height of boundary layer using the lidar • Evaluated the impact of different types of clouds on aerosol radiation effects.

  12. Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vladutescu, Daniela V.; Schwartz, Stephen E.

    2017-06-25

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  13. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  14. The Neighboring Column Approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    International Nuclear Information System (INIS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to −150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only −100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5–2 higher compared to a 1D

  15. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  16. Smoke Invigoration Versus Inhibition of Clouds over the Amazon

    Science.gov (United States)

    Koren, Ilan; Martins, J. Vanderlei; Lorraine, A. Remer; Afargan, Hila

    2008-01-01

    The effect of anthropogenic aerosols on clouds is one of the most important and least understood aspects of human-induced climate change. Small changes in the amount of cloud coverage can produce a climate forcing equivalent in magnitude and opposite in sign to that caused by anthropogenic greenhouse gases, and changes in cloud height can shift the effect of clouds from cooling to warming. Focusing on the Amazon, we show a smooth transition between two opposing effects of aerosols on clouds: the microphysical and the radiative. We show how a feedback between the optical properties of aerosols and the cloud fraction can modify the aerosol forcing, changing the total radiative energy and redistributing it over the atmospheric column.

  17. A study on the relationship between incoming solar UV radiation and cloud cover

    International Nuclear Information System (INIS)

    Daoo, V.J.

    1992-01-01

    In this study an empirical relationship between the incoming solar UV radiation and concurrently measured cloud cover at Bombay (19 o 01'N, 72 o 55'E), based on data pertaining to two year (1986-1987) period is established. It is compared with a similar relationship used elsewhere and found to differ in its form as well as in the regression coefficients. Possible reasons for this discrepancy are discussed. Conditions under which the two relationships agree are also examined. (author)

  18. Low-dose radiation effects on the evolution of chronic dystrophical processes in cornea and clouding of crystalline lens

    International Nuclear Information System (INIS)

    Gajdaj, Yu.V.; Gajdaj, V.M.

    1993-01-01

    Low-dose radiation effects on the course of chronic dystrophical processes in cornea and the dynamics of crystalline lens clouding of involution age genesis are investigated in the patients participated in Chernobyl accident response. Examples of the concrete pathological cases are considered. It was stated that the above dose effects led to exacerbation of the chronic slack dystrophical processes in cornea and intensification of the development of cornea primary dystrophy. In a number of cases the intensification of development of crystalline lens clouding takes place resulted in the cataract for 2-3 years

  19. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  20. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  1. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  2. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  3. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  4. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds.

    Science.gov (United States)

    Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2018-02-27

    Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

  5. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.

    2006-01-01

    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  6. Estimation of Net Radiation in Three Different Plant Functional Types in Korea

    International Nuclear Information System (INIS)

    Kwon, H.J.

    2009-01-01

    Net Radiation (R N ) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting R N measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation (R S ↓) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating R N using R S ↓ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating R N . We noted, however, that the author’s experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment. (author)

  7. Impacts of radiation management techniques on the North Atlantic Oscillation

    Science.gov (United States)

    Adakudlu, Muralidhar; Helge Otterå, Odd; Tjiputra, Jerry; Muri, Helene; Grini, Alf; Schulz, Michael

    2017-04-01

    The effectiveness of various climate engineering techniques in limiting the global warming signal to reasonable levels has been the topic of state-of-the-art research on climate change. Using an Earth system model, we show that these techniques have the potential to bring down the high CO2 concentration climate in RCP8.5 to a moderate climate similar to RCP4.5 in terms of global temperature. Nevertheless, their influence on the regional aspects of atmospheric circulation is not clear. The regional circulation patterns in the atmosphere are largely characterized by the natural variability modes, such as the North Atlantic Oscillation (NAO). In this study, we assess the impacts of three radiation managment techniques, namely, Stratospheric Aerosol Injection (SAI), Marine Sky Brightening (MSB) and Cirrus Cloud Thinning (CCT), on the structure and features of the NAO. The results indicate an east-northeastward shift as well as intensification of the NAO spatial pattern in the global warming scenarios of RCP4.5 and RCP8.5, with the signal being most intense in the latter. The climate engineering forcings when applied to the RCP8.5 case tend to reduce the strength of the NAO with little impact on its position. The CCT case appears to have the maximum effect on the NAO signal. The patterns of cloud radiative forcing, expressed as the difference between net radiative forcing at TOA under average conditions and clear sky conditions, reveal a northeastward shift of the radiative heating in the north Atlantic region. This implies a possible link between the changes in the NAO signal and the cloud radiative forcing.

  8. Mesoscale to Synoptic Scale Cloud Variability

    Science.gov (United States)

    Rossow, William B.

    1998-01-01

    The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.

  9. Radiative Transfer in a Translucent Cloud Illuminated by an Extended Background Source

    Science.gov (United States)

    Biganzoli, Davide; Potenza, Marco A. C.; Robberto, Massimo

    2017-05-01

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to explore the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine & Lee and protoplanetary disks, with an application to the dark silhouette disk 114-426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.

  10. Radiative Transfer in a Translucent Cloud Illuminated by an Extended Background Source

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Davide [Università degli Studi dell’Insubria Dept. of Science and High Technology Via Valleggio, 11, I-22100 Como (Italy); Potenza, Marco A. C. [Universitá degli Studi di Milano Dept. of Physics Via Celoria 16, I-20133 Milano (Italy); Robberto, Massimo, E-mail: robberto@stsci.edu [Space Telescope Science Institute Baltimore, MD 21218 (United States)

    2017-05-01

    We discuss the radiative transfer theory for translucent clouds illuminated by an extended background source. First, we derive a rigorous solution based on the assumption that multiple scatterings produce an isotropic flux. Then we derive a more manageable analytic approximation showing that it nicely matches the results of the rigorous approach. To validate our model, we compare our predictions with accurate laboratory measurements for various types of well-characterized grains, including purely dielectric and strongly absorbing materials representative of astronomical icy and metallic grains, respectively, finding excellent agreement without the need to add free parameters. We use our model to explore the behavior of an astrophysical cloud illuminated by a diffuse source with dust grains having parameters typical of the classic ISM grains of Draine and Lee and protoplanetary disks, with an application to the dark silhouette disk 114–426 in Orion Nebula. We find that the scattering term modifies the transmitted radiation, both in terms of intensity (extinction) and shape (reddening) of the spectral distribution. In particular, for small optical thickness, our results show that scattering makes reddening almost negligible at visible wavelengths. Once the optical thickness increases enough and the probability of scattering events becomes close to or larger than 1, reddening becomes present but is appreciably modified with respect to the standard expression for line-of-sight absorption. Moreover, variations of the grain refractive index, in particular the amount of absorption, also play an important role in changing the shape of the spectral transmission curve, with dielectric grains showing the minimum amount of reddening.

  11. Radiation heat transfer in particle clouds. Numerical and experimental investigations on iron oxide systems with a view to chemical storage of solar energy

    International Nuclear Information System (INIS)

    Mischler, D.U.

    1995-01-01

    The radiation heat transfer in particle clouds is considered. The cloud is modelled as a non-gray, nonisothermal, absorbing, emitting and anisotropically scattering medium under concentrated irradiation. A simulation model based on Monte Carlo method is used to calculate the attenuation characteristics of the cloud and its temperature distribution under radiative equilibrium. The spectrally and directionally optical properties of magnetite and hematite particles are calculated using the Mie theory and are incorporated into the simulation as Bezier-splines. The theoretical validation of the model is accomplished by comparison with the exact analytical solutions of simplified problems. In addition, the simulation model is experimentally validated by spectroscopic measurements. Several parametric studies are carried out to demonstrate the influence of particle size, suspension medium, direction and spectrum of irradiation, and optical properties of the particles. It is shown that simplifying assumptions of the optical properties can lead to considerable deviations of the radiation heat transfer solutions. The simulation model can find wide application in the design and optimisation of high-temperature reactors. In particular, the model can be applied for the study of solar thermochemical processes that make use of particle suspensions as radiation absorbers and chemical reactants. (author) figs., tabs., 70 refs

  12. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  13. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  14. Evaluating aerosol indirect effect through marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  15. Application of the monazite radiation source to the petri dish-type cloud chamber and the influence of several factors on occurrence of tracks

    International Nuclear Information System (INIS)

    Hayakawa, Issei; Sago, Yutaka; Mori, Chizuo

    2012-01-01

    Monazite radiation source (2.5 mmΦ) proved to be useful as a radiation source of cloud chamber without the dispersion of powder or its adhesion because of a sintered body. After the track appeared within one minute after having put the petri dish on the dry ice, the number increased rapidly followed by the tendency to decrease gradually after that. The tracks can be observed for about 20 minutes after cooled with dry ice. The size of dry ice should be chosen to enter the inside of the bottom edge of the petri dish. The same number of tracks as using conventional mantle radiation source was obtained by utilizing 3 pieces of monazite sintered body separated mutually by about 7.5 mm. Hence the petri dish-type cloud chamber with the monazite sintered body as radiation source revealed to make the observation of track easy and prompt. (author)

  16. Long-term changes in net radiation and its components above a pine forest and a grass surface in Germany

    International Nuclear Information System (INIS)

    Kessler, A.; Jaeger, L.

    1999-01-01

    Long-term measurements (1974–1993 and 1996, respectively) of the net radiation (Q), global radiation (G), reflected global radiation (R), long-wave atmospheric radiation (A) and thermal radiation (E) of a pine forest in Southern Germany (index p) and of a grass surface in Northern Germany (index g) are compared. The influence of changes in surface properties is discussed. There are, in the case of the pine stand, forest growth and forest management and in the case of the grass surface, the shifting of the site from a climatic garden to a horizontal roof. Both series of radiant fluxes are analyzed with respect to the influences of the weather (cloudiness, heat advection). To eliminate the different influence of the solar radiation of the two sites, it is necessary to normalize by means of the global radiation G, yielding the radiation efficiency Q/G, the albedo R/G=α and the normalized long-wave net radiation (A+E)/G. Furthermore, the long-term mean values and the long-term trend of yearly mean values are discussed and, moreover, a comparison is made of individual monthly values. Q p is twice as large as Q g . The reason for this is the higher values of G and A above the pine forest and half values of α p compared to α g . E p is only a little greater than E g . The time series of the radiation fluxes show the following trends: Q p declines continuously despite a slight increase of G p . This is mainly due to the long-wave radiation fluxes. The net radiation of the grass surface Q g shows noticeably lower values after the merging of the site. This phenomenon is also dominated by the long-wave radiation processes. Although the properties of both site surfaces alter, E p and E g remain relatively stable. A p and A g show a remarkable decrease however. The reason for this is to be found in a modification of the heat advection, showing a more pronounced impact on the more continentally exposed site (pine forest). Compared to α g , α p shows only a small

  17. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  18. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  19. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  20. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments

  2. Mobile Cloud Computing for C2 - Operating in DIL Network Conditions

    OpenAIRE

    Ling, Yu Xian; Wee, Toon Joo; Shing, Man-Tak; Singh, Gurminder; Gibson, John H.

    2015-01-01

    Cloud computing is emerging as the mainstream platform for a range of on-demand applications, services, and infrastructure. It is already playing an important role in the communication, and the processing, mining, and fusing of information in distributed command and control. A major benefit of cloud computing is improved net-centric capability. Before the full benefits of cloud computing are realized, several technology challenges must be addressed. Operating in intermittent and austere netwo...

  3. A simple formula for the net long-wave radiation flux in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2001-09-01

    Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.

  4. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  5. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.; Osipov, Sergey; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, Georgiy L.

    2015-01-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  6. Introducing NET 40 With Visual Studio 2010

    CERN Document Server

    Mackey, A

    2010-01-01

    Microsoft is introducing a large number of changes to the way that the .NET Framework operates. Familiar technologies are being altered, best practices replaced, and developer methodologies adjusted. Many developers find it hard to keep up with the pace of change across .NET's ever-widening array of technologies. You may know what's happening in C#, but how about the Azure cloud? How is that going to affect your work? What are the limitations of the new pLINQ syntax? What you need is a roadmap. A guide to help you see the innovations that matter and to give you a head start on the opportunitie

  7. Preliminary laboratory studies of the optical scattering properties of the crystal clouds

    Directory of Open Access Journals (Sweden)

    C. Saunders

    Full Text Available Ice crystal clouds have an influence on the radiative budget of the earth; however, the exact size and nature of this influence has yet to be determined. A laboratory cloud chamber experiment has been set up to provide data on the optical scattering behaviour of ice crystals at a visible wavelength in order to gain information which can be used in climate models concerning the radiative characteristics of cirrus clouds. A PMS grey-scale probe is used to monitor simultaneously the cloud microphysical properties in order to correlate these closely with the observed radiative properties. Preliminary results show that ice crystals scatter considerably more at 90° than do water droplets, and that the halo effects are visible in a laboratory-generated cloud when the ice crystal concentration is sufficiently small to prevent masking from multiple scattering.

    Key words. Meteorology and atmosphere dynamics · Climatology · Radiative process · Atmospheric composition and structure · Cloud physics and chemistry

  8. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel; Hottovy, Scott

    2017-11-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes - open versus closed cells - fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells (POCs) as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. Similar viewpoints of deep convection and self-organized criticality will also be discussed. With these new conceptual viewpoints, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions. The research of S.N.S. is partially supported by a Sloan Research Fellowship, ONR Young Investigator Award N00014-12-1-0744, and ONR MURI Grant N00014-12-1-0912.

  9. Estimation of solar radiation from Australian meterological observations

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad band direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quantities, functions of cloud amount and of solar elevation, which were estimated from the data. These were the proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds, and a factor to describe the elevation dependence of the fraction of sky not obscured by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation

  10. Integration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model

    Science.gov (United States)

    Thomas, M. A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A.

    2015-06-01

    -alone version the values reached only 5 μm. A substantial improvement in the distribution of the cloud liquid-water paths (CLWP) was observed when compared to the satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the boreal summer months. The median and standard deviation values from the "MOD" simulation are closer to observations than those obtained using the stand-alone RCA4 version. These changes resulted in a significant decrease in the total annual mean net fluxes at the top of the atmosphere (TOA) by -5 W m-2 over the domain selected in the study. The TOA net fluxes from the "MOD" simulation show a better agreement with the retrievals from the Clouds and the Earth's Radiant Energy System (CERES) instrument. The aerosol indirect effects are estimated in the "MOD" simulation in comparison to the pre-industrial aerosol emissions (1900). Our simulations estimated the domain averaged annual mean total radiative forcing of -0.64 W m-2 with a larger contribution from the first indirect aerosol effect (-0.57 W m-2) than from the second indirect aerosol effect (-0.14 W m-2).

  11. Clouds across the Arctic: A spatial perspective uniting surface observations of downwelling infrared radiation, reanalyses and education

    Science.gov (United States)

    Cox, Christopher J.

    The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other

  12. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  13. Preliminary Results from the First Deployment of a Tethered-Balloon Cloud Particle Imager Instrument Package in Arctic Stratus Clouds at Ny-Alesund

    Science.gov (United States)

    Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.

    2008-12-01

    A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.

  14. Formation of comets by radiation pressure in the outer protosun. III. Dependence on the anisotropy of the radiation field

    International Nuclear Information System (INIS)

    Hills, J.G.; Sandford, M.T. Jr.

    1983-01-01

    A two-dimensional, radiation-hydrodynamic code with dust was used to study the effect of an anisotropic radiation field on the formation of comets in the outer protosun by the radiation pressure from the Sun and surrounding protostars. If the radiation field is isotropic, the results are very similar to those found earlier by analytic models. When the dust cloud is flanked on two sides by luminous walls of equal strength but with no radiation entering the cloud from the azimuthal direction (a radiation vise), most of the dust eventually squeezes out the sides of the vise. The sides are open to outward streaming radiation which carries the dust with it. However, the entrance of even a small amount of radiation from the sides causes the dust to drift inward to form the comet. The work given in this paper indicates that a highly anisotropic radiation field is not likely to prevent the formation of a comet. It distorts the shape of the inward drifting dust cloud. Initially, faster inward drift occurs along radii having the strongest inward radiation flux. This in turn causes the optical depth to increase faster along the perpendicular radii where the radiation field is the weakest. The increase in the optical depth eventually compensates for the low radiation flux, so as the cloud shrinks the radiation pressure increases faster at the surface of the cloud along those radius vectors where the radiation flux has a minimum. Although the dust cloud in the anisotropic radiation field attains a very irregular shape, eventually all parts of the cloud contract in unison and arrive at the center of the cloud at about the same time

  15. Development of multi-sensor global cloud and radiance composites for earth radiation budget monitoring from DSCOVR

    Science.gov (United States)

    Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher

    2017-10-01

    The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.

  16. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  17. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens.

    Science.gov (United States)

    Bais, Preeti; Namburi, Sandeep; Gatti, Daniel M; Zhang, Xinyu; Chuang, Jeffrey H

    2017-10-01

    We present CloudNeo, a cloud-based computational workflow for identifying patient-specific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data. The CWL implementation is at: https://github.com/TheJacksonLaboratory/CloudNeo. For users who have obtained licenses for all internal software, integrated versions in CWL and on the Seven Bridges Cancer Genomics Cloud platform (https://cgc.sbgenomics.com/, recommended version) can be obtained by contacting the authors. jeff.chuang@jax.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  18. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    Science.gov (United States)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  19. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  20. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.