WorldWideScience

Sample records for net carbon loss

  1. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  2. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    Science.gov (United States)

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. 26 CFR 1.172-4 - Net operating loss carrybacks and net operating loss carryovers.

    Science.gov (United States)

    2010-04-01

    ... years. (iv) Loss attributable to foreign expropriation. If the provisions of section 172(b)(3)(A) and § 1.172-9 are satisfied, the portion of a net operating loss attributable to a foreign expropriation... attributable to a foreign expropriation loss (as defined in section 172(h)) and if an election under paragraph...

  4. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  5. 20 CFR 404.1085 - Net operating loss deduction.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Self-Employment Income § 404.1085 Net operating loss deduction. When determining your net earnings from self-employment...

  6. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  7. 26 CFR 1.1502-21 - Net operating losses.

    Science.gov (United States)

    2010-04-01

    ..., gain, deduction, and loss, including the member's losses and deductions actually absorbed by the group... income, gain, deduction, and loss. For this purpose— (A) Consolidated taxable income is computed without... the group has no Year 2 capital gain, it cannot absorb any capital losses in Year 2. T's Year 1 net...

  8. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  9. The transition from No Net Loss to a Net Gain of biodiversity is far from trivial

    DEFF Research Database (Denmark)

    Bull, Joseph William; Brownlie, S.

    2017-01-01

    appropriate in evaluating the ecological outcomes, depending on the principle chosen; and (4) stakeholder expectations differ considerably under the two principles. In exploring these arguments we hope to support policy-makers in choosing the more appropriate of the two objectives. We suggest that financial......The objectives of No Net Loss and Net Gain have emerged as key principles in conservation policy. Both give rise to mechanisms by which certain unavoidable biodiversity losses associated with development are quantified, and compensated with comparable gains (e.g. habitat restoration). The former...... seeks a neutral outcome for biodiversity after losses and gains are accounted for, and the latter seeks an improved outcome. Policy-makers often assume that the transition from one to the other is straightforward and essentially a question of the amount of compensation provided. Consequently, companies...

  10. Annual measurements of gain and loss in aboveground carbon density

    Science.gov (United States)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  11. 26 CFR 1.172-10 - Net operating losses of real estate investment trusts.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Net operating losses of real estate investment... (continued) § 1.172-10 Net operating losses of real estate investment trusts. (a) Taxable years to which a loss may be carried. (1) A net operating loss sustained by a qualified real estate investment trust (as...

  12. International trade causes large net economic losses in tropical countries via the destruction of ecosystem services.

    Science.gov (United States)

    Chang, Junning; Symes, William S; Lim, Felix; Carrasco, L Roman

    2016-05-01

    Despite the large implications of the use of tropical land for exports ("land absorption") on ecosystem services (ES) and global biodiversity conservation, the magnitude of these externalities is not known. We quantify the net value of ES lost in tropical countries as a result of cropland, forestland and pastureland absorption for exports after deducting ES gains through imports ("land displacement"). We find that net ES gains occur only in 7 out of the 41 countries and regions considered. We estimate global annual net losses of over 1.7 x 10(12) international dollars (I$) (I$1.1 x 10(12) if carbon-related services are not considered). After deducting the benefits from agricultural, forest and livestock rents in land replacing tropical forests, the net annual losses are I$1.3 and I$0.7 x 10(12), respectively. The results highlight the large magnitude of tropical ES losses through international trade that are not compensated by the rents of land uses in absorbed land.

  13. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  14. 26 CFR 1.172-9 - Election with respect to portion of net operating loss attributable to foreign expropriation loss.

    Science.gov (United States)

    2010-04-01

    ... operating loss attributable to foreign expropriation loss. 1.172-9 Section 1.172-9 Internal Revenue INTERNAL... operating loss attributable to foreign expropriation loss. (a) In general. If a taxpayer has a net operating loss for a taxable year ending after December 31, 1958, and if the foreign expropriation loss for such...

  15. Squaroglitter: A 3,4-Connected Carbon Net

    KAUST Repository

    Prasad, Dasari L. V. K.

    2013-08-13

    Theoretical calculations are presented on a new hypothetical 3,4-connected carbon net (called squaroglitter) incorporating 1,4 cyclohexadiene units. The structure has tetragonal space group P4/mmm (No. 123) symmetry. The optimized geometry shows normal distances, except for some elongated bonds in the cyclobutane ring substructures in the network. Squaroglitter has an indirect bandgap of about 1.0 eV. The hypothetical lattice, whose density is close to graphite, is more stable than other 3,4-connected carbon nets. A relationship to a (4,4)nanotube is explored, as is a potential threading of the lattice with metal needles. © 2013 American Chemical Society.

  16. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  17. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  18. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker...... after an acute exposure to carbon monoxide. This complication was diagnosed by pure-tone audiometry and confirmed by transient evoked otoacoustic emissions. Hearing loss has not improved after 3 months of followup....

  19. 26 CFR 1.857-5 - Net income and loss from prohibited transactions.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Net income and loss from prohibited transactions. 1.857-5 Section 1.857-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.857-5 Net income and loss...

  20. 26 CFR 1.1502-21T - Net operating losses (temporary).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Net operating losses (temporary). 1.1502-21T...) INCOME TAX (CONTINUED) INCOME TAXES Computation of Consolidated Items § 1.1502-21T Net operating losses...)(B). (C) Partial waiver of carryback period for 2001 and 2002 losses—(1) Application. The acquiring...

  1. 76 FR 65634 - Redetermination of the Consolidated Net Unrealized Built-In Gain and Loss

    Science.gov (United States)

    2011-10-24

    ... Redetermination of the Consolidated Net Unrealized Built-In Gain and Loss AGENCY: Internal Revenue Service (IRS... consolidated net unrealized built-in gain and loss in certain circumstances. This document also invites... gain (NUBIG) at the time of its ownership change, recognized built-in gains will increase the section...

  2. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker a...

  3. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  4. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  5. Sensorineural Hearing Loss following Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available A case study is presented of a 17-year-old male who sustained an anoxic brain injury and sensorineural hearing loss secondary to carbon monoxide poisoning. Audiological data is presented showing a slightly asymmetrical hearing loss of sensorineural origin and mild-to-severe degree for both ears. Word recognition performance was fair to poor bilaterally for speech presented at normal conversational levels in quiet. Management considerations of the hearing loss are discussed.

  6. 78 FR 54156 - Limitations on Duplication of Net Built-in Losses

    Science.gov (United States)

    2013-09-03

    ... it is not a transfer of net built-in loss property under section 362(e)(1); that gain recognized by... transferor distributes the stock received in the transaction and, in the distribution, no gain or loss was... the transaction. 3. Securities Received Without the Recognition of Gain or Loss Section 362(e)(2) is...

  7. 26 CFR 1.1502-22A - Consolidated net capital gain or loss generally applicable for consolidated return years...

    Science.gov (United States)

    2010-04-01

    ... consolidated net capital loss for any taxable year attributable to a foreign expropriation capital loss is the amount of the foreign expropriation capital losses of all the members for such year (but not in excess of... that any portion of a net capital loss attributable to a foreign expropriation capital loss to which...

  8. Artisanal fishing net float loss and a proposal for a float design solution

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Chaves

    2016-03-01

    Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.

  9. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  10. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  11. Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland

    Science.gov (United States)

    Nugent, Kelly; Strachan, Ian; Strack, Maria

    2017-04-01

    Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady

  12. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  13. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  14. Carbon dioxide addition to coral reef waters suppresses net community calcification

    Science.gov (United States)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  15. The effect of the 'no net loss' of habitat guiding principle on Manitoba Hydro's Conawapa project

    International Nuclear Information System (INIS)

    Dick, C.J.

    1992-04-01

    The potential effect of the 'no net loss' principle on Manitoba Hydro's Conawapa hydroelectric project is assessed, including an examination of the process by which the no net loss principle will likely be implemented at the site, based on a review of past applications of the policy. The no net loss principle was developed by the federal Department of Fisheries of Oceans (DFO) as part of their 1986 Policy for the Management of Fish Habitats. The overall objective of the policy is to achieve a net gain of the productive capacity of fish habitats in Canada. Application of the policy to specific developments is based upon maintaining the productive capacity of fish habitats as well as the needs of users groups. The policy has not yet been applied to an inland hydroelectric project. Achieving no net losses may be difficult in regard to large projects such as a hydro dam, however a review of past applications of the policy reveal a number of concepts that have been employed by the DFO when applying the no net loss principle. These concepts were applied to the Conawapa project to make recommendations to achieve no net loss if the project is developed. Mitigation and compensation measures must be developed for both brook trout and lake sturgeon habitat, and should include a combination of habitat enhancement and increased protection and compliance. Measures should also be developed for other species such as lake cisco and lake whitefish, both of which may be a food source for beluga whales. The Conawapa forebay may be given consideration as compensation for lost habitat. 81 refs., 11 figs., 2 tabs

  16. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  17. Mining and biodiversity offsets: a transparent and science-based approach to measure "no-net-loss".

    Science.gov (United States)

    Virah-Sawmy, Malika; Ebeling, Johannes; Taplin, Roslyn

    2014-10-01

    Mining and associated infrastructure developments can present themselves as economic opportunities that are difficult to forego for developing and industrialised countries alike. Almost inevitably, however, they lead to biodiversity loss. This trade-off can be greatest in economically poor but highly biodiverse regions. Biodiversity offsets have, therefore, increasingly been promoted as a mechanism to help achieve both the aims of development and biodiversity conservation. Accordingly, this mechanism is emerging as a key tool for multinational mining companies to demonstrate good environmental stewardship. Relying on offsets to achieve "no-net-loss" of biodiversity, however, requires certainty in their ecological integrity where they are used to sanction habitat destruction. Here, we discuss real-world practices in biodiversity offsetting by assessing how well some leading initiatives internationally integrate critical aspects of biodiversity attributes, net loss accounting and project management. With the aim of improving, rather than merely critiquing the approach, we analyse different aspects of biodiversity offsetting. Further, we analyse the potential pitfalls of developing counterfactual scenarios of biodiversity loss or gains in a project's absence. In this, we draw on insights from experience with carbon offsetting. This informs our discussion of realistic projections of project effectiveness and permanence of benefits to ensure no net losses, and the risk of displacing, rather than avoiding biodiversity losses ("leakage"). We show that the most prominent existing biodiversity offset initiatives employ broad and somewhat arbitrary parameters to measure habitat value and do not sufficiently consider real-world challenges in compensating losses in an effective and lasting manner. We propose a more transparent and science-based approach, supported with a new formula, to help design biodiversity offsets to realise their potential in enabling more responsible

  18. Vascular plants promote ancient peatland carbon loss with climate warming.

    Science.gov (United States)

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  19. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  20. Offsetting the impacts of mining to achieve no net loss of native vegetation.

    Science.gov (United States)

    Sonter, L J; Barrett, D J; Soares-Filho, B S

    2014-08-01

    Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land-use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like-for-like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like-for-like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. © 2014 Society for Conservation Biology.

  1. Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss

    Directory of Open Access Journals (Sweden)

    Sinuhe eHahn

    2012-11-01

    Full Text Available The intention of this review is to provide an overview of the potential role of neutrophil extracellular traps (NETs in mammalian reproduction. Neutrophil NETs appear to be involved in various stages of the reproductive cycle, starting with fertility and possibly ending with fetal loss. The first suggestion that NETs may play a role in pregnancy-related disorders was in preeclampsia, where vast numbers were detected in the intervillous space of affected placentae. The induction of NETosis involved an auto-inflammatory component, mediated by the increased release of placental micro-debris in preeclampsia. This report was the first indicating that NETs may be associated with a human pathology not involving infection.Subsequently, NETs have since then been implicated in bovine or equine infertility, in that semen may become entrapped in the female reproductive during their passage to the oocyte. In this instance interesting species-specific differences are apparent, in that equine sperm evade entrapment via expression of a DNAse-like molecule, whereas highly motile bovine sperm, once free from seminal plasma that promotes interaction with neutrophils, appear impervious to NETs entrapment.Although still in the realm of speculation it is plausible that NETs may be involved in recurrent fetal loss mediated by anti-phospholipid antibodies, or perhaps even in fetal abortion triggered by infections with microorganisms such as L. monocytogenes or B. abortus.

  2. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  3. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Winkler, J. Barbro; Löw, Markus; Nunn, Angela J.; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M.; Matyssek, Rainer

    2012-01-01

    The hypothesis was tested that O 3 -induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O 3 regime, as prevailing at the forest site (control), or under an experimental twice-ambient O 3 regime (elevated O 3 ), as released through a free-air canopy O 3 fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O 3 . As this outcome only partly accounts for the decline in stem growth, O 3 -induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. - Highlights: ► We model O 3 -induced changes in the photosynthetic carbon gain of adult beech trees. ► Elevated O 3 decreases gross carbon gain but increases respiratory carbon loss. ► Reduction in net carbon gain only partly accounts for the decline in stem growth. ► O 3 effects on the whole-tree allocation is crucial in addition to carbon gains. - Reduction in net carbon gain at the canopy level only partly accounts for the decline in stem growth under elevated ozone.

  4. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    Science.gov (United States)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  5. Dynamic replacement and loss of soil carbon on eroding cropland

    Science.gov (United States)

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  6. Counterintuitive proposals for trans-boundary ecological compensation under "No Net Loss" biodiversity policy

    DEFF Research Database (Denmark)

    Bull, Joseph William; Abatayo, Anna Lou; Strange, Niels

    2017-01-01

    ‘No net loss’ (NNL) policies involve quantifying biodiversity impacts associated with economic development, and implementing commensurate conservation gains to balance losses. Local stakeholders are often affected by NNL biodiversity trades. But to what extent are NNL principles intuitive...... compensation should be: close to development impacts; greater than losses; smaller, given a background trend of biodiversity decline; and, smaller when gains have co-benefits for biodiversity. However, survey participant proposals violated all four principles. Participants proposed substantial forest...

  7. 26 CFR 1.860C-2 - Determination of REMIC taxable income or net loss.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Determination of REMIC taxable income or net loss. 1.860C-2 Section 1.860C-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.860C-2 Determination of...

  8. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias mountains, Alaska

    Digital Repository Service at National Institute of Oceanography (India)

    Gulick, S.P.S.; Jaeger, J.M.; Mix, A.C.; Asahi, H.; Bahlburg, H.; Belanger, C.L.; Berbel, G.B.B.; Childress, L.; Cowan, E.; Drab, L.; Forwick, M.; Fukumura, A.; Ge, S.; Gupta, S.M.; Kioka, A.; Konno, S.; LeVay, L.J.; Marz, C.; Matsuzaki, K.M.; McClymont, E.L.; Moy, C.; Muller, J.; Nakamura, A.; Ojima, T.; Ribeiro, F.R.; Ridgway, K.D.; Romero, O.E.; Slagle, A.L.; Stoner, J.S.; St-Onge, G.; Suto, I.; Walczak, M.D.; Worthington, L.L.; Bailey, I.; Enkelmann, E.; Reece, R.; Swartz, J.M.

    the onset of quasi-periodic (~100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent...

  9. 26 CFR 1.1502-21A - Consolidated net operating loss deduction generally applicable for consolidated return years...

    Science.gov (United States)

    2010-04-01

    ... operating loss attributable to such member. (iii) Foreign expropriation losses. An election under section... expropriation loss) may be made for a consolidated return year only if the sum of the foreign expropriation... expropriation losses, or (b) the consolidated net operating loss. (3) Absorption rules. For purposes of...

  10. Carbon gains by conservation projects overbalance carbon losses by degradation in China's karst ecoregions

    Science.gov (United States)

    Tong, X.; Yue, Y.; Fensholt, R.; Brandt, M.

    2017-12-01

    China's ecological restoration projects are considered as "mega-engineering" activities and the most ambitious afforestation and conservation projects in human history. The highly sensitive and vulnerable karst ecosystem in Southwest China is one of the largest exposed carbonate rock areas (more than 0.54 million km2) in the world. Accelerating desertification has been reported during the last half century, caused by the increasing intensity of human exploitation of natural resources. As a result, vast karst areas (approximately 0.12 million km2) previously covered by vegetation and soil were turned into a rocky landscape. To combat this severe form of land degradation, more than 19 billion USD have been invested in mitigation initiatives since the end of the 1990s. The costs of mega-engineering as a climate change mitigation measure are however only justified if ecosystem properties can be affected at large scales. Here we study the carbon balance of the karst regions of 8 Chinese provinces over four decades, using optical and passive microwave satellite data, supported by statistical data on project implementations. We find that most areas experiencing losses in aboveground biomass carbon are located in areas with a high standing biomass ( 95 Mg C ha-1), whereas areas with a carbon gain are mostly located in regions with a low standing biomass ( 45 Mg C ha-1). However, the overall gains in carbon stocks overbalance the losses, with an average gross loss of -0.8 Pg C and a gross gain of +2.4 Pg C (1980s to 2016), resulting in a net gain of 1.6 Pg C. Areas of carbon gains are widespread and spatially coherent with conservation projects implemented after 2001, whereas areas of carbon losses show that ongoing degradation is still happening in the western parts of the karst regions. We conclude that the impact of conservation projects on the carbon balance of China's karst ecoregions is remarkable, but biomass carbon losses caused by ongoing degradation can not be

  11. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  12. Seeking convergence on the key concepts in "no net loss" policy

    DEFF Research Database (Denmark)

    Bull, Joseph William; Gordon, Ascelin; Watson, James E.M.

    2016-01-01

    . The recommendations made in this article, on improving clarity and supporting convergence on key no net loss (NNL) concepts, should help eliminate ambiguity in policy documentation. This is crucial if policymakers are to design robust policies that are (i) transparent, (ii) translatable into practice in a consistent......Biodiversity conservation policies incorporating a no net loss (NNL) principle are being implemented in many countries. However, there are linguistic and conceptual inconsistencies in the use of terms underlying these NNL policies. We identify inconsistencies that emerge in the usage of eight key......, reduce ambiguity and improve clarity in communication and policy documentation. However, we also warn of the challenges in achieving convergence, especially given the linguistic inconsistencies in several of these key concepts among countries in which NNL policies are employed. Policy implications...

  13. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Science.gov (United States)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  14. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  15. Implications of net energy-return-on-investment for a low-carbon energy transition

    Science.gov (United States)

    King, Lewis C.; van den Bergh, Jeroen C. J. M.

    2018-04-01

    Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C—or well below—through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, `energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget.

  16. Accounting for no net loss: A critical assessment of biodiversity offsetting metrics and methods.

    Science.gov (United States)

    Carreras Gamarra, Maria Jose; Lassoie, James Philip; Milder, Jeffrey

    2018-08-15

    Biodiversity offset strategies are based on the explicit calculation of both losses and gains necessary to establish ecological equivalence between impact and offset areas. Given the importance of quantifying biodiversity values, various accounting methods and metrics are continuously being developed and tested for this purpose. Considering the wide array of alternatives, selecting an appropriate one for a specific project can be not only challenging, but also crucial; accounting methods can strongly influence the biodiversity outcomes of an offsetting strategy, and if not well-suited to the context and values being offset, a no net loss outcome might not be delivered. To date there has been no systematic review or comparative classification of the available biodiversity accounting alternatives that aim at facilitating metric selection, and no tools that guide decision-makers throughout such a complex process. We fill this gap by developing a set of analyses to support (i) identifying the spectrum of available alternatives, (ii) understanding the characteristics of each and, ultimately (iii) making the most sensible and sound decision about which one to implement. The metric menu, scoring matrix, and decision tree developed can be used by biodiversity offsetting practitioners to help select an existing metric, and thus achieve successful outcomes that advance the goal of no net loss of biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  18. Effects of road decommissioning on carbon stocks, losses, and emissions in north coastal California

    Science.gov (United States)

    Madej, Mary Ann; Seney, Joseph; van Mantgem, Philip

    2013-01-01

    During the last 3 decades, many road removal projects have been implemented on public and private lands in the United States to reduce erosion and other impacts from abandoned or unmaintained forest roads. Although effective in decreasing sediment production from roads, such activities have a carbon (C) cost as well as representing a carbon savings for an ecosystem. We assessed the carbon budget implications of 30 years of road decommissioning in Redwood National Park in north coastal California. Road restoration techniques, which evolved during the program, were associated with various carbon costs and savings. Treatment of 425 km of logging roads from 1979 to 2009 saved 72,000 megagrams (Mg) C through on-site soil erosion prevention, revegetation, and soil development on formerly compacted roads. Carbon sequestration will increase in time as forests and soils develop more fully on the restored sites. The carbon cost for this road decommissioning work, based on heavy equipment and vehicle fuel emissions, short-term soil loss, and clearing of vegetation, was 23,000 Mg C, resulting in a net carbon savings of 49,000 Mg C to date. Nevertheless, the degree to which soil loss is a carbon sink or source in steep mountainous watersheds needs to be further examined. The ratio of carbon costs to savings will differ by ecosystem and road removal methodology, but the procedure outlined here to assess carbon budgets on restoration sites should be transferable to other systems.

  19. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  20. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  1. 26 CFR 1.996-8 - Effect of carryback of capital loss or net operating loss to prior DISC taxable year.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Effect of carryback of capital loss or net operating loss to prior DISC taxable year. 1.996-8 Section 1.996-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales...

  2. Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii on permafrost

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    2004-01-01

    Full Text Available Observations of the net ecosystem exchange of water and CO2 were made during two seasons in 2000 and 2001 above a Larch forest in Far East Siberia (Yakutsk. The measurements were obtained by eddy correlation. There is a very sharply pronounced growing season of 100 days when the forest is leaved. Maximum half hourly uptake rates are 18 µmol m-2 s-1; maximum respiration rates are 5 µmol m-2 s-1. Net annual sequestration of carbon was estimated at 160 gCm-2 in 2001. Applying no correction for low friction velocities added 60 g C m-2. The net carbon exchange of the forest was extremely sensitive to small changes in weather that may switch the forest easily from a sink to a source, even in summer. June was the month with highest uptake in 2001. The average evaporation rate of the forest approached 1.46 mm day-1 during the growing season, with peak values of 3 mm day-1 with an estimated annual evaporation of 213 mm, closely approaching the average annual rainfall amount. 2001 was a drier year than 2000 and this is reflected in lower evaporation rates in 2001 than in 2000. The surface conductance of the forest shows a marked response to increasing atmospheric humidity deficits. This affects the CO2 uptake and evaporation in a different manner, with the CO2 uptake being more affected. There appears to be no change in the relation between surface conductance and net ecosystem uptake normalized by the atmospheric humidity deficit at the monthly time scale. The response to atmospheric humidity deficit is an efficient mechanism to prevent severe water loss during the short intense growing season. The associated cost to the sequestration of carbon may be another explanation for the slow growth of these forests in this environment.

  3. Proton energy loss in multilayer graphene and carbon nanotubes

    Science.gov (United States)

    Uribe, Juan D.; Mery, Mario; Fierro, Bernardo; Cardoso-Gil, Raul; Abril, Isabel; Garcia-Molina, Rafael; Valdés, Jorge E.; Esaulov, Vladimir A.

    2018-02-01

    Results of a study of electronic energy loss of low keV protons interacting with multilayer graphene targets are presented. Proton energy loss shows an unexpectedly high value as compared with measurements in amorphous carbon and carbon nanotubes. Furthermore, we observe a classical linear behavior of the energy loss with the ion velocity but with an apparent velocity threshold around 0.1 a.u., which is not observed in other carbon allotropes. This suggests low dimensionality effects which can be due to the extraordinary graphene properties.

  4. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence

    Directory of Open Access Journals (Sweden)

    K. S. Rodgers

    2009-08-01

    Full Text Available Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3 material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3 incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production – dissolution was positive at 3.3 mmol CaCO3 m−2 h−1 under ambient seawater pCO2 conditions as opposed to negative at −0.04 mmol CaCO3 m−2 h−1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates, and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  5. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  6. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  7. Convergent evolution towards high net carbon gain efficiency contributes to the shade tolerance of palms (Arecaceae)

    NARCIS (Netherlands)

    Ma, Ren Yi; Zhang, Jiao Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, J.S.; Cao, Kun Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn),

  8. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  9. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  10. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  11. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  12. Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.

    Science.gov (United States)

    Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin

    2017-03-01

    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.

  13. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Science.gov (United States)

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  14. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010.

    Science.gov (United States)

    Achard, Frédéric; Beuchle, René; Mayaux, Philippe; Stibig, Hans-Jürgen; Bodart, Catherine; Brink, Andreas; Carboni, Silvia; Desclée, Baudouin; Donnay, François; Eva, Hugh D; Lupi, Andrea; Raši, Rastislav; Seliger, Roman; Simonetti, Dario

    2014-08-01

    We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990-2000 and 2000-2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan-tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr(-1) in the 1990s and 7.6 million ha yr(-1) in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr(-1) (range: 646-1238) and 880 MtC yr(-1) (range: 602-1237) respectively, with humid regions contributing two-thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000-2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr(-1) (range: 61-168) and 97 MtC yr(-1) (53-141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  15. Net change in carbon emissions with increased wood energy use in the United States

    Science.gov (United States)

    Prakash Nepal; David N. Wear; Kenneth E. Skog

    2014-01-01

    Use of wood biomass for energy results in carbon (C) emissions at the time of burning and alters C stocks on the land because of harvest, regrowth, and changes in land use or management. This study evaluates the potential effects of expanded woody biomass energy use (for heat and power) on net C emissions over time. A scenario with increased wood energy use is compared...

  16. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Science.gov (United States)

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-06-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.

  18. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  19. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  20. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  1. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    Science.gov (United States)

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  2. Long-term carbon loss in fragmented Neotropical forests.

    Science.gov (United States)

    Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas

    2014-10-07

    Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.

  3. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    Science.gov (United States)

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may

  4. Fort Hills Oil Sands Project No Net Loss Lake earthfill structure

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, D.; Sawatsky, L. [Golder Associates Ltd., Calgary, AB (Canada); Wog, K.; Paz, S. [Alberta Environment, Edmonton, AB (Canada). Water Management Operations; Chernys, S. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    The Fort Hills Oil Sands Project (FHOSP) is located north of Fort McMurray, Alberta. The Fort Hills Energy Corporation (FHEC) must compensate for fish habitat lost as a result of mine development that would disturb natural streams and lakes. FHEC planned to construct a fisheries compensation lake on the north end of its leased property, contained in part by an earthfill structure. Unlike most dam structures, the FHOSP No Net Loss Lake (NNLL) earthfill structure was planned solely for the creation of fisheries compensation habitat. Therefore, the NNLL earthfill structure must be designed with robust features that can handle any foreseeable environmental condition without failure, so that it may be accepted as a sustainable feature of the mine closure landscape. This paper discussed the design features of the NNLL earthfill structure. The paper presented information on the background of the project including regulatory criteria for the fisheries compensation habitat; fisheries compensation habitat location; and design criteria for the NNLL. The features of the NNLL earthfill structure were also discussed. In addition, the paper outlined the dam safety classification for earthfill structure and anticipated system performance. The proposed monitoring program and permanent closure plans were also discussed. It was concluded that the earthfill structure was designed with several features that would allow it to become a part of the closure landscape. These included a high width to height ratio, significant erosion protection, and an aggressive reclamation plan. These features will provide a sound basis for FHEC to apply for a reclamation certificate at the end of mine life. 3 refs., 3 tabs., 8 figs.

  5. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  7. Estimation of organic carbon loss potential in north of Iran

    Science.gov (United States)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  8. Organic loss in drained wetland: managing the carbon footprint

    NARCIS (Netherlands)

    Durham, B.; van de Noort, R.; Martens, V.V.; Vorenhout, M.

    2012-01-01

    The recent installation of land drains at Star Carr, Yorkshire, UK, has been linked with loss of preservation quality in this important Mesolithic buried landscape, challenging the PARIS principle. Historically captured organic carbon, including organic artefacts, is being converted to soluble

  9. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  10. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  11. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  12. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  13. Importance of Baseline Specification in Evaluating Conservation Interventions and Achieving No Net Loss of Biodiversity

    Science.gov (United States)

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-01-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may

  14. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    Science.gov (United States)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust

  15. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    Warnecke, Carsten; Wartmann, Sina; Höhne, Niklas; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  16. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  17. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)

    International Nuclear Information System (INIS)

    Fisk, J P; Hurtt, G C; Dolan, K A; Chambers, J Q; Zeng, H; Negrón-Juárez, R I

    2013-01-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851–2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr −1 , an amount equivalent to 17%–36% of the US forest carbon sink. (letter)

  18. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  19. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  20. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  1. Net ecosystem carbon dioxide exchange in tropical rainforests - sensitivity to environmental drivers and flux measurement methodology

    Science.gov (United States)

    Fu, Z.; Stoy, P. C.

    2017-12-01

    Tropical rainforests play a central role in the Earth system services of carbon metabolism, climate regulation, biodiversity maintenance, and more. They are under threat by direct anthropogenic effects including deforestation and indirect anthropogenic effects including climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) across multiple time scales in different tropical rainforests has not been undertaken to date. Here, we study NEE and its components, gross primary productivity (GPP) and ecosystem respiration (RE), across thirteen tropical rainforest research sites with 63 total site-years of eddy covariance data. Results reveal that the five ecosystems that have greater carbon uptakes (with the magnitude of GPP greater than 3000 g C m-2 y-1) sequester less carbon - or even lose it - on an annual basis at the ecosystem scale. This counterintuitive result is because high GPP is compensated by similar magnitudes of RE. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GPP and RE and consequently lower NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in tropical rainforests. Vapor pressure deficit (VPD) constrained GPP at all sites, but to differing degrees. Many environmental variables are significantly related to NEE at time scales greater than one year, and NEE at a rainforest in Malaysia is significantly related to soil moisture variability at seasonal time scales. Climate projections from 13 general circulation models (CMIP5) under representative concentration pathway (RCP) 8.5 suggest that many current tropical rainforest sites on the cooler end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, and warmer sites will reach a climate space not currently experienced. Results demonstrate the need to quantify if mature tropical trees acclimate to heat and

  2. Subsidence and carbon loss in drained tropical peatlands

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2012-03-01

    Full Text Available Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are

  3. Harvesting fertilized rye cover crop: simulated revenue, net energy, and drainage Nitrogen loss

    Science.gov (United States)

    Food and biofuel production along with global N use are expected to increase over the next few decades, which complicates the goal of reducing N loss to the environment. Including winter rye as a cover crop in corn-soybean rotations reduces N loss to drainage. A few studies suggest that harvesting r...

  4. Winter respiratory C losses provide explanatory power for net ecosystem productivity

    Czech Academy of Sciences Publication Activity Database

    Haeni, M.; Zweifel, R.; Eugster, W.; Gessler, A.; Zielis, S.; Bernhofer, C.; Carrara, A.; Gruenwald, T.; Havránková, Kateřina; Heinesch, B.; Herbst, M.; Ibrom, A.; Knohl, A.; Lagergren, F.; Law, B. E.; Marek, Michal V.; Matteucci, G.; McCaughey, J. H.; Minerbi, S.; Montagnani, L.; Moors, E.; Olejnik, Janusz; Pavelka, Marian; Pilegaard, K.; Pita, G.; Rodrigues, A.; Sanz Sanchez, M. J.; Schelhaas, M.J.; Urbaniak, M.; Valentini, R.; Varlagin, A.; Vesala, T.; Vincke, C.; Wu, J.; Buchmann, N.

    2017-01-01

    Roč. 122, č. 1 (2017), s. 243-260 ISSN 2169-8953 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:COST(IT) FP0903 Action Institutional support: RVO:68378076 Keywords : spaceborne imaging spectroscopy * temperate deciduous forest * mixedwood boreal forest * beech fagus-sylvatica * water-vapor exchange * stem radius change s * carbon uptake * interannual variability * photosynthetic capacity * leaf characteristics * eddy covariance * CO2 exchange * carbon sink * carbon source * growing season length * winter respiration Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.395, year: 2016

  5. Experiences with Department of Fisheries and Oceans' 'No net loss guiding principle' at hydroelectric developments in Newfoundland

    International Nuclear Information System (INIS)

    Hill, E.L.

    1995-01-01

    The 'no net loss' guiding principle and policy objectives of the Canafdian and Newfoundland fisheries authorities were defined and British Columbia (BC) Hydro's experiences with implementation of a similar policy were described. In this instance no environmental assessment had been performed prior to the expansion being proposed in 1989. A key issue was the impact on habitats of land-locked salmon and brook trout. An environmental preview report (EPR) prepared by Hydro, which used already existing photos and habitat information, concluded that spawning habitat was poor and would be relatively unaffected by the amount of additional flooding proposed. Options to make up for lost habitat were discussed, among them reintroduction of previously lost habitat, preferred fish for local anglers, budget constraints, legal aspects and current fish demographics. It was concluded that quantitative impacts and habitat loss mitigation or compensation for freshwater fish with low recreation or commercial significance were difficult to assess. It was suggested that angler preference and socioeconomic concerns should be considered when fulfilling the 'no net loss principle'. Additional research and a more active role by the Department of Fisheries in identifying mitigation and compensation measures were recommended. 6 refs.,i fig

  6. Variable carbon losses from recurrent fires in drained tropical peatlands.

    Science.gov (United States)

    Konecny, Kristina; Ballhorn, Uwe; Navratil, Peter; Jubanski, Juilson; Page, Susan E; Tansey, Kevin; Hooijer, Aljosja; Vernimmen, Ronald; Siegert, Florian

    2016-04-01

    Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions. © 2015 John Wiley & Sons Ltd.

  7. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  8. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  9. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  10. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  11. Accelerating Net Terrestrial Carbon Uptake During the Warming Hiatus Due to Reduced Respiration

    Science.gov (United States)

    Ballantyne, Ashley; Smith, William; Anderegg, William; Kauppi, Pekka; Sarmiento, Jorge; Tans, Pieter; Shevliakova, Elena; Pan, Yude; Poulter, Benjamin; Anav, Alessandro; hide

    2017-01-01

    The recent warming hiatus presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from - 0.007 +/- 0.065 PgC yr(exp -2) over the warming period (1982 to 1998) to 0.119 +/- 0.071 PgC yr(exp -2) over the warming hiatus (19982012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive ( y = 4.05 to 9.40 PgC yr(exp -1) per C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

  12. Unraveling net carbon exchange into its component processes of photosynthesis and respiration

    Science.gov (United States)

    Ballantyne, A.

    2017-12-01

    The recent `warming hiatus' presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Herewe combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantlyaccelerated from 0.007+/-0.065 PgC yr-2 over the warming period (1982 to 1998) to 0.119+/-0.071 PgC yr-2 over thewarminghiatus (1998-2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration thatis correlated (r2 0.58; P = 0.0007) and sensitive ( gamma= 4.05 to 9.40 PgC yr-1 per deg C) to land temperatures. Global landmodels do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model includingsoil temperature and moisture observations seems to better captures the reduced respiration.

  13. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  14. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  15. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India.

    Science.gov (United States)

    Pathak, Karabi; Malhi, Yadvinder; Sileshi, G W; Das, Ashesh Kumar; Nath, Arun Jyoti

    2018-09-01

    There have been few comprehensive descriptions of how fire management and harvesting affect the carbon dynamics of grasslands. Grasslands dominated by the invasive weed Imperata cylindrica are considered as environmental threats causing low land productivity throughout the moist tropical regions in Asia. Imperata grasslands in North East India are unique in that they are traditionally managed and culturally important in the rural landscapes. Given the importance of fire in the management of Imperata grassland, we aimed to assess (i) the seasonal pattern of biomass production, (ii) the eventual pathways for the produced biomass, partitioned between in situ decomposition, harvesting and combustion, and (iii) the effect of customary fire management on the ecosystem carbon cycle. Comparatively high biomass production was recorded during pre-monsoon (154 g m -2  month -1 ) and monsoon (214 g m -2  month -1 ) compared to the post-monsoon (91 g m -2  month -1 ) season, and this is attributed to nutrient return into the soil immediately after fire in February. Post fire effects might have killed roots and rhizomes leading to high belowground litter production 30-35 g m -2 during March to August. High autotrophic respiration was recorded during March-July, which was related to high belowground biomass production (35-70 g m -2 ) during that time. Burning removed all the surface litter in March and this appeared to hinder surface decomposition and result in low heterotrophic respiration. Annual total biomass carbon production was estimated at 886 g C m -2 . Annual harvest of biomass (estimated at 577 g C m -2 ) was the major pathway for carbon fluxes from the system. Net ecosystem production (NEP) of Imperata grassland was estimated at 91 g C m -2  yr -1 indicating that these grasslands are a net sink of CO 2 , although this is greatly influenced by weather and fire management. Crown Copyright © 2018. Published by Elsevier B

  16. High carbon losses due to recent cropland expansion in the United States

    Science.gov (United States)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Land conversion for agriculture in the United States has reached record highs in recent years. From 2008 to 2012 nearly 30,000 square kilometers of previously un-cultivated land were converted to agricultural land use with much of this expansion occurring on grasslands (77%) and shrublands (8%). To understand the effects of this conversion on global C cycling, we created novel, spatially explicit biomass maps for these biomes by combining existing satellite data products with models derived from field measurements. We then estimated changes in existing C stocks by combining our derived data with existing Landsat-scale data on land cover, land conversion, forest biomass and soil organic carbon (C) stocks. We find that conversion results in annual C losses of approximately 25 Tg C from US terrestrial ecosystems. Nationwide, roughly 80% of total emissions result from committed soil organic C losses. While biomass losses from expansion into forests and wetlands are disproportionately high per unit area, the vast majority of C losses occurred in grassland ecosystems, with grassland roots representing close to 70% of total biomass losses across all biomes. C losses are partially offset each year by agricultural abandonment which we estimate could sequester as much as 15 Tg C, annually. Taken together, we find that US agricultural expansion results in net annual emissions of 10 Tg C which is nearly 30% of emissions from existing US croplands. Our estimate is comparable to a recent analogous estimate for conversion of the Brazilian Cerrado and is equivalent to 10% of annual C losses from pantropical deforestation, suggesting that the effects of US cropland expansion could be globally significant.

  17. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  18. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    International Nuclear Information System (INIS)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D.; Jones, Edward O.; Hatano, Ryusuke

    2016-01-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha"−"1 yr"−"1 in 1959–0.26 Mg C ha"−"1 yr"−"1 in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate conditions. • NBP

  19. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xi, E-mail: icy124@hotmail.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Toma, Yo [Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime (Japan); Yeluripati, Jagadeesh [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Iwasaki, Shinya [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan); Bellingrath-Kimura, Sonoko D. [Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems (Germany); Jones, Edward O. [Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London (United Kingdom); Hatano, Ryusuke [Graduate school of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589 (Japan)

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959–2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from − 1.26 Mg C ha{sup −1} yr{sup −1} in 1959–0.26 Mg C ha{sup −1} yr{sup −1} in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959–2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. - Highlights: • We compared C stocks change by two methods: (i) net biome productivity (NBP) and (ii) soil inventory. • Variation in net primary productivity (NPP), plant C input, NBP can be predicted by climate

  20. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  1. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  2. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R

    2006-07-05

    Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.

  3. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  4. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  5. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae.

    Directory of Open Access Journals (Sweden)

    Ren-Yi Ma

    Full Text Available Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn, which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  6. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  7. Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands

    Science.gov (United States)

    Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.

    2017-12-01

    A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.

  8. Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity.

    Science.gov (United States)

    Li, Xi; Toma, Yo; Yeluripati, Jagadeesh; Iwasaki, Shinya; Bellingrath-Kimura, Sonoko D; Jones, Edward O; Hatano, Ryusuke

    2016-06-01

    Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for agriculture. We have used crop-level yields, modeled heterotrophic respiration (Rh) and land use data to estimate spatio-temporal changes in regional scale net primary productivity (NPP), plant C inputs, and net biome productivity (NBP) in northern Japan's arable croplands and grasslands for the period of 1959-2011. We compared the changes in C stocks derived from estimated NBP and using repeated inventory datasets for each individual land use type from 2005 to 2011. For the entire study region of 2193 ha, overall annual plant C inputs to the soil constituted 37% of total region NPP. Plant C inputs in upland areas (excluding bush/fallow) could be predicted by climate variables. Overall NBP for all land use types increased from -1.26MgCha(-1)yr(-1) in 1959-0.26 Mg Cha(-1)yr(-1) in 2011. However, upland and paddy fields showed a decreased in NBP over the period of 1959-2011, under the current C input scenario. From 1988, an increase in agricultural abandonment (bush/fallow) and grassland cover caused a slow increase in the regional C pools. The comparison of carbon budgets using the NBP estimation method and the soil inventory method indicated no significant difference between the two methods. Our results showed C loss in upland crops, paddy fields and sites that underwent land use change from paddy field to upland sites. We also show C gain in grassland from 2005 to 2011. An underestimation of NBP or an overestimation of repeated C inventories cannot be excluded, but either method may be suitable for tracking absolute changes in soil C, considering the uncertainty associated with these methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity.

    Science.gov (United States)

    Janisch, J E; Harmon, M E

    2002-02-01

    If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere.

  10. Net emissions of carbon dioxide to the atmosphere when using forest residues for production of heat and electricity

    International Nuclear Information System (INIS)

    Zetterberg, L.; Hansen, O.

    1998-05-01

    This study estimates net emissions of carbon dioxide to the atmosphere from the use of forest residues for production of heat and electricity. In the report, the use of forest residues for energy production is called residue-usage. Our results show that for a turnover period of 80 years, the net emission of CO 2 to the atmosphere is 15.8 kg CO 2 -C/MWh (3.1-31.6 kg CO 2 -C/MWh), which represents 16% of the total carbon content in the wood fuel (3%-32%). Fossil fuel consumption is responsible for 3.1 kg CO 2 -C/MWh of this. Residue-usage may produce indirect emissions or uptake of carbon dioxide, e.g. through changes in production conditions, changes in the turnover of carbon in the humus layer or through a reduction of the amount of forest fires. Due to uncertainties in data it is hard to quantify these indirect effects. In some cases it is hard even to determine their signs. As a consequence of this, we have chosen not to include the indirect effects in our estimates of net emissions from residue-usage. Instead we discuss these effects in a qualitative manner. It may seem surprising that the biogenic part of the residue-usage produces a net emission of carbon dioxide considering that carbon has originated from the atmosphere. The explanation is that the residue-usage systematically leads to earlier emissions than would be the case if the residues were left on the ground. If forest residues are left to decay, in the long run a pool of carbon might be created in the ground. This does not happen with residue-usage 33 refs, 4 figs, 12 tabs

  11. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    Science.gov (United States)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  12. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  13. Analysis of three loss-of-flow accidents in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-05-01

    This report presents the thermal-hydraulic analysis of three Loss-of-Flow Accidents (LOFAs) in the first wall cooling system of the Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design. The LOFAs considered result from a loss of the forced coolant flow caused by a loss of electrical power for the recirculation pump in the primary circuit. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analyses, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. In the LOFA case without plasma shutdown, melting starts in the first wall about 150 s after accident initiation. In the LOFA case with delayed plasma shutdown, melting starts in the first wall when the plasma shutdown is initiated later than about 110 s after accident initiation. Melting does not occur in the first wall during a LOFA with prompt plasma scram. (orig.)

  14. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  15. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  16. Net carbon dioxide emissions from alternative firewood-production systems in Australia

    International Nuclear Information System (INIS)

    Paul, K.I.; Booth, T.H.; Jovanovic, T.; Polglase, P.J.; Elliott, A.; Kirschbaum, M.U.F.

    2006-01-01

    The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO 2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600-800mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3-1.0kgCO 2 kWh -1 ). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11kgCO 2 kWh -1 ), and was much lower when obtained from harvest residues and dead wood in native forests ( 2 kWh -1 ). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to -0.06kgCO 2 kWh -1 for firewood obtained from a coppiced plantation, and -0.17kgCO 2 kWh -1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO 2 emitted per unit of heat energy produced from burning firewood. (author)

  17. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  18. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.

    Science.gov (United States)

    Nguyen, Anna; Khaleel, Haroun M; Razak, Khaleel A

    2017-07-01

    Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  20. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ˜ 4.0-13.5 g C

  1. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Kristal, E-mail: kristal.dubois@gmail.com [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Carignan, Richard [Departement des Sciences Biologiques, Universite de Montreal C.P. 6128, succ. Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada); Veizer, Jan [Ottawa-Carleton Geoscience Center, University of Ottawa, 140 Louis Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2009-05-15

    Lakes worldwide are commonly oversaturated with CO{sub 2}, however the source of this CO{sub 2} oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O{sub 2} and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO{sub 2} over the sampling period, on average 221 {+-} 25%. However, little evidence was found to conclude that this CO{sub 2} oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO{sub 2} flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO{sub 2} flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 34 mg C m{sup -2} d{sup -1}. In Lac a l'Ours average annual NPP was -9.1 mg C m{sup -2} d{sup -1} while the average annual flux of CO{sub 2} to the atmosphere was 55 mg C m{sup -2} d{sup -1}. In all of the lakes sampled, O{sub 2} saturation averaged 104.0 {+-} 1.7% during the ice-free season and the isotopic composition of dissolved O{sub 2} ({delta}{sup 18}O{sub DO}) was 22.9 {+-} 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO{sub 2} in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO{sub 2} oversaturation. The isotopic composition of dissolved inorganic C ({delta}{sup 13}C{sub DIC}) indicates that the CO{sub 2} oversaturation cannot be attributed to in situ aerobic respiration. {delta}{sup 13}C{sub DIC} reveals a source of excess

  2. Can pelagic net heterotrophy account for carbon fluxes from eastern Canadian lakes?

    International Nuclear Information System (INIS)

    Dubois, Kristal; Carignan, Richard; Veizer, Jan

    2009-01-01

    Lakes worldwide are commonly oversaturated with CO 2 , however the source of this CO 2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O 2 and C were measured in 23 Quebec lakes. All of the lakes sampled were oversaturated with CO 2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO 2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and a l'Ours, where CO 2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO 2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 34 mg C m -2 d -1 . In Lac a l'Ours average annual NPP was -9.1 mg C m -2 d -1 while the average annual flux of CO 2 to the atmosphere was 55 mg C m -2 d -1 . In all of the lakes sampled, O 2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O 2 (δ 18 O DO ) was 22.9 ± 0.3 per mille , lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO 2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO 2 oversaturation. The isotopic composition of dissolved inorganic C (δ 13 C DIC ) indicates that the CO 2 oversaturation cannot be attributed to in situ aerobic respiration. δ 13 C DIC reveals a source of excess C enriched in 13 C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing

  3. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    Science.gov (United States)

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  4. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    Science.gov (United States)

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2010-05-01

    Full Text Available In order to assess the current state of net community production (NCP in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1 were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.

  6. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Heltai, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; StröM, J.; Haszpra, L.; Meijer, H. A J; van Der Laan, S.; Neubert, R. E M; Jordan, A.; Rodó, X.; Morguí, J. A.; Vermeulen, A. T.; Popa, Maria Elena; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  7. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M.C.; Werf, van der G.R.; Houweling, S.; Jones, C.D.; Hughes, J.; Schaefer, K.; Masarie, K.A.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001–2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (~70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  8. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Helta, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; Strom, J.; Haszpra, L.; Meijer, H. A. J.; van der Laan, S.; Neubert, R. E. M.; Jordan, A.; Rodo, X.; Morgui, J. -A.; Vermeulen, A. T.; Popa, E.; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P. P.; Heltai, D.; Ström, J.

    We present an estimate of net ecosystem exchange (NEE) of CO(2) in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO(2) mole fraction observations (similar to 70 000) to guide relatively simple descriptions of terrestrial and oceanic net

  9. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming, in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling. This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  10. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    Science.gov (United States)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  11. Net carbon flux of dead wood in forests of the Eastern US

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; S. Fraver; G.M. Domke

    2015-01-01

    Downed dead wood (DDW) in forest ecosystems is a C pool whose net flux is governed by a complex of natural and anthropogenic processes and is critical to the management of the entire forest C pool. As empirical examination of DDW C net flux has rarely been conducted across large scales, the goal of this study was to use a remeasured inventory of DDW C and ancillary...

  12. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  13. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  14. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    Science.gov (United States)

    Kelly, Ryan; Genet, Helene; McGuire, A. David; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  15. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach

    Science.gov (United States)

    Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.

    2015-01-01

    Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.

  16. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian

    2012-01-01

    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  17. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    Science.gov (United States)

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH 3 ) emission, N leaching and runoff), GHG (methane, CH 4 ; and nitrous oxide, N 2 O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH 3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha -1 yr -1 in upland and paddy fields, respectively; CH 4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N 2 O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  18. Patterns of Carbon Storage and Greenhouse Gas Losses in Urban Residential Lawns

    Science.gov (United States)

    Contosta, A.; Varner, R.; Xiao, J.

    2017-12-01

    Population density and housing age are two factors believed to impact carbon (C) storage and greenhouse gas emissions in one of the most extensively managed landscapes in the U.S.: the urban lawn. Previous research focusing on either above- or below-ground C dynamics has also not explicitly considered how they interact to affect the net carbon balance in urban residential areas. We addressed this knowledge gap by quantifying both soil and vegetative C stocks and greenhouse gas fluxes across an urban gradient in Manchester, NH, USA that included 34 lawns comprising three population density categories, five housing age classes, and the interaction between them. Using a combination of both weekly, manual measurements and continuous, automated estimates, we also sampled emissions of CH4, CO2, and N2O within a subset of these lawns that represented a range of citywide population density and housing age characteristics and management practices. We found that neither above- nor below-ground C storage varied with population density, but both differed among housing age classes. Soil C storage increased with housing age and was highest in the oldest lawns sampled. By contrast, C stocks in aboveground, woody biomass was highest at intermediate ages and lowest in older and new parcels. Unlike C stocks, soil greenhouse gas emissions did not change among population density categories, housing age classes, or with irrigation and fertilization management, but instead followed temporal trends in soil moisture and temperature. Overall, our results suggest that drivers of C storage and greenhouse gas losses in urban residential areas may not be uniform and their accurate representation in Earth system models may require a variety of approaches.

  19. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  20. Carbon emission reductions by substitution of improved cookstoves and cattle mosquito nets in a forest-dependent community

    Directory of Open Access Journals (Sweden)

    Somanta Chan

    2015-07-01

    Substitution of conventional cookstoves with improved cookstoves and the use of mosquito nets instead of fuelwood burning could result in using less fuelwood for the same amount of energy needed and thereby result in reduction of carbon emissions and deforestation. To realize this substitution, approximately US$ 15–25 MgCO2−1 is needed depending on discount rates and amounts of emission reduction. Substitution of cookstoves will have direct impacts on the livelihoods of forest-dependent communities and on forest protection. Financial incentives under voluntary and mandatory schemes are needed to materialize this substitution.

  1. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    Science.gov (United States)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely

  2. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  3. Assessing Effect of Manure and Chemical Fertilizer on Net Primary Production, Soil Respiration and Carbon Budget in Winter Wheat (Triticum aestivum L. Ecosystem under Mashhad Climatic Condition

    Directory of Open Access Journals (Sweden)

    Y alizade

    2018-02-01

    Full Text Available Introduction The imbalance between anthropogenic emissions of CO2 and the sequestration of CO2 from the atmosphere by ecosystems has led to an increase in the average concentration of this greenhouse gas (GHG in the atmosphere. Enhancing carbon sequestration in soil is an important issue to reduce net flux of carbon dioxide to the atmosphere. Soil organic carbon content is obtained from the difference between carbon input resulting from plant biomass and carbon losses the soil through different ways including soil respiration. CO2 emission varies largely during the year and is considerably affected by management type. The goal of this investigation was to study the effects of application of manure and chemical fertilizer on CO2 flux and carbon balance in agricultural system. Materials and Methods In order to evaluate the carbon dynamics and effect of fertilizer and manure management on soil respiration and carbon budget for winter wheat, an experiment was conducted as a randomized complete block design with three replications in research field of Faculty of Agriculture of Ferdowsi University of Mashhad for two years of 2010-2011 and 2011-2012 . The experimental treatments were 150 and 250 kg chemical nitrogen (N1 and N2, manure (M, manure plus chemical nitrogen (F-M and control (C. CO2 emission was measured six times during growth season and to minimize daily temperature variation error, the measurement was performed between 8 to 11 am. Chambers length and diameter were 50 cm and 30 cm respectively and their edges were held down 3 cm in soil in time of sampling so that no plant live mass was present in the chamber. Carbon budgets were estimated for two years using an ecological technique. Results and Discussion The net primary production (NPP was significantly higher in the F2 and F-M treatments with 6467 and 6294kg ha-1 in the first year and 6260 and 6410 kg ha-1 in the second year, respectively. The highest shoot to root ratio was obtained in

  4. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  5. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  6. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  7. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    to organic carbon and nitrogen content with stable isotope (13C, 15N) and radiocarbon (14C) abundance to quantify OC/SA and organic carbon sources and mean age. We then use multivariate mixing model analysis to quantify the fractional contribution of each source end-member to each sample of suspended or deposited sediments. Last, we calculate a predicted OC/SA based on source end-member mixing and compare to the measured OC/SA to quantify net change in mineral complexed carbon. Aufdenkampe, A.K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers Ecol. Environ. 9, 53-60 (2011). Walling, D. E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 34, 159-184 (2005).

  8. The importance of rapid, disturbance-induced losses in carbon management and sequestration

    Science.gov (United States)

    Breshears, D.D.; Allen, Craig D.

    2002-01-01

    Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented — the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances — such as fire and drought, as well as the erosion associated with each — that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options.

  9. The computation of carbon emissions due to the net payload on a truck

    DEFF Research Database (Denmark)

    Turkensteen, Marcel

    Many green logistics studies try to minimize the carbon emissions and in the process alter the load on the vehicle. Then, there is often a trade‐off between the distance driven and the load on the vehicle and in order to determine which decisions lead to the most substantial emission savings......, it is necessary to compute the carbon emissions of these decisions. Current studies are only able to determine this for very specific conditions, such as a given vehicle under given driving conditions, and they may require many input parameters. Therefore, this paper presents a simple and broadly applicable...... emission computation tool. We determine the share of the carbon emissions of fully loaded vehicles due to the weight of the load on the vehicle, i.e. the load‐based emission percentage (LBEP). We conduct a review study on papers that report on carbon emissions or fuel consumption for different load factors...

  10. Carbon loss from an unprecedented Arctic tundra wildfire

    Science.gov (United States)

    Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A.G. Schuur; Gaius R. Shaver; David L. Verbyla

    2011-01-01

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the...

  11. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  12. Occupational noise exposure assessment using O*NET and its application to a study of hearing loss in the US general population.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Hu, Howard; Tak, SangWoo; Mukherjee, Bhramar; Park, Sung Kyun

    2012-03-01

    Although occupational noise is a well known risk factor for hearing loss, little epidemiological evidence has been reported on its association with hearing loss in the general population, in part, because of the difficulty in exposure assessment. This study introduced a quantitative occupational noise exposure assessment tool using the Occupational Information Network (O*NET) database and evaluated its applicability for epidemiological research using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. The O*NET noise exposure data were assessed by questionnaires across numerous occupations, asking the frequency of exposure to sounds and noise levels that are distracting and uncomfortable (with five possible responses from 'never' to 'every day'). Means of the O*NET noise scores were computed to correspond to NHANES occupational categories and assigned to 3828 adults aged 20-69 years, who participated in the 1999-2004 NHANES. Pure-tone averages (PTA) of hearing thresholds at 0.5, 1, 2 and 4 kHz were computed, and hearing loss was defined as a PTA >25 dB in either ear. Linear and logistic regression models with either continuous or quintiles of the O*NET noise scores were fitted on log-transformed PTA and binary hearing loss, respectively. Noise scores ranged from 1.80 to 4.37 with mean±SE of 3.06±0.02. After controlling for potential confounders, the highest (vs lowest) noise score quintile had a 22.5% (95% CI 11.0% to 35.2%) increase in PTA, and there was a linear dose-dependent trend across the quintiles of noise scores (p trendhearing loss comparing the highest with the lowest noise score quintiles was 2.1 (95% CI 1.2 to 3.6). This study suggests that the O*NET noise score is a useful tool for examining occupational noise-induced health effects in the general population in the absence of actual occupational noise exposure assessment data.

  13. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

    International Nuclear Information System (INIS)

    Tyukavina, A; Hansen, M C; Potapov, P V; Krylov, A M; Turubanova, S; Baccini, A; Houghton, R A; Goetz, S J; Stehman, S V

    2015-01-01

    Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr −1 ) and losses from managed forests (0.43 PgC yr −1 ) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO 2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation. (letter)

  14. Rotor losses in laminated magnets and an anisotropic carbon fiber sleeve

    NARCIS (Netherlands)

    Van der Geest, M.; Wolmarans, J.J.; Polinder, H.; Ferreira, J.A.; Zeilstra, D.

    2012-01-01

    High speed fault tolerant permanent magnet machines have strong asynchronous airgap harmonics, making them susceptible to rotor eddy-current losses. These losses can be reduced by using novel high resistivity materials like plastic bonded magnets and carbon fiber reinforced retaining sleeves. This

  15. Net carbon flux of dead wood in forests of the Eastern US.

    Science.gov (United States)

    Woodall, C W; Russell, M B; Walters, B F; D'Amato, A W; Fraver, S; Domke, G M

    2015-03-01

    Downed dead wood (DDW) in forest ecosystems is a C pool whose net flux is governed by a complex of natural and anthropogenic processes and is critical to the management of the entire forest C pool. As empirical examination of DDW C net flux has rarely been conducted across large scales, the goal of this study was to use a remeasured inventory of DDW C and ancillary forest attributes to assess C net flux across forests of the Eastern US. Stocks associated with large fine woody debris (diameter 2.6-7.6 cm) decreased over time (-0.11 Mg ha(-1) year(-1)), while stocks of larger-sized coarse DDW increased (0.02 Mg ha(-1) year(-1)). Stocks of total DDW C decreased (-0.14 Mg ha(-1) year(-1)), while standing dead and live tree stocks both increased, 0.01 and 0.44 Mg ha(-1) year(-1), respectively. The spatial distribution of DDW C stock change was highly heterogeneous with random forests model results indicating that management history, live tree stocking, natural disturbance, and growing degree days only partially explain stock change. Natural disturbances drove substantial C transfers from the live tree pool (≈-4 Mg ha(-1) year(-1)) to the standing dead tree pool (≈3 Mg ha(-1) year(-1)) with only a minimal increase in DDW C stocks (≈1 Mg ha(-1) year(-1)) in lower decay classes, suggesting a delayed transfer of C to the DDW pool. The assessment and management of DDW C flux is complicated by the diversity of natural and anthropogenic forces that drive their dynamics with the scale and timing of flux among forest C pools remaining a large knowledge gap.

  16. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew

    2013-01-01

    To investigate the importance of autumn phenology in controlling interannual variability of forest net ecosystem productivity (NEP) and to derive new phenological metrics to explain the interannual variability of NEP. North America and Europe. Flux data from nine deciduous broadleaf forests (DBF......, soil water content and precipitation, were also used to explain the phenological variations. We found that interannual variability of NEP can be largely explained by autumn phenology, i.e. the autumn lag. While variation in neither annual gross primary productivity (GPP) nor in annual ecosystem...

  17. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  18. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    International Nuclear Information System (INIS)

    Halinska, A.; Frenkel, C.

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-[U- 14 C]malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification

  19. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Ewers Lewis, Carolyn J.; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2017-01-01

    . Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns

  20. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Science.gov (United States)

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  1. Spatial and temporal variations in net carbon flux during HAPEX-Sahel.

    NARCIS (Netherlands)

    Moncrieff, J.B.; Monteny, B.; Verhoef, A.; Friborg, Th.; Elbers, J.; Kabat, P.; DeBruin, H.; Soegaard, H.; Jarvis, P.G.; Taupin, J.D.

    1997-01-01

    Micrometeorological measurements of the surface flux of carbon dioxide were made at a number of spatially separate sites within the HAPEX-Sahel experimental area. Differences in the timing of plant development caused by differences in rainfall (both quantity and frequency) over the experimental area

  2. Scientific arguments for net carbon increase in soil organic matter in Dutch forests

    NARCIS (Netherlands)

    Mol, J.P.; Wyngaert, van den I.J.J.; Vries, de W.

    2012-01-01

    If reporting of emissions associated with Forest Management becomes obligatory in the next commitment period, the Netherlands will try to apply the 'not-a-source' principle to carbon emissions from litter and soil in land under Forest Management. To give a scientific basis for the principle of

  3. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland

    Science.gov (United States)

    H. Guo; A. Noormets; B. Zhao; J. Chen; G. Sun; Y. Gu; B. Li; J. Chen

    2009-01-01

    One year of continuous data from two eddy-flux towers established along an elevation gradient incoastal Shanghai was analyzed to evaluate the tidal effect on carbon flux (Fc) over an estuarine wetland.The measured wavelet spectra and cospectra of Fc and other environmental factors demonstrated thatthe...

  4. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  5. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States.

    Science.gov (United States)

    Selhorst, Adam; Lal, Rattan

    2013-01-01

    Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha(-1) year(-1) to 5.4 Mg C ha(-1) year(-1). Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0-96.3 ± 6.0 Mg C ha(-1). Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha(-1) year(-1) and 45.8 ± 3.5 Mg C ha(-1), respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha(-1) year(-1)) and fertilizer use (63.6 kg Ce ha(-1) year(-1)) for all sites totaled 254.3 kg Ce ha(-1) year(-1). Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year(-1) under low management regimes and 7551.4 Gg Ce year(-1) under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.

  6. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms

    DEFF Research Database (Denmark)

    Niu, Shuli; Luo, Yiqi; Fei, Shenfeng

    2012-01-01

    distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem‐level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve......, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum...... ecosystem–climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models....

  7. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  8. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  9. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  10. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  11. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  12. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  13. High resolution spectroscopy of H+ energy loss in thin carbon film

    International Nuclear Information System (INIS)

    Matsunami, Noriaki; Kitoh, Kenshin

    1991-05-01

    The energy loss of ∼100 keV H + transmitted through thin carbon film of ∼7 nm has been measured with the resolution of ∼20 eV. We have observed new energy loss peaks around 210 and 400 eV in addition to the normal energy loss peak around 1 keV. We find that the experimental artifacts, ionization of C K-(290 eV) and impurity inner-shells, extreme non-uniformity of films, events associated with elastic scattering are not responsible for these peaks. The origin of these low energy loss peaks will be discussed. (author)

  14. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  15. Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

    Science.gov (United States)

    Stephens, Scott L.; Boerner, Ralph E.J.; Maghaddas, Jason J.; Maghaddas, Emily E.Y.; Collins, Brandon M.; Dow, Christopher B.; Edminster, Carl; Fiedler, Carl E.; Fry, Danny L.; Hartsough, Bruce R.; Keeley, Jon E.; Knapp, Eric E.; McIver, James D.; Skinner, Carl N.; Youngblood, Andrew P.

    2012-01-01

    Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we predict the median forest product life spans and uses of materials removed during mechanical treatments. Carbon loss from modeled wildfire-induced tree mortality was lowest in the mechanical plus prescribed fire treatments, followed by the prescribed fire-only treatments. Wildfire emissions varied from 10–80 Mg/ha and were lowest in the prescribed fire and mechanical followed by prescribed fire treatments at most sites. Mean biomass removals per site ranged from approximately 30–60 dry Mg/ha; the median lives of products in first use varied considerably (from 50 years). Our research suggests most of the benefits of increased fire resistance can be achieved with relatively small reductions in current carbon stocks. Retaining or growing larger trees also reduced the vulnerability of carbon loss from wildfire. In addition, modeled vulnerabilities to carbon losses and median forest product life spans varied considerably across our study sites, which could be used to help prioritize treatment implementation.

  16. Connecting above and below: the impacts of large wildlife loss and pastoralism on savanna carbon dynamics

    Science.gov (United States)

    Forbes, E. S.; Young, H. S.; Young, T.; Schimel, J.

    2016-12-01

    There is widespread evidence that large wildlife species contribute to ecosystem carbon efflux; however, their influence is not incorporated into traditional carbon models. As large wildlife loss continues in the Anthropocene and in the face of climate change, it becomes increasingly important to understand the impacts of their loss on ecosystem carbon. The charismatic, threatened wildlife in central Kenya's savanna provide an ideal framework for these questions. We compared differences in carbon efflux in the presence or absence of native herbivores and/or cattle, as a proxy for wildlife loss and the interaction of pastoralism. We measured carbon dynamics in situ with a closed-chamber system and microbial respiration rates in lab by incubating sampled soil. We discovered a significant effect of herbivore presence/absence on carbon efflux: incubated soils collected from plots with cattle only exhibit greater carbon accumulation and faster initial respiration rates than soils collected from plots with native herbivores and no cattle, native herbivores and cattle, and neither native herbivores nor cattle. When measured in situ, plots with no herbivores show higher efflux than plots with only native herbivores, and plots with both. The data also suggest that grazing pressure results in successively lower efflux. The differences in these studies imply that the impacts of large wildlife loss differ on microbial respiration as an isolated mechanism in ecosystem carbon exchange, and total carbon efflux. This is most likely because in situ efflux measurements encompass environmental variables as well as soil microbial respiration. The lab data suggest that cattle as the only herbivore causes greater soil microbial efflux compared to native herbivores alone, native herbivores with cattle, or no herbivores. The in situ data show that no herbivores results in increased carbon efflux, and suggest that increasing numbers of herbivores lowers efflux.These studies demonstrate

  17. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  18. Understanding the driving forces behind the losses of soil carbon across England and Wales

    Science.gov (United States)

    Bellamy, Patricia

    2010-05-01

    More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr-1 (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr-1 in soils with carbon contents greater than 100 g kg-1. The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales—and by inference in other temperate regions—are likely to have been offsetting absorption of carbon by terrestrial sinks. To investigate the possible driving forces of the measured losses of soil carbon we applied a simple model of soil carbon turnover to evaluate alternative explanations for the observed trends. We find that neither changes in decomposition resulting from the effects of climate change on soil temperature and moisture, nor changes in carbon input from vegetation, could account on their own for the overall trends. Of other explanations, results indicate that past changes in land use and management were probably dominant. The climate change signal, such as it is, is masked by these other changes. A more sophisticated model of carbon change (DAYCENT) has now been applied across the whole range of soils in England and Wales. This model has been

  19. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere

    OpenAIRE

    Cleveland, Cory C.; Townsend, Alan R.

    2006-01-01

    Terrestrial biosphere–atmosphere carbon dioxide (CO2) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are hig...

  20. Estimated carbon emission from recent rapid forest loss in Southeast Asia

    Science.gov (United States)

    Chen, A.; Zeng, Z.; Peng, L.; Fei, S.

    2017-12-01

    Driven by agricultural expansion, industrial logging, oil palm and rubber plantations, and urbanization, Southeast Asia (SEA) is one of the hotspots for tropical deforestation over recent decades. The extent of the tropical SEA deforestation rate, as well as its impacts on carbon cycle and biodiversity, however, is still highly uncertain. In relevant work using high resolution global maps of the 21st-century forest cover, we find tropical SEA lost 22 million hectares, or 9%, of forest area during 2000-2014, a much higher deforestation rate than previously reported. Here we further conduct research investigating carbon emissions from tropical deforestation in SEA with satellite data of forest cover, a global tropical forest biomass map, and Earth system models. Preliminary results suggest that deforestation in SEA causes about 2.8 Tg C emissions to the atmosphere during the same period, also higher than that of previous studies. Meanwhile, carbon emission from deforestation shows high variations across different countries, topography and between the insular and maritime SEA. Indonesia and Malaysia tops in both total carbon loss and loss from per unit land area. Our results indicates that previous studies have underestimated the carbon loss due to deforestation in SEA. And until further effective forest conservation measures can be adopted, tropical SEA will continue playing a role of atmospheric carbon source in the coming decades.

  1. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  2. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  3. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    Science.gov (United States)

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Mutations in Cancer Cause Gain of Cysteine, Histidine, and Tryptophan at the Expense of a Net Loss of Arginine on the Proteome Level

    Directory of Open Access Journals (Sweden)

    Viktoriia Tsuber

    2017-07-01

    Full Text Available Accumulation of somatic mutations is critical for the transition of a normal cell to become cancerous. Mutations cause amino acid substitutions that change properties of proteins. However, it has not been studied as to what extent the composition and accordingly chemical properties of the cell proteome is altered as a result of the increased mutation load in cancer. Here, we analyzed data on amino acid substitutions caused by mutations in about 2000 protein coding genes from the Cancer Cell Line Encyclopedia that contains information on nucleotide and amino acid alterations in 782 cancer cell lines, and validated the analysis with information on amino acid substitutions for the same set of proteins in the Catalogue of Somatic Mutations in Cancer (COSMIC; v78 in circa 18,000 tumor samples. We found that nonsynonymous single nucleotide substitutions in the analyzed proteome subset ultimately result in a net gain of cysteine, histidine, and tryptophan at the expense of a net loss of arginine. The extraordinary loss of arginine may be attributed to some extent to composition of its codons as well as to the importance of arginine in the functioning of prominent tumor suppressor proteins like p53.

  5. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl P.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada)], E-mail: mitchellc@si.edu; Branfireun, Brian A. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada); Kolka, Randall K. [Northern Research Station, US Department of Agriculture Forest Service, 1831 Highway 169 East, Grand Rapids, MN 55744 (United States)

    2008-03-15

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO{sub 4} (as an electron acceptor) because SO{sub 4}-reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO{sub 4} and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO{sub 4} addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO{sub 4} input alone ({approx}200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO{sub 4} and some organic C sources resulted in considerably more MeHg production ({approx}500 pg/L/day) than did the addition of SO{sub 4} alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO{sub 4} and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO{sub 4} and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent

  6. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    International Nuclear Information System (INIS)

    Mitchell, Carl P.J.; Branfireun, Brian A.; Kolka, Randall K.

    2008-01-01

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO 4 (as an electron acceptor) because SO 4 -reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO 4 and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO 4 addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO 4 input alone (∼200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO 4 and some organic C sources resulted in considerably more MeHg production (∼500 pg/L/day) than did the addition of SO 4 alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO 4 and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO 4 and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent inputs of SO 4 and organic C in runoff from the adjacent upland hillslopes

  7. Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes

    Science.gov (United States)

    Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.

    2007-12-01

    Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the

  8. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  9. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    Science.gov (United States)

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  10. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  11. Nitrogen, phosphorus and carbon excretion and losses in growing pigs fed Danish or Asian diets

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Vu, Van Thi Khanh; Poulsen, Hanne Damgaard

    2008-01-01

    The objectives of this study were to determine inputs and outputs of nitrogen (N), phosphorus (P) and carbon (C) and to estimate the nutrient losses during housing and storage in order to address these important parts of the whole manure management systems in pigs fed different diets....

  12. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  13. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production

    International Nuclear Information System (INIS)

    Ying Ping Wang; Barrett, Damian J.

    2003-01-01

    We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C/yr between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C/month with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990-1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO 2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes

  14. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    Science.gov (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    carbon protect were disparate. In intact-structure aggregates, prior to incubation, there was no association between carbon distribution and pores. After incubation, significant correlations (α=0.05) were observed between abundance of 6-40 μm pores and both soil organic carbon (SOC) and δ13C. Sections containing more 6-40 μm pores also had increased amounts of SOC (r2=0.23) with higher presence of C4 carbon (r2=0.27). This indicates preferential preservation of older carbon in the pores of this size range. Prior to incubation, destroyed-structure aggregates had higher amounts of C3 carbon associated with 40-95 μm pores (r2=0.14), pointing to a greater presence of newly added carbon within these pores. However, after incubation there was a significant loss of SOC from these pores (r2=0.22) and, specifically, the loss of C3 carbon (r2=0.16). In the studied soil, pores of 6-40 μm size range appeared to control the preservation of older carbon, while 40-95 μm pores controlled the fate of newly added carbon. Older carbon preservation in 6-40 μm pores was mostly observed in macro-aggregates from the soil with intact structure, while the associations between 40-95 μm pores and gains and losses of newly added carbon were primarily observed in the macro-aggregates that were formed anew in the sieved soil during the plant growing experiment.

  15. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  17. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  18. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the

  19. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Science.gov (United States)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  20. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    Science.gov (United States)

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of

  1. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. [Michigan State University, East Lansing, MI 48824 (United States)

    2010-07-15

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m{sup -2} y{sup -1}, respectively, compared to 52 g m{sup -2} y{sup -1} for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  2. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    International Nuclear Information System (INIS)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P.

    2010-01-01

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m -2 y -1 , respectively, compared to 52 g m -2 y -1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.

  3. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR

    Science.gov (United States)

    Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.

    2015-01-01

    Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.

  4. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  5. Carbonate loss from two magnesium-substituted carbonated apatites prepared by different synthesis techniques

    International Nuclear Information System (INIS)

    Barinov, S.M.; Rau, J.V.; Fadeeva, I.V.; Cesaro, S. Nunziante; Ferro, D.; Trionfetti, G.; Komlev, V.S.; Bibikov, V.Yu.

    2006-01-01

    This study was aimed at the investigation of the thermal stability of Mg-substituted carbonated apatites over the wide temperature range. Two different apatites were studied, which were prepared by either precipitation from aqueous solution or by solid-liquid interaction. The following methods were employed: FTIR spectroscopy of the condensed gas phase to evaluate the CO and CO 2 release with increasing temperature, FTIR of the solid residue after heating, XRD analysis, thermogravimetry and scanning electron microscopy. Decomposition behavior was shown to depend significantly on the synthesis method. Wet-synthesized powders are significantly less thermally stable compared with those prepared by solid-liquid interaction. Intensive release of carbon oxides from the former was observed at 300 deg. C, whereas the latter powder was relatively stable up to temperature about 1000 deg. C

  6. EFFECTS OF CO2 AND O3 ON CARBON FLUX FOR PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM

    Science.gov (United States)

    Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...

  7. Biodiversity offsetting and restoration under the European Union Habitats Directive: balancing between no net loss and deathbed conservation?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2016-12-01

    's biodiversity. A reinforcement of the preventative approach is instrumental to avert a further biodiversity loss within the European Union, even if it will lead to additional permit refusals for unsustainable project developments.

  8. Modeling of Carbon Sequestration on Eucalyptus Plantation in Brazililian Cerrado Region for Better Characterization of Net Primary Productivity

    Science.gov (United States)

    Echeverri, J. D.; Siqueira, M. B.

    2013-05-01

    Managed Forests have important roles in climate change due to their contribution to CO2 sequestration stored in their biomass, soils and products therefrom. Terrestrial net primary production (NPP, kgC/m2), equal to gross primary production minus autotrophic respiration, represents the carbon available for plant allocation to leaves, stems, roots, defensive compounds, and reproduction and is the basic measure of biological productivity. Tree growth, food production, fossil fuel production, and atmospheric CO2 levels are all strongly controlled by NPP. Accurate quantification of NPP at local to global scales is therefore central topic for carbon cycle researchers, foresters, land and resource managers, and politicians. For recent or current NPP estimates, satellite remote sensing can be used but for future climate scenarios, simulation models are required. There is an increasing trend to displace natural Brazilian Cerrado to Eucalyptus for paper mills and energy conversion from biomass. The objective of this research exercise is to characterize NPP from managed Eucalyptus plantation in the Brazilian Cerrado. The models selected for this study were the 3-PG and Biome-BGC. The selection of these models aims to cover a range of complexity that allow the evaluation of the processes modeled as to its relevance to a best estimate of productivity in eucalyptus forests. 3-PG model is the simplest of the models chosen for this exercise. Its main purpose is to estimate productivity of forests in timber production. The model uses the relationship of quantum efficiency in the transformation of light energy into biomass for vegetative growth calculations in steps in time of one month. Adverse weather conditions are treated with reduction factors applied in the top efficiency. The second model is the Biome-BGC that uses biology and geochemistry principles to estimate leaf-level photosynthesis based on limiting factors such as availability of light and nutrient constraints. The

  9. Impact of land use change on soil carbon loss of the Sikkim Himalayan piedmont

    Science.gov (United States)

    Prokop, Pawel; Ploskonka, Dominik

    2014-05-01

    Natural and human causes of change in land use on soil carbon were studied at the outlet of the Tista River from the Sikkim Himalayas over the last 150 years. Analysis of topographic maps and satellite images indicates that the land reforms related to location of tea gardens in the piedmont caused rapid deforestation of terraces in the late 19th century. Continuous population growth after 1930 initiated the replacement of floodplain forest by rice cultivation. Both processes changed soil carbon content and intensified fluvial activity expressed through terrace erosion. The replacement of natural forest by tea cultivation reduced the soil carbon content within terraces from 1.95 kg to 1.77 kg (in 1 m of topsoil) respectively. The replacement of natural forest by rice reduced the soil carbon content within floodplains from 0.42 kg to 0.23 kg (in 1 m topsoil) respectively. Much more dangerous, was terrace erosion leading to permanent removal of sediment including soil. The total loss of soil carbon in a 1 m thick soil layer due to conversion of 5 km2 forest to tea cultivation was about 900 t between 1930 and 2010. While the total soil carbon removed due to 1.8 km2 terrace erosion reached 3510 t in the same period. Result is the outcome of research project 2012/05/B/ST10/00309 of the National Science Centre (Poland).

  10. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    OpenAIRE

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the south...

  11. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    Science.gov (United States)

    Brandt, L. A.; Bohnet, C.; King, J. Y.

    2009-06-01

    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  12. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Mitsuo, E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Rauhala, Eero [Department of Physics, University of Helsinki (Finland)

    2015-10-01

    Backscattering spectra for {sup 4}He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50–100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp ({sup 4}He, {sup 12}C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  13. Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code

    Science.gov (United States)

    Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin

    2017-09-01

    In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.

  14. Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code.

    Science.gov (United States)

    Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin

    2017-09-01

    In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.

  15. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  16. Dynamics of organic carbon losses by water erosion after biocrust removal

    Directory of Open Access Journals (Sweden)

    Cantón Yolanda

    2014-12-01

    Full Text Available In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1 were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC and organic carbon bonded to sediments (SdOC were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC (average 1.80±1.86 g m-2 compared to physical soil crusts (7.83±3.27 g m-2. Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff

  17. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  18. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Science.gov (United States)

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  19. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Directory of Open Access Journals (Sweden)

    Emilie R Kirk

    Full Text Available Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM oxidation and physical compaction. Rice (Oryza sativa production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined. Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1 was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  20. Oil sands mining and reclamation cause massive loss of peatland and stored carbon

    Science.gov (United States)

    Rooney, Rebecca C.; Bayley, Suzanne E.; Schindler, David W.

    2012-01-01

    We quantified the wholesale transformation of the boreal landscape by open-pit oil sands mining in Alberta, Canada to evaluate its effect on carbon storage and sequestration. Contrary to claims made in the media, peatland destroyed by open-pit mining will not be restored. Current plans dictate its replacement with upland forest and tailings storage lakes, amounting to the destruction of over 29,500 ha of peatland habitat. Landscape changes caused by currently approved mines will release between 11.4 and 47.3 million metric tons of stored carbon and will reduce carbon sequestration potential by 5,734–7,241 metric tons C/y. These losses have not previously been quantified, and should be included with the already high estimates of carbon emissions from oil sands mining and bitumen upgrading. A fair evaluation of the costs and benefits of oil sands mining requires a rigorous assessment of impacts on natural capital and ecosystem services. PMID:22411786

  1. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  2. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p forests.

  3. Application of electron energy loss spectroscopy for single wall carbon nanotubes (review)

    International Nuclear Information System (INIS)

    Mittal, N.; Jain, S.; Mittal, J.

    2015-01-01

    Electron energy loss spectroscopy (EELS) is among the few techniques that are available for the characterization of modified single wall carbon nanotubes (SWCNTs) having nanometer dimensions (~1-3 nm). CNTs can be modified either by surface functionalization or coating, between bundles of nanotubes by doping, intercalation and fully or partially filling the central core. EELS is an exclusive technique for the identification, composition analysis, and crystallization studies of the chemicals and materials used for the modification of SWCNTs. The present paper serves as a compendium of research work on the application of EELS for the characterization of modified SWCNTs. (authors)

  4. Energy loss of carbon transmitted 1-MeV H2+ ions

    International Nuclear Information System (INIS)

    Fritz, M.; Kimura, K.; Susuki, Y.; Mannami, M.

    1994-01-01

    Energy losses of 1-MeV H 2 + ions passing through carbon foils of 2-8 μg/cm 2 thickness have been measured and show besides the linear increase with target thickness a 0.4 keV offset. The stopping power derived from the observed energy losses is 1.15 times as large as the sum of the stopping powers for two single H + of the same velocity. Calculations of the stopping powers for H 2 + ions and diprotons, using first Born approximation, indicate that the H 2 + ions lose the binding electron upon entrance into the foil, traverse the target as diprotons and recapture target electrons at the exit surface, a scenario also supported by the 0.4 keV offset at zero thickness. (author)

  5. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Science.gov (United States)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  6. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Directory of Open Access Journals (Sweden)

    Amos Martinez

    2017-12-01

    Full Text Available The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50% and poor saturable to non-saturable absorption ratios (typically above 1:5. In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%, and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  7. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  8. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Prativa Shrestha

    2015-08-01

    Full Text Available Sequestering carbon in forest stands and using woody bioenergy are two potential ways to utilize forests in mitigating emissions of greenhouse gases (GHGs. Such forestry related strategies are, however, greatly influenced by carbon and bioenergy markets. This study investigates the impact of both carbon and woody bioenergy markets on land expectation value (LEV and rotation age of loblolly pine (Pinus taeda L. forests in the southeastern United States for two scenarios—one with thinning and no fertilization and the other with thinning and fertilization. Economic analysis was conducted using a modified Hartman model. The amount of carbon dioxide (CO2 emitted during various activities such as management of stands, harvesting, and product decay was included in the model. Sensitivity analysis was conducted with a range of carbon offset, wood for bioenergy, and forest product prices. The results showed that LEV increased in both management scenarios as the price of carbon and wood for bioenergy increased. However, the results indicated that the management scenario without fertilizer was optimal at low carbon prices and the management scenario with fertilizer was optimal at higher carbon prices for medium and low forest product prices. Carbon payments had a greater impact on LEV than prices for wood utilized for bioenergy. Also, increase in the carbon price increased the optimal rotation age, whereas, wood prices for bioenergy had little impact. The management scenario without fertilizer was found to have longer optimal rotation ages.

  9. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  10. Above‐ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy‐covariance sites

    DEFF Research Database (Denmark)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario

    2014-01-01

    Attempts to combine biometric and eddy‐covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. We assessed above‐ground biomass changes at five long‐term EC forest stations based on tree‐ring width...... and wood density measurements, together with multiple allometric models. Measurements were validated with site‐specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible...

  11. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    Science.gov (United States)

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Science.gov (United States)

    Chun-Tai. Lai; G. Katul; J. Butnor; M. Siqueira; D. Ellsworth; C. Maier; Kurt Johnsen; S. Mickeand; R. Oren

    2002-01-01

    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas...

  13. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  15. Antecedent conditions control carbon loss and downstream water quality from shallow, damaged peatlands.

    Science.gov (United States)

    Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E

    2014-09-15

    Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by

  16. Electrolyte loss mechanism of molten carbonate fuel cells. 1; Yoyu tansan`engata nenryo denchi ni okeru denkaishitsu loss kiko ni tsuite. 1

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, A; Murata, K [Toshiba Research and Development Center, Kawasaki (Japan)

    1993-11-01

    During a single-cell disassembly test of molten carbonate fuel cells having been operated for 90 hours to 5500 hours, correlativity was discovered between decrease in the retained amount of electrolyte due to decrease in pore capacity of electrodes and electrolyte plates and the electrolyte loss. The electrolyte loss amount cannot be explained with the conventional mechanisms, thereby a new model was proposed. The cathode has shown very little change in the capacity change in pores with diameters smaller than 2 {mu}m per unit area. The anode has remained almost constant after 1000 hours, but the electrolyte plates have shown remarkable decrease. Therefore, it is possible to estimate that the electrolyte plates should have been the major cause for the electrolyte loss. The result of measuring the electrolyte loss amount agreed well with that estimated using pore capacity curves. This fact suggests that the electrolyte loss can be explained by a new mechanism that hypothesizes the existence of a largest size of retaining pores that can support carbonates and defines that the electrolyte loss is generated from decrease in the pore capacity. 7 refs., 8 figs., 1 tab.

  17. National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic Republic of the Congo

    International Nuclear Information System (INIS)

    Tyukavina, A; Potapov, P V; Turubanova, S A; Hansen, M C; Stehman, S V; Baccini, A; Goetz, S J; Laporte, N T; Houghton, R A

    2013-01-01

    Recent advances in remote sensing enable the mapping and monitoring of carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where national forest inventories (NFI) are either non-existent or out of date. Here we demonstrate a method for estimating national-scale gross forest aboveground carbon (AGC) loss and associated uncertainties using remotely sensed-derived forest cover loss and biomass carbon density data. Lidar data were used as a surrogate for NFI plot measurements to estimate carbon stocks and AGC loss based on forest type and activity data derived using time-series multispectral imagery. Specifically, DRC forest type and loss from the FACET (Forêts d’Afrique Centrale Evaluées par Télédétection) product, created using Landsat data, were related to carbon data derived from the Geoscience Laser Altimeter System (GLAS). Validation data for FACET forest area loss were created at a 30-m spatial resolution and compared to the 60-m spatial resolution FACET map. We produced two gross AGC loss estimates for the DRC for the last decade (2000–2010): a map-scale estimate (53.3 ± 9.8 Tg C yr −1 ) accounting for whole-pixel classification errors in the 60-m resolution FACET forest cover change product, and a sub-grid estimate (72.1 ± 12.7 Tg C yr −1 ) that took into account 60-m cells that experienced partial forest loss. Our sub-grid forest cover and AGC loss estimates, which included smaller-scale forest disturbances, exceed published assessments. Results raise the issue of scale in forest cover change mapping and validation, and subsequent impacts on remotely sensed carbon stock change estimation, particularly for smallholder dominated systems such as the DRC. (letter)

  18. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  19. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  20. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  1. Increasing Carbon Loss from Snow-Scoured Alpine Tundra in the Colorado Rocky Mountains: An Indicator of Climate Change?

    Science.gov (United States)

    Knowles, J. F.; Blanken, P.; Williams, M. W.; Lawrence, C. R.

    2015-12-01

    We used the eddy covariance method to continuously measure the net ecosystem exchange of carbon dioxide for seven years from a snow-scoured alpine tundra meadow on Niwot Ridge in Colorado, USA that may be underlain by sporadic permafrost. On average, the alpine tundra was a net annual source of 232 g C m-2 to the atmosphere, and the source strength of this ecosystem increased over the length of the seven year period due to both reduced carbon uptake during the growing season and increased respiration throughout the winter. To constrain the contribution of permafrost degradation to observed carbon emissions, we also measured the radiocarbon content of actively cycling, occluded, and mineral soil carbon pools across a meso-scale soil moisture and (possible) permafrost gradient within this meadow, as well as the seasonal radiocarbon content of soil respiration. These data suggest that wintertime soil respiration is limited to patches of wet meadow tundra that may be associated with permafrost. Furthermore, soil respiration from one of these locations indicates preferential turnover of a relatively slow cycling carbon pool during the winter. Given that summer air temperatures and positive degree days have been increasing on Niwot Ridge since the middle of the 20th century, this research suggests that an alpine tundra permafrost-respiration feedback to climate change, similar to that observed in arctic tundra ecosystems, may be currently underway.

  2. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    Full Text Available ABSTRACT Soil erosion from water causes loss of nutrients and organic carbon, enriches the environment outside the erosion site, and results in costs. The no-tillage system generates increased nutrient and C content in the topsoil and, although it controls erosion, it can produce a more enriched runoff than in the conventional tillage system. This study was conducted in a Humic Cambisol in natural rainfall from 1997 to 2012 to quantify the contents and total losses of nutrients and organic C in soil runoff, and to calculate the enrichment rates and the cost of these losses. The treatments evaluated were: a soil with a crop, consisting of conventional tillage with one plowing + two harrowings (CT, minimum tillage with one chisel plowing + one harrowing (MT, and no tillage (NT; and b bare soil: one plowing + two harrowings (BS. In CT, MT, and NT, black oat, soybean, vetch, corn, turnip, and black beans were cultivated. Over the 15 years, 15.5 Mg ha-1 of limestone, 525 kg ha-1 of N (urea, 1,302 kg ha-1 of P2O5 (triple superphosphate, and 1,075 kg ha-1 of K2O (potassium chloride were used in the soil. The P, K, Ca, Mg, and organic C contents in the soil were determined and also the P, K, Ca, and Mg sediments in the runoff water. From these contents, the total losses, the enrichment rates (ER, and financial losses were calculated. The NT increased the P, K, and organic C contents in the topsoil. The nutrients and organic C content in the runoff from NT was greater than from CT, showing that NT was not a fully conservationist practice for soil. The linear model y = a + bx fit the data within the level of significance (p≤0.01 when the values of P, K, and organic C in the sediments from erosion were related to those values in the soil surface layer. The nutrient and organic C contents were higher in the sediments from erosion than in the soil where the erosion originated, generating values of ER>1 for P, K, and organic C. The value of the total losses

  3. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance.

    Science.gov (United States)

    Zehetgruber, Bernhard; Kobler, Johannes; Dirnböck, Thomas; Jandl, Robert; Seidl, Rupert; Schindlbacher, Andreas

    2017-01-01

    Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. Soil CO 2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). Total soil CO 2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha -1  yr. -1 ). The undisturbed forest served as atmospheric C sink (2.1 t C ha -1  yr. -1 ), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha -1  yr. -1 ) was almost twice as high as six years after disturbance (-2.9 t C ha -1  yr. -1 ), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

  4. Loss of the soil carbon storage function of drained forested peatlands

    Directory of Open Access Journals (Sweden)

    C. Wüst-Galley

    2016-04-01

    Full Text Available Peatlands form a large but unstable C store. Drainage of peatlands converts them into C sources, which is undesirable if increases in atmospheric CO2 levels are to be minimised. Therefore, quantification of C stocks and an understanding of which ecosystems or management regimes are capturing or emitting C is needed. Such information is scarce for temperate European forests. We studied the soil properties of sixteen peatlands in Switzerland, representing three forest types, to test whether peatlands that are more strongly affected by drainage (according to vegetation have lost their function as C sinks or stores. Bulk density and ash enrichment, as well as H/C, O/C and C/N quotients, indicated that the soils of the two forest types that appeared to be more strongly affected by drainage were more degraded and had lost their functions as C stores. Long-term net rates of C loss estimated using the ash residue method were similar across all three forest types, for sites where this could be estimated.

  5. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100

    International Nuclear Information System (INIS)

    Jin, Zhenong; Zhuang, Qianlai; Zhu, Xudong; He, Jin-Sheng; Song, Weimin

    2015-01-01

    Methane (CH 4 ) is a potent greenhouse gas (GHG) that affects the global climate system. Knowledge about land–atmospheric CH 4 exchanges on the Qinghai-Tibetan Plateau (QTP) is insufficient. Using a coupled biogeochemistry model, this study analyzes the net exchanges of CH 4 and CO 2 over the QTP for the period of 1979–2100. Our simulations show that the region currently acts as a net CH 4 source with 0.95 Tg CH 4 y −1 emissions and 0.19 Tg CH 4 y −1 soil uptake, and a photosynthesis C sink of 14.1 Tg C y −1 . By accounting for the net CH 4 emission and the net CO 2 sequestration since 1979, the region was found to be initially a warming source until the 2010s with a positive instantaneous radiative forcing peak in the 1990s. In response to future climate change projected by multiple global climate models (GCMs) under four representative concentration pathway (RCP) scenarios, the regional source of CH 4 to the atmosphere will increase by 15–77% at the end of this century. Net ecosystem production (NEP) will continually increase from the near neutral state to around 40 Tg C y −1 under all RCPs except RCP8.5. Spatially, CH 4 emission or uptake will be noticeably enhanced under all RCPs over most of the QTP, while statistically significant NEP changes over a large-scale will only appear under RCP4.5 and RCP4.6 scenarios. The cumulative GHG fluxes since 1979 will exert a slight warming effect on the climate system until the 2030s, and will switch to a cooling effect thereafter. Overall, the total radiative forcing at the end of the 21st century is 0.25–0.35 W m −2 , depending on the RCP scenario. Our study highlights the importance of accounting for both CH 4 and CO 2 in quantifying the regional GHG budget. (paper)

  6. Reconfiguration of distribution nets

    International Nuclear Information System (INIS)

    Latorre Bayona, Gerardo; Angarita Marquez, Jorge Luis

    2000-01-01

    Starting of the location of the reconfiguration problem inside the context of the operation of distribution nets, of the quality indicators definition and of the presentation of the alternatives more used for reduction of technical losses, they are related diverse reconfiguration methodologies proposed in the technical literature, pointing out their three principals limitations; also are presents the results of lost obtained starting from simulation works carried out in distribution circuits of the ESSA ESP, which permitting to postulate the reconfiguration of nets like an excellent alternative to reduce technical losses

  7. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    Science.gov (United States)

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  8. Automated Monitoring of Carbon Fluxes in a Northern Rocky Mountain Forest Indicates Above-Average Net Primary Productivity During the 2015 Western U.S. Drought

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.

    2016-12-01

    As global temperatures rise in the 21st century, "hotter" droughts will become more intense and persistent, particularly in areas which already experience seasonal drought. Because forests represent a large and persistent terrestrial carbon sink which has previously offset a significant proportion of anthropogenic carbon emissions, forest carbon cycle responses to drought have become a prominent research concern. However, robust mechanistic modeling of carbon balance responses to projected drought effects requires improved observation-driven representations of carbon cycle processes; many such component processes are rarely monitored in complex terrain, are modeled or unrepresented quantities at eddy covariance sites, or are monitored at course temporal scales that are not conducive to elucidating process responses at process time scales. In the present study, we demonstrate the use of newly available and affordable automated dendrometers for the estimation of intra-seasonal Net Primary Productivity (NPP) in a Northern Rocky Mountain conifer forest which is impacted by seasonal drought. Results from our pilot study suggest that NPP was restricted by mid-summer moisture deficit under the extraordinary 2015 Western U.S. drought, with greater than 90% off stand growth occurring prior to August. Examination of growth on an inter-annual scale, however, suggests that the study site experienced above-average NPP during this exceptionally hot year. Taken together, these findings indicate that intensifying mid-summer drought in regional forests has affected the timing but has not diminished the magnitude of this carbon flux. By employing automated instrumentation for the intra-annual assessment of NPP, we reveal that annual NPP in regional forests is largely determined before mid-summer and is therefore surprisingly resilient to intensities of seasonal drought that exceed normal conditions of the 20th century.

  9. Author Correction: Global patterns in mangrove soil carbon stocks and losses

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Lewis, Carolyn J. Ewers; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2018-03-01

    In the version of this Article originally published, the potential carbon loss from soils as a result of mangrove deforestation was incorrectly given as `2.0-75 Tg C yr-1'; this should have read `2-8 Tg C yr-1'. The corresponding emissions were incorrectly given as ` 7.3-275 Tg of CO2e'; this should have read ` 7-29 Tg of CO2e'. The corresponding percentage equivalent of these emissions compared with those from global terrestrial deforestation was incorrectly given as `0.2-6%'; this should have read `0.6-2.4%'. These errors have now been corrected in all versions of the Article.

  10. Energy loss of argon in a laser-generated carbon plasma.

    Science.gov (United States)

    Frank, A; Blazević, A; Grande, P L; Harres, K; Hessling, T; Hoffmann, D H H; Knobloch-Maas, R; Kuznetsov, P G; Nürnberg, F; Pelka, A; Schaumann, G; Schiwietz, G; Schökel, A; Schollmeier, M; Schumacher, D; Schütrumpf, J; Vatulin, V V; Vinokurov, O A; Roth, M

    2010-02-01

    The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.

  11. Satellite passive microwaves for monitoring deforestation and drought-induced carbon losses in sub-Saharan Africa

    Science.gov (United States)

    Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.

    2017-12-01

    The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L

  12. Retention and loss of water extractable carbon in soils: effect of clay properties.

    Science.gov (United States)

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  13. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    Science.gov (United States)

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  14. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  15. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.

    Directory of Open Access Journals (Sweden)

    Peter I Macreadie

    Full Text Available Increased recognition of the global importance of salt marshes as 'blue carbon' (C sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2 if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora sediment C levels following seagrass (Thallasiatestudinum wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA, we recorded 296 patches (7.5 ± 2.3 m(2 mean area ± SE of vegetation loss (aged 3-12 months in a salt marsh meadow the size of a soccer field (7 275 m(2. Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

  16. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    Science.gov (United States)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C

  17. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Directory of Open Access Journals (Sweden)

    D. Zanotelli

    2013-05-01

    Full Text Available Carbon use efficiency (CUE, the ratio of net primary production (NPP over gross primary production (GPP, is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010. We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71

  18. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested

  19. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  20. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    Science.gov (United States)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  1. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000

    International Nuclear Information System (INIS)

    Houghton, R.A.

    2003-01-01

    Recent analyses of land-use change in the US and China, together with the latest estimates of tropical deforestation and afforestation from the FAO, were used to calculate a portion of the annual flux of carbon between terrestrial ecosystems and the atmosphere. The calculated flux includes only that portion of the flux resulting from direct human activity. In most regions, activities included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel) and the establishment of tree plantations. In the US, woody encroachment and woodland thickening as a result of fire suppression were also included. The calculated flux of carbon does not include increases or decreases in carbon storage as a result of environmental changes (e.g.; increasing concentrations of CO 2 , N deposition, climatic change or pollution). Globally, the long-term (1850-2000) flux of carbon from changes in land use and management released 156 PgC to the atmosphere, about 60% of it from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 PgC/yr, respectively, dominated by releases of carbon from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC/yr during the 1980s to a sink of 0.02 PgC/yr during the 1990s. According to the analyses summarized here, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions. The revisions were as large as 0.3 PgC/yr in individual regions but were largely offsetting, so that the global estimate for the 1980s was changed little from an earlier estimate. Uncertainties and recent improvements in the data used to calculate the flux of carbon from land-use change are reviewed, and the results are compared to other estimates of flux to evaluate the extent to which processes other than land-use change and

  2. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  3. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange

    Science.gov (United States)

    J.-C. Domec; J.S. King; A. Noormets; E. Treasure; M.J. Gavazzi; G. Sun; S.G. McNulty

    2010-01-01

    Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of...

  4. Directed graph based carbon flow tracing for demand side carbon obligation allocation

    DEFF Research Database (Denmark)

    Sun, Tao; Feng, Donghan; Ding, Teng

    2016-01-01

    In order to achieve carbon emission abatement, some researchers and policy makers have cast their focus on demand side carbon abatement potentials. This paper addresses the problem of carbon flow calculation in power systems and carbon obligation allocation at demand side. A directed graph based...... method for tracing carbon flow is proposed. In a lossy network, matrices such as carbon losses, net carbon intensity (NCI) and footprint carbon intensity (FCI) are obtained with the proposed method and used to allocate carbon obligation at demand side. Case studies based on realistic distribution...... and transmission systems are provided to demonstrate the effectiveness of the proposed method....

  5. Impact of Nitrogen Fertilization on Forest Carbon Sequestration and Water Loss in a Chronosequence of Three Douglas-Fir Stands in the Pacific Northwest

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2015-05-01

    Full Text Available To examine the effect of nitrogen (N fertilization on forest carbon (C sequestration and water loss, we used an artificial neural network model to estimate C fluxes and evapotranspiration (ET in response to N fertilization during four post-fertilization years in a Pacific Northwest chronosequence of three Douglas-fir stands aged 61, 22 and 10 years old in 2010 (DF49, HDF88 and HDF00, respectively. Results showed that N fertilization increased gross primary productivity (GPP for all three sites in all four years with the largest absolute increase at HDF00 followed by HDF88. Ecosystem respiration increased in all four years at HDF00, but decreased over the last three years at HDF88 and over all four years at DF49. As a result, fertilization increased the net ecosystem productivity of all three stands with the largest increase at HDF88, followed by DF49. Fertilization had no discernible effect on ET in any of the stands. Consequently, fertilization increased water use efficiency (WUE in all four post-fertilization years at all three sites and also increased light use efficiency (LUE of all the stands, especially HDF00. Our results suggest that the effects of fertilization on forest C sequestration and water loss may be associated with stand age and fertilization; the two younger stands appeared to be more efficient than the older stand with respect to GPP, WUE and LUE.

  6. Petri Nets

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE ... In Part 1 of this two-part article, we have seen im- ..... mable logic controller and VLSI arrays, office automation systems, workflow management systems, ... complex discrete event and real-time systems; and Petri nets.

  7. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  8. A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhao

    2015-01-01

    Full Text Available Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV, look-up tables (LUT, and nonlinear regression (NLR for estimating missing values of net ecosystem CO2 exchange (NEE in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.

  9. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    International Nuclear Information System (INIS)

    Vonk, J E; Mann, P J; Spencer, R G M; Bulygina, E B; Holmes, R M; Dowdy, K L; Davydova, A; Davydov, S P; Zimov, N; Eglinton, T I

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved and highly biologically available (biolabile) upon thaw. A better understanding of the processes regulating Yedoma degradation is important to improve estimates of the response and magnitude of permafrost carbon feedbacks to climate warming. In this study, we examine the composition of ice wedges and the influence of ice wedge thaw on the biolability of Yedoma OM. Incubation assays were used to assess OM biolability, fluorescence spectroscopy to characterize the OM composition, and potential enzyme activity rates to examine the controls and regulation of OM degradation. We show that increasing amounts of ice wedge melt water in Yedoma-leached incubations enhanced the loss of dissolved OM over time. This may be attributed to the presence of low-molecular weight compounds and low initial phenolic content in the OM of ice wedges, providing a readily available substrate that promotes the degradation of Yedoma OC. The physical vulnerability of ice wedges upon thaw (causing irreversible collapse), combined with the composition of ice wedge-engrained OM (co-metabolizing old OM), underlines the particularly strong potential of Yedoma to generate a positive feedback to climate warming relative to other forms of non-ice wedge permafrost. (letter)

  10. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

    International Nuclear Information System (INIS)

    Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M; Kicklighter, David W; David McGuire, A; Prinn, Ronald G

    2015-01-01

    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO 2 ) and methane (CH 4 ) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH 4 yr −1 , which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH 4 yr −1 ). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO 2 sink of −1.28 ± 0.03 Pg C yr −1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr −1 and a upland sink from −0.82 to −0.98 Pg C yr −1 . Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO 2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH 4 emissions, but lower summer CO 2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further

  11. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    Science.gov (United States)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  12. URCA neutrino-loss rates under conditions found in the carbon-oxygen cores of intermediate-mass stars

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1978-01-01

    In the hope of uncovering additional Urca-active nuclei that might appear during carbon burning in the electron-degenerate carbon-oxygen core of an asymptotic-branch star and avert a thermonuclear runaway, a nuclear-reaction matrix connecting 244 nuclear species has been constructed. Analytic expressions for rates of all relevant β-transitions are also presented and used. It is shown that in matter which is composed initially of elements in a solar-system distribution and which has undergone first complete hydrogen burning and then complete helium burning, neutrino-loss rates due to 11 Urca pairs either rival or exceed neutrino losses predicted by the charge- and neutral-current theories of weak interactions. Most remarkably, no new Urca pairs of any consequence appear as a result of several thousand reactions that are allowed to occur during carbon burning. The dominant Urca-loss rates are still due to the pairs 21 F- 21 Ne, 23 Ne- 23 Na, 25 Na- 25 Mg, and 25 Ne- 25 Na, as in matter containing a solar-system distribution of elements that has undergone prior processing during hydrogen- and helium-burning phases. The abundances of these Urca-active pairs are enhanced by one to three orders of magnitude as a consequence of carbon-burning reactions

  13. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  14. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  15. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage

    Science.gov (United States)

    Arning, Esther T.; van Berk, Wolfgang; Schulz, Hans-Martin

    2012-12-01

    Early diagenetic processes in Peruvian shelf and slope sediments are numerically reproduced by applying chemical thermodynamics in a complex, universal approach using the PHREEQC (version 2) computer code. The reaction kinetics of organic carbon remineralization are integrated into a set of equilibrium reactions by defining the type and the amount of converted organic matter in a certain time step. We calculate the most intense remineralization of organic carbon for present-day shelf sites, and the final carbon pool is dominated by secondary carbonates. This serves to highlight the influence of organic matter degradation and anaerobic oxidation of methane (AOM) on diagenetic mineral formation. The enrichment of aqueous methane and the formation of methane hydrate only takes place in slope sediments with high sedimentation rates that prevent diffusive loss of methane (e.g., Sites 682 and 688). Moreover, AOM prevents the diffusion of dissolved methane into overlying seawater. Throughout the Miocene period, these sites were located on a former shelf and the total carbon loss from the sediments was significantly higher in comparison with the present-day. Compared with the present-day shelf site, organic matter remineralization is high, and methane is produced but not stored within the sediments. Our model calculations rule out the possibility of present-day and former shelf site sediments off the coast of Peru as methane reservoirs. Remineralized TOC has to be considered, particularly in older sediments, when interpreting TOC profiles and calculating mass accumulation rates of total organic carbon (MARTOC). The more organic matter has been remineralized during the depositional history, the larger the difference between MARTOC calculated from measured TOC data, and from the sum of modeled and measured TOC data. Consequently, most reliable primary productivity calculations are based on the sum of measured relict TOC and the amount of remineralized organic carbon

  16. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration.

    Science.gov (United States)

    Thorhaug, Anitra; Poulos, Helen M; López-Portillo, Jorge; Ku, Timothy C W; Berlyn, Graeme P

    2017-12-15

    Seagrasses comprise a substantive North American and Caribbean Sea blue carbon sink. Yet fine-scale estimates of seagrass carbon stocks, fluxes from anthropogenic disturbances, and potential gains in sedimentary carbon from seagrass restoration are lacking for most of the Western Hemisphere. To begin to fill this knowledge gap in the subtropics and tropics, we quantified organic carbon (C org ) stocks, losses, and gains from restorations at 8 previously-disturbed seagrass sites around the Gulf of Mexico (GoM) (n=128 cores). Mean natural seagrass C org stocks were 25.7±6.7MgC org ha -1 around the GoM, while mean C org stocks at adjacent barren sites that had previously hosted seagrass were 17.8MgC org ha -1 . Restored seagrass beds contained a mean of 38.7±13.1MgC org ha -1 . Mean C org losses differed by anthropogenic impact type, but averaged 20.98±7.14MgC org ha -1 . C org gains from seagrass restoration averaged 20.96±8.59Mgha -1 . These results, when combined with the similarity between natural and restored C org content, highlight the potential of seagrass restoration for mitigating seagrass C org losses from prior impact events. Our GoM basin-wide estimates of natural C org totaled ~36.4Tg for the 947,327ha for the USA-GoM. Including Mexico, the total basin contained an estimated 37.2-37.5Tg C org . Regional US-GoM losses totaled 21.69Tg C org . C org losses differed significantly among anthropogenic impacts. Yet, seagrass restoration appears to be an important climate change mitigation strategy that could be implemented elsewhere throughout the tropics and subtropics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure

    Science.gov (United States)

    2014-10-17

    Huang, J. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyacrylate ...Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano 2011, 5, 968-974. 17. Lu, W.; Ruan...conductive GNRs, prepared using sodium/ potassium unzipping of multiwall carbon nanotubes, can boost the lithium storage performance of SnO2 NPs. The

  18. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  19. Effect of N-Acetylcysteine in Protecting from Simultaneous Noise and Carbon Monoxide Induced Hair Cell Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2011-06-01

    Full Text Available Background and Aim: N-acetylcysteine, a glutathione precursor and reactive oxygen species scavenger, is reported to be effective in reducing noise-induced hearing loss. Many workers in industry are exposed simultaneously to noise and chemical pollutants such as carbon monoxide. We investigated effectiveness of N-acetylcysteine in protecting the cochlea from simultaneous noise and carbon monoxide damages.Methods: Twelve rabbits were exposed simeltaneously to 100 dB sound pressure level of broad band noise and carbon monoxide 8 hours a day for 5 days. One hour before exposure, experimental group received 325 mg/kg of N-acetylcysteine while normal saline was administered for the control group. The protective effect of N-acetylcysteine was evaluated 3 weeks after exposure by histological assessment of the hair cells.Results: Simultaneous exposure to noise and carbon monoxide resulted in a considerable damage to the outer hair cells; however, the inner hair cells and the pillar cells remained intact. Use of N-acetylcysteine in the experimental group significantly reduced the extent of outer hair cell loss.Conclusion: N-acetylcysteine attenuates simultaneous noise and carbon monoxide induced hair cell damage in rabbits.

  20. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  1. Net Gain

    International Development Research Centre (IDRC) Digital Library (Canada)

    Describing the effect of tax incentives for import, production, and sale of nets and insecticides; and ..... So far, China is the only country where a system for the routine treatment of ...... 1993), and the trials in Ecuador and Peru (Kroeger et al.

  2. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Yujin Li

    2016-04-01

    Full Text Available Background: The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO2 as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events. Materials and methods: The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0–5 cm, 5–10 cm and 10–20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed. Results and discussion: The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p < 0.05 were observed for most shrub and forest communities, particularly for natural ones. Taking the natural secondary forest community as reference (i.e., soil loss and SOC loss were both 1.0, the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even

  3. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau.

    Science.gov (United States)

    Li, Yujin; Jiao, Juying; Wang, Zhijie; Cao, Binting; Wei, Yanhong; Hu, Shu

    2016-04-29

    The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO₂ as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC) storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events. The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0-5 cm, 5-10 cm and 10-20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed. The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p soil loss and SOC loss were both 1.0), the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even with higher soil loss, natural secondary forest communities produced higher SOC loss, primarily because of their higher SOC content, and the artificial R. pseudoacacia community with greater soil loss produced higher SOC loss. These results

  4. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.

    Science.gov (United States)

    Warren, Matthew; Hergoualc'h, Kristell; Kauffman, J Boone; Murdiyarso, Daniel; Kolka, Randall

    2017-12-01

    A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and

  5. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  6. Study of the Effect of Transport Current and Combined Transverse and Longitudinal Fields on the AC Loss in NET Prototype Conductors

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.

    1994-01-01

    AC losses in cables carrying DC as well as AC transport currents at different DC background fields up to 2T have been measured on three types of Nb3Sn subcables in a new test facility. In this facility it is possible to apply sinusoidal transverse AC fields up to dB/dt=5T/s and longitudinal AC

  7. How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment

    NARCIS (Netherlands)

    Limpens, J.; Holmgren, M.; Jacobs, C.M.J.; Zee, van der S.E.A.T.M.; Karofeld, E.; Berendse, F.

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree

  8. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Page, S. E.; Jones, T.; Moore, S.; Gauci, V.; Laiho, R.; Hruška, Jakub; Allott, T. E. H.; Billet, M. F.; Tipping, E.; Freeman, Ch.; Garnett, M. H.

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1215-1234 ISSN 0886-6236 Institutional support: RVO:67179843 Keywords : peatland * drainage * dissolved organic carbon * radiocarbon Subject RIV: EH - Ecology, Behaviour Impact factor: 3.965, year: 2014

  9. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, Ariane; Serrano, Oscar; Masqué , Pere; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà , N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, Carlos M.

    2018-01-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass

  10. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma.

  11. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  12. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes

    International Nuclear Information System (INIS)

    Che Renchao; Liang Chongyun; Shi Honglong; Zhou Xingui; Yang Xinan

    2007-01-01

    Iron-filled carbon-nitrogen (Fe/CN x ) nanotubes and iron-filled carbon (Fe/C) nanotubes were synthesized at 900 deg. C through a pyrolysis reaction of ferrocene/acetonitrile and ferrocene/xylene, respectively. The differences of structure and composition between the Fe/CN x nanotubes and Fe/C nanotubes were investigated by transmission electron microscopy and electron energy-loss spectroscopy (EELS). It was found that the morphology of Fe/CN x nanotubes is more corrugated than that of the Fe/C nanotubes due to the incorporation of nitrogen. By comparing the Fe L 2,3 electron energy-loss spectra of Fe/CN x nanotubes to those of the Fe/C nanotubes, the electron states at the interface between Fe and the tubular wall of both Fe/CN x nanotubes and Fe/C nanotubes were investigated. At the boundary between Fe and the wall of a CN x nanotube, the additional electrons contributed from the doped 'pyridinic-like' nitrogen might transfer to the empty 3d orbital of the encapsulated iron, therefore leading to an intensity suppression of the iron L 2,3 edge and an intensity enhancement of the carbon K edge. However, such an effect could not be found in Fe/C nanotubes. Microwave absorption properties of both Fe/CN x and Fe/C nanocomposites at 2-18 GHz band were studied

  13. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    Science.gov (United States)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  14. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  15. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  16. Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows.

    Directory of Open Access Journals (Sweden)

    Chelsea Arnold

    Full Text Available By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous "extreme" years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013. We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency.

  17. Circumpolar assessment of rhizosphere priming shows limited increase in carbon loss estimates for permafrost soils but large regional variability

    Science.gov (United States)

    Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.

    2017-12-01

    Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of

  18. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    Science.gov (United States)

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  19. Energy loss of /sup 12/C projectiles in different carbon modifications

    International Nuclear Information System (INIS)

    Baek, W.Y.; Both, G.H.; Gassen, D.; Neuwirth, W.; Zielinski, M.

    1987-01-01

    The stopping cross sections of the three carbon modifications diamond, graphite, and glassy carbon are investigated for carbon projectiles of intermediate velocity. The inverted Doppler-shift attenuation method was used as the experimental technique, and it enabled us to measure the ratios of the three stopping cross sections precisely over a wide energy range. For velocities between 3 and 4 times Bohr's velocity the stopping cross sections of graphite and glassy carbon are found to be 1.036 and 1.072 times larger than that of diamond, respectively. These differences are attributed to binding effects. To understand these effects, we have evaluated the mean ionization potentials utilizing the local-plasma approximation for the inner-shell electrons and the dielectric response function for the valence electrons. The theoretical ratios calculated by inserting these potentials into the Bethe-Bloch stopping-power formula agree well with our experimental results. Furthermore, we have obtained a value of 53.3 +- 4.1 fs for the lifetime of the first excited state of the /sup 12/C nucleus

  20. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Science.gov (United States)

    A.G. Lapenis; G.B. Lawrence; S.W. Bailey; B.F. Aparin; A.I. Shiklomanov; N.A. Speranskaya; M.S. Torn; M. Calef

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe...

  1. No rapid soil carbon loss after a windthrow event in the High Tatra

    NARCIS (Netherlands)

    Don, A.; Bärwolff, M.; Kalbitz, K.; Andruschkewitsch, R.; Jungkunst, H.F.; Schulze, E.-D.

    2012-01-01

    Windthrows are among the most important disturbances of forest ecosystems in Europe, with expected increasing frequency due to climate change. However, surprisingly little is known about soil carbon dynamics after windthrow mainly due to missing field assessments. After a large windthrow event in

  2. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses

    Science.gov (United States)

    Crop residues are potentially significant sources of feedstock for biofuel production in the US. However there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its fu...

  3. Making C4 crops more water efficient under current and future climate: Tradeoffs between carbon gain and water loss

    Science.gov (United States)

    Srinivasan, V.; Pignon, C.

    2017-12-01

    C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their

  4. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    Science.gov (United States)

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  5. Isotopes of carbon, nitrogen and oxygen as probes of nucleosynthesis, stellar mass losses and galactic evolution

    International Nuclear Information System (INIS)

    Audouze, J.; Lequeux, J.; Vigroux, L.

    1975-01-01

    Evidences for a 12 C/ 13 C ratio different in the interstellar medium and in the solar system (40 instead of 89) and for a large N/O ratio in the centers of galaxies are reviewed and are explained by an enrichment of the interstellar medium in 13 C and N by mass loss of stars of various masses [fr

  6. A method for measuring losses of soil carbon by heterotrophic respiration from peat soils under oil palms

    Science.gov (United States)

    Farmer, Jenny; Manning, Frances; Smith, Jo; Arn Teh, Yit

    2017-04-01

    The effects of drainage and deforestation of South East Asian peat swamp forests for the development of oil palm plantations has received considerable attention in both mainstream media and academia, and is the source of significant discussion and debate. However, data on the long-term carbon losses from these peat soils as a result of this land use change is still limited and the methods with which to collect this data are still developing. Here we present the ongoing evolution and implementation of a method for separating autotrophic and heterotrophic respiration by sampling carbon dioxide emissions at increasing distance from palm trees. We present the limitations of the method, modelling approaches and results from our studies. In 2011 we trialled this method in Sumatra, Indonesia and collected rate measurements over a six day period in three ages of oil palm. In the four year oil palm site there were thirteen collars that had no roots present and from these the peat based carbon losses were recorded to be 0.44 g CO2 m2 hr-1 [0.34; 0.57] (equivalent to 39 t CO2 ha-1 yr-1 [30; 50]) with a mean water table depth of 0.40 m, or 63% of the measured total respiration across the plot. In the two older palm sites of six and seven years, only one collar out of 100 had no roots present, and thus a linear random effects model was developed to calculate heterotrophic emissions for different distances from the palm tree. This model suggested that heterotrophic respiration was between 37 - 59% of total respiration in the six year old plantation and 39 - 56% in the seven year old plantation. We applied this method in 2014 to a seven year old plantation, in Sarawak, Malaysia, modifying the method to include the heterotrophic contribution from beneath frond piles and weed covered areas. These results indicated peat based carbon losses to be 0.42 g CO2 m2 hr-1 [0.27;0.59] (equivalent to 37 t CO2 ha-1 yr-1 [24; 52]) at an average water table depth of 0.35 m, 47% of the measured

  7. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  8. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    Science.gov (United States)

    We used a combination of data from USDA Forest Service inventories, intensivechronosequences, extensive sites, and satellite remote sensing, to estimate biomassand net primary production (NPP) for the forested region of western Oregon. Thestudy area was divided int...

  9. Importance of disturbance history on net primary productivity in the world's most productive forests and implications for the global carbon cycle.

    Science.gov (United States)

    Volkova, Liubov; Roxburgh, Stephen H; Weston, Christopher J; Benyon, Richard G; Sullivan, Andrew L; Polglase, Philip J

    2018-05-14

    Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha -1  year -1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha -1  year -1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha -1  year -1 , a value similar to the most productive temperate and tropical forests around the world. We then applied the age-class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha -1  year -1 ) than if forests were assumed to be at maturity (9.2 Mg C ha -1  year -1 ). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post-disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales. © 2018 John Wiley & Sons Ltd.

  10. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    Science.gov (United States)

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  11. Taphonomic trade-offs in tropical marine death assemblages: Differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies

    Science.gov (United States)

    Kidwell, Susan M.; Best, Mairi M. R.; Kaufman, Darrell S.

    2005-09-01

    Radiocarbon-calibrated amino-acid racemization ages of individually dated bivalve mollusk shells from Caribbean reef, nonreefal carbonate, and siliciclastic sediments in Panama indicate that siliciclastic sands and muds contain significantly older shells (median 375 yr, range up to ˜5400 yr) than nearby carbonate seafloors (median 72 yr, range up to ˜2900 yr; maximum shell ages differ significantly at p < 0.02 using extreme-value statistics). The implied difference in shell loss rates is contrary to physicochemical expectations but is consistent with observed differences in shell condition (greater bioerosion and dissolution in carbonates). Higher rates of shell loss in carbonate sediments should lead to greater compositional bias in surviving skeletal material, resulting in taphonomic trade-offs: less time averaging but probably higher taxonomic bias in pure carbonate sediments, and lower bias but greater time averaging in siliciclastic sediments from humid-weathered accretionary arc terrains, which are a widespread setting of tropical sedimentation.

  12. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    Science.gov (United States)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  13. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  14. Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure

    DEFF Research Database (Denmark)

    Jensen, Johannes Lund; Christensen, Bent Tolstrup; Schjønning, Per

    2018-01-01

    Assessments of changes in soil organic carbon (SOC) stocks depend heavily on reliable values of SOC content obtained by automated high‐temperature C analysers. However, historical as well as current research often relies on indirect SOC estimates such as loss‐on‐ignition (LOI). In this study, we...... revisit the conversion of LOI to SOC using soil from two long‐term agricultural field experiments and one arable field with different contents of SOC, clay and particles fractions were isolated from the arable soil. Samples were analysed for texture, LOI (500...

  15. Stable Carbon Isotope Characterization of CO2 Loss in Acid Mine Drainage Impacted Stream Water: Observations from a Laboratory Experiment

    Science.gov (United States)

    Ali, H. N.; Atekwana, E. A.

    2007-05-01

    Water from an acid mine drainage spring, ground water from a mine tailings pile, stream water and tap water were acidified to simulate acid mine drainage (AMD) contamination. The objective was to determine how acidification of stream water by AMD affected DIC loss and carbon isotope fraction. Two 20 L HDP containers (reactors) containing samples from each source were left un-acidified and allowed to evolve under ambient conditions for several weeks in the laboratory and two others were acidified. Acidification was carried out progressively with sulfuric acid to pH <3. For acidified samples, one reactor was acidified open to the atmosphere and the other closed from contact with atmosphere and CO2(g) was collected under vacuum. The un-acidified samples did not show significant alkalinity and DIC loss, and the 13C of DIC was enriched with time. The acidified samples showed decrease in alkalinity and DIC and increase in the 13C of DIC and CO2(g) with progressive acidification. The enrichment of 13C of DIC for un-acidified samples was due to exchange with atmospheric CO2. On the other hand, the 13C enrichment in the acidified samples was due to fractionation during dehydration of HCO3- and diffusive loss of CO2(g) from the aqueous phase. The actual values measured depended on the amount of CO2 lost from the aqueous phase during acidification. Samples with greater CO2 loss (closed acidification) had greater 13C enrichment. Beyond the HCO3- titration end point, the δ13C of DIC and CO2(g) was similar and nearly constant. The result of this study suggests that AMD effects on DIC can be modeled as a first order kinetic reaction and the isotope enrichment modeled using Rayleigh distillation.

  16. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    Science.gov (United States)

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  17. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, A.

    2018-03-29

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  18. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks

    Science.gov (United States)

    Arias-Ortiz, A.; Serrano, O.; Masqué, P.; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà, N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, C. M.

    2018-04-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay's seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4-21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  19. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation...... between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment......, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast...

  20. Carbon input belowground is the major C flux contributing to leaf litter mass loss

    DEFF Research Database (Denmark)

    Rubino, Mauro; Dungait; Evershed

    2010-01-01

    and analysed for their total C and 13C content. Gas chromatography (GC), GC–mass spectrometry (MS) and GC-combustion-isotope ratio (GC/C/IRMS) were used to analyse phospholipid fatty acids (PLFA) extracted from soil samples to identify the groups of soil micro-organisms that had incorporated litter-derived C...... and to determine the quantity of C incorporated by the soil microbial biomass (SMB). By the end of the experiment, the litter had lost about 80% of its original weight. The fraction of litter C lost as an input into the soil (67 ± 12% of the total C loss) was found to be twice as much as the fraction released...

  1. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  2. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  3. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  4. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  5. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    International Nuclear Information System (INIS)

    Zhang, Bingzhen; Shen, Chunzi; Yang, Liu; Li, Chunhui; Yi, Anji; Wang, Zhiping

    2013-01-01

    Carbon disulfide (CS 2 ) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS 2 via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD 50 (157.85 mg/kg), 0.2 LD 50 (315.7 mg/kg) and 0.4 LD 50 (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS 2 . - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss

  6. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingzhen [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Shen, Chunzi [Centers for Disease Control and Prevention, Zibo (China); Yang, Liu; Li, Chunhui; Yi, Anji [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Wang, Zhiping, E-mail: zhipingw@sdu.edu.cn [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China)

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  7. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    Science.gov (United States)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  8. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  10. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  11. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  12. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  13. Coral reefs will transition to net dissolving before end of century

    Science.gov (United States)

    Eyre, Bradley D.; Cyronak, Tyler; Drupp, Patrick; De Carlo, Eric Heinen; Sachs, Julian P.; Andersson, Andreas J.

    2018-02-01

    Ocean acidification refers to the lowering of the ocean’s pH due to the uptake of anthropogenic CO2 from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calcium carbonate (CaCO3) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained. Here we show that CaCO3 dissolution in reef sediments across five globally distributed sites is negatively correlated with the aragonite saturation state (Ωar) of overlying seawater and that CaCO3 sediment dissolution is 10-fold more sensitive to ocean acidification than coral calcification. Consequently, reef sediments globally will transition from net precipitation to net dissolution when seawater Ωar reaches 2.92 ± 0.16 (expected circa 2050 CE). Notably, some reefs are already experiencing net sediment dissolution.

  14. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  15. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  16. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  17. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available Soil loss tolerance (T value is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a, and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  18. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    International Nuclear Information System (INIS)

    Bruun, Esben W.; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana; Egsgaard, Helge; Ambus, Per; Jensen, Peter A.; Dam-Johansen, Kim

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3-12% of the added biochar-C had been emitted as CO 2 . On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO 2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.

  19. Lack of pupil reflex and loss of consciousness predict 30-day neurological sequelae in patients with carbon monoxide poisoning.

    Directory of Open Access Journals (Sweden)

    Jian-Fang Zou

    Full Text Available Predicting the neurological sequelae of carbon monoxide poisoning (COP has not been well studied. We investigated the independent predictors of neurological sequelae in patients with COP and combined these predictors to predict the prognosis.This study was conducted at four hospitals in Shandong Province, China. Data were retrospectively collected from 258 patients with COP between November 1990 and October 2011. Thirty-day neurological sequelae were the primary endpoints.A lack of pupil reflex and a loss of consciousness appear to be independent predictors for neurological sequelae in patients with COP. The presence of either one had a sensitivity of 77.0% (95% confidence interval [CI]: 69.3-83.2, a specificity of 47.1% (95% CI: 38.3-56.0, positive predictive value (PPV of 62.9% (95% CI: 55.2-70.1, and a negative predictive value (NPV of 63.6% (95% CI: 52.6-73.4. With both predictors present, the sensitivity was 11.5% (95% CI: 6.9 to 18.3, the specificity was 99.2 (95% CI: 94.7-100.0, the PPV was 94.1% (95% CI: 69.2-99.7, and the NPV was 49.0% (95% CI: 42.5-55.5.The risk for neurological sequelae apparently increased with the number of independent predictors. In patients with both predictors, the risk for neurological sequelae was 94.1%. Almost all (99.2% patients with neither predictor had no neurological sequelae. This finding may help physicians make decisions about and dispositions for patients with COP. For patients with a higher risk, earlier treatment and more appropriate utilization of health care services, including hyperbaric oxygen, should be considered.

  20. Electrolyte loss mechanism of molten carbonate fuel cells. 2.; Application to the cell with matrix electrolyte layer; Yoyu tansan`engata nenryo denchi ni okeru denkaishitsu loss kiko ni tsuite. 2.; Matrix gata denkaishitsuso wo yusuru denchi eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, A; Murata, K [Toshiba Research and Development Center, Kawasaki (Japan)

    1993-11-01

    A single cell of molten carbonate fuel cell using a matrix electrolyte layer fabricated by using the doctor blade process has been operated for several thousand hours, measured of electrolyte loss amount, and analyzed by using a new electrolyte loss mechanism. The result may be summarized as follows: according to a result of measuring the matrix layer pore distribution, the average pore size has increased little by little; pores with diameters greater than 2 {mu}m at which no electrolyte retention becomes possible remain at nearly constant ratio up to 1800 hours, but increased after 2500 hours; the pore capacity in ports with the largest electrolyte retaining diameter of 2 {mu}m or less showed slight decrease with time in the anode, and an initial decrease followed by flatness, and then a sharp decrease after 1800 hours in the matrix layer; the electrolyte loss measurement values have remained nearly constant for 25 hours to 1800 hours, but increased sharply thereafter; and the electrolyte loss in this single cell due to pore capacity decrease in pores as power generating parts with diameters smaller than 2 {mu}m was explained quantitatively by a new electrolyte loss mechanism. 11 refs., 6 figs.

  1. Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972-2002: Best estimates, uncertainties and research needs.

    Science.gov (United States)

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-01-01

    Reduction of carbon emissions from tropical deforestation and forest degradation is being considered a cost-effective way of mitigating the impacts of global warming. If such reductions are to be implemented, accurate and repeatable measurements of forest cover change and biomass will be required. In Papua New Guinea (PNG), which has one of the world's largest remaining areas of tropical forest, we used the best available data to estimate rainforest carbon stocks, and emissions from deforestation and degradation. We collated all available PNG field measurements which could be used to estimate carbon stocks in logged and unlogged forest. We extrapolated these plot-level estimates across the forested landscape using high-resolution forest mapping. We found the best estimate of forest carbon stocks contained in logged and unlogged forest in 2002 to be 4770 Mt (+/-13%). Our best estimate of gross forest carbon released through deforestation and degradation between 1972 and 2002 was 1178 Mt (+/-18%). By applying a long-term forest change model, we estimated that the carbon loss resulting from deforestation and degradation in 2001 was 53 Mt (+/-18%), rising from 24 Mt (+/-15%) in 1972. Forty-one percent of 2001 emissions resulted from logging, rising from 21% in 1972. Reducing emissions from logging is therefore a priority for PNG. The large uncertainty in our estimates of carbon stocks and fluxes is primarily due to the dearth of field measurements in both logged and unlogged forest, and the lack of PNG logging damage studies. Research priorities for PNG to increase the accuracy of forest carbon stock assessments are the collection of field measurements in unlogged forest and more spatially explicit logging damage studies. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. The responses of net primary production (NPP) and total carbon storage for the continental United States to changes in atmospheric CO{sub 2}, climate, and vegetation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, D.A. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    We extrapolated 3 biogeochemistry models (BIOME-BGC, CENTURY, and TEM) across the continental US with the vegetation distributions of 3 biogeography models (BIOME2, DOLY, and MAPSS) for contemporary climate at 355 ppmv CO{sub 2} and each of 3 GCM climate scenarios at 710 ppmv. For contemporary conditions, continental NPP ranges from 3132 to 3854 TgC/yr and total carbon storage ranges from 109 to 125 PgC. The responses of NPP range from no response (BIOME-BGC with DOLY or MAPSS vegetations for UKMO climate) to increases of 53% and 56% (TEM with BIOME2 vegetations for GFDL and OSU climates). The responses of total carbon storage vary from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to increases of 52% and 56% (TEM with BIOME2 vegetations for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are caused by both decreased forest area (from 44% to 38%) and photosynthetic water stress. The OSU and GFDL responses of TEM with BIOME2 vegetations are caused by forest expansion (from 46% to 67% for OSU and to 75% for GFDL) and increased nitrogen cycling.

  3. Simulation of Long-Term Carbon and Nitrogen Dynamics in Grassland-Based Dairy Farming Systems to Evaluate Mitigation Strategies for Nutrient Losses.

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas Shah

    Full Text Available Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N, and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively, manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of

  4. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  5. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  6. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  7. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations

    Directory of Open Access Journals (Sweden)

    J. Couwenberg

    2013-04-01

    Full Text Available Oil palm and Acacia pulpwood plantations are being established at a rapid rate on drained peatland in south-east Asia. Accurate measurements of associated carbon losses are still scarce, however, due mainly to difficulties of excluding autotrophic carbon fluxes from chamber-based flux measurements and uncertainties about the extent of waterborne losses. Here, we demonstrate a simple approach to determining total net carbon loss from subsidence records that is applicable to steady state conditions under continuous land use. We studied oil palm and Acacia plantations that had been drained for 5–19 years. Very similar subsidence rates and dry bulk density profiles were obtained, irrespective of crop type or age of the plantation, indicating that the peat profiles were in a steady state. These are conditions that allow for the deduction of net carbon loss by multiplying the rate of subsidence by the carbon density of the peat below the water table. With an average subsidence rate of 4.2 cm y-1 and a carbon density of 0.043 g cm-3, we arrive at a net carbon loss of ~18 t ha-1 y-1 (~66 t CO2-eq ha-1 y-1 for typical oil palm and Acacia plantations more than five years after drainage, without large differences between the plantation types. The proposed method enables calculation of regional or project-specific carbon loss rates to feed into mitigation schemes of the UN Framework Convention on Climate Change.

  8. RUSLE2015, GIS-RWEQ and CENTURY: new modelling integration for soil loss and carbon fluxes at European scale

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Lugato, Emanuele

    2016-04-01

    subsequently the core message focusing on soil erosion in agricultural lands was published in a recent correspondence in Nature (Nature, 526, 195). Additionally, the soil erosion potential for the European Union's forests was modelled using the high-resolution Global Forest Cover Loss map (2000-2012) and taking into consideration the lodging, forest cuts and forest fires (Ecological Indicators, 60:1208-1220). The first qualitative assessment of wind erosion at European scale has been done using the Index of Land Susceptibility to Wind Erosion (ILSWE) (Sustainability, 7(7): 8823-8836). The wind-erodible fraction of soil (EF) is one of the key parameters for estimating the susceptibility of soil to wind erosion (Geoderma, 232-234: 471-478). ILSWE was created by combining spatiotemporal variations of the most influential wind erosion factors such as climatic erosivity, soil erodibility, vegetation cover and landscape roughness) (Land Degradation & Development, 10.1002/ldr.2318). The quantitative assessment of wind erosion has been concluded recently using Revised Wind Erosion Equation (GIS-RWEQ). Modelling the lateral carbon fluxes due to soil erosion both at national scale (Land Use Policy, 50: 408-421) and at European scale (Global Change Biology, 10.1111/gcb.13198) is an important milestone in climate change perspective. We coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). In the future, the soil erosion (by water and wind) modelling activities will incorporate temporal variability, sediment transport and economic assessments of land degradation.

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  10. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  11. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  12. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  13. The carbon cycle and global warming

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  14. Carbon and nitrogen balances for six shrublands across Europe

    DEFF Research Database (Denmark)

    Beier, Claus; Emmett, Bridget A.; Tietema, Albert

    2009-01-01

    ,546 g C m−2, and the systems ranged from being net sinks (126 g C m−2 a−1) to being net sources (−536 g C m−2 a−1) of carbon with the largest storage and sink of carbon at wet and cold climatic conditions. The soil carbon store dominates the carbon budget at all sites and in particular at the site...... with a cold and wet climate where soil C constitutes 95% of the total carbon in the ecosystem. Respiration of carbon from the soil organic matter pool dominated the carbon loss at all sites while carbon loss from aboveground litter decomposition appeared less important. Total belowground carbon allocation...... that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically...

  15. Calculating carbon budgets of wind farms on Scottish peatlands

    Directory of Open Access Journals (Sweden)

    D.R. Nayak

    2010-04-01

    Full Text Available The reliability of calculation methods for the carbon emission savings to be achieved in Scotland by replacing power generated from fossil fuels (and other more conventional sources with that produced by large-scale wind farm developments is a cause for concern, largely in relation to wind farms sited on peatlands. Scottish Government policy is to deliver renewable energy without environmental harm, and to meet biodiversity objectives including the conservation of designated wildlife sites and important habitats such as peatlands. The implications for carbon emissions of developing a wind farm are, therefore, just one aspect of the suite of considerations that the planning system takes into account. This paper presents a simple methodology for prospectively calculating the potential carbon emission savings to be realised by developing wind farms on peatland, forestland or afforested peatland. The total carbon emission savings of an individual wind farm are estimated by accounting emissions from the power source that will be replaced by wind power against: loss of carbon due to production, transportation, erection, operation and dismantling of the wind farm components (the infrastructure overhead; loss of carbon due to backup power generation; loss of carbon stored in peat and forest; loss of carbon-fixing potential of peatland and forest; and carbon savings due to habitat improvement. Most of the carbon losses are determined by national infrastructure, but those from peat soil and plants are influenced by site selection and management practices. The extent of drainage around each constructed element of the wind farm is a major factor for greenhouse gas emissions. Consideration of an example site with a low extent of drainage, where management practices that minimise net carbon losses (e.g. undrained floating roads, habitat improvement and site restoration on decommissioning were used indicates that emissions from the soil and plants may cancel

  16. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss

    Science.gov (United States)

    Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu

    2010-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...

  17. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    Science.gov (United States)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  18. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change.

    Science.gov (United States)

    McGuire, A David; Lawrence, David M; Koven, Charles; Clein, Joy S; Burke, Eleanor; Chen, Guangsheng; Jafarov, Elchin; MacDougall, Andrew H; Marchenko, Sergey; Nicolsky, Dmitry; Peng, Shushi; Rinke, Annette; Ciais, Philippe; Gouttevin, Isabelle; Hayes, Daniel J; Ji, Duoying; Krinner, Gerhard; Moore, John C; Romanovsky, Vladimir; Schädel, Christina; Schaefer, Kevin; Schuur, Edward A G; Zhuang, Qianlai

    2018-04-10

    We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon-climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km 2 for the RCP4.5 climate and between 6 and 16 million km 2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (10 15 -g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon-climate feedback. Copyright © 2018 the Author(s). Published by PNAS.

  19. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  20. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  1. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  2. Severe soil frost reduced losses of carbon and nitrogen from the forest floor during simulated snowmelt: A laboratory experiment

    Science.gov (United States)

    Andrew B. Reinmann; Pamela H. Templer; John L. Campbell

    2012-01-01

    Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected...

  3. Evidences of the influence of the electronic stopping power in the elastic energy loss in thin films of amorphous carbon

    International Nuclear Information System (INIS)

    Grande, P.L.; Fichtner, P.F.P.; Behar, M.; Zawislak, E.F.C.

    1988-01-01

    Measurements of deepness of implanted ions in carbon films, show the possibility that the energy elastic component given to the medium, could be affected by the ineslastic stopping parcel, which could cause a total stopping power, smaller than the expected. (A.C.A.S.) [pt

  4. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    Science.gov (United States)

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  5. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements

    Science.gov (United States)

    Gatti, L. V.; Gloor, M.; Miller, J. B.; Doughty, C. E.; Malhi, Y.; Domingues, L. G.; Basso, L. S.; Martinewski, A.; Correia, C. S. C.; Borges, V. F.; Freitas, S.; Braz, R.; Anderson, L. O.; Rocha, H.; Grace, J.; Phillips, O. L.; Lloyd, J.

    2014-02-01

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48+/-0.18 petagrams of carbon per year (PgCyr-1) during the dry year but was carbon neutral (0.06+/-0.1PgCyr-1) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25+/-0.14PgCyr-1, which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39+/-0.10PgCyr-1 previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  6. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  7. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  8. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  9. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  10. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  11. NET SALARY ADJUSTMENT

    CERN Multimedia

    Finance Division

    2001-01-01

    On 15 June 2001 the Council approved the correction of the discrepancy identified in the net salary adjustment implemented on 1st January 2001 by retroactively increasing the scale of basic salaries to achieve the 2.8% average net salary adjustment approved in December 2000. We should like to inform you that the corresponding adjustment will be made to your July salary. Full details of the retroactive adjustments will consequently be shown on your pay slip.

  12. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Science.gov (United States)

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  13. Heat loss during carbon dioxide insufflation: comparison of a nebulization based humidification device with a humidification and heating system.

    Science.gov (United States)

    Noll, Eric; Schaeffer, Roland; Joshi, Girish; Diemunsch, Sophie; Koessler, Stefanie; Diemunsch, Pierre

    2012-12-01

    This study compared the heat loss observed with the use of MR860 AEA Humidifier™ system (Fisher & Paykel Healthcare, New Zealand), which humidifies and heats the insufflated CO(2), and the use of the AeronebPro™ device (Aerogen, Ireland), which humidifies but does not heat the insufflated CO(2). With institutional approval, 16 experiments were conducted in 4 pigs. Each animal, acting as its own control, was studied at 8-day intervals in randomized sequence with the following four conditions: (1) control (C) no pneumoperitoneum; (2) standard (S) insufflation with nonhumidified, nonheated CO(2); (3) Aeroneb™ (A): insufflation with humidified, nonheated CO(2); and (4) MR860 AEA humidifier™ (MR): insufflation with humidified and heated CO(2). The measured heat loss after 720L CO(2) insufflation during the 4 h was 1.03 ± 0.75 °C (mean ± SEM) in group C; 3.63 ± 0.31 °C in group S; 3.03 ± 0.39 °C in group A; and 1.98 ± 0.09 °C in group MR. The ANOVA showed a significant difference with time (p = 0.0001) and with the insufflation technique (p = 0.024). Heat loss in group C was less than in group S after 60 min (p = 0.03), less than in group A after 70 min (p = 0.03), and less than in group MR after 150 min (p = 0.03). The heat loss in group MR was less than in group S after 50 min (p = 0.04) and less than in group A after 70 min (p = 0.02). After 160 min, the heat loss in group S was greater than in group A (p = 0.03). As far as heat loss is concerned, for laparoscopic procedures of less than 60 min, there is no benefit of using any humidification with or without heating. However, for procedures greater than 60 min, use of heating along with humidification, is superior.

  14. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  15. Does diet intervention in line with nutrition recommendations affect dietary carbon footprint? Results from a weight loss trial among lactating women.

    Science.gov (United States)

    Huseinovic, E; Ohlin, M; Winkvist, A; Bertz, F; Sonesson, U; Brekke, H K

    2017-10-01

    Results from studies evaluating the sustainability of diets combining environmental and nutritional aspects have been diverse; thus, greenhouse gas emissions (that is, carbon footprint (CF)) of diets in line with dietary recommendations in free-living individuals warrants further examination. Here, changes in dietary CF related to changes in food choice during a weight loss trial among lactating women who received a 12-week diet intervention based on the Nordic Nutrition Recommendations (NNR) 2004 were analyzed. The objective of this study was to examine if a diet intervention based on NNR 2004 results in reduced dietary CF. Changes in dietary CF were analyzed among 61 lactating women participating in a weight loss trial. Food intake data from 4-day weighed diet records and results from life cycle analyses were used to examine changes in dietary CF across eight food groups during the intervention, specified in the unit carbon dioxide equivalent (CO 2 eq/day). Differences in changes in dietary CF between women receiving diet treatment (D-group) and women not receiving it (ND-group) were compared. There was no difference in change in dietary CF of the overall diet between D- and ND-group (P>0.05). As for the eight food groups, D-group increased their dietary CF from fruit and vegetables (+0.06±0.13 kg CO 2 eq/day) compared with a decrease in ND-group (-0.01±0.01 kg CO 2 eq/day) during the intervention, P=0.01. A diet intervention in line with NNR 2004 produced clinically relevant weight loss, but did not reduce dietary CF among lactating women with overweight and obesity. Dietary interventions especially designed to decrease dietary CF and their coherence with dietary recommendations need further exploration.

  16. Comparative analysis of wood chips and bundles - Costs, carbon dioxide emissions, dry-matter losses and allergic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-01-15

    There are multiple systems for the collection, processing, and transport of forest residues for use as a fuel. We compare two systems in use in Sweden to analyze differences in fuel cost, CO{sub 2} emissions, dry-matter loss, and potential for allergic reactions. We compare a bundle system with the traditional Swedish chip system, and then do an in-depth comparison of a Finnish bundle system with the Swedish bundle system. Bundle systems have lower costs, while the allergic reactions do not differ significantly between the systems. The bundle machine is expensive, but results in high productivity and in an overall cost-effective system. The bundle system has higher primary energy use and CO{sub 2} emissions, but the lower dry-matter losses in the bundle system chain give CO{sub 2} emissions per delivered MWh almost as low as for the chip system. Also, lower dry-matter losses mean that more biomass per hectare can be extracted from the clear-cut area. This leads to a higher possible substitution of fossil fuels per hectare with the bundle system, and that more CO{sub 2} emissions from fossil fuel can be avoided per hectare than in the chip system. The Finnish bundle system with its more effective compressing and forwarding is more cost- and energy-effective than the Swedish bundle system, but Swedish bundle systems can be adapted to be more effective in both aspects. (author)

  17. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  18. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  19. Water Conservation in Kalanchoe blossfeldiana in Relation to Carbon Dioxide Dark Fixation.

    Science.gov (United States)

    Zabka, G G; Chaturvedi, S N

    1975-03-01

    The succulent Kalanchoe blossfeldiana v. Poel. var Tom Thumb was treated on long and short photoperiods for 6 weeks during which short day plants developed thicker leaves, flowered prolifically, and exhibited extensive net dark fixation of carbon dioxide. In contrast, long day plants remained vegetative and did not develop thicker leaves or exhibit net carbon dioxide dark fixation. When examined after the photoperiodic state described, long day plants showed approximately three times more water loss over a 10-day period than short day plants. Water loss is similar during light and dark periods for short day plants but long day plants exhibited two times more water loss during the day than at night. The latter plants also lost three and one-half times more water during the light period than short day plants. The water conservation by short day plants is correlated with conditions of high carbon dioxide dark fixation and effects of its related Crassulacean acid metabolism on stomatal behavior.

  20. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    Directory of Open Access Journals (Sweden)

    Andrew Whelan

    Full Text Available Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric. This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1, while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1, respectively, but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1 at the mesic, intermediate and xeric sites, respectively. Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months, drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  1. Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to prevent enamel loss after erosive challenges using an intra-oral erosion model.

    Science.gov (United States)

    Sullivan, R; Rege, A; Corby, P; Klaczany, G; Allen, K; Hershkowitz, D; Godder, B; Wolff, M

    2014-01-01

    The objective of this study was to assess the ability of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin' Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP) to prevent enamel loss from an erosive acid challenge in comparison to a silica-based dentifrice with 1450 ppm fluoride as MFP using an intra-oral erosion model. The intra-oral clinical study used a double blind, two-treatment, crossover design. A palatal retainer was used to expose the enamel specimens to the oral environment during the five-day treatment period. The retainer was designed to house three partially demineralized bovine enamel samples. The study population was composed of 24 adults, ages 18 to 70 years. The study consisted of two treatment periods, with a washout period lasting seven (+/- three) days preceding each treatment phase. A silica-based dentifrice without fluoride was used during the washout period. The Test Dentifrice used in this study contained 8% arginine and calcium carbonate (Pro-Argin Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP). The Control Dentifrice was silica-based and contained 1450 ppm fluoride as MFP. The treatment period lasted five days, during which the panelists wore the retainer 24 hours a day (except during meals and the ex vivo acid challenges) and brushed with their assigned product while wearing the retainer. The panelists brushed once in the morning and once in the evening each day for one minute, followed by a one-minute swish with the slurry and a rinse with 15 ml of water. The panelists brushed only their teeth and not the specimens directly. There were four ex vivo challenges with 1% citric acid dispersed throughout the day: two in the morning, one in the afternoon, and one in the evening. Mineral loss was monitored by a quantitative light fluorescence (QLF) technique. Twenty-three of 24 subjects successfully completed the study. The one subject who did not complete the study did so for

  2. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  3. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  4. NET system integration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Mitchell, N.; Salpietro, E.; Buzzi, U.; Gritzmann, P.

    1985-01-01

    The NET system integration procedure is the process by which the requirements of the various Tokamak machine design areas are brought together to form a compatible machine layout. Each design area produces requirements which generally allow components to be built at minimum cost and operate with minimum technical risk, and the final machine assembly should be achieved with minimum departure from these optimum designs. This is carried out in NET by allowing flexibility in the maintenance and access methods to the machine internal components which must be regularly replaced by remote handling, in segmentation of these internal components and in the number of toroidal field coils

  5. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change

    Science.gov (United States)

    McGuire, A. David; Lawrence, David M.; Koven, Charles; Clein, Joy S.; Burke, Eleanor J.; Chen, Guangsheng; Jafarov, Elchin; MacDougall, Andrew H.; Marchenko, Sergey S.; Nicolsky, Dmitry J.; Peng, Shushi; Rinke, Annette; Ciais, Philippe; Gouttevin, Isabelle; Hayes, Daniel J.; Ji, Duoying; Krinner, Gerhard; Moore, John C.; Romanovsky, Vladimir; Schadel, Christina; Schaefer, Kevin; Schuur, Edward A.G.; Zhuang, Qianlai

    2018-01-01

    We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.

  6. Losses of soil organic carbon by converting tropical forest to plantations: Assessment of erosion and decomposition by new δ13C approach

    Science.gov (United States)

    Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov

    2015-04-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber and extensive rubber plantations in Jambi province on Sumatra Island. We developed and applied a new δ13C based approach to assess and separate two processes: 1) erosion and 2) decomposition. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). The C content in the subsoil was similar in the forest and the plantations. We therefore assumed that a shift to higher δ13C values in the subsoil of the plantations corresponds to the losses of the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the undisturbed soils under forest with the disturbed soils under plantations. The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. SOC availability, measured by microbial respiration rate and Fourier Transformed Infrared Spectroscopy, was lower under oil palm plantations. Despite similar trends in C losses and erosion in intensive plantations, our results indicate that microorganisms in oil palm plantations mineralized mainly the old C stabilized prior to conversion, whereas microorganisms under rubber plantations mineralized the fresh C from the litter, leaving the old C pool mainly untouched. Based on the lack of C input from litter, we expect further losses of SOC under oil palm plantations, which therefore are a less sustainable land

  7. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Science.gov (United States)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  8. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  9. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  10. Neuronal nets in robotics

    International Nuclear Information System (INIS)

    Jimenez Sanchez, Raul

    1999-01-01

    The paper gives a generic idea of the solutions that the neuronal nets contribute to the robotics. The advantages and the inconveniences are exposed that have regarding the conventional techniques. It also describe the more excellent applications as the pursuit of trajectories, the positioning based on images, the force control or of the mobile robots management, among others

  11. Net4Care platform

    DEFF Research Database (Denmark)

    2012-01-01

    , that in turn enables general practitioners and clinical staff to view observations. Use the menus above to explore the site's information resources. To get started, follow the short Hello, World! tutorial. The Net4Care project is funded by The Central Denmark Region and EU via Caretech Innovation....

  12. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism an...

  13. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  14. BacillusRegNet

    DEFF Research Database (Denmark)

    Misirli, Goksel; Hallinan, Jennifer; Röttger, Richard

    2014-01-01

    As high-throughput technologies become cheaper and easier to use, raw sequence data and corresponding annotations for many organisms are becoming available. However, sequence data alone is not sufficient to explain the biological behaviour of organisms, which arises largely from complex molecular...... the associated BacillusRegNet website (http://bacillus.ncl.ac.uk)....

  15. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  16. NACP North American 8-km Net Ecosystem Exchange and Component Fluxes, 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides modeled carbon flux estimates at 8-km spatial resolution over North America for the year 2004 of (1) net ecosystem exchange (NEE) of carbon...

  17. Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions

    International Nuclear Information System (INIS)

    Smith, Jo; Nayak, Dali Rani; Smith, Pete

    2014-01-01

    Onshore wind energy is a key component of the renewable energies used by governments to reduce carbon emissions from electricity production, but will carbon emissions be reduced when wind farms are located on carbon-rich peatands? Wind farms are often located in uplands because most are of low agricultural value, are distant from residential areas, and are windy. Many UK uplands are peatlands, with layers of accumulated peat that represent a large stock of soil carbon. When peatlands are drained for construction there is a higher risk of net carbon loss than for mineral soils. Previous work suggests that wind farms sited on peatlands can reduce net carbon emissions if strictly managed for maximum retention of carbon. Here we show that, whereas in 2010, most sites had potential to provide net carbon savings, by 2040 most sites will not reduce carbon emissions even with careful management. This is due to projected changes in the proportion of fossil fuels used to generate electricity. The results suggest future policy should avoid constructing wind farms on undegraded peatlands unless drainage of peat is minimal and the volume excavated in foundations can be significantly reduced compared to energy output. - Highlights: • Future wind farms located on undegraded peats will not reduce carbon emissions. • This is due to projected changes in fossil fuels used to generate electricity. • Future policy should avoid constructing wind farms on undegraded peats

  18. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments.

    Science.gov (United States)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert; Kätterer, Thomas; Christensen, Bent T; Chenu, Claire; Barré, Pierre; Vasilyeva, Nadezda A; Ekblad, Alf

    2015-03-01

    Changes in the (12)C/(13)C ratio (expressed as δ(13)C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of (12)C and (13)C isotopes and the different isotopic composition of various SOC pool components. However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ(13)C and SOC in soil sampled during 1929-2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27-80 years and covering a latitudinal range of 11°. The bare fallow soils lost 33-65% of their initial SOC content and showed a mean annual δ(13)C increase of 0.008-0.024‰. The (13)C enrichment could be related empirically to SOC losses by a Rayleigh distillation equation. A more complex mechanistic relationship was also examined. The overall estimate of the fractionation coefficient (ε) was -1.2 ± 0.3‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in (13)C natural abundance. The variance of ε may be ascribed to site characteristics not disclosed in our study, but the very similar kinetics measured across our five experimental sites suggest that overall site-specific factors (including climate) had a marginal influence and that it may be possible to isolate a general mechanism causing the enrichment, although pre-fallow land use may have some impact on isotope abundance and fractionation.

  19. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    Science.gov (United States)

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  20. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  1. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    -accompanying Master courses, placements of internships, and PhD scholarship projects. A new scholarship project, “SHINE”, was launched in autumn 2013 in the frame work of the Marie Curie program of the European Union (Initial Training Network, ITN). 13 PhD-scholarships on solar district heating, solar heat......SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...... for industrial processes, as well as sorption stores and materials started in December 2013. Additionally, the project comprises a training program with five PhD courses and several workshops on solar thermal engineering that will be open also for other PhD students working in the field. The research projects...

  2. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  3. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  4. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Directory of Open Access Journals (Sweden)

    Domke Grant M

    2011-11-01

    Full Text Available Abstract Background Standing dead trees are one component of forest ecosystem dead wood carbon (C pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Results Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Conclusions Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog

  5. Optimizing sampling design to deal with mist-net avoidance in Amazonian birds and bats.

    Directory of Open Access Journals (Sweden)

    João Tiago Marques

    Full Text Available Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.

  6. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  7. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  8. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    Science.gov (United States)

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  9. Proof Nets for Lambek Calculus

    NARCIS (Netherlands)

    Roorda, Dirk

    1992-01-01

    The proof nets of linear logic are adapted to the non-commutative Lambek calculus. A different criterion for soundness of proof nets is given, which gives rise to new algorithms for proof search. The order sensitiveness of the Lambek calculus is reflected by the planarity condition on proof nets;

  10. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  11. The Net Advance of Physics

    Science.gov (United States)

    THE NET ADVANCE OF PHYSICS Review Articles and Tutorials in an Encyclopædic Format Established 1995 [Link to MIT] Computer support for The Net Advance of Physics is furnished by The Massachusetts Newest Additions SPECIAL FEATURES: Net Advance RETRO: Nineteenth Century Physics History of Science

  12. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Jamalian, Majid; Ghasemi, Ali; Paimozd, Ebrahim

    2014-01-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe 9.5 (Mn 1.25 Sn 0.625 Ti 0.625 ) O 19 nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  13. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jamalian, Majid, E-mail: mjscience@yahoo.com; Ghasemi, Ali; Paimozd, Ebrahim

    2014-08-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe{sub 9.5} (Mn{sub 1.25}Sn{sub 0.625}Ti{sub 0.625}) O{sub 19} nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  14. Combining nitrous oxide with carbon dioxide decreases the time to loss of consciousness during euthanasia in mice--refinement of animal welfare?

    Science.gov (United States)

    Thomas, Aurelie A; Flecknell, Paul A; Golledge, Huw D R

    2012-01-01

    Carbon dioxide (CO(2)) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the "second gas" effect. We therefore evaluated the addition of Nitrous Oxide (N(2)O) to a rising CO(2) concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N(2)O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O(2) (95%); Isoflurane (5%)+N(2)O (75%)+O(2) (25%) and N(2)O (75%)+O(2) (25%) with a total flow rate of 3 l/min (into a 7 l induction chamber). The addition of N(2)O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO(2) (20% of the chamber volume.min-1); CO(2)+N(2)O (20 and 60% of the chamber volume.min(-1) respectively); or CO(2)+Nitrogen (N(2)) (20 and 60% of the chamber volume.min-1). Arterial partial pressure (P(a)) of O(2) and CO(2) were measured as well as blood pH and lactate. When compared to the gradually rising CO(2) euthanasia, addition of a high concentration of N(2)O to CO(2) lowered the time to loss of righting reflex by 10.3% (Peuthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia.

  15. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  16. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    Science.gov (United States)

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  17. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  18. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  19. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. What Have We Learned About Arctic Carbon Since The First State of the Carbon Cycle Report?

    Science.gov (United States)

    Schuur, E.

    2015-12-01

    differ in the extent that they project that soil carbon loss will be compensated by new plant growth and carbon input to the surface soil. Together, the loss of carbon from thawing permafrost soils and disturbance by fire in combination with offsetting plant uptake response determines the net effect of high latitudes on the carbon cycle of both North America and the globe.

  1. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration

    International Nuclear Information System (INIS)

    Gillam, K.M.; Nova Scotia Agricultural College, Truro, NS; Zebarth, B.J.; Burton, D.L.

    2008-01-01

    The factors controlling nitrous oxide (N 2 O) emissions vary with different soil and environmental conditions and management practices. This study was conducted to determine the importance of soil aeration, nitrate (NO 3 ) addition, carbon (C) additions, and C sources on gaseous nitrogen (N) losses from the denitrification of arable soils at a potato farm in Atlantic Canada. Denitrification and N 2 O emissions were measured using acetylene inhibition. An N 2 O and nitrogen gas (N 2 ) ratio of 0.7 showed that most emissions occurred as N 2 O. Emissions at water-filled pore spaces (WFPs) of 0.45 m 3 per m 3 were negligible. N 2 O emissions increased with NO 3 and C additions. Results suggested that soil aeration plays a dominant role in controlling the magnitude of denitrification and N 2 O emissions. However, soil NO 3 supplies in this study did not limit the denitrification process. The study showed that N 2 O emissions are controlled by C availability when there is a high degree of soil disturbance and high fertilizer N inputs. The relationship between the demand and supply of terminal electron acceptors (TEAs) was used to explain the spatial distribution of the N 2 O emissions. Higher WFPs and lower soil NO 3 concentrations resulted in higher rates of total denitrification. It was concluded that further research is needed to examine the role of overall soil and crop management in relation to C availability when developing mitigation strategies. 52 refs., 4 tabs

  2. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  3. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Science.gov (United States)

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  4. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Daniel J. Hayes; David P. Turner; Graham Stinson; A. David Mcguire; Yaxing Wei; Tristram O. West; Linda S. Heath; Bernardus Dejong; Brian G. McConkey; Richard A. Birdsey; Werner A. Kurz; Andrew R. Jacobson; Deborah N. Huntzinger; Yude Pan; W. Mac Post; Robert B. Cook

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2,...

  5. Variability in carbon exchange of European croplands

    DEFF Research Database (Denmark)

    Eddy J, Moors; Jacobs, Cor; Jans, Wilma

    2010-01-01

    The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken as the st......The estimated net ecosystem exchange (NEE) of CO2 based on measurements at 17 flux sites in Europe for 45 cropping periods showed an average loss of -38 gC m-2 per cropping period. The cropping period is defined as the period after sowing or planting until harvest. The variability taken...... as the standard deviation of these cropping periods was 251 gC m-2. These numbers do not include lateral inputs such as the carbon content of applied manure, nor the carbon exchange out of the cropping period. Both are expected to have a major effect on the C budget of high energy summer crops such as maize. NEE...... and gross primary production (GPP) can be estimated by crop net primary production based on inventories of biomass at these sites, independent of species and regions. NEE can also be estimated by the product of photosynthetic capacity and the number of days with the average air temperature >5 °C. Yield...

  6. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  7. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  8. Hearing loss

    Science.gov (United States)

    Decreased hearing; Deafness; Loss of hearing; Conductive hearing loss; Sensorineural hearing loss; Presbycusis ... Symptoms of hearing loss may include: Certain sounds seeming too loud Difficulty following conversations when two or more people are talking ...

  9. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... on the ‘network’ itself as a phenomenon and are often using technological networks as a mean of production and distribution. This changes the artistic practice and the distribution channels of art works – and the traditional notions of ‘work’, ‘origin’ and ‘rights’ are increasingly perceived as limiting...... the praxis of the artist. We see different kinds of interventions and activism (including ‘hacktivism’) using the network as a way of questioning the invisible rules that govern public and semi-public spaces. Who ‘owns’ them? What kind of social relationships do they generate? On what principle...

  10. Net4Care

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2012-01-01

    , health centers are getting larger and more distributed, and the number of healthcare professionals does not follow the trend in chronic diseases. All of this leads to a need for telemedical and mobile health applications. In a Danish context, these applications are often developed through local...... (innovative) initiatives with little regards for national and global (standardization) initiatives. A reason for this discrepancy is that the software architecture for national (and global) systems and standards are hard to understand, hard to develop systems based on, and hard to deploy. To counter this, we...... propose a software ecosystem approach for telemedicine applications, providing a framework, Net4Care, encapsulating national/global design decisions with respect to standardization while allowing for local innovation. This paper presents an analysis of existing systems, of requirements for a software...

  11. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  12. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  13. Combining nitrous oxide with carbon dioxide decreases the time to loss of consciousness during euthanasia in mice--refinement of animal welfare?

    Directory of Open Access Journals (Sweden)

    Aurelie A Thomas

    Full Text Available Carbon dioxide (CO(2 is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the "second gas" effect. We therefore evaluated the addition of Nitrous Oxide (N(2O to a rising CO(2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N(2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%+O(2 (95%; Isoflurane (5%+N(2O (75%+O(2 (25% and N(2O (75%+O(2 (25% with a total flow rate of 3 l/min (into a 7 l induction chamber. The addition of N(2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO(2 (20% of the chamber volume.min-1; CO(2+N(2O (20 and 60% of the chamber volume.min(-1 respectively; or CO(2+Nitrogen (N(2 (20 and 60% of the chamber volume.min-1. Arterial partial pressure (P(a of O(2 and CO(2 were measured as well as blood pH and lactate. When compared to the gradually rising CO(2 euthanasia, addition of a high concentration of N(2O to CO(2 lowered the time to loss of righting reflex by 10.3% (P<0.001, lead to a lower P(aO(2 (12.55 ± 3.67 mmHg, P<0.001, a higher lactataemia (4.64 ± 1.04 mmol.l(-1, P = 0.026, without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO(2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia.

  14. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    International Nuclear Information System (INIS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-01-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30–130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5–52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30–90

  15. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  16. Net neutrality and audiovisual services

    OpenAIRE

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication networks: the control over the distribution of audiovisual services constitutes a vital part of the problem. In this contribution, the phenomenon of net neutrality is described first. Next, the European a...

  17. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  19. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  20. Initial CAD investigations for NET

    International Nuclear Information System (INIS)

    Katz, F.; Leinemann, K.; Ludwig, A.; Marek, U.; Olbrich, W.; Schlechtendahl, E.G.

    1985-11-01

    This report summarizes the work done under contract no. 164/84-7/FU-D-/NET between the Commission of the European Communities and KfK during the period from June 1, 1984, through May 31, 1985. The following topics are covered in this report: Initial modelling of NET version NET2A, CAD system extension for remote handling studies, analysis of the CAD information structure, work related to the transfer of CAD information between KfK and the NET team. (orig.) [de

  1. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  2. Rare, but challenging tumors: NET

    International Nuclear Information System (INIS)

    Ivanova, D.; Balev, B.

    2013-01-01

    Full text: Introduction: Gastroenteropancreatic Neuroendocrine Tumors (GEP - NET) are a heterogeneous group of tumors with different locations and many different clinical, histological, and imaging performance. In a part of them a secretion of various organic substances is present. The morbidity of GEP - NET in the EU is growing, and this leads to increase the attention to them. What you will learn: Imaging methods used for localization and staging of GEP - NET, characteristics of the study’s protocols; Classification of GEP - NET; Demonstration of typical and atypical imaging features of GEP - NET in patients registered at the NET Center at University Hospital ‘St. Marina’, Varna; Features of metastatic NET, The role of imaging in the evaluation of treatment response and follow-up of the patients. Discussion: The image semiotics analysis is based on 19 cases of GEP - NET registered NET Center at University Hospital ‘St. Marina’. The main imaging method is multidetector CT (MDCT), and magnetic resonance imaging (MRI ) has advantages in the evaluation of liver lesions and the local prevalence of anorectal tumors. In patients with advanced disease and liver lesions the assessment of skeletal involvement (MRI/ nuclear medical method) is mandatory. The majority of GEP - NET have not any specific imaging findings. Therefore it is extremely important proper planning and conducting of the study (MDCT and MR enterography; accurate assessment phase of scanning, positive and negative contrast). Conclusion: GEP - NET is a major diagnostic challenge due to the absence of typical imaging characteristics and often an overlap with those of the tumors of different origin can be observed. Therefore, a good knowledge of clinical and imaging changes occurring at different locations is needed. MDCT is the basis for the diagnosis, staging and follow-up of these neoplasms

  3. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    Science.gov (United States)

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  4. Declining resilience of ecosystem functions under biodiversity loss.

    Science.gov (United States)

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M

    2015-12-08

    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  5. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  6. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    variability and increasing atmospheric CO2 over the study period. This amount is large enough to have compensated for most of the carbon losses associated with tropical deforestation in the Amazon during the same period. 5 Comparisons with empirical data indicate that climate variability and CO2 fertilization explain most of the variation in net carbon storage for the undisturbed ecosystems. Our analyses suggest that assessment of the regional carbon budget in the tropics should be made over at least one cycle of El Nino-Southern Oscillation because of inter-annual climate variability. Our analyses also suggest that proper scaling of the site-specific and sub-annual measurements of carbon fluxes to produce Basin-wide flux estimates must take into account seasonal and spatial variations in net carbon storage.

  7. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  8. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  9. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  10. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  11. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  12. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  13. Pregnancy Loss

    Science.gov (United States)

    ... To receive Pregnancy email updates Enter email Submit Pregnancy loss Pregnancy loss is a harsh reality faced ... have successful pregnancies. Expand all | Collapse all Why pregnancy loss happens As many as 10 to 15 ...

  14. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010

    Science.gov (United States)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Tang, Xuguang; Jiang, Hong; Sun, Xiaoxiang; Zhuang, Qianlai; Li, Hengpeng

    2017-03-01

    Land use changes play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified Global biome model-biogeochemical cycle model to examine the changes in the spatiotemporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of China during 1985-2010 and the extent to which land use change impacted NEP. The model is calibrated with observed NEP at three flux sites for three dominant land use types in the basin including cropland, evergreen needleleaf forest, and mixed forest. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The study estimates that NEP in the basin decreased by 9.8% (1.57 Tg C) from 1985 to 2010, showing an overall downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changes during 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion an