WorldWideScience

Sample records for net baryon density

  1. Equation of state at finite net-baryon density using Taylor coefficients up to sixth order

    International Nuclear Information System (INIS)

    Huovinen, Pasi; Petreczky, Péter; Schmidt, Christian

    2014-01-01

    We employ the lattice QCD data on Taylor expansion coefficients up to sixth order to construct an equation of state at finite net-baryon density. When we take into account how hadron masses depend on lattice spacing and quark mass, the coefficients evaluated using the p4 action are equal to those of hadron resonance gas at low temperature. Thus the parametrised equation of state can be smoothly connected to the hadron resonance gas equation of state. We see that the equation of state using Taylor coefficients up to second order is realistic only at low densities, and that at densities corresponding to s/n B ≳40, the expansion converges by the sixth order term

  2. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  3. Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density

    International Nuclear Information System (INIS)

    Akimura, Y.; Maruyama, T.; Chiba, S.; Yoshinaga, N.

    2005-01-01

    We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)

  4. Achieving high baryon densities in the fragmentation regions in heavy ion collisions at top RHIC energy

    International Nuclear Information System (INIS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    Heavy ion collisions at extremely high energy, such as the top energy at RHIC, exhibit the property of transparency where there is a clear separation between the almost net-baryon-free central rapidity region and the net-baryon-rich fragmentation region. We calculate the net-baryon rapidity loss and the nuclear excitation energy using the energy-momentum tensor obtained from the McLerran-Venugopalan model. Nuclear compression during the collision is further estimated using a simple space-time picture. The results show that extremely high baryon densities, about twenty times larger than the normal nuclear density, can be achieved in the fragmentation regions. (paper)

  5. Baryon density in alternative BBN models

    International Nuclear Information System (INIS)

    Kirilova, D.

    2002-10-01

    We present recent determinations of the cosmological baryon density ρ b , extracted from different kinds of observational data. The baryon density range is not very wide and is usually interpreted as an indication for consistency. It is interesting to note that all other determinations give higher baryon density than the standard big bang nucleosynthesis (BBN) model. The differences of the ρ b values from the BBN predicted one (the most precise today) may be due to the statistical and systematic errors in observations. However, they may be an indication of new physics. Hence, it is interesting to study alternative BBN models, and the possibility to resolve the discrepancies. We discuss alternative cosmological scenarios: a BBN model with decaying particles (m ∼ MeV, τ ∼ sec) and BBN with electron-sterile neutrino oscillations, which permit to relax BBN constraints on the baryon content of the Universe. (author)

  6. Calculation of baryon chemical potential and strangeness chemical potential in resonance matter

    International Nuclear Information System (INIS)

    Fu Yuanyong; Hu Shouyang; Lu Zhongdao

    2006-01-01

    Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)

  7. Exploring high-density baryonic matter: Maximum freeze-out density

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-08-15

    The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)

  8. The quark-hadron transition in systems with net baryon number

    International Nuclear Information System (INIS)

    Olive, K.A.; Harvard Univ., Cambridge, MA

    1982-01-01

    The transition from quark matter to hadronic matter is examined in systems with arbitrary chemical potentials corresponding to net baryon number. In the hardron phase, both a Reid-type potential for nucleons and the ππ potential derived from Weinberg's effective lagrangian have been included. In the quark phase, a linear confining potential has been considered. Results are most sensitive to the slope of the confining potential, although qualitatively the behavior of the thermodynamic properties remain unchanged. The critical baryon density is found to remain roughly constant for all temperatures below the critical temperature, Tsub(c), then falls rapidly to zero as T → Tsub(c). Below Tsub(c) this density is about 30n 0 for K = 0.18 GeV 2 (the slope of the quark potential) and 23n 0 for K = 0.10 GeV 2 . (orig.)

  9. Strong coupling QCD at finite baryon-number density

    International Nuclear Information System (INIS)

    Karsch, F.; Muetter, K.H.

    1989-01-01

    We present a new representation of the partition function for strong-coupling QCD which is suitable also for finite baryon-number-density simulations. This enables us to study the phase structure in the canonical formulation (with fixed baryon number B) as well as the grand canonical one (with fixed chemical potential μ). We find a clear signal for a first-order chiral phase transition at μ c a=0.63. The critical baryon-number density n c a 3 =0.045 is only slightly higher than the density of nuclear matter. (orig.)

  10. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  11. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  12. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  13. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  14. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  15. Searching for high baryon density at the AGS with ARC

    International Nuclear Information System (INIS)

    Kahana, S.H.; Schlagel, T.J.; Pang, Y.

    1993-08-01

    A relativistic cascade ARC is used to analyse heavy ion experiments at the AGS. In particular predictions from ARC for Au on Au at 11.6 GeV/c have proved to be remarkably accurate. Going to lower energies and inserting a phenomenological equation of state into the cascade should lead to information about the interesting region of high baryon density

  16. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs

  17. Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter

    International Nuclear Information System (INIS)

    McDonald, John

    2012-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.

  18. Baryon acoustic signature in the clustering of density maxima

    International Nuclear Information System (INIS)

    Desjacques, Vincent

    2008-01-01

    We reexamine the two-point correlation of density maxima in Gaussian initial conditions. Spatial derivatives of the linear density correlation, which were ignored in the calculation of Bardeen et al.[Astrophys. J. 304, 15 (1986)], are included in our analysis. These functions exhibit large oscillations around the sound horizon scale for generic cold dark matter (CDM) power spectra. We derive the exact leading-order expression for the correlation of density peaks and demonstrate the contribution of those spatial derivatives. In particular, we show that these functions can modify significantly the baryon acoustic signature of density maxima relative to that of the linear density field. The effect depends upon the exact value of the peak height, the filter shape and size, and the small-scale behavior of the transfer function. In the ΛCDM cosmology, for maxima identified in the density field smoothed at mass scale M≅10 12 -10 14 M · /h and with linear threshold height ν=1.673/σ(M), the contrast of the baryon acoustic oscillations (BAO) can be a few tens of percent larger than in the linear matter correlation. Overall, the BAO is amplified for ν > or approx. 1 and damped for ν < or approx. l 1. Density maxima thus behave quite differently than linearly biased tracers of the density field, whose acoustic signature is a simple scaled version of the linear baryon acoustic oscillation. We also calculate the mean streaming of peak pairs in the quasilinear regime. We show that the leading-order 2-point correlation and pairwise velocity of density peaks are consistent with a nonlinear, local biasing relation involving gradients of the density field. Biasing will be an important issue in ascertaining how much of the enhancement of the BAO in the primeval correlation of density maxima propagates into the late-time clustering of galaxies.

  19. QCD at Zero Baryon Density and the Polyakov Loop Paradox

    CERN Document Server

    Kratochvila, S; Forcrand, Ph. de

    2006-01-01

    We compare the grand canonical partition function at fixed chemical potential mu with the canonical partition function at fixed baryon number B, formally and by numerical simulations at mu=0 and B=0 with four flavours of staggered quarks. We verify that the free energy densities are equal in the thermodynamic limit, and show that they can be well described by the hadron resonance gas at T T_c. Small differences between the two ensembles, for thermodynamic observables characterising the deconfinement phase transition, vanish with increasing lattice size. These differences are solely caused by contributions of non-zero baryon density sectors, which are exponentially suppressed with increasing volume. The Polyakov loop shows a different behaviour: for all temperatures and volumes, its expectation value is exactly zero in the canonical formulation, whereas it is always non-zero in the commonly used grand-canonical formulation. We clarify this paradoxical difference, and show that the non-vanishing Polyakov loop e...

  20. Ultimate energy density of observable cold baryonic matter.

    Science.gov (United States)

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  1. QCD equation of state of hot deconfined matter at finite baryon density. A quasiparticle perspective

    International Nuclear Information System (INIS)

    Bluhm, Marcus

    2008-01-01

    The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are selfconsistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. The applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state

  2. Light element nucleosynthesis and estimates of the universal baryon density

    International Nuclear Information System (INIS)

    Mathews, G.J.; Viola, V.E.

    1978-01-01

    The present mean universal baryon density rho/sub b/, is of interest because it and the Hubble constant determine the curvature of the Universe. The available indicators of rho/sub b/ come from the present deuterium abundance, if it is assumed that ''big-bang'' nucleosynthesis must produce enough D to at least match the abundance of this nuclide in the interstellar medium. An alternative method utilizing the 7 Li/D ratio is used to evaluate rho/sub b/. With this method the difficulty associated with the astration process can be essentially canceled from the problem. The results obtained indicate an open Universe with a best guess for rho/sub b/ of 7.1 x 10 -31 g/cm 3 . 1 figure, 1 table

  3. On Productions of Net-Baryons in Central Au-Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ya-Hui Chen

    2015-01-01

    Full Text Available The transverse momentum and rapidity distributions of net-baryons (baryons minus antibaryons produced in central gold-gold (Au-Au collisions at 62.4 and 200 GeV are analyzed in the framework of a multisource thermal model. Each source in the model is described by the Tsallis statistics to extract the effective temperature and entropy index from the transverse momentum distribution. The two parameters are used as input to describe the rapidity distribution and to extract the rapidity shift and contribution ratio. Then, the four types of parameters are used to structure some scatter plots of the considered particles in some three-dimensional (3D spaces at the stage of kinetic freeze-out, which are expected to show different characteristics for different particles and processes. The related methodology can be used in the analyses of particle production and event holography, which are useful for us to better understand the interacting mechanisms.

  4. Simultaneous generation of WIMP miracle-like densities of baryons and dark matter

    International Nuclear Information System (INIS)

    McDonald, John

    2011-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) colored scalars which are responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low-temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) colored scalars have large hypercharge, |Y|>4/3. Production of such scalars at the LHC would be a clear signature of the model.

  5. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    Science.gov (United States)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  6. How sensitive are di-leptons from ρ mesons to the high baryon density region?

    International Nuclear Information System (INIS)

    Vogel, S.; Schmidt, K.; Santini, E.; Sturm, C.; Bleicher, M.; Petersen, H.; Aichelin, J.

    2008-01-01

    We show that the measurement of dileptons might provide only a restricted view into the most dense stages of heavy-ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as, e.g., done at the GSI High Acceptance DiElectron Spectrometer (HADES) and envisioned for the Facility for Antiproton and Ion Research (FAIR) compressed baryonic matter experiments, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high-baryon-density region of the heavy-ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract dileptons from transport simulations, i.e., shining, only vector mesons from final baryon resonance decays and instant emission of dileptons and find a strong sensitivity on the method employed in particular at FAIR and the CERN Super Proton Synchrotron energies. It is shown explicitly that a restriction to ρ meson (and therefore dilepton) production only in final-state baryon resonance decays provide a strong bias toward rather low baryon densities. The results presented are obtained from ultrarelativistic quantum molecular dynamics v2.3 calculations using the standard setup

  7. Baryon stopping contribution in net-proton fluctuations measured by STAR experiment

    International Nuclear Information System (INIS)

    Thakur, Dhananjaya; Jakhar, Sunil; Garg, Prakhar; Sahoo, Raghunath

    2016-01-01

    The main goal of Beam Energy Scan program by RHIC is to scan the QCD phase diagram i.e temperature (T) versus baryon chemical potential (μB) diagram for strong interaction. At large B existence of QCD critical point (CP) and a first order phase boundary between QGP and hadronic phase is expected. The non-monotonous behavior of higher moment of the distributions of conserved quantity like net-baryon number with √s_N_N are believed to be a good signature of phase transition and CP. A non-monotonous behavior of ĸσ"2 is found around √s_N_N = 19.6 GeV by STAR experiment, which hints for the possible existence of critical point around √s_N_N=19.6 GeV. The proton distributions measured by STAR experiment have the contribution from both production as well as stopping. There may be a significant contribution of stopped protons at RHIC and lower energies which also relate to the softening of the equation of state. In the present work we have estimated the contribution of stopped protons in the protons multiplicity distributions measured by STAR experiment to calculate the higher order fluctuations

  8. Weak coupling large-N transitions at finite baryon density

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Kumar, S. Prem; Myers, Joyce C.

    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks),

  9. Big-bang nucleosynthesis and the baryon density of the universe.

    Science.gov (United States)

    Copi, C J; Schramm, D N; Turner, M S

    1995-01-13

    For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.

  10. Negative baryon density and the folding structure of the B = 3 skyrmion

    International Nuclear Information System (INIS)

    Foster, D; Krusch, S

    2013-01-01

    The Skyrme model is a nonlinear field theory whose solitonic solutions, once quantized, describe atomic nuclei. The classical static soliton solutions, so-called skyrmions, have interesting symmetries and can only be calculated numerically. Mathematically, these skyrmions can be viewed as maps between two three-manifolds and, as such, their stable singularities can only be folds, cusps and swallowtails. Physically, the occurrence of singularities is related to negative baryon density. In this paper, we calculate the charge three skyrmion to a high resolution in order to examine its singularity structure in detail. Thereby, we explore regions of negative baryon density. We also discuss how the negative baryon density depends on the pion mass. (paper)

  11. Relating the baryon asymmetry to the thermal relic dark matter density

    International Nuclear Information System (INIS)

    McDonald, John

    2011-01-01

    We present a generic framework, baryomorphosis, which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic weakly interacting massive particle (WIMP) density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ('annihilons'), φ B , φ-circumflex B , of mass ∼100 GeV-1 TeV. φ B φ-circumflex B annihilations convert the initial φ B , φ-circumflex B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter, i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the 'WIMP miracle'), may be understood. The model may be tested by the production of annihilons at colliders.

  12. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr [Department of Earth Sciences, Chosun University, Gwangju 61452 (Korea, Republic of)

    2016-10-20

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.

  13. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  14. Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented

  15. Linear theory of density perturbations in a neutrino+baryon universe

    International Nuclear Information System (INIS)

    Wasserman, I.

    1981-01-01

    Various aspects of the linear theory of density perturbations in a universe containing a significant population of massive neutrinos are calculated. Because linear perturbations in the neutrino density are subject to nonviscous damping on length scales smaller than the effective neutrino Jeans length, the fluctuation spectrum of the neutrino density perturbations just after photon decoupling is expected to peak near the maximum neutrino Jeans mass. The gravitational effects of nonneutrino species are included in calculating the maximum neutrino Jeans mass, which is found to be [M/sub J/(t)]/sub max/approx.10 17 M/sub sun//[m/sub ν/(eV)] 2 , about an order of magnitude smaller than is obtained when nonneutrino species are ignored. An explicit expression for the nonviscous damping of neutrino density perturbations less massive than the maximum neutrino Jeans mass is derived. The linear evolution of density perturbations after photon decoupling is discussed. Of particular interest is the possibility that fluctuations in the neutrino density induce baryon density perturbations after photon decoupling and that the maximum neutrino Jeans determines the characteristic bound mass of galaxy clusters

  16. Baryonic density of the universe: Big Bang nucleosynthesis versus CMB observations

    International Nuclear Information System (INIS)

    Vangioni-Flam, E.; Coc, A.; Casse, M.

    2003-01-01

    Thanks to recent nuclear reaction rate compilations (NACRE[2]) and new experimental and theoretical works in nuclear physics, we have updated Standard Big Bang Nucleosynthesis (SBBN) calculations. The results are compared to the most representative light element abundances, measured in pristine astrophysical media to derive the baryonic density of the Universe. We confront Ω b h 2 obtained in this study with other values deduced from recent independent approaches as the observations of the anisotropies of the Cosmic Microwave Background (BOOMERANG, CBI, DASI, MAXIMA and VSA experiments) or the Lyman-α forest at high redshifts. Comparison between these results is a test of their consistency and could provide a better determination of this important cosmological parameter

  17. Transition temperature to the superconducting phase of QCD at high baryon density

    International Nuclear Information System (INIS)

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-01-01

    Recent interest in the study of color superconductivity has focused on the regime of high baryon density where perturbative QCD may be employed. Based on the dominant one-gluon-exchange interaction, both the transition temperature and zero temperature gap have been determined to leading order in the coupling g. While the leading non-BCS behavior T C ∼μg -5 e -κ/g is easily obtained, the pre-exponential factor has proved more difficult to evaluate. Focusing on the transition temperature, we present a perturbative derivation of this factor, exact to leading order in g. This approach is first motivated by the study of a toy model and involves working to second order in the perturbative expansion. We compare this result to the zero temperature gap. Additionally, we extend the analysis to the case of higher angular momentum for longitudinal and transverse quark pairing. (c) 2000 The American Physical Society

  18. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  19. The cosmological density of baryons from observations of 3He+ in the Milky Way.

    Science.gov (United States)

    Bania, T M; Rood, Robert T; Balser, Dana S

    2002-01-03

    Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.

  20. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki [Department of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Department of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan) and Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2012-11-12

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to {approx} 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  1. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-01-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ∼ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  2. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    Science.gov (United States)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  3. QCD with two colors at finite baryon density at next-to-leading order

    International Nuclear Information System (INIS)

    Splittorff, K.; Toublan, D.; Verbaarschot, J.J.M.

    2002-01-01

    We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau-Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order

  4. High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV

    Science.gov (United States)

    Ivanov, Yu. B.; Soldatov, A. A.

    2018-02-01

    Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.

  5. Lattice simulations of QCD-like theories at finite baryon density

    International Nuclear Information System (INIS)

    Scior, Philipp Friedrich

    2016-01-01

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G_2-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G_2. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G_2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise of the

  6. Lattice simulations of QCD-like theories at finite baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Scior, Philipp Friedrich

    2016-07-13

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we

  7. Gauge-invariant screening masses and static quark free energies in Nf=2 +1 QCD at nonzero baryon density

    Science.gov (United States)

    Andreoli, Michele; Bonati, Claudio; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2018-03-01

    We discuss the extension of gauge-invariant electric and magnetic screening masses in the quark-gluon plasma to the case of a finite baryon density, defining them in terms of a matrix of Polyakov loop correlators. We present lattice results for Nf=2 +1 QCD with physical quark masses, obtained using the imaginary chemical potential approach, which indicate that the screening masses increase as a function of μB. A separate analysis is carried out for the theoretically interesting case μB/T =3 i π , where charge conjugation is not explicitly broken and the usual definition of the screening masses can be used for temperatures below the Roberge-Weiss transition. Finally, we investigate the dependence of the static quark free energy on the baryon chemical potential, showing that it is a decreasing function of μB, which displays a peculiar behavior as the pseudocritical transition temperature at μB=0 is approached.

  8. Baryon structure

    International Nuclear Information System (INIS)

    Morsch, H.P.; Forschungszentrum Juelich GmbH

    1993-01-01

    A brief review on the theoretical and experimental situation of baryon spectroscopy is first given. Then, the radial structure of baryons, related to the ground state form factors and the baryonic compressibility, is discussed. An experiment has been performed at Saturne laboratory (France) in which for the first time a compression of the nucleon is observed, exciting the P 11 (1440 MeV) resonance (Roper resonance) by α-particles. The analysis of the data indicates that this excitation covers a large fraction of the available monopole strength in the nucleon. The derived compressibility is discussed as well as the consequence for other fields, as nuclear medium effects on baryon properties, high density phenomena in nuclear collisions as well as colour transparency. In the last point the spin-flip structure of the P 11 (1440 MeV) resonance is discussed. The possibility to determine isoscalar spin-flip strength by polarized deuteron scattering is contrasted with first preliminary results from photon-induced reactions studied at Mainz which indicate a non-negligible M1 excitation of the Roper resonance. (author) 10 figs., 31 refs

  9. Constraining the supersaturation density equation of state from core-collapse supernova simulations? Excluded volume extension of the baryons

    International Nuclear Information System (INIS)

    Fischer, Tobias

    2016-01-01

    In this article the role of the supersaturation density equation of state (EOS) is explored in simulations of failed core-collapse supernova explosions. Therefore the nuclear EOS is extended via a one-parameter excluded-volume description for baryons, taking into account their finite and increasing volume with increasing density in excess of saturation density. Parameters are selected such that the resulting supernova EOS represent extreme cases, with high pressure variations at supersaturation density which feature extreme stiff and soft EOS variants of the reference case, i.e. without excluded-volume corrections. Unlike in the interior of neutron stars with central densities in excess of several times saturation density, central densities of core-collapse supernovae reach only slightly above saturation density. Hence, the impact of the supersaturation density EOS on the supernova dynamics as well as the neutrino signal is found to be negligible. It is mainly determined from the low- and intermediate-density domain, which is left unmodified within this generalized excluded volume approach. (orig.)

  10. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Roberts, Luke F.; Hix, William Raphael; Bruner, Blake D.; Kozub, R.L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric J.; Nesaraja, Caroline D

    2008-01-01

    We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint.

  11. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    International Nuclear Information System (INIS)

    Smith, Michael S.; Roberts, Luke F.; Hix, W. Raphael; Bruner, Blake D.; Kozub, Raymond L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Nesaraja, Caroline D.

    2008-01-01

    We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint

  12. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L.; Roberts, Luke F.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint

  13. The chiral critical line of $N_{f}=2+1$ QCD at ero and non-zero baryon density

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe

    2007-01-01

    We present numerical results for the location of the chiral critical line at finite temperature and zero and non-zero baryon density for QCD with N_f=2+1 flavours of staggered fermions on lattices with temporal extent N_t=4. For degenerate quark masses, we compare our results obtained with the exact RHMC algorithm with earlier, inexact R-algorithm results and find a reduction of 25% in the critical quark mass, for which the first order phase transition changes to a smooth crossover. Extending our analysis to non-degenerate quark masses, we map out the chiral critical line up to the neighbourhood of the physical point, which we confirm to be in the crossover region. Our data are consistent with a tricritical point at a strange quark mass of ~500 MeV. Finally, we investigate the shift of the critical line with finite baryon density, by simulating with an imaginary chemical potential for which there is no sign problem. We observe this shift to be very small or, conversely, the critical endpoint \\mu^c(m_{u,d},m_s...

  14. Quark-gluon plasma at finite baryons density and in limit of large Nc

    International Nuclear Information System (INIS)

    Azakov, S.I.

    1987-01-01

    Study of thermodynamics of ideal colourless quark-gluon (QG) gas in limit of large N C is carried out. Consideration of this limit much simplifies the problem on calculation of such system statsum. Unlike the papers where the properties of ideal colourless QG-gas were defined in approximation valid at large V volumes, in the given calculations the volume may be arbitrary. The ideal QG gas is considered in a final volume. Phase transition is shown to be absent in the problem more relativistic from the physical view point, when conservation of the baryon charge is taken into account

  15. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  16. Taming the pion condensation in QCD at finite baryon density: a numerical test in a random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Sinya [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan); Nakamura, Atsushi [Research Institute for Information Science and Education, Hiroshima University,Higashi-Hiroshima 739-8527 (Japan)

    2015-05-14

    In the Monte Carlo study of QCD at finite baryon density based upon the phase reweighting method, the pion condensation in the phase-quenched theory and associated zero-mode prevent us from going to the low-temperature high-density region. We propose a method to circumvent them by a simple modification of the density of state method. We first argue that the standard version of the density of state method, which is invented to solve the overlapping problem, is effective only for a certain ‘good’ class of observables. We then modify it so as to solve the overlap problem for ‘bad’ observables as well. While, in the standard version of the density of state method, we usually constrain an observable we are interested in, we fix a different observable in our new method which has a sharp peak at some particular value characterizing the correct vacuum of the target theory. In the finite-density QCD, such an observable is the pion condensate. The average phase becomes vanishingly small as the value of the pion condensate becomes large, hence it is enough to consider configurations with π{sup +}≃0, where the zero mode does not appear. We demonstrate an effectiveness of our method by using a toy model (the chiral random matrix theory) which captures the properties of finite-density QCD qualitatively. We also argue how to apply our method to other theories including finite-density QCD. Although the example we study numerically is based on the phase reweighting method, the same idea can be applied to more general reweighting methods and we show how this idea can be applied to find a possible QCD critical point.

  17. Strangeness as a probe to baryon-rich QCD matter at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji [The University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan)

    2016-08-15

    We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ{sup 0}, Ξ{sup 0}, Ξ{sup -}, and K{sup +} at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number. (orig.)

  18. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  19. Baryons and baryon resonances in nuclear matter

    Science.gov (United States)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  20. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  1. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  2. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  3. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  4. Hiding of the conserved (anti)baryonic charge into black holes

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    1980-01-01

    The problem of the baryon asymmetry of the Universe is considered. It is suggested that the baryon asymmetry of the Universe is generated by black hole evaporation in a specific mechanism proposed by Zeldovich. Net amount of baryons evaporated by a black hole is shown can be unequal to that of antibaryons, even if the baryon charge is microscopically conserved. It is concluded that the discussed mechanism can provide the observed baryon assymetry of the Universe if primary black holes with the mass M=10sup(4+-2)Msub(P), where Msub(P)=10sup(19) GeV is the Planck mass, give noticeable contribution into the total energy density of the Universe

  5. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  6. Baryon stopping and quark-gluon plasma production at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Lyakhov, K.

    2008-08-15

    Strong chromofields developed at early stages of relativistic heavy-ion collisions give rise to the collective deceleration of net baryons from colliding nuclei. We have solved classical equations of motion for baryonic slabs under the action of time-dependent chromofield. We have studied sensitivity of the slab trajectories and their final rapidities to the initial strength and decay pattern of the chromofield as well as to the back reaction of produced plasma. This mechanism can naturally explain significant baryon stopping observed at RHIC, an average rapidity loss left angle {delta}y right angle {approx} 2. Using a Bjorken hydrodynamical model with particle producing source we also study the evolution of partonic plasma produced as the result of chromofield decay. Due to the delayed formation and expansion of plasma its maximum energy density is much lower than the initial energy density of the chromofield. It is shown that the net-baryon and produced parton distributions are strongly correlated in the rapidity space. The shape of net-baryon spectra in midrapidity region found in the BRAHMS experiment cannot be reproduced by only one value of chromofield energy density parameter {epsilon}{sub 0}, even if one takes into account novel mechanisms as fluctuations of color charges generated on the slab surface, and weak interaction of baryon-rich matter with produced plasma. The further step to improve our results is to take into account rapidity dependence of saturation momentum as explained in thesis. Different values of parameter {epsilon}{sub 0} has been tried for different variants of chromofield decay to fit BRAHMS data for net-baryon rapidity distribution. In accordance with our analysis, data for fragmentation region correspond to the lower chromofield energy densities than mid-rapidity region. {chi}{sup 2} analysis favors power-law of chromofield decay with corresponding initial chromofield energy density of order {epsilon}{sub f}=30 GeV/fm{sup 3}. (orig.)

  7. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.

    2017-07-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  8. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  9. Charming baryons

    International Nuclear Information System (INIS)

    Garcia-Recio, C.; Salcedo, L.L.; Gamermann, D.; Nieves, J.; Romanets, O.; Tolos, L.

    2014-01-01

    We study odd-parity baryonic resonances with one heavy and three light flavors, dynamically generated by meson-baryon interactions. Special attention is paid to Heavy Quark Spin Symmetry (HQSS), hence pseudoscalar and vector mesons and baryons with J π = 1/2 + and 3/2 + are considered as constituent hadrons. For the hidden-charm sector (N c = N c ¯ = 1), the meson-baryon Lagrangian with Heavy Flavor Symmetry is constructed by a minimal extension of the SU(3) Weinberg-Tomozawa (WT) Lagrangian to fulfill HQSS, such that not new parameters are needed. This interaction can be presented in different formal ways: as a Field Lagrangian, as Hadron creation-annihilation operators, as SU(6)×HQSS group projectors and as multichannel matrices. The multichannel Bethe-Salpeter equation is solved for odd-parity light baryons, hidden-charm N and Δ and Beauty Baryons (Λ b ). Results of calculations with this model are shown in comparison with other models and experimental values for baryonic resonances. (author)

  10. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  11. Baryon stopping and charged particle production from lead-lead collisions at 158 GeV per nucleon

    International Nuclear Information System (INIS)

    Toy, Milton Y.

    1999-01-01

    Net proton (proton minus antiproton) and negative charge hadron spectra (h-) from central Pb+Pb collisions at 158 GeV per nucleon at the CERN Super Proton Synchrotron were measured and compared to spectra from central collisions of the lighter S+S system. Net baryon distributions were derived from those of net protons and net lambdas. Stopping, or rapidity shift with respect to the beam, of net protons and net baryons increase with system size. The mean transverse momentum T >60; T >62; of net protons also increase with system size. The h- rapidity density scales with the number of participant nucleons for nuclear collisions, where their T >60; T >62; is independent of system size. The T >60; T >62; dependence upon particle mass and system size is consistent with larger transverse flow velocity at midrapidity for central collisions of Pb+Pb compared to that of S+S

  12. Modified skyrmion in a baryonic matter

    International Nuclear Information System (INIS)

    Mishustin, I.N.

    1990-01-01

    A unified field model describing individual baryons and baryonic matter is developed. The model is based on a chiral-symmetry Lagrangian including the scalar, pion and vector fields interacting with the scalar density and the 4-current of baryons (linear σ-model supplemented by a vector field). Essentially inhomogeneous soliton solutions of the topological type (skirmions) correspond to the individual baryons, whereas homogeneous field configurations correspond to baryonic matter. Estimations show that the model predicts a correct scale of changes of the effective mass (15%) and the radius for the baryon for a normal nuclear matter density. For high baryon densities the model with a massive vector field predicts a phase transition which results in the restoration of chiral symmetry. The new state of the system is characterized by a homogeneous distribution of the meson fields and energy

  13. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  14. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  15. The question of baryon conservation

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1983-01-01

    A modern version of the law of baryon conservation might read: the net number of baryons (ΣB-ΣB-bar) does not change spontaneously or in any known interactions. For a long time it was believed that protons are absolutely stable, and neutrons sufficiently strongly bound by nuclei were also considered absolutely stable. Then a few years ago the grand unified theories were proposed in which strong, weak and electromagnetic interactions are combined, leading to the possibility that protons decay. Their lifetime is predictable in some of these theories. An experiment by the Irvine-Michigan-Brookhaven Collaboration to detect proton decays is described. (UK)

  16. It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes

    Science.gov (United States)

    Armenio, Patricia M.; Bunnell, David B.; Adams, Jean V.; Watson, Nicole M.; Woelmer, Whitney

    2017-01-01

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

  17. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  18. Random walk of the baryon number

    International Nuclear Information System (INIS)

    Kazaryan, A.M.; Khlebnikov, S.Y.; Shaposhnikov, M.E.

    1989-01-01

    A new approach is suggested for the anomalous nonconservation of baryon number in the electroweak theory at high temperatures. Arguments are presented in support of the idea that the baryon-number changing reactions may be viewed as random Markov processes. Making use of the general theory of Markov processes, the Fokker--Planck equation for the baryon-number distribution density is obtained and kinetic coefficients are calculated

  19. Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential

    Directory of Open Access Journals (Sweden)

    Volodymyr Vovchenko

    2017-12-01

    Full Text Available The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential – corresponding to the fugacity or virial expansion at real chemical potential – are calculated within this model, and compared with the Nt=12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to T≃185 MeV is described fairly well by an interacting HRG with a single baryon–baryon eigenvolume interaction parameter b≃1 fm3, while the available lattice data on the difference χ2B−χ4B of baryon number susceptibilities is reproduced up to T≃175 MeV. Keywords: Hadron resonance gas, Excluded volume, Imaginary chemical potential

  20. Baryons and baryonic matter in the large Nc and heavy quark limits

    International Nuclear Information System (INIS)

    Cohen, Thomas D.; Kumar, Nilay; Ndousse, Kamal K.

    2011-01-01

    This paper explores properties of baryons and finite density baryonic matter in an artificial world in which N c , the number of colors, is large and the quarks of all species are degenerate and much larger than Λ QCD . It has long been known that in large N c quantum chromodynamics (QCD), baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large N c and heavy-quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large N c and heavy-quark expansions the baryon mass is shown to be M baryon ≅N c M Q (1-0.054 26α-tilde s 2 ), where α-tilde s ≡N c α s . The baryon form factor is also computed. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin-flavor structure, it is shown that in the formal heavy-quark and large N c limit interactions between baryons are strictly repulsive at low densities. The energy per baryon is computed in this limit and found to be exponentially small. It is shown that when the restriction to baryons with an identical spin-flavor structure is dropped, a phase of baryonic matter exists with a density of 2N f times that for the restricted case but with the same energy (where N f is the number of degenerate flavors). It is shown that this phase is at least metastable.

  1. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  2. Baryon number transfer in hadronic interactions

    International Nuclear Information System (INIS)

    Arakelyan, G.H.; Capella, A.; Kaidalov, A.B.; Shabelski, Yu.M.

    2002-01-01

    The process of baryon number transfer due to string junction propagation in rapidity space is analyzed. It has a significant effect on the net baryon production in pp collisions at mid-rapidities and an even larger effect in the forward hemisphere in the cases of πp and γp interactions. The results of numerical calculations in the framework of the quark-gluon string model are in reasonable agreement with the data. (orig.)

  3. The Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research

  4. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  5. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  6. Baryonic and Non-Baryonic Dark Matter

    OpenAIRE

    Carr, Bernard

    2000-01-01

    Cosmological nucleosynthesis calculations imply that there should be both non-baryonic and baryonic dark matter. Recent data suggest that some of the non-baryonic dark matter must be "hot" (i.e. massive neutrinos) and there may also be evidence for "cold" dark matter (i.e. WIMPs). If the baryonic dark matter resides in galactic halos, it is likely to be in the form of compact objects (i.e. MACHOs) and these would probably be the remnants of a first generation of pregalactic or protogalactic P...

  7. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  8. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  9. Baryon stopping and strangeness baryon production in a parton cascade model

    International Nuclear Information System (INIS)

    Nara, Yasushi

    1999-01-01

    A parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme describes the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with experimental data at SPS energies. Using new version of parton cascade code VNI in which baryonic cluster formation is implemented, we calculate the net baryon number distributions and Λ yield. It is found that baryon stopping behavior at SPS energies is well accounted for within the parton cascade picture. As a consequence of the production of the baryon (u and d quark) rich parton matter, parton coalescence naturally explains the enhanced yield of Λ particle which has been observed in experiment. (author)

  10. Equation of state of dense baryonic matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    In a previous investigation we treated nuclear matter as well as neutron matter at zero and finite temperatures in the frame of different relativistic field theoretical models, but with the restriction to nucleons as the only present baryons. This approach is extended by including a larger fraction of baryons and mesons, necessary for a description of baryon matter under extreme conditions. The equation of state (EOS) is calculated in both the Hartree and Hartree-Fock (HF) approximations for dense nuclear as well as neutron matter. Self-interactions of the σ field up to fourth order have been taken into account. For the treatment of many-baryon matter in the HF approach the parameters of the theory had to be readjusted. A phase transition of both many-baryon systems (neutron as well as nuclear matter) in the high-pressure and high-energy-density region has been found. (author)

  11. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  12. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  13. Rearing of Milkfish, Chanos Chanos, in Net Cages at Sea at Various Stocking Densities

    Directory of Open Access Journals (Sweden)

    Kusman Sumawidjaja

    2007-08-01

    Full Text Available ABSTRACTStocking rate of milkfish, Chanos chanos, from 75 to 225 fish/m3  or from 1,33 to 3,98 kg/m3  did not affect the growth rate, survival rate, feeding efficiency, and final length and weight of fish, each at 2,32%/day, 81,8%, 63,8%, and 185,2 mm and 64,0 g respectively. Final biomass (Y increased from 3,66 to 12,05 kg/m3 with the increase of stocking rate (X with Y = 0,056 X-0,45 (p<0,05.Key words :   Milkfish, Chanos chanos, floating net cage, stocking density. ABSTRAKPadat penebaran ikan bandeng, Chanos chanos, dari 75 hingga 225 ekor/m3 atau dari 1,33 hingga 3,98 kg/m3 tidak mempengaruhi laju pertumbuhan, kelangsungan hidup, efisiensi pemberian pakan serta panjang dan bobot ikan akhir, masing-masing dengan rata-rata 2,32%/hari, 81,8%, 63,8%, 185,2 mm dan 64,0 g. Biomasa akhir (Y meningkat dari 3,66 hingga 12,05 kg/m3 dengan meningkatnya padat penebaran (X dengan persamaan Y = 0,056 X -0,45 (p<0,05.Kata kunci :  Ikan bandeng, Chanos chanos, keramba jaring apung, padat penebaran

  14. Baryon-baryon mixing in hypernuclei

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1998-01-01

    Implications of few-body hypernuclei for the understanding of the baryon-baryon interaction are examined. Octet-octet coupling effects not present in conventional, non strange nuclei are the focus. The need to identify strangeness -2 hypernuclei to test model predictions is emphasized

  15. Holographic black hole engineering at finite baryon chemical potential

    International Nuclear Information System (INIS)

    Rougemont, Romulo

    2017-01-01

    This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with 2 + 1 flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential. (paper)

  16. Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2010-01-01

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  17. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  18. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  19. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    Science.gov (United States)

    Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A

    2016-09-08

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  20. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density

    Science.gov (United States)

    Marroquin, Elsa Y. León; Herrera González, José A.; Camacho López, Miguel A.; Barajas, José E. Villarreal

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity‐modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side‐orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by minimizing the contribution to the total dose

  1. The Compressed Baryonic Matter Experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Heuser J.M.

    2011-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  2. Compressed baryonic matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Jürgen Eschke

    2012-02-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the Facility for Antiproton and Ion Research (FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifcations of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/Fm, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45 AGeV. Hadronic, leptonic and photonic observables will be measured in a large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. This requires the development of novel detector systems, trigger and data acquisition concepts as well as in- novative real-time reconstruction techniques. A key observable of the physics program is a precise measurement of lowmass vector mesons and charmonium in their leptonic decay channel. In CBM, electrons will be identified using a gaseous RICH detector combined with several TRD detectors positioned after a system of silicon tracking stations which are located inside a magnetic dipole field. The concept of the RICH detector, results on R & D as well as feasibility studies and invariant mass distributions of charmonium will be discussed.

  3. Searching for baryons

    International Nuclear Information System (INIS)

    Majumdar, Subhabrata

    2015-01-01

    The current precision cosmological measurements, in agreement with big bang nucleosynthesis studies, tell us that approximately 95 percent of the Universe is 'dark' and only 5 percent of the Universe is 'visible' which comprises of baryons. However, observations reveal only a small fraction of this baryon budget. A key cosmological question arises as to 'where are these missing baryons?'. Simulations and past observations suggest that some of these are in the diffuse cosmic web. Recently, they have been observed, and speculated, to be hiding in the outskirts of massive halos, from Milky Way type galaxies to clusters. Upcoming surveys have the potential to unravel the mystery of the missing baryons. (author)

  4. The baryon content of the Cosmic Web

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  5. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  6. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  7. Baryon-to-dark matter ratio from random angular fields

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We consider the baryon-to-dark matter ratio in models where the dark matter and baryon densities depend on angular fields θ d and θ b according to ρ d ∝θ d α and ρ b ∝θ b β , with all values of θ d and θ b being equally probable in a given randomly-selected domain. Under the assumption that anthropic selection depends primarily on the baryon density in galaxies at spherical collapse, we show that the probability density function for the baryon-to-dark matter ratio r = Ω B /Ω DM is purely statistical in nature and is independent of anthropic selection. We compute the probability density function for r as a function of α and β and show that the observed value of the baryon-to-dark matter ratio, r ≈ 1/5, is natural in this framework

  8. Baryon structure from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.

    2009-01-01

    We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)

  9. Diquark structure of baryons

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1987-01-01

    Three body calculations for studying the baryons are performed in a non-relativistic treatment with three quarks interacting via Bhaduri's potential. From the resulting wave functions, it is analysed under which conditions can a diquark structure occurs. Several photos showing quark distributions inside the baryons are presented and discussed in details

  10. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  11. B decays to baryons

    Indian Academy of Sciences (India)

    We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  12. Diminished UV-absorbing nets reduce the Spreads and population density of Macrosiphum euphorbiae in lettuce.

    OpenAIRE

    Legarrea, S.; Díaz, B. M.; Plaza, M.; Barrios, L.; Morales, Ignacio; Viñuela Sandoval, Elisa; Fereres Castiel, Alberto

    2012-01-01

    UV-absorbing covers reduce the incidence of injurious insect pests and viruses in protected crops. In the present study, the effect of a UV-absorbing net (Bionet) on the spatio-temporal dynamics of the potato aphid on lettuce plants was evaluated. A field experiment was conducted during three seasons in two identical tunnels divided in four plots. A set of lettuce plants were artificially infested with Macrosiphum euphorbiae adults and the population was estimated by counting aphids on ev...

  13. Baryons and dual unitarization

    International Nuclear Information System (INIS)

    Konishi, K.-I.

    1977-05-01

    Processes involving baryons are discussed in the scheme of dual unitarization. In particular, the topological expansion is generalized to any hadronic S-matrix elements involving baryons and/or mesons. The expansion is based on a model for the baryon propagator, which is a set of three planar Feynman diagrams joined at a junction line. The resulting expansion is a double expansion in 1/N (N = the number of quark flavours) and in the number of baryon loops. Based on this, several new observations are made in phenomenological problems, and a unifying point of view in stressed. The scheme is evidently crossing invariant, and unitarity constraints are imposed order by order in 1/N and in the baryon loop number. (author)

  14. The baryonic mass function of galaxies.

    Science.gov (United States)

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  15. Dark matter, baryon asymmetry, and spontaneous B and L breaking

    International Nuclear Information System (INIS)

    Dulaney, Timothy R.; Wise, Mark B.; Perez, Pavel Fileviez

    2011-01-01

    We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale, one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10 -46 cm 2 . Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There can be a tension between achieving both the measured baryon excess and the dark matter density.

  16. Baryon superfluids in AdS/CFT with flavor

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Carlos [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain); Itsios, Georgios [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Vasilakis, Orestis [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, ES-33007 Oviedo (Spain)

    2017-01-31

    Baryonic matter is notoriously difficult to deal with in the large-N limit, as baryons become operators of very large dimension with N fields in the fundamental representation. This issue is also present in gauge/gravity duals as baryons are described by very heavy localized objects. There are however alternative large-N extrapolations of QCD where small baryonic operators exist and can be treated on an equal footing to mesons. We explore the possibility of turning on a finite density of “light” baryons in a theory with a hadronic mass gap using a gauge/gravity construction based on the D3/D7 intersection. We find a novel phase with spontaneous breaking of baryon symmetry at zero temperature.

  17. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  18. Baryons with chromodynamics

    International Nuclear Information System (INIS)

    Isgur, N.

    1981-01-01

    Many of the phenomenological difficulties of the non-relativistic quark model for baryons are overcome when some current prejudices from chromodynamics about quark forces are imposed. The effects of flavour independent confinement, symmetry breaking through quark masses, and colour hyperfine interactions are most prominent, leading to a satisfactory understanding of both the spectroscopy of low-lying baryons and of the signs and magnitudes of baryon couplings. The previously worrisome absence in partial wave analyses of a large number of the states expected in the nonrelativistic quark model is explained in terms of decouplings of the resonances from their elastic channels

  19. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    Science.gov (United States)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  20. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  1. Isospin splittings of baryons

    International Nuclear Information System (INIS)

    Varga, Kalman; Genovese, Marco; Richard, Jean-Marc; Silvestre-Brac, Bernard

    1998-01-01

    We discuss the isospin-breaking mass differences among baryons, with particular attention in the charm sector to the Σ c + -Σ c 0 , Σ c ++ -Σ c 0 , and Ξ c + -Ξ c 0 splittings. Simple potential models cannot accommodate the trend of the available data on charm baryons. More precise measurements would offer the possibility of testing how well potential models describe the non-perturbative limit of QCD

  2. Phenomenology of Baryon Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Landay, Justin [George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Molina, Raquel [Univ. of Sao Paulo (Brazil); Ronchen, Deborah [Univ. of Bonn (Germany)

    2018-04-01

    Results for light baryon spectroscopy by different collaborations and the state of the art in the subfield is reviewed. Highlights contain common efforts of different phenomenology groups and the impact of recent high-precision data from ELSA, JLab, MAMI, and other facilities. Questions will be addressed, on one side, of how to proceed to reach conclusive answers in baryon spectroscopy, and, on the other side, how phenomenology can be connected to theory in a meaningful way.

  3. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  4. Gluon saturation and baryon stopping in the SPS, RHIC, and LHC energy regions

    International Nuclear Information System (INIS)

    Li Shuang; Feng Shengqin

    2012-01-01

    A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions. The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions. Predictions for net baryon rapidity distributions, mean rapidity loss and gluon saturation feature in central Pb + Pb collisions at the LHC are made in this paper. (authors)

  5. Baryon inhomogeneity from the cosmic quark-hadron phase transition

    International Nuclear Information System (INIS)

    Kurki-Suonio, H.

    1991-01-01

    We discuss the generation of inhomogeneity in the baryon-number density during the cosmic quark-hadron phase transition. We use a simple model with thin-wall phase boundaries and ideal-gas equations of state. The nucleation of the phase transition introduces a new distance scale into the universe which will be the scale of the generated inhomogeneity. We review the estimate of this scale. During the transition baryon number is likely to collect onto a layer at the phase boundary. These layers may in the end be deposited as small regions of very high baryon density. 21 refs., 1 fig

  6. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  7. Photoproduction of hermaphrodite baryons

    International Nuclear Information System (INIS)

    Barnes, T.; Close, F.E.

    1983-02-01

    It is shown that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse (Phys. Rev. Lett.; 16:772 (1966)). This is consistent with suggestions that the P 11 (1710) is the lightest q 3 G baryon and eliminates the possibility that the Roper resonance is dominantly an hermaphrodite state. Magnetic moments do not constrain the possibility of considerable mixing of q 3 G into the nucleon and delta's Fock space wavefunctions. (author)

  8. Baryons and ladders

    International Nuclear Information System (INIS)

    Ball, R.D.

    1990-01-01

    By formal manipulation of the QCD functional integral we arrive at a relativistic low energy effective theory of non-local color singlet mesons and baryons, which at tree level sums up ladders of effective glue exchange between constituent quarks. (orig.)

  9. Baryons on the lattice

    International Nuclear Information System (INIS)

    Bali, G.S.

    2005-01-01

    I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed

  10. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  11. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  12. Diquarks in rotating baryons

    International Nuclear Information System (INIS)

    Martin, A.

    1989-01-01

    This paper shows that the minimum energy three-quark classical configuration for a given angular momentum and linear two-body potentials between the quarks is a quark-diquark system. The authors deduce from this that baryons at large angular momentum have a quark-diquark structure. Explicit calculations by Flack, Richard and Silvestre-Brac show this effect

  13. Problems in baryon spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Capstick, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  14. Baryons and QCD

    International Nuclear Information System (INIS)

    Nathan Isgur

    1997-01-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections

  15. Developing Inventory Projection Models Using Empirical Net Forest Growth and Growing-Stock Density Relationships Across U.S. Regions and Species Group

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...

  16. The baryonic self similarity of dark matter

    International Nuclear Information System (INIS)

    Alard, C.

    2014-01-01

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M 1/4 . These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  17. Baryons with functional methods

    International Nuclear Information System (INIS)

    Fischer, Christian S.

    2017-01-01

    We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.

  18. Photoproduction of charmed baryons

    International Nuclear Information System (INIS)

    Russell, J.J.

    1980-01-01

    The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon (Λ/sub c/ + ) is observed through its decay to p-anti K 0 . The cross section times branching ratio of γ + C → Λ/sub c/ + + X, γ + C → p + anti K 0 is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the Λ/sub c/ + is found to be 2.284 +- 0.001 GeV/c 2 , in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes Λ 0 π, Λ 0 πππ, pKπ

  19. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  20. Baryons as solitons

    International Nuclear Information System (INIS)

    Walliser, Hans

    2000-01-01

    Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders

  1. Validation and correction of rainfall data from the WegenerNet high density network in southeast Austria

    Science.gov (United States)

    O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.

    2018-01-01

    Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).

  2. Baryon number fluctuations and the phase structure in the PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guo-yun; Tang, Zhan-duo; Gao, Xue-yan; He, Wei-bo [Xi' an Jiaotong University, School of Science, Xi' an, Shaanxi (China)

    2018-02-15

    We investigate the kurtosis and skewness of net-baryon number fluctuations in the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model, and discuss the relations between fluctuation distributions and the phase structure of quark-gluon matter. The calculation shows that the traces of chiral and deconfinement transitions can be effectively reflected by the kurtosis and skewness of net-baryon number fluctuations not only in the critical region but also in the crossover region. The contour plot of baryon number kurtosis derived in the PNJL model can qualitatively explain the behavior of net-proton number kurtosis in the STAR beam energy scan experiments. Moreover, the three-dimensional presentations of the kurtosis and skewness in this study are helpful to understand the relations between baryon number fluctuations and QCD phase structure. (orig.)

  3. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  4. Non-baryonic dark matter: observational evidence and detection methods

    International Nuclear Information System (INIS)

    Bergstroem, Lars

    2000-01-01

    The evidence for the existence of dark matter in the universe is reviewed. A general picture emerges, where both baryonic and non-baryonic dark matter is needed to explain current observations. In particular, a wealth of observational information points to the existence of a non-baryonic component, contributing between around 20 and 40% of the critical mass density needed to make the universe geometrically flat on large scales. In addition, an even larger contribution from vacuum energy (or cosmological constant) is indicated by recent observations. To the theoretically favoured particle candidates for non-baryonic dark matter belong axions, supersymmetric particles, and of less importance, massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. Direct and indirect methods for detection of supersymmetric dark matter are described in some detail. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the coming years. (author)

  5. Baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Mannel, T.; Roberts, W.; Ryzak, Z.

    1990-08-01

    We show how to incorporate baryons in the heavy quark effective theory. A convenient formalism is exhibited and applied to semileptonic weak decays of heavy baryons and to exclusive production of heavy baryons in e + e - annihilation. (orig.)

  6. Dilepton as a signature for the baryon-rich quark-gluon matter

    International Nuclear Information System (INIS)

    Zejun He; Jiaju Zhang

    1995-01-01

    From the full stopping scenario, we study dilepton production in a baryon rich quark-gluon fireball on the basis of a relativistic hydrodynamic model, and find that with increasing initial baryon density a characteristic valley and a subsequent peak, which more uniquely signal the formation of the baryon-rich quark-gluon matter, appear in the total dilepton yield. Such characteristics can be tested in future experiments at CERN and Brookhaven. (author). Letter-to-the-editor

  7. Transition mixing among baryons

    International Nuclear Information System (INIS)

    Faiman, D.

    1976-01-01

    A degenerate perturbation theory model for mass splitting within the 70,1 - baryon multiplet is proposed. It is found that dominance of the lowest-lying two-body 56x35 intermediate states produces mixing angles in fair approximation to those previously deduced from SU(6)sub(W) analysis of decay data. The prediction of the couplings of all hitherto undetected members of the multiplet and of mass were made. The results call into question the nature of Λ (1405). (author)

  8. Unstable baryons without Guts

    International Nuclear Information System (INIS)

    Uschersohn, J.; Elbaz, E.

    1983-01-01

    In the rishon model the leptons and the quarks can be classified in either doublets or quadruplets of a SU(2) group. Gauge invariance leads to different charged current interactions in the doublet and the quadruplet cases. Demanding that the neutral currents be the same in the two cases, one obtains relations between the different charged current couplings to leptons and quark; moreover, if these transform as linear combinations of doublets and quadruplets, one can estimate the mass of the gauge boson responsible for baryon decay to be not larger than 10 5 GeV. A SU(2)sub(L) x U(1) model is treated in detail

  9. Baryon spectroscopy at KAON

    Energy Technology Data Exchange (ETDEWEB)

    Comyn, Martin

    1992-07-01

    The unique opportunities for the study of baryon spectroscopy at the TRIUMF KAON Factory are outlined. Related issues in other areas of hadron spectroscopy are discussed. The complex of accelerators that comprise the TRIUMF KAON Factory, and the properties of the separated beams that will be available to experimenters, are described. Initial design considerations for detectors to be used in the study of hadron spectroscopy are presented, along with a proposed detector configuration. The progress towards realization of the TRIUMF KAON Factory is examined, and the timetable for the determination of the initial experimental programme and facilities is explained. 23 refs., 4 figs., 5 tabs.

  10. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    NARCIS (Netherlands)

    Lelli, Federico

    For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density.

  11. Closed worlds and baryon asymmetry of the visible Universe

    International Nuclear Information System (INIS)

    Beletsky, Yu.A.

    1980-01-01

    In the early Universe the large scale perturbations of energy density can form closed worlds (topological decay of the initial Universe). Due to fluctuations of density of baryonic charge these closed worlds are charge asymmetrical even if the initial Universe was symmetric [ru

  12. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    Science.gov (United States)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  13. Hyperons: Insights into baryon structures

    International Nuclear Information System (INIS)

    Lach, J.

    1991-08-01

    The baryon octet is composed mainly of hyperons. Modern high energy hyperon beams provide a tool for the study of hyperon static properties and interactions. Experiments with these beams have provided new insights into hyperon rare decays, magnetic moments, and interactions. These experiments provide us with insights into the strong, weak, and electromagnetic structure of the baryons. 65 refs., 45 figs., 5 tabs

  14. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  15. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  16. Electromagnetic properties of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, C.

    2006-07-01

    Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of

  17. Strangeness production at high baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Satz, Helmut [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany)

    2016-08-15

    We propose to measure strange and non-strange hadron abundances at NICA in both AA and pp collisions, in order to test the validity range and possible extension schemes for present explanations of the energy and collision dependence of strange particle suppression. (orig.)

  18. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  19. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  20. First results from comparison of rainfall estimations by GPM IMERG with rainfall measurements from the WegenerNet high density network

    Science.gov (United States)

    Oo, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Jürgen

    2016-04-01

    The research level products of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG "Final" run datasets) were compared with rainfall measurements from the WegenerNet high density network as part of ground validation (GV) projects of GPM missions. The WegenerNet network comprises 151 ground level weather stations in an area of 15 km × 20 km in south-eastern Austria (Feldbach region, ˜46.93° N, ˜15.90° E) designed to serve as a long-term monitoring and validation facility for weather and climate research and applications. While the IMERG provides rainfall estimations every half hour at 0.1° resolution, the WegenerNet network measures rainfall every 5 minutes at around 2 km2 resolution and produces 200 m × 200 m gridded datasets. The study was conducted on the domain of the WegenerNet network; eight IMERG grids are overlapped with the network, two of which are entirely covered by the WegenerNet (40 and 39 stations in each grid). We investigated data from April to September of the years 2014 to 2015; the date of first two years after the launch of the GPM Core Observatory. Since the network has a flexibility to work with various spatial and temporal scales, the comparison could be conducted on average-points to pixel basis at both sub-daily and daily timescales. This presentation will summarize the first results of the comparison and future plans to explore the characteristics of errors in the IMERG datasets.

  1. Brane-induced Skyrmion on S3: Baryonic matter in holographic QCD

    International Nuclear Information System (INIS)

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2009-01-01

    We study baryonic matter in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory. The baryon is described as the 'brane-induced Skyrmion', which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the ''truncated-resonance model'' approach for the baryon analysis, including pion and ρ meson fields below the ultraviolet cutoff scale M KK ∼1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N c as single brane-induced Skyrmion on the three-dimensional closed manifold S 3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S 3 , and the decrease of the size of S 3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S 3 as the function of its radius R. We find a new picture of 'pion dominance' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M KK .

  2. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  3. Layers of deformed instantons in holographic baryonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Preis, Florian [Institut für Theoretische Physik, Technische Universität Wien,1040 Vienna (Austria); Schmitt, Andreas [Mathematical Sciences and STAG Research Centre, University of Southampton,Southampton SO17 1BJ (United Kingdom)

    2016-07-01

    We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.

  4. Baryonic Higgs at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fileviez Perez, Pavel [Case Western Reserve Univ., Cleveland, OH (United States). CERCA, Physics Dept.; Smirnov, Juri [INFN, Sezione di Firenze (Italy); Florence Univ., Sesto Fiorentino (Italy). Dept. of Physics and Astronomy

    2017-04-15

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. We refer to this new Higgs as ''Baryonic Higgs''. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and WW searches at the Large Hadron Collider, needed to find a lower bound on the scale at which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. We also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.

  5. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  6. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  7. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  8. Calm Multi-Baryon Operators

    Directory of Open Access Journals (Sweden)

    Berkowitz Evan

    2018-01-01

    Full Text Available There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions.To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3 flavor symmetric point with mπ~ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.

  9. Spectroscopy of doubly heavy baryons

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Kiselev, V.V.; Likhoded, A.K.; Onishchenko, A.I.

    2000-01-01

    Within a nonrelativistic quark model featuring a QCD-motivated Buchmueller-Tye potential, the mass spectra for the families of doubly heavy baryons are calculated by assuming the quark-diquark structure of the baryon wave functions and by taking into account spin-dependent splitting. Physically motivated evidence that, in the case where heavy quarks have identical flavors, quasistationary excited states may be formed in the heavy-diquark subsystem is analyzed

  10. Excitations of strange bottom baryons

    Energy Technology Data Exchange (ETDEWEB)

    Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)

    2016-09-15

    The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)

  11. Dark matter-baryon segregation in the nonlinear evolution of coupled dark energy models

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2005-01-01

    The growth and virialization of spherical top-hat fluctuations, in coupled dark energy models, causes segregation between dark matter (DM) and baryons, as the gravitational infall into the potential well proceeds more slowly for the baryons than for DM. As a consequence, after attaining their turnaround and before full virialization, halos have outer layers rich of baryons. Accordingly, a natural ambiguity exists on the definition of the virial density contrast. In fact, when the outer baryon layers infall onto the DM-richer core, they carry with them DM materials outside the original fluctuation; hence, no time exists when all materials originally belonging to the fluctuation--and only they--have virialized. Baryon-DM segregation can have various astrophysical consequences on different length scales. The smallest halos may loose up to 50% of the original baryonic contents and become hardly visible. Subhalos in cluster-size halos may loose much baryonic materials, which could then be observed as intracluster light. Isolated halos, in general, can be expected to have a baryon component richer than the cosmological proportions, due to the cosmic enrichement of baryons lost in small halo encounters

  12. Baryon number dissipation at finite temperature in the standard model

    International Nuclear Information System (INIS)

    Mottola, E.; Raby, S.; Starkman, G.

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, γ is given in terms of real time correlation functions of the operator E·B, and is directly proportional to the sphaleron transition rate, Γ: γ preceq n f Γ/T 3 . Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs

  13. Cs{sub 2}CuP{sub 2}O{sub 7}, a novel low-density open-framework structure based upon an augmented diamond net

    Energy Technology Data Exchange (ETDEWEB)

    Mannasova, Alina A.; Chernyatieva, Anastasiya P.; Krivovichev, Sergey V. [Saint Petersburg State Univ. (Russian Federation). Dept. of Crystallography

    2016-04-01

    The crystal structure of Cs{sub 2}CuP{sub 2}O{sub 7} [monoclinic, Cc, a=7.460(6), b=12.973(10), c=9.980(8) Aa, β=111.95(2) {sup circle}, V=895.8(12) Aa{sup 3}] prepared by solid-state reactions is based upon open framework formed by corner sharing between CuO{sub 4} distorted squares and P{sub 2}O{sub 7} groups. The framework is porous and has a very low framework density of 13.4 Cu+P atoms per 1 nm{sup 3}. Cs{sup +} cations reside in large framework cavities. The heteropolyhedral network in the title compound is based upon three-dimensional (3;4)-connected net that has a three-membered CuP{sub 2} ring as its elementary unit. In terms of reticular chemistry, this net should be considered as an augmented diamond (dia) net. The Cu-P net can be obtained from the latter by the replacement of its nodes by the CuP{sub 2} triangles. This replacement is strongly non-centrosymmetric, since all CuP{sub 2} triangles are oriented along the same direction, which provides a crystal chemical explanation for the absence of a symmetry centre in the structure. Cs{sub 2}CuP{sub 2}O{sub 7} is the first compound in the A{sub 2}CuP{sub 2}O{sub 7} family (A=alkaline metal), which is based upon three-dimensional copper pyrophosphate framework.

  14. Accurate initial conditions in mixed Dark Matter--Baryon simulations

    CERN Document Server

    Valkenburg, Wessel

    2017-06-01

    We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...

  15. Chiral-symmetry restoration in baryon-rich environments

    International Nuclear Information System (INIS)

    Kogut, J.; Matsuoka, H.; Stone, M.; Wyld, H.W.; Shenker, S.; Shigemitsu, J.; Sinclair, D.K.

    1983-04-01

    Chiral symmetry restoration in an environment rich in baryons is studied by computer simulation methods in SU(2) and SU(3) gauge theories in the quenched approximation. The basic theory of symmetry restoration as a function of chemical potential is illustrated and the implementation of the ideas on a lattice is made explicit. A simple mean field model is presented to guide one's expectations. The second order conjugate-gradient iterative method and the pseudo-fermion Monte Carlo procedure are convergent methods of calculating the fermion propagator in an environment rich in baryons. Computer simulations of SU(3) gauge theory show an abrupt chiral symmetry restoring transition and the critical chemical potential and induced baryon density are estimated crudely. A smoother transition is observed for the color group SU(2)

  16. QCD string in the baryon

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefediev, A.V.

    1997-01-01

    The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed

  17. Electromagnetic corrections to baryon masses

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc

    2005-01-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately

  18. Strange Baryon Physics in Full Lattice QCD

    International Nuclear Information System (INIS)

    Huey-Wen Lin

    2007-01-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles

  19. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  20. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    CERN Document Server

    Floerchinger, Stefan

    2015-01-01

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

  1. Baryonic 3P2-dominant superfluidity under combined pion condensation with Δ isobar. 1. Formulation

    International Nuclear Information System (INIS)

    Tamagaki, Ryozo

    2006-01-01

    Baryonic superfluidity is studied in the combined pion condensation with the Δ degrees of freedom. We adopt a model previously proposed, in which both condensates of the neutral and charged pions coexist without interference in neutron star matter above the nuclear density. In setting up the most probable pairing correlation in such situation, it is crucial to extract attractive effects of the baryon-baryon spin-orbit interaction playing a decisive role in realizing the superfluid at moderate high densities. To this aim, using the quasi-baryon basis having the good angular-momentum quantum number, we define the quasi-baryon pairs with the stretched two-dimensional angular momentum with m J =±2, being the sum of a spin component m s =±1 and an orbital-angular momentum m L =±1 of the quasi-baryon pairs. Pairing interaction is given in terms of the operators of these quasi-baryon pairs. This choice enables us to include the usual 3 P 2 pair as a dominant component in the quasi-baryon pairs thus defined. Then we rewrite the quasi-baryon pair operations in terms of the operators of the quasi-particles (denoted as η) describing the single-particle eigenmode in the combined pion condensation. The Bogoliubov transformation is performed according to the scheme previously developed in the study of the neutron 3 P 2 pairing, since both cases are similar in formal structure although different in physical content. Finally we obtain a coupled gap equation among three channels corresponding to three different charge states of the quasi-baryon pairs. This paper presents such a formulation. Analysis of the matrix element of the pairing interaction and numerical results of energy gaps will be reported in a succeeding paper. (author)

  2. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  3. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2014-07-01

    Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.

  4. Net-baryon number fluctuations using Tsallis statistics

    International Nuclear Information System (INIS)

    Garg, P.; Singh, B.K.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.

    2014-01-01

    In the present work, we show that the HRG-Tsallis model with a temperature dependent nonextensive q parameter reproduces the energy dependence of Sσ and kσ 2 for most peripheral collisions as well as Sσ for central collisions. However, the energy dependence of kσ 2 of central collision deviate significantly from the HRG-Tsallis model predictions particularly at energies 19.6 GeV and 27 GeV. We argue here that the predictions of HRG-Tsallis characterized by a temperature dependent q parameter should be taken as the baseline to study (experimentally) fluctuations of dynamical origin if any, which is still not contained in the Tsallis non-extensive thermodynamics

  5. Magnetic monopoles and baryon decay

    International Nuclear Information System (INIS)

    Pak, N.; Panagiotakopoulos, C.; Shafi, Q.

    1982-08-01

    The scattering of a non-relativistic quark from a GUT monopole is affected by the anomalous magnetic moment of the quark. In order that monopole catalysis of baryon decay can occur, it must be assumed that the anomalous magnetic moment decreases sufficiently rapidly below the QCD scale. (author)

  6. Baryon production from cluster hadronisation

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, Stefan; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [University of Vienna, Particle Physics, Faculty of Physics, Vienna (Austria)

    2018-02-15

    We present an extension to the colour reconnection model in the Monte Carlo event generator Herwig to account for the production of baryons and compare it to a series of observables for soft physics. The new model is able to improve the description of charged-particle multiplicities and hadron flavour observables in pp collisions. (orig.)

  7. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  8. Charmed baryonic resonances in medium

    Directory of Open Access Journals (Sweden)

    Tolos Laura

    2015-01-01

    Full Text Available We discuss the behavior of dynamically-generated charmed baryonic resonances in matter within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyze the implications for the formation of D-meson bound states in nuclei and the propagation of D mesons in heavy-ion collisions from RHIC to FAIR energies.

  9. Non-baryonic dark matter

    OpenAIRE

    Berezinsky, Veniamin Sergeevich; Bottino, A; Mignola, G

    1996-01-01

    The best particle candidates for non--baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc.

  10. Beauty baryons: Recent CDF results

    International Nuclear Information System (INIS)

    Tseng, J.

    1996-12-01

    Using data collected between 1992 and 1995 at the Fermilab Tevatron, CDF has searched for the Λ b baryon through both semileptonic and hadronic decay channels. This presentation reviews measurements of the Λ b mass, lifetime, and production and decay rates performed with this data

  11. Current status of baryon spectroscopy

    International Nuclear Information System (INIS)

    Wali, K.C.

    1975-08-01

    In this review of baryon spectroscopy, the basic ideas of some of the current models and the experimental data for their claims to success are discussed including realistic or constituent quark models, experimental comparison, the experimental and theoretical basis for the assignments, algebraic quark models, and confinement schemes

  12. Baryon spectroscopy and SU(6)

    International Nuclear Information System (INIS)

    Litchfield, P.

    1977-09-01

    An elementary account of the SU(6) formalism for baryons is given. The assignment of the known resonances to SU(6) multiplets is discussed and an experimental scheme given for the spectrum of SU(6) x 0(2) multiplets. (author)

  13. Baryon observables and color confinement

    International Nuclear Information System (INIS)

    Jackson, A.D.

    1987-01-01

    Calculations of baryon observables within the framework of the chiral bag model are reviewed. The results of such calculations are found to be remarkably insensitive to the radius of color confinement and indicate the difficulty of finding unambiguous evidence for quarks in nuclei. 13 refs.; 5 figs

  14. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    Science.gov (United States)

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  15. Net-proton evolution in heavy ion collisions

    International Nuclear Information System (INIS)

    Ahmad, S.; Farooq, M.; Chattopadhyay, S.

    2015-01-01

    The exploration of the Quantum Chromo Dynamics (QCD) phase diagram of strongly interacting matter is a major field of modern high-energy physics. Of particular interest is the transition from hadrons to partonic degrees of freedom which is expected to occur at high temperatures or high baryon densities. These phases play an important role in the early universe and in the core of neutron stars. Heavy ion collisions are used to create new form of matter at high energy/baryonic densities depending upon the incident beam energy. At FAIR energies (10-45 AGeV) matter at high baryonic density and moderate temperature is expected to be created. CBM (Compressed Baryonic Matter) experiment at FAIR will search for the critical point, the first order deconfinement phase transition from the hadronic matter to the partonic matter and the equation-of-state of dense baryonic matter

  16. Flavour and spin structure of linear baryons

    International Nuclear Information System (INIS)

    Kawarabayashi, K.; Kitakado, S.; Inami, T.

    1979-01-01

    Based on the string picture, a phenomenological model for baryons is constructed and their flavour symmetry, exchange degeneracy pattern and spin structure are studied. Baryons on leading trajectories are assumed to have the configuration of two quarks being attached to the ends of a linear string and the third sitting in the middle, called linear baryons. For such linear baryons, a unitarization scheme can be constructed in a manner similar to the dual unitarity scheme for mesons but without recourse to the 1/N expansion. It is found that the interchange interaction of the middle quark with one of the other two quarks at the ends of the string can give rise to a larger exchange degeneracy breaking of the baryon spectrum. With this non-planar correction, the model of linear baryons can account for the observed pattern of leading baryon states. (Auth.)

  17. Rapidity dependence of thermal dileptons resulting from hadronizing quark-gluon matter with finite baryon charge

    International Nuclear Information System (INIS)

    Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev; Gorenstein, M.I.; Peshier, A.; Soff, G.

    1994-07-01

    The influence of a non-vanishing baryon charge on the rapidity distribution of dileptons produced in ultrarelativistic heavy-ion collisions is studied. We employ a frozen motion model with scaling invariant expansion of the hadronizing quark-gluon plasma as well as a realistic rapidity distribution of secondary particles (i.e., pions and baryons) expected for RHIC energies. We find a considerable suppression of the dilepton production yield at large rapidities due to the finite baryon density. To discriminate the thermal dileptons from Drell-Yan background we propose to utilize the dilepton yield scaled suitably by the pion multiplicity as function of rapidity. (orig.)

  18. Reconstructing baryon oscillations: A Lagrangian theory perspective

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; White, Martin; Cohn, J. D.

    2009-01-01

    Recently Eisenstein and collaborators introduced a method to 'reconstruct' the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.

  19. Equivalence principle and the baryon acoustic peak

    Science.gov (United States)

    Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias

    2015-08-01

    We study the dominant effect of a long wavelength density perturbation δ (λL) on short distance physics. In the nonrelativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at ℓBAO, this naive expectation breaks down for λLexplicitly applied to the one-loop calculation of the power spectrum. Finally, the success of baryon acoustic oscillation reconstruction schemes is argued to be another empirical evidence for the validity of the results.

  20. Baryon physics in holographic QCD

    Directory of Open Access Journals (Sweden)

    Alex Pomarol

    2009-03-01

    Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.

  1. Exotic heavy baryons at LHC

    International Nuclear Information System (INIS)

    Biro, T.S.; Zimanyi, J.

    1993-06-01

    A heavy bottom-charm six-quark baryon is considered. A semiclassical and a Gaussian estimate show that the octet-octet bbb-ccc configuration can be favoured energetically rather than the singlet-singlet one. This result suggests that a confined bbb-ccc six-quark state may exist. Such objects may be produced in suitable amounts by heavy-ion collisions at Large Hadronic Collider energies. (R.P.) 8 refs. 1 fig

  2. S-matrix analysis of the baryon electric charge correlation

    Science.gov (United States)

    Lo, Pok Man; Friman, Bengt; Redlich, Krzysztof; Sasaki, Chihiro

    2018-03-01

    We compute the correlation of the net baryon number with the electric charge (χBQ) for an interacting hadron gas using the S-matrix formulation of statistical mechanics. The observable χBQ is particularly sensitive to the details of the pion-nucleon interaction, which are consistently incorporated in the current scheme via the empirical scattering phase shifts. Comparing to the recent lattice QCD studies in the (2 + 1)-flavor system, we find that the natural implementation of interactions and the proper treatment of resonances in the S-matrix approach lead to an improved description of the lattice data over that obtained in the hadron resonance gas model.

  3. Radiative decays of single heavy flavour baryons

    International Nuclear Information System (INIS)

    Majethiya, Ajay; Patel, Bhavin; Vinodkumar, P.C.

    2009-01-01

    The electromagnetic transitions between (J P =(3)/(2) + ) and (J P =(1)/(2) + ) baryons are important decay modes to observe new hadronic states experimentally. For the estimation of these transitions widths, we employ a non-relativistic quark potential model description with color Coulomb plus linear confinement potential. Such a description has been employed to compute the ground-state masses and magnetic moments of the single heavy flavor baryons. The magnetic moments of the baryons are obtained using the spin-flavor structure of the constituting quark composition of the baryon. Here, we also define an effective constituent mass of the quarks (ecqm) by taking into account the binding effects of the quarks within the baryon. The radiative transition widths are computed in terms of the magnetic moments of the baryon and the photon energy. Our results are compared with other theoretical models. (orig.)

  4. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  5. Determination of baryon and baryonic resonance masses from QCD sum rules. Strange baryons

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.

    1982-01-01

    The mass differences in baryonic octet Jsup(P)=1/2sup(+), decuplet Jsup(P)=3/2sup(+) and in octet Jsup(P)=3/2sup(-) are calculated basing on the QCD sum rules. The mass differences are expressed through two QCD parameters: the strange current qUark mass and the value of the quark condensate. At the properly chosen values of these parameters all of the mass differences are in a good agreement with experiment

  6. The Heavy Baryon Physics by means LEP

    International Nuclear Information System (INIS)

    Lesiak, T.

    2000-07-01

    This report describes the experimental research about the heavy baryons which were obtained in the last decade at LEP. The most important among them concern the lifetimes of beauty baryons. The methods of theoretical description of heavy hadrons together with the LEP experimental apparatus are also discussed. Heavy baryon studies are shown in a broader perspective of other LEP results: the test of the standard model and the latest measurements concerning the beauty mesons. (author)

  7. Baryon exchange effects in dual unitarisation

    International Nuclear Information System (INIS)

    Hong-Mo, C.; Tsun, T.S.

    1976-05-01

    The effects of baryon exchanges in the renormalisation of Regge trajectories are studied in the dual unitarisation scheme. The main results are that: (i) the Pomeron is boosted above α = 1, giving rising total cross sections beyond baryon-antibaryon thresholds, and (ii) the ω-trajectory remains approximately at α = .5 but acquires a sizeable admixture of the exotic antiq antiq qq state, which enhances its coupling to baryons. There are in addition a number of other interesting predictions. (author)

  8. Baryon asymmetry, inflation and squeezed states

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry

  9. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  10. Baryon number violation and string topologies

    International Nuclear Information System (INIS)

    Sjoestrand, T.; Skands, P.Z.

    2003-01-01

    In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay

  11. Search for diquark clustering in baryons

    International Nuclear Information System (INIS)

    Fleck, S.; Silvestre-Brac, B.; Richard, J.M.

    1988-03-01

    In the framework of the non-relativistic quark model, we examine to which extent baryons consist of a quark bound to a localized cluster of two quarks simulating a diquark. We consider ground states and orbital excitations for various flavour combinations. A striking clustering shows up sometimes especially for the leading Regge trajectory of the nucleon and single flavoured baryons or for the ground state of baryons bearing two heavy flavours. This is, however, far from being a general pattern and there are clear differences between the three-quark description of baryons and the quark-diquark model

  12. Quark color-hyperfine interactions in baryons

    International Nuclear Information System (INIS)

    Anselmino, M.; Lichtenberg, D.B.

    1990-01-01

    We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)

  13. Effects of baryons on the statistical properties of large scale structure of the Universe

    International Nuclear Information System (INIS)

    Guillet, T.

    2010-01-01

    Observations of weak gravitational lensing will provide strong constraints on the cosmic expansion history and the growth rate of large scale structure, yielding clues to the properties and nature of dark energy. Their interpretation is impacted by baryonic physics, which are expected to modify the total matter distribution at small scales. My work has focused on determining and modeling the impact of baryons on the statistics of the large scale matter distribution in the Universe. Using numerical simulations, I have extracted the effect of baryons on the power spectrum, variance and skewness of the total density field as predicted by these simulations. I have shown that a model based on the halo model construction, featuring a concentrated central component to account for cool condensed baryons, is able to reproduce accurately, and down to very small scales, the measured amplifications of both the variance and skewness of the density field. Because of well-known issues with baryons in current cosmological simulations, I have extended the central component model to rely on as many observation-based ingredients as possible. As an application, I have studied the effect of baryons on the predictions of the upcoming Euclid weak lensing survey. During the course of this work, I have also worked at developing and extending the RAMSES code, in particular by developing a parallel self-gravity solver, which offers significant performance gains, in particular for the simulation of some astrophysical setups such as isolated galaxy or cluster simulations. (author) [fr

  14. Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Ficnar, Andrej [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Finazzo, Stefano I. [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Instituto de Física Teórica, Universidade do Estado de São Paulo, Rua Dr. Bento T. Ferraz, 271, CEP 01140-070, São Paulo, SP (Brazil); Noronha, Jorge [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)

    2016-04-15

    Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, μ{sub B}, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for μ{sub B}≤400 MeV. This holographic model is used to obtain holographic predictions for the temperature and μ{sub B} dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter q̂ and the shooting string energy loss of light quarks in the baryon dense plasma. We find that the energy loss of heavy and light quarks generally displays a nontrivial, fast-varying behavior as a function of the temperature near the crossover. Moreover, energy loss is also found to generally increase due to nonzero baryon density effects even though this strongly coupled liquid cannot be described in terms of well defined quasiparticle excitations. Furthermore, to get a glimpse of how thermalization occurs in a hot and baryon dense QGP, we study how the lowest quasinormal mode of an external massless scalar disturbance in the bulk is affected by a nonzero baryon charge. We find that the equilibration time associated with the lowest quasinormal mode decreases in a dense medium.

  15. Search for Nφ(1960) baryon

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.

    1993-01-01

    In the experiments at the SPHINX facility in the 70 GeV proton beam of the IHEP accelerator the diffractive production reactions p + N → [Σ(1385) 0 K + ] + N and p + N → [Σ(1385) 0 K + ] + N + (neutral particles) were studied. In the effective mass spectra of the [Σ(1385) 0 K + ] system in these processes there were no signals from the anomalously narrow baryon state N φ (1960), which had been observed earlier in the measurement at the BIS-2 setup. 6 refs., 7 figs

  16. Search for Nφ(1960) baryon

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.; Dzubenko, G.B.; Filimonov, I.M.; Frolov, S.V.; Golovkin, S.V.; Grishkin, Yu.L.; Gritzuk, M.V.; Kamenskii, A.D.; Kliger, G.K.; Kolganov, V.Z.; Konstantinov, A.S.; Korchagin, Yu.V.; Kozevnikov, A.P.; Kubarovskii, V.P.; Kulman, N.Yu.; Kulyavtsev, A.I.; Kurshetsov, V.F.; Kushnirenko, A.E.; Lakaev, V.S.; Landsberg, L.G.; Lomkatzi, G.S.; Molchanov, V.V.; Mukhin, V.A.; Nilov, A.P.; Novoghilov, Yu.B.; Prutskoi, V.A.; Sitnikov, A.I.; Smolyankin, V.T.; Solyanik, V.I.; Vavilov, D.V.; Victorov, V.A.; Vishnyakov, V.E.

    1994-01-01

    In the experiments at the SPHINX facility in the 70 GeV proton beam of the IHEP accelerator the diffractive production reactions p+N→[Σ(1385) 0 K + ]+N and p+N→[Σ(1385) 0 K + ]+N+ (neutral particles) were studied. In the effective mass spectra of the [Σ(1385) 0 K + ] system in these processes there were no signals from the anomalously narrow baryon state N φ (1960) which had been observed earlier in the measurement at the BIS-2 setup. (orig.)

  17. Gluon field distribution in baryons

    International Nuclear Information System (INIS)

    Bissey, F.; Cao, F-G.; Kitson, A.; Lasscock, B.G.; Leinweber, D.B.; Signal, A.I.; Williams, A.G.; Zanotti, J.M.

    2005-01-01

    Methods for revealing the distribution of gluon fields within the three-quark static-baryon potential are presented. In particular, we outline methods for studying the sensitivity of the source on the emerging vacuum response for the three-quark system. At the same time, we explore the possibility of revealing gluon-field distributions in three-quark systems in QCD without the use of gauge-dependent smoothing techniques. Renderings of flux tubes from a preliminary high-statistics study on a 12 3 x 24 lattice are presented

  18. Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, E.J.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Valencia (Spain)

    2012-01-15

    We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled-channels unitary approach, including also the pseudoscalar-baryon channels which couple to the same quantum numbers. We examine the scattering amplitudes and their poles, which can be associated to the known J{sup P}=1/2{sup -}, 3/2{sup -} baryon resonances, and determine the role of the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated with only the basis of vector-baryon states. (orig.)

  19. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    Science.gov (United States)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  20. Spinodal instability of baryon-rich quark matter

    International Nuclear Information System (INIS)

    Li, Feng; Ko, Che Ming

    2017-01-01

    The spinodal instabilities of both confined and expanding baryon-rich quark matters are studied in a transport model derived from the Nambu-Jona-Lasino model. Appreciable higher-order density moments are seen as a result of the first-order phase transition in both cases. The skewness of the quark number event-by-event distribution in a small subvolume of the system becomes appreciable for the confined quark matter. For the expanding quark matter, the density fluctuations lead to enhanced anisotropic flows and dilepton yield. (paper)

  1. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-Coulomb plus power potential. Abstract. Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement ...

  2. Baryon spectroscopy and the omega minus

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1994-12-31

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.

  3. Baryon spectroscopy and the omega minus

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the Ω - . However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks

  4. The good, the bad, and the baryon

    International Nuclear Information System (INIS)

    Ball, R.D.

    1990-01-01

    We describe the incorporation of baryons into an effective theory of QCD at low energies. The baryon is not a Skyrmion, rather it consists of three valence quarks bound by effective gluon exchanges, enveloped in a meson cloud, which may possibly take the form of a chiral soliton. Some of the physical implications of these results are also discussed. (orig.)

  5. Baryon bags in strong coupling QCD

    Science.gov (United States)

    Gattringer, Christof

    2018-04-01

    We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.

  6. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  7. Baryon excitations in the bag model

    International Nuclear Information System (INIS)

    Jaffe, R.L.

    1976-07-01

    Two recent spectroscopic applications of the bag model are discussed. The first is a study of the place of multiquark states in meson and baryon spectroscopy, and the second is an attempt to sort out the P-wave baryon excitations in a bag model. 33 references

  8. Strange baryon production in Z hadronic decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Anykeyev, V B; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Cassio, V; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chikilev, O G; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Grard, F; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parodi, F; Passeri, A; Pegoraro, M; Pennanen, J; Peralta, L; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tuuva, T; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van Doninck, W K; Van Eldik, J; Van der Velde, C; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Voutilainen, M; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Yu, L; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zhigunov, V P; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the \\Sigma^\\pm average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.

  9. Search for Baryons with Two Charm Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Mark Edward [Carnegie Mellon U.

    2002-01-01

    Using data from the SELEX experiment, we searched for baryons having two charm quarks. No one has yet observed a doubly-charmed baryon. We investigated the reconstruction $\\Lambda^+_c K⁻ \\pi^+\\pi^+$, a decay mode consistent with a baryon having $ccu$ quarks. We observe an excess of 20 events above an expected background of 31 events, at a mass of 3.76 GeV/$c^2$. We observe differences between the signal events and the background. The mass resolution, mass, and decay mode are consistent with a $ccu$ baryon. The mass and production are higher than theoretical predictions for the ground state $\\Xi^{++}_{cc}$. If the signal is real and not a doubly-charmed baryon, then it is not accounted for by current physics

  10. Pion condensation and density isomerism in nuclear matter

    International Nuclear Information System (INIS)

    Hecking, P.; Weise, W.

    1979-01-01

    The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely

  11. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  12. Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions

    Science.gov (United States)

    Famaey, Benoit; Khoury, Justin; Penco, Riccardo

    2018-03-01

    The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light

  13. Recent soft-core baryon-baryon interactions

    International Nuclear Information System (INIS)

    Rijken, Th.A.; Yamamoto, Y.

    2005-01-01

    We present recent results obtained with the extended soft-core (ESC) interactions. This ESC-model, henceforth called ESC03, describes nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in a unified manner using (broken) SUf(3)-symmetry. Novel ingredients are the inclusion of (i) the axial-vector meson potentials (ii) a zero in the scalar-meson form-factors. With these innovations, it proved possible for the first time to keep the parameters of the model closely to the predictions of the P03 quark-pair-creation model (QPC). This is the case for the meson-baryon coupling constants and F/(F+D)-ratio's as well. Also, the YN and YY results for this model are rather excellent

  14. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  15. Borel sum rules for octet baryons in nuclear medium

    International Nuclear Information System (INIS)

    Kondo, Y.; Morimatsu, O.

    1992-06-01

    Borel sum rules are examined for octet baryons in the nuclear medium. First, it is noticed that in the medium the dispersion relation is realized for the retarded correlation Π R (ω, q 2 ) in the energy ω. Then, Π R (ω, q 2 ) is split into even and odd parts of ω in order to apply the Borel transformation. The obtained Borel sum rules differ from those of previous works. The mass shifts of octet baryons are calculated in the leading order of the operator product expansion with linear density approximation for the condensates. It is found that both scalar and vector condensates of the quark field, and + q>, induce attraction to the octet baryons in the medium in contrast to the results of previous works. It is also found that |δM N | > |δM Λ | > |δM Σ | ∼ |δM Ξ |. The absolute values, however, turn out to be one order of magnitude larger than those empirically known if a Borel mass of around 1 GeV is used in the present approximation. (author)

  16. A Baryonic Solution to the Missing Satellites Problem

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem

  17. Study of Charm Baryons with the BaBar Experiment

    International Nuclear Information System (INIS)

    Petersen, Brian Aa.

    2006-01-01

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the Ξ' c 0/+ , Ξ c (2980) + and Ξ c (3077) + baryons, measure branching ratios for Cabibbo-suppressed Λ c + decays and use baryon decays to study the properties of the light-quark baryons, (Omega) - and Ξ(1690) 0

  18. CP violation in the baryon sector

    CERN Document Server

    Smith, Eluned Anne

    2017-01-01

    The study of CP violation in the baryon sector is still a relatively new field and offers the possibility to make many CP measurements which could complement those performed in the meson sector. This is especially true of late given the large number of baryons currently being produced at the LHC. Such measurements could help further over-constrain the CKM unitary triangle, as well as furthering our understand of baryongenesis. These proceedings will give an overview of the current state of the search for CP violation in the baryon sector.

  19. Analysis of Baryon Angular Correlations with Pythia

    CERN Document Server

    Mccune, Amara

    2017-01-01

    Our current understanding of baryon production is encompassed in the framework of the Lund String Fragmentation Model, which is then encoded in the Monte Carlo event generator program Pythia. In proton-proton collisions, daughter particles of the same baryon number produce an anti-correlation in $\\Delta\\eta\\Delta\\varphi$ space in ALICE data, while Pythia programs predict a correlation. To understand this unusual effect, where it comes from, and where our models of baryon production go wrong, correlation functions were systematically generated with Pythia. Effects of energy scaling, color reconnection, and popcorn parameters were investigated.

  20. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  1. The quenched limit of lattice QCD at non-zero baryon number

    International Nuclear Information System (INIS)

    Engels, J.; Kaczmarek, O.; Karsch, F.; Laermann, E.

    1999-01-01

    We discuss the thermodynamics of gluons in the background of static quark sources. In order to do so we formulate the quenched limit of QCD at non-zero baryon number. A first numerical analysis of this system shows that it undergoes a smooth deconfining transition. We find evidence for a region of coexisting phases that becomes broader with increasing baryon number density. Although the action is in our formulation explicitly Z(3) symmetric the Polyakov loop expectation value becomes non-zero already in the low temperature phase. It indicates that the heavy quark potential stays finite at large distances, i.e. the string between static quarks breaks at non-zero baryon number density already in the hadronic phase

  2. Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons

    International Nuclear Information System (INIS)

    Bongardt, K.

    1976-01-01

    Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ) [de

  3. Petri Nets

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE ... In Part 1 of this two-part article, we have seen im- ..... mable logic controller and VLSI arrays, office automation systems, workflow management systems, ... complex discrete event and real-time systems; and Petri nets.

  4. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  5. Measuring baryon-(anti-)baryon interaction cross-sections with femtoscopy in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kisiel, A.

    2016-12-15

    Two-particle correlations at low relative momentum (femtoscopy) are used to study the space-time dynamics of the source created in heavy-ion collisions. The same method can be used in a novel way to study the Final State Interaction potential for various particle pairs. The parameters are also directly related to the relevant interaction cross-sections. Of special interest are correlations of baryons, where the strong interaction often dominates. The femtoscopic technique offers a unique opportunity to study this interaction in such systems. In this work we discuss the similarities and differences of such measurement for baryon-baryon and baryon-antibaryon pairs.

  6. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    Science.gov (United States)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  7. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    periments have generated much interest in the spectroscopy of heavy flavor baryons ... the point of view of simple systems to study three-body problems. ..... One of the authors (PCV) acknowledges the financial support from the University.

  8. Polarization in pp → p(baryon)

    International Nuclear Information System (INIS)

    Castillo-Vallejo, Victor M.; Felix, Julian

    2003-01-01

    It's introduced a calculation, which is based on symmetries followed by high energy hadronic interactions, of resonance polarization and specific angular momentum state polarization created in pp → p(baryon)

  9. Baryons electromagnetic mass splittings in potential models

    International Nuclear Information System (INIS)

    Genovese, M.; Richard, J.-M.; Silvestre-Brac, B.; Varga, K.

    1998-01-01

    We study electromagnetic mass splittings of charmed baryons. We point out discrepancies among theoretical predictions in non-relativistic potential models; none of these predictions seems supported by experimental data. A new calculation is presented

  10. Current algebra, baryons and quark confinement

    International Nuclear Information System (INIS)

    Witten, E.

    1983-01-01

    It is shown that ordinary baryons can be understood as solitons in current algebra effective lagrangiangs. The formation of color flux tubes can also be seen in current algebra, under certain conditions. (orig.)

  11. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  12. Electromagnetic splitting for mesons and baryons using dressed constituent quarks

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Brau, Fabian; Semay, Claude

    2003-01-01

    Electromagnetic splittings for mesons and baryons are calculated in a formalism where the constituent quarks are considered as dressed quasiparticles. The electromagnetic interaction, which contains coulomb, contact and hyperfine terms, is folded with the quark electrical density. Two different types of strong potentials are considered. Numerical treatment is done very carefully and several approximations are discussed in detail. Our model contains only one free parameter and the agreement with experimental data is reasonable although it seems very difficult to obtain a perfect description in any case

  13. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2016-12-15

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  14. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    International Nuclear Information System (INIS)

    Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.

    2016-01-01

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  15. Production of baryons with large transverse momentum

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.; Scott, D.M.

    1975-01-01

    The multiple scattering of constituent quarks provides a natural mechanism for fairly copious production of large-transverse-momentum baryons in nucleon--nucleon collisions. The predicted scaling law agrees well with available data, and the mechanism provides a qualitative explanation of nuclear-target effects. In comparison with previous parton models, correlations are predicted to be qualitatively different, and large-p/sub T/ baryon production by meson beams is relatively suppressed

  16. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  17. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  18. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  19. Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering

    International Nuclear Information System (INIS)

    Fuchs, M.

    1993-01-01

    After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance

  20. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  1. Disentanglement of Electromagnetic Baryon Properties

    Science.gov (United States)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  2. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  3. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  4. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  5. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  6. Net Gain

    International Development Research Centre (IDRC) Digital Library (Canada)

    Describing the effect of tax incentives for import, production, and sale of nets and insecticides; and ..... So far, China is the only country where a system for the routine treatment of ...... 1993), and the trials in Ecuador and Peru (Kroeger et al.

  7. Compression of dark halos by baryon infall - Self-similar solutions

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1991-01-01

    The compression of dissipationless halos by dissipative baryon infall is examined through the use of self-similar models. The models are spherically symmetric, with asymptotic density profiles of given form. A fraction f of the matter consists of freely falling baryons; the remainder of the matter, consisting of dark matter with initial dispersion anisotropy beta is gravitationally compressed by the infalling baryons. Analytic results are presented in the limiting cases f = 1 and f = 0. Numerical results are given for halos with varying values of alpha, beta, and f. The compression of the dark matter is found to be adiabatic and has a Mach number less than 1 throughout the halo. 10 refs

  8. Tying dark matter to baryons with self-interactions.

    Science.gov (United States)

    Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo

    2014-07-11

    Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.

  9. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  10. Baseline for the cumulants of net-proton distributions at STAR

    International Nuclear Information System (INIS)

    Luo, Xiaofeng; Mohanty, Bedangadas; Xu, Nu

    2014-01-01

    We present a systematic comparison between the recently measured cumulants of the net-proton distributions by STAR for 0–5% central Au + Au collisions at √(s NN )=7.7–200 GeV and two kinds of possible baseline measure, the Poisson and Binomial baselines. These baseline measures are assuming that the proton and anti-proton distributions independently follow Poisson statistics or Binomial statistics. The higher order cumulant net-proton data are observed to deviate from all the baseline measures studied at 19.6 and 27 GeV. We also compare the net-proton with net-baryon fluctuations in UrQMD and AMPT model, and convert the net-proton fluctuations to net-baryon fluctuations in AMPT model by using a set of formula

  11. Dark matter assimilation into the baryon asymmetry

    International Nuclear Information System (INIS)

    D'Eramo, Francesco; Fei, Lin; Thaler, Jesse

    2012-01-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called a ssimilation , which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter

  12. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  13. Two-body nonleptonic decays of charmed baryons

    International Nuclear Information System (INIS)

    Kohara, Y.

    1998-01-01

    Decay amplitudes of charmed baryons Λ c + , Ξ c 0 to an octet baryon and a pseudoscalar meson are calculated on the basis of the quark diagram scheme. restrictions imposed on the quark diagram amplitudes are also studied

  14. The origin of baryon number and related problems

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1980-01-01

    The possibility of cosmological baryon production, as motivated by grand unification, is discussed. It is postulated that the application of grand unified theories of particle interactions may explain the origin of baryons in the universe. (C.F.)

  15. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  16. On the phase strucutre of baryonic matter

    International Nuclear Information System (INIS)

    Heide, E.; Ellis, P.J.

    1991-01-01

    We have studied the phase structure of baryonic matter in a model which includes nucleons and delta resonances interacting with σ- and ω-mesons. In the mean-field approximation, the existence of phase transitions to delta matter and to a baryon-antibaryon plasma was strongly dependent on the values chosen for the equilibrium effective mass and compression modulus. When vacuum fluctuations were included, the physically acceptable solutions only yielded a liquid-gas phase transition. Further, these solutions were restricted to rather large values of the effective mass and compression modulus which did not include the currently accepted values. (orig.)

  17. Heavy flavor baryons in hypercentral model

    International Nuclear Information System (INIS)

    Patel, Bhavin; Vinodkumar, P.C.; Rai, Ajay Kumar

    2008-01-01

    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three- body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index υ. The ground state masses of the heavy flavor, J P = 1/2 + and 3/2 + baryons are computed for different power indices, υ starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index υ = 1.0. (author)

  18. Weak form factors of beauty baryons

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Lyubovitskij, V.E.

    1992-01-01

    Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs

  19. Physical properties of the chiral quantum baryon

    International Nuclear Information System (INIS)

    Mignaco, A.J.; Wulck, S.

    1989-01-01

    It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt

  20. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  1. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  2. Non-charm hadronic decays of bottom baryons

    International Nuclear Information System (INIS)

    Kohara, Y.

    1999-01-01

    Two-body decay amplitudes of antitriplet bottom baryons Λ 0b , Θ 0 b and Θ -b to a decuplet baryon and a pseudoscalar meson are analyzed on the basis of the quark diagram scheme. Relations among the various decay rates to decuplet baryons are derived

  3. Quark-diagram analysis of charmed-baryon decays

    International Nuclear Information System (INIS)

    Kohara, Y.

    1991-01-01

    The Cabibbo-allowed two-body nonleptonic decays of charmed baryons to a SU(3)-octet (or -decuplet) baryon and a pseudoscalar meson are examined on the basis of the quark-diagram scheme. Some relations among the decay amplitudes or rates of various decay modes are derived. The decays of Ξ c + to a decuplet baryon are forbidden

  4. Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation

    Energy Technology Data Exchange (ETDEWEB)

    Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)

    2016-12-15

    We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)

  5. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  6. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  7. Baryons in the chiral regime

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Bastian

    2012-03-05

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point

  8. Baryons in the chiral regime

    International Nuclear Information System (INIS)

    Knippschild, Bastian

    2012-01-01

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises whether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m ud MS (2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point. In

  9. Study of the diffractive production of baryon states and search for cryptoexotic baryons with hidden strangeness

    Energy Technology Data Exchange (ETDEWEB)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.; Dzyubenko, G.B.; Filimonov, I.M.; Frolov, S.V.; Golovkin, S.V.; Grishkin, Yu.L.; Gritzuk, M.V.; Jilin, A.V.; Kamenskii, A.D.; Kliger, G.K.; Kolganov, V.Z.; Konstantinov, A.S.; Korchagin, Yu.V.; Kozhevnikov, A.P.; Kubarovskii, V.P.; Kulman, N.Yu.; Kulyavtsev, A.I.; Kurshetsov, V.F.; Kushnirenko, A.E.; Lakaev, V.S.; Landsberg, L.G.; Lebedev, A.A.; Lomkatzi, G.S.; Molchanov, V.V.; Mukhin, V.A.; Nilov, A.F.; Novoghilov, Yu.B.; Prutskoi, V.A.; Sitnikov, A.I.; Smolyankin, V.T.; Solyanik, V.I.; Vavilov, D.V.; Victorov, V.A.; Vishnyakov, V.E. (Inst. for High Energy Physics, Protvino (Russian Federation) Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation) Moscow State Univ. (Russian Federation)); SPHINX Collaboration

    1994-02-01

    The reactions of baryon diffractive production p + N [yields] (pK[sup +] K[sup -]) + N, p + N [yields] (p[Phi]) + N, p + N [yields] [Lambda](1520) K[sup +] + N and p + N [yields] [Sigma](1385) K[sup +] + N in the 70 GeV proton beam were studied. Very sensitive upper limits for the production cross sections of heavy narrow cryptoexotic baryon resonances with hidden strangeness were obtained. (orig.)

  10. Study of the diffractive production of baryon states and search for cryptoexotic baryons with hidden strangeness

    International Nuclear Information System (INIS)

    Balatz, M.Ya.; Belyaev, I.M.; Dorofeev, V.A.

    1993-01-01

    The reactions of baryon diffractive production p + N → (pK + K - ) + N, p + N → (pφ) + N, p + N → [Λ(1520)K + ] + N and p + N → [Σ(1385) 0 K + ] + N in the 70 GeV proton beam were studied. Very sensitive upper limits for the production cross sections of heavy narrow cryptoexotic baryon resonances with hidden strangeness were obtained

  11. Multiquark baryons with broken flavour symmetry 1

    International Nuclear Information System (INIS)

    Wroldsen, J.

    The calculation of the spectrum of 4qq multiquark baryons is carried out, taking into account that SU(3) flavour is broken. To handle this problem, which includes manipulation of giant expressions for the wavefunctions, methods suitable for programming in SCHOONSCHIP are developed and employed. (Auth)

  12. Missing baryonic resonances in the Hagedorn spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Man Lo, Pok [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Marczenko, Michal; Sasaki, Chihiro [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Redlich, Krzysztof [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); GSI, Extreme Matter Institute EMMI, Darmstadt (Germany); Duke University, Department of Physics, Durham, NC (United States)

    2016-08-15

    The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the S = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state. (orig.)

  13. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)

    2016-07-07

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  14. On gauged Baryon and Lepton numbers

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1990-01-01

    The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2) L X U(1) Y to SU(2) L X U(1) R X U(1) Lepton where U(1) R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton . The SU(2) L X SU(2) R X U(1) Baryon X U(1) Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC

  15. Weak radiative baryonic decays of B mesons

    International Nuclear Information System (INIS)

    Kohara, Yoji

    2004-01-01

    Weak radiative baryonic B decays B→B 1 B 2 -barγ are studied under the assumption of the short-distance b→sγ electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived

  16. CP asymmetries in Strange Baryon Decays

    Science.gov (United States)

    Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo

    2018-01-01

    While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)

  17. Baryon number violation and particle collider experiments

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1992-09-01

    Baryon number non-conservation, due to non-perturbative effects (sphalerons) in the standard model, may have been important in the early Universe. In this paper the possibility is discussed that similar effects could show up at future particle collider experiments. (author). 16 refs.; 3 figs

  18. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  19. Baryon asymmetry from Planck-scale physics

    International Nuclear Information System (INIS)

    Gelmini, G.; Holman, R.; Carnegie-Mellon Univ., Pittsburgh, PA

    1992-06-01

    It has been noted recently that Planck scale physics may induce the explicit breaking of global symmetries. We point out that in Majoron models, these explicit breakings, combined with sphaleron induced violation of B + L can give rise to the baryon asymmetry of the Universe

  20. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  1. Beauty baryons produced in pp interactions

    International Nuclear Information System (INIS)

    Fridman, A.

    1996-01-01

    For pp interactions, we discuss the beauty-baryon (N b ), production and decay, using cross-section estimates at a c.m. energy corresponding to the LHC project (√s ≅ 14 TeV). The polarization measurement of N b as well as the search for CP violation effects in their decays is discussed. (orig.)

  2. Baryon mass splittings in chiral perturbation theory

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Milana, J.

    1995-01-01

    Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation

  3. Corrigan-Ramond Extension of QCD at Nonzero Baryon Density

    DEFF Research Database (Denmark)

    T. Frandsen, M.; Kouvaris, Christoforos; Sannino, F.

    2006-01-01

    We investigate the Corrigan-Ramond extension of one massless flavor Quantum Chromo Dynamics at nonzero quark chemical potential. Since the extension requires the fermions to transform in the two index antisymmetric representation of the gauge group, one finds that the number of possible channels ......-Grigoriev-Rubakov chiral waves. We discover, differently from the 't Hooft limit, the possibility of a colored chiral wave breaking the color symmetry as well as translation invariance....... is richer than in the 't Hooft limit. We first discuss the diquark channels and show that for a number of colors larger than three a new diquark channel appears. We then study the infinite number of color limit and show that the Fermi surface is unstable to the formation of the Deryagin...

  4. The exchange of correlated pions and kaons in the baryon-baryon interaction

    International Nuclear Information System (INIS)

    Reuber, A.G.

    1995-09-01

    The exchange of two correlated pions or kaons provides the main part of the intermediate-range attraction between two baryons. In this work, a dynamical model for correlated two-pion and two-kaon exchange in the baryon-baryon interaction is presented, both in the scalar-isoscalar (σ) and the vector-isovector (ρ) channel. The contribution of correlated ππ and K anti K exchange is derived from the amplitudes for the transition of a baryon-antibaryon state (B anti B') to a ππ or K anti K state in the pseudophysical region by applying dispersion theory and unitarity. For the B anti B'→ππ, K anti K amplitudes a microscopic model is constructed, which is based on the hadron-exchange picture. The Born terms include contributions from baryon-exchange as well as ρ-pole diagrams. The correlations between the two pseudoscalar mesons are taken into account exactly by means of ππ-K anti K amplitudes derived likewise from a meson-exchange model, which is in line with the empirical ππ data. The parameters of the B anti B'→ππ, K anti K model, which are related to each other by the assumption of SU(3) symmetry, are determined by the adjustment to the quasiempirical N anti N→ππ amplitudes in the pseudophysical region. It is found that correlated K anti K exchange being negligible in the NN interaction plays an important role in the σ-channel for baryon-baryon states with non-vanishing strangeness. The strength of correlated ππ plus K anti K exchange in the σ-channel decreases with the strangeness of the baryon-baryon system becoming more negative. Due to the admixture of baryon-exchange processes to the SU(3)-symmetric ρ-pole contributions the results for correlated ππ-exchange in the vector-isovector channel deviate from what is expected in the naive SU(3) picture for genuine ρ-exchange. (orig.)

  5. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  6. Magnetic moments of the lowest-lying singly heavy baryons

    Science.gov (United States)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  7. Massive black holes and light-element nucleosynthesis in a baryonic universe

    Science.gov (United States)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5

  8. Conformal Symmetry Patterns in Baryon Spectra

    International Nuclear Information System (INIS)

    Kirchbach, Mariana; Compean, Cliffor B

    2011-01-01

    Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .

  9. Search for narrow four-baryon states

    International Nuclear Information System (INIS)

    Badelek, B.

    1981-01-01

    Highly excited (4.10 2 ) four-baryon resonances have been searched for in the missing-mass spectrum of the reaction π - + 4 He → π - + X at 5 GeV/c in the region of small four-momentum transfer (0.005 2 ), where one of the decay products of the X is either proton or deuteron or triton. No resonance signal is seen in the mass spectrum of X. Within our limited acceptance, the cross section for the production of a narrow (GAMMA approx. 20 MeV/c 2 ) four-baryon state with mass 4.9 GeV/c 2 is estimated to be smaller than approx. 100 nb. (orig.)

  10. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  11. Odd-parity baryons: progress and problems

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1981-01-01

    The odd-parity baryons have provided a graveyard for many cherished ideas about hadrons. The simple quark shell model, with QCD-inspired phenomenological perturbations, is the only model able to describe the states with even partial qualitative success. There are also important unexplained residual dynamical effects. Resonance decays can be accounted for, provided the usual spectator model is abandoned. Better experimental data could help to sort out the many remaining puzzles

  12. Candidates for non-baryonic dark matter

    International Nuclear Information System (INIS)

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes

  13. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  14. Negative parity non-strange baryons

    International Nuclear Information System (INIS)

    Stancu, F.; Stassart, P.

    1991-01-01

    Our previous study is extended to negative parity baryon resonances up to J=(9/2) - . The framework is a semi-relativistic constituent quark model. The quark-quark interaction contains a Coulomb plus linear confinement terms and a short distance spin-spin and tensor terms. It is emphasized that a linear confinement potential gives too large a mass to the D 35 (1930) resonance. (orig.)

  15. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  16. Charmed baryons photoproduced in FOCUS at Fermilab

    CERN Document Server

    Ratti, S P

    2001-01-01

    FOCUS collected over 7 * 10/sup 7/ triggers and more than 10/sup 6/ fully reconstructed charm particles in a photoproduction experiment at Fermilab. The experimental setup is an upgraded version of a multiparticle spectrometer used in the previous experiment E687. Data on charmed meson spectroscopy have been presented by F.L Fabbri in this Section. Here data on photoproduction of charmed baryons are presented.

  17. Determining properties of baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Johnson, M.B.; Chen, C.M.; Ernst, D.J.; Jiang, M.F.

    1996-01-01

    Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ 33 (1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei

  18. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  19. Baryon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1988-11-01

    The phenomenology of baryon production in high energy e + e - annihilation is described. Much can be understood in terms of mass effects. Comparisons with the rates for different flavours and spins, with momentum and transverse momentum spectra and with particle correlations are used to confront models. Diquark models give good descriptions, except for the on/off Υ(1s) rates. Areas for experimental and theoretical development are indicated. (author)

  20. Primordial nucleosynthesis in inhomogeneous cosmologies: Ω = 1 with baryonic dark matter

    International Nuclear Information System (INIS)

    Mathews, G.J.; Sale, K.E.

    1986-09-01

    We consider the constraints on Ω from primordial nucleosynthesis in inhomogeneous cosmologies. We find that allowance for isothermal fluctuations significantly weakens the upper bound on the average value of Ω derived from the standard big bang. Under the plausible additional assumption that regions of high baryon density are preferentially absorbed into cold dark matter, the constraints from primordial nucleosynthesis can be satisfied for large values of Ω, including Ω = 1. 22 refs., 2 figs

  1. Numerical simulation of SU(2)c high density state

    International Nuclear Information System (INIS)

    Muroya, Shin; Nakamura, Atsushi; Nonaka, Chiho

    2003-01-01

    We report a study of the high baryon number density system with use of the two-color lattice QCD with Wilson fermions[1]. First we investigate thermodynamical quantities such as the Polyakov line, gluon energy density, and baryon number density in the (κ, μ) plane, where κ and μ are the hopping parameter and chemical potential, respectively. Then we calculate propagators of meson (q-barΓq) and baryon (qΓq) states in addition to the potential between quark lines. (author)

  2. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  3. Theoretical perspective for baryon number violation

    International Nuclear Information System (INIS)

    Langacker, P.

    1982-01-01

    In this talk I describe the theoretical predictions for proton decay and other baryon number violating processes, emphasizing that there are many models and theories involving baryon number violation and that it is an experimental problem to distinguish between them. I first review the the theoretical predictions for the unification mass M/sub X/ and for the weak angle sin 2 theta/sub W/. It will be seen that the class of models involving an Su 3 x SU 2 x U 1 invariant desert between M/sub W/ and M/sub X/ are strongly favored. I then turn to baryon number violation. The proton lifetime and branching ratio predictions for the SU 5 and other 3-2-1 desert models are reviewed, with emphasis on distinguishing between models and on the implications of the small value of the QCD parameter lambda/sub anti MS/ that seems to be favored by the data. I then discuss the consequences of low energy supersymmetry for proton decay, nuclear effects, and models with low mass scales. Finally, I mention possible implications of the anomalously large flux of cosmic ray antiprotons that has recently been reported

  4. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  5. Lifetime and production rate of beauty baryons from Z decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fürstenau, H; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, M; McNulty, M; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ostankov, A P; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stäck, H; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Torassa, E; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Überschär, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1995-01-01

    The production and decay of beauty baryons (b-baryons) have been studied using 1.7 \\times 10^6 Z hadronic decays collected by the DELPHI detector at LEP. Three different techniques were used to identify the b-baryons. The first method used pairs of a \\Lambda and a lepton to tag the b-baryon decay. The second method associated fully reconstructed \\Lambda_c baryons with leptons. The third analysis reconstructed the b-baryon decay points by forming secondary vertices from identified protons and muons of opposite sign. Using these methods the following production rates were measured: \\begin{eqnarray*} f(\\qb \\ra \\Bb) \\times \\BR(\\Bb \\ra \\mLs \\ell\\bar{\

  6. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin

    2015-11-03

    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  7. Multi baryons with flavors in the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  8. Multi baryons with flavors in the Skyrme model

    International Nuclear Information System (INIS)

    Schat, Carlos L.; Scoccola, Norberto N.

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  9. Gauge theory for baryon and lepton numbers with leptoquarks.

    Science.gov (United States)

    Duerr, Michael; Fileviez Pérez, Pavel; Wise, Mark B

    2013-06-07

    Models where the baryon (B) and lepton (L) numbers are local gauge symmetries that are spontaneously broken at a low scale are revisited. We find new extensions of the standard model which predict the existence of fermions that carry both baryon and lepton numbers (i.e., leptoquarks). The local baryonic and leptonic symmetries can be broken at a scale close to the electroweak scale and we do not need to postulate the existence of a large desert to satisfy the experimental constraints on baryon number violating processes like proton decay.

  10. Search for CP violation in baryon decays at LHCb

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.

  11. Self-energies of octet and decuplet baryons due to the coupling to the baryon-meson continuum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tecocoatzi, H. [INFN, Sezione di Genova, Genova (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Bijker, R. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Ferretti, J. [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Dipartimento di Fisica, Universita di Roma Sapienza, Roma (Italy); INFN, Roma (Italy); Santopinto, E. [INFN, Sezione di Genova, Genova (Italy)

    2017-06-15

    We present an unquenched quark model calculation of the mass shifts of ground-state octet and decuplet baryons due to the coupling to the meson-baryon continuum. All ground-state baryons and pseudoscalar mesons are included in our calculation as intermediate states. The q anti q pair creation effects are taken explicitly into account through a microscopic, QCD-inspired, quark-antiquark pair creation mechanism. (orig.)

  12. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    nucleus collisions at RHIC. Outstanding physics issues include the mechanism for baryon–anti-baryon production from thermally equilibrated partons, the dynamics of baryon number transport and the evolution dynamics of baryons during ...

  13. Meson-baryon-baryon vertex function and the Ward-Takahashi identity

    International Nuclear Information System (INIS)

    Wang, S.; Banerjee, M.K.

    1996-01-01

    Ohta proposed a solution for the well-known difficulty of satisfying the Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (γMBB) when a dressed meson-baryon-baryon (MBB) vertex function is present. He obtained a form for the γMBB amplitude which contained, in addition to the usual pole terms, longitudinal seagull terms which were determined entirely by the MBB vertex function. He arrived at his result by using a Lagrangian which yields the MBB vertex function at tree level. We show that such a Lagrangian can be neither Hermitian nor charge conjugation invariant. We have been able to reproduce Ohta close-quote s result for the γMBB amplitude using the Ward-Takahashi identity and no other assumption, dynamical or otherwise, and the most general form for the MBB and γMBB vertices. However, contrary to Ohta close-quote s finding, we find that the seagull terms are not robust. The seagull terms extracted from the γMBB vertex occur unchanged in tree graphs, such as in an exchange current amplitude. But the seagull terms which appear in a loop graph, as in the calculation of an electromagnetic form factor, are, in general, different. The whole procedure says nothing about the transverse part of the (γMBB) vertex and its contributions to the amplitudes in question. copyright 1996 The American Physical Society

  14. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are

  15. Meson-baryon components in the states of the baryon decuplet

    Energy Technology Data Exchange (ETDEWEB)

    Aceti, F.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Kavli Institute for Theoretical Physics China, Beijing (China); Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China); Kavli Institute for Theoretical Physics China, Beijing (China); Geng, L.S. [Beihang University, School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Zhang, Y. [Liaoning Normal University, Department of Physics, Dalian (China)

    2014-03-15

    We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Δ(1232) resonance and the other members of the J{sup P} = (3)/(2){sup +} baryon decuplet. We obtain an appreciable weight of πN in the Δ(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of πN component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential. (orig.)

  16. Structure formation by the fifth force: Segregation of baryons and dark matter

    International Nuclear Information System (INIS)

    Li Baojiu; Zhao Hongsheng

    2010-01-01

    In this paper we present the results of N-body simulations with a scalar field coupled differently to cold dark matter (CDM) and baryons. The scalar field potential and coupling function are chosen such that the scalar field acquires a heavy mass in regions with high CDM density and thus behaves like a chameleon. We focus on how the existence of the scalar field affects the formation of nonlinear large-scale structures, and how the different couplings of the scalar field to baryons and CDM particles lead to different distributions and evolutions for these two matter species, both on large scales and inside virialized halos. As expected, the baryon-CDM segregation increases in regions where the fifth force is strong, and little segregation in dense regions. We also introduce an approximation method to identify the virialized halos in coupled scalar field models which takes into account the scalar field coupling and which is easy to implement numerically. It is found that the chameleon nature of the scalar field makes the internal density profiles of halos dependent on the environment in a very nontrivial way.

  17. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  18. Critical opalescence in baryonic QCD matter.

    Science.gov (United States)

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  19. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  20. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  1. Formulation of baryon number violating collisions

    International Nuclear Information System (INIS)

    Funakubo, Koichi; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko.

    1992-01-01

    A new formalism based on path-integral expression of time-evolution operator during tunneling is presented. Instead of instanton calculus in the LSZ formalism, a classical bounce solution leading to sphaleron (instanton action) at high (low) energies is adopted as the tunneling configuration. The formalism is applied to O(3) nonlinear sigma model in two dimensions. For the coupling constant g 2 ≅ 0.1, which may be physical in the sense that the number of produced particles ≅ 100, comparable with that of electroweak theory, the baryon number violating cross section is smaller by orders of magnitude than the so-called unitarity bound. (author)

  2. Parity doubling in the baryon string model

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.

    1990-01-01

    The nature of parity doubling of baryon states with non-zero angular momentum is considered. The idea of explaining this phenomenon lies in the fact that the rotation of the gluon string leads to a centrifugal potential for quarks. The quarks on the string form a quark-diquark system. Quark tunneling from one end of the string to the other is not probable for systems with large angular momentum due to a large centrifugal potential, and the smallness of the underbarrier transition amplitude explains the small mass difference of the states with opposite parity. (orig.)

  3. Protecting the axion with local baryon number

    Science.gov (United States)

    Duerr, Michael; Schmidt-Hoberg, Kai; Unwin, James

    2018-05-01

    The Peccei-Quinn (PQ) solution to the Strong CP Problem is expected to fail unless the global symmetry U(1)PQ is protected from Planck-scale operators up to high mass dimension. Suitable protection can be achieved if the PQ symmetry is an automatic consequence of some gauge symmetry. We highlight that if baryon number is promoted to a gauge symmetry, the exotic fermions needed for anomaly cancellation can elegantly provide an implementation of the Kim-Shifman-Vainshtein-Zakharov 'hidden axion' mechanism with a PQ symmetry protected from Planck-scale physics.

  4. Critical Opalescence in Baryonic QCD Matter

    Science.gov (United States)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-07-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  5. Critical Opalescence in Baryonic QCD Matter

    International Nuclear Information System (INIS)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies

  6. Revisiting the gravitino dark matter and baryon asymmetry from Q-ball decay in gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Kasuya, Shinta, E-mail: kasuya@kanagawa-u.ac.jp [Department of Mathematics and Physics, Kanagawa University, Kanagawa 259-1293 (Japan); Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg (Germany); Kawasaki, Masahiro [Institute for Cosmic Ray Research, the University of Tokyo, Chiba 277-8582 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Chiba 277-8582 (Japan); Yamada, Masaki [Institute for Cosmic Ray Research, the University of Tokyo, Chiba 277-8582 (Japan)

    2013-10-07

    We reconsider the Q-ball decay and reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. We refine the decay rates into baryons, NLSPs, and gravitinos, and estimate their branching ratios based on the consideration of Pauli blocking. We obtain a smaller branching into gravitinos than the previous estimate, and the NLSPs are more produced by the Q-ball decay. However, the efficient annihilations of NLSPs occur afterward so that their abundance does not spoil the successful BBN and they only produce negligible amount of the gravitinos to the dark matter density by their decay. In this way, we find that the scenario with the direct production of the gravitino dark matter from the Q-ball decay works naturally.

  7. Baryonic effects in cosmic shear tomography: PCA parametrization and importance of extreme baryonic models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Irshad [Fermilab; Gnedin, Nickolay Y. [Fermilab

    2017-07-07

    Baryonic effects are amongst the most severe systematics to the tomographic analysis of weak lensing data which is the principal probe in many future generations of cosmological surveys like LSST, Euclid etc.. Modeling or parameterizing these effects is essential in order to extract valuable constraints on cosmological parameters. In a recent paper, Eifler et al. (2015) suggested a reduction technique for baryonic effects by conducting a principal component analysis (PCA) and removing the largest baryonic eigenmodes from the data. In this article, we conducted the investigation further and addressed two critical aspects. Firstly, we performed the analysis by separating the simulations into training and test sets, computing a minimal set of principle components from the training set and examining the fits on the test set. We found that using only four parameters, corresponding to the four largest eigenmodes of the training set, the test sets can be fitted thoroughly with an RMS $\\sim 0.0011$. Secondly, we explored the significance of outliers, the most exotic/extreme baryonic scenarios, in this method. We found that excluding the outliers from the training set results in a relatively bad fit and degraded the RMS by nearly a factor of 3. Therefore, for a direct employment of this method to the tomographic analysis of the weak lensing data, the principle components should be derived from a training set that comprises adequately exotic but reasonable models such that the reality is included inside the parameter domain sampled by the training set. The baryonic effects can be parameterized as the coefficients of these principle components and should be marginalized over the cosmological parameter space.

  8. White noise from dark matter: 21 cm observations of early baryon collapse

    International Nuclear Information System (INIS)

    Zurek, Kathryn M.; Hogan, Craig J.

    2007-01-01

    In concordance cosmology, dark matter density perturbations generated by inflation lead to nonlinear, virialized minihalos, into which baryons collapse at redshift z∼20. We survey here novel baryon evolution produced by a modification of the power spectrum from white noise density perturbations at scales below k∼10h Mpc -1 (the smallest scales currently measured with the Lyman-α forest). Exotic dark matter dynamics, such as would arise from scalar dark matter with a late phase transition (similar to an axion, but with lower mass), or primordial black hole dark matter, create such an amplification of small scale power. The dark matter produced in such a phase transition collapses into minihalos, with a size given by the dark matter mass within the horizon at the phase transition. If the mass of the initial minihalos is larger than ∼10 -3 M · , the modified power spectrum is found to cause widespread baryon collapse earlier than standard ΛCDM, leading to earlier gas heating. It also results in higher spin temperature of the baryons in the 21 cm line relative to ΛCDM at redshifts z>20 if the mass of the minihalo is larger than 1M · . It is estimated that experiments probing 21 cm radiation at high redshift will contribute a significant constraint on dark matter models of this type for initial minihalos larger than ∼10M · . These experiments may also detect (or rule out) primordial black holes as the dark matter in the window 30M · H 3 M · still left open by strong microlensing experiments and other astrophysical constraints. Early experiments reaching to z≅15 will constrain minihalos down to ∼10 3 M ·

  9. Baryon - antibaryon asymmetry in central rapidity region at LHC ALICE

    International Nuclear Information System (INIS)

    Broz, M.

    2008-01-01

    Study of asymmetry in number of baryons and antibaryons in central rapidity region is important for clarification of baryon number carriers character. Effect we are interested in is small, can be hidden by systematical processes of particle track reconstruction and identification. To make corrections on these effects is the aim of this thesis. (author)

  10. Galaxy Formation by Cosmic Strings and Cooling of Baryonic Matter

    OpenAIRE

    Mizuo, IZAWA; Humitaka, SATO; Department of Physics, University of Tokyo; Department of Physics, Kyoto University

    1987-01-01

    Cooling and contraction of baryonic matter are investigated ina galaxy formation scenario by string loops. It is found that ~3% of virialized baryonic matter has cooled down and contracted. This virialized object may have a disk-halo structure and be considered a galaxy.

  11. Baryon considered as a soliton in loop space

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Migdal, A.A.

    1981-01-01

    The baryon mass for large N is expressed in QCD in terms of the collective field in loop space, which satisfies the nonlinear functional-integral equation. This collective loop field is a relativistic generalization of the self-consistent Witten field. Our approach confirms Witten's idea that a baryon is a soliton in 1/N expansion

  12. Diquark structure in heavy quark baryons in a geometric model

    International Nuclear Information System (INIS)

    Paria, Lina; Abbas, Afsar

    1996-01-01

    Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs

  13. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  14. Massive pions, anomalies and baryons in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, O. [Departament de Fisica and IFAE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Panico, G., E-mail: panico@phys.ethz.c [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Wulzer, A. [Institut de Theorie des Phenomenes Physiques, EPFL, CH-1015 Lausanne (Switzerland)

    2011-03-01

    We consider a holographic model of QCD, obtained by a very simple modification of the original construction, which describes at the same time the pion mass, the QCD anomalies and the baryons as topological solitons. We study in detail its phenomenological implications in both the mesonic and baryonic sectors and compare with the observations.

  15. Search for strange baryon electric dipole moment at LHCb

    CERN Document Server

    Lewis, Daniel James

    2017-01-01

    A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.

  16. Dynamics of the baryonic component in hierarchical clustering universes

    Science.gov (United States)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  17. Bi-local baryon interpolating fields with two flavors

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrasinovic, V. [Belgrade University, Institute of Physics, Pregrevica 118, Zemun, P.O. Box 57, Beograd (RS); Chen, Hua-Xing [Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)

    2011-02-15

    We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (U{sub L}(2) x U{sub R}(2) group representation) and isospin appropriate for the first angular excited states of the nucleon. (orig.)

  18. Center-vortex baryonic area law

    International Nuclear Information System (INIS)

    Cornwall, John M.

    2004-01-01

    We correct an unfortunate error in an earlier work of the author, and show that in the center-vortex picture of QCD [gauge group SU(3)] the asymptotic quenched baryonic area law is the so-called Y law, described by a minimal area with three surfaces spanning the three quark world lines and meeting at a central Steiner line joining the two common meeting points of the world lines. (The earlier claim was that this area law was a so-called Δ law, involving three extremal areas spanning the three pairs of quark world lines.) By asymptotic we mean the Y law holds at asymptotically large quark separations from each other; at separations of the order of the gauge-theory scale length, there may be Δ-like contributions. We give a preliminary discussion of the extension of these results to SU(N),N>3. These results are based on the (correct) baryonic Stokes' theorem given in the earlier work claiming a Δ law. The Y-form area law for SU(3) is in agreement with the most recent lattice calculations

  19. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  20. Analysis of the photocouplings of baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1978-02-01

    The typical features of the photocouplings of the 70 L=1 and 56 L=2 baryon resonances are discussed in view of the recently reported experimental data. It is emphasized that our relativistic quark model is very convenient for the phenomenological study on the photocouplings and also is suitable for a simple physical interpretation. The phenomenological analysis of the photocoupling data based on our model concludes that the transition from the quark state (jsup(P)=1/2/sup +/, lambda=1/2) to (j=L + 1/2, lambda=3/2) is dominant in the photo-transitions from nucleons to the excited baryons in both cases L=1 and 2. Our result implies the non-negligible magnitude of the value of delta L sub(z)=2 term. The experimental data on A sub(1/2)sup(p)(P/sub 13/) and A sub(3/2)sup(p)(P/sub 13/) is crucial to confirm the strength of delta L sub(z)=2 term.

  1. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  2. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  3. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  4. Baryon-baryon bound states from first principles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2006-01-01

    We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state

  5. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  6. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    Science.gov (United States)

    Chiu, I.; Mohr, J. J.; McDonald, M.; Bocquet, S.; Desai, S.; Klein, M.; Israel, H.; Ashby, M. L. N.; Stanford, A.; Benson, B. A.; Brodwin, M.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bayliss, M.; Benoit-Lévy, A.; Bertin, E.; Bleem, L.; Brooks, D.; Buckley-Geer, E.; Bulbul, E.; Capasso, R.; Carlstrom, J. E.; Rosell, A. Carnero; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; García-Bellido, J.; Garmire, G.; Gaztanaga, E.; Gerdes, D. W.; Gonzalez, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; Hlavacek-L, J.; Honscheid, K.; James, D. J.; Jeltema, T.; Kraft, R.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Murray, S.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sanchez, E.; Saro, A.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sharon, K.; Smith, R. C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Stalder, B.; Stern, C.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.

    2018-05-01

    We estimate total mass (M500), intracluster medium (ICM) mass (MICM) and stellar mass (M⋆) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 ≳ 2.5 × 1014M⊙ and redshift 0.2 baryonic mass and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.

  7. Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter

    Science.gov (United States)

    Zhu, Weishan; Feng, Long-Long

    2017-03-01

    We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2-1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ˜ 2-3. Tenuous filaments assembled with each other to form prominent ones at z dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2-3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ˜ 2-3 on galaxy formation and evolution is shortly discussed.

  8. The cosmic history of the baryon budget in a hierarchical universe

    International Nuclear Information System (INIS)

    Rasera, Yann

    2005-01-01

    In the framework of the hierarchical model of galaxy formation, small primordial density fluctuations observed on the cosmological microwave background are amplified by gravitational instability leading to the formation of larger and larger halos. The gas collapses and cools in these dark matter potential wells and forms cold centrifugally supported gas discs. These discs are converted into stellar discs that is to say galaxies. The problem in this scenario is the so-called 'overcooling problem': the resulting amount of stars is greater than the observed one by a factor of four. I have therefore studied the evolution of baryons (hydrogen and helium gas) in the Universe using high resolution hydrodynamic simulations. Based on these results, I have developed a simple analytical model for computing the baryons mass fraction in each of the following phases: stars, cold gas in galactic discs, hot gas in clusters and diffuse gas in the intergalactic medium. The comparison of model results to observations shows us that cosmology controls the cosmic history of star formation. The important cosmological role of galactic winds is also shed to light. They eject the cold gas from discs to hot halos, overcoming the overcooling problem. Finally, I have studied the implication of baryon physics onto the diffuse gamma-ray background from light dark matter particles. (author) [fr

  9. The Baryonic and Dark Matter Distributions in Abell 401

    Science.gov (United States)

    Nevalainen, J.; Markevitch, M.; Forman, W.

    1999-11-01

    We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be ΩmEinstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing

  10. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

    International Nuclear Information System (INIS)

    Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2016-01-01

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ("3He and "4He) as well, employing (2+1)-flavor lattice QCD at m_π=0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

  11. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  12. Leptogenesis and gravity: Baryon asymmetry without decays

    Directory of Open Access Journals (Sweden)

    J.I. McDonald

    2017-03-01

    Full Text Available A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  13. Strange baryons with two heavy quarks

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L.

    2018-05-01

    The LHCb Experiment at CERN has observed a doubly-charmed baryon Ξcc ++=c c u with a mass of 3621.40 ±0.78 MeV , consistent with many predictions. We use the same methods that led us to predict M (Ξc c,JP=1 /2+)=3627 ±12 MeV and M (Ξcc *,JP=3 /2+)=3690 ±12 MeV to predict M (Ωcc +,JP=1 /2+)=3692 ±16 MeV and M (Ωcc *,JP=3 /2+)=3756 ±16 MeV . Production and decay are discussed briefly, and predictions for M (Ωb c) and M (Ωb b) are included.

  14. Charmed baryon production in hadronic collisions

    International Nuclear Information System (INIS)

    Boreskov, K.G.; Kaidalov, A.B.

    1982-01-01

    Quantitative description of charmed baryon production in pp and πp collisions is obtained in the framework of the soft, peripheral quark-gluon approach. The quark-gluon model, based on the topological expansion, is used for determination of the planar part of the multiperipheral diagrams. The parameters of the D*-D** Regge trajectories and residues are estimated in this model. The total contribution of the peripheral mechanism is calculated by substitution of this planar part to the cylinder-type multiperipheral diagram with π-meson exchange. The energy dependence, absolute value of the inclusive cross section for #betta#sub(c) production and its xsub(F) and psub(perpendicular)-distributions (where xsub(F) is the Feynman variable and psub(perpendicular) is transverse momentum) are calculated and found to be in an agreement with experimental data. Connection with orher models of charm production is discussed

  15. Observation of excited $\\Lambda^0_b$ baryons

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    Using $pp$ collision data corresponding to 1.0~fb^{-1} integrated luminosity collected by the LHCb detector, two narrow states are observed in the $\\Lambda_b^0\\pi^+\\pi^-$ spectrum with masses $5911.95\\pm 0.12(\\mbox{stat})\\pm 0.03(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$ and $5919.76\\pm 0.07(\\mbox{stat})\\pm 0.02(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$. The significances of the observations are 4.9 and 10.1 standard deviations, respectively. These states are interpreted as the orbitally-excited $\\Lambda_b^0$ baryons, $\\Lambda_b^{*0}(5912)$ and $\\Lambda_b^{*0}(5920)$.

  16. Shedding light on baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  17. Baryon number violation in high energy collisions

    International Nuclear Information System (INIS)

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  18. Chiral analysis of quenched baryon masses

    International Nuclear Information System (INIS)

    Young, R.D.; Leinweber, D.B.; Thomas, A.W.; Wright, S. V.

    2002-01-01

    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading nonanalytic behavior (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons

  19. Interactions between baryon octets by quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, S. [Suzuka National College of Technology, Suzuka, Mie (Japan); Fujiwara, Y. [Kyoto Univ., Faculty of Science, Kyoto (Japan); Suzuki, Y. [Niigata Univ., Faculty of Science, Niigata (Japan); Kohno, M. [Kyushu Dental College, Kita-kyushu, Fukuoka (Japan)

    2003-03-01

    Interactions between the baryon octets are studied by using the two spin flavor SU{sub 6} quark models, namely fss2 and FSS. In all channels, results that can be systematically understood along with the flavor symmetry are obtained. Effect of the channel coupling in the {sup 1}S{sub 0} state of the system of strangeness-2 shows a tendency to be weak in the system of isospin 0 while strong in the system of isospin 1. It is shown that this tendency is due to the competitive contributions of the color magnetic term and the effective meson exchange potential to the transition potential. Flavor symmetry breaking weakens both the repulsive force in the short range and the attractive force in the intermediate range. It is revealed that the overall qualitative behavior is determined as the result of the competitive effect of those interactions. (S. Funahashi)

  20. Isospin breaking in octet baryon mass splittings

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics

    2012-06-15

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.

  1. Leptogenesis and gravity: Baryon asymmetry without decays

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk

    2017-03-10

    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  2. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  3. Baryon electromagnetic form factors at BESIII

    Directory of Open Access Journals (Sweden)

    Dbeyssi Alaa

    2017-01-01

    Full Text Available Electromagnetic form factors are fundamental quantities which parameterize the electric and magnetic structure of hadrons. This contribution reports on the measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e− collider BEPCII is a double-ring symmetric collider running at √s between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the e+e− → p̄p cross section and the time-like proton form factor is measured. Preliminary results from the analysis of the initial state radiation process e+e− → p̄pγ using a data set of 7.408 fb−1 collected at center-of-mass energies between 3.773 and 4.6 GeV, are also presented. The cross section for e+e−→Λ¯Λ${e^ + }{e^ - } \\to \\bar \\Lambda \\Lambda $ is measured based on 40.5 pb−1 data collected at 4 energy points from the threshold up to 3.08 GeV. Preliminary results on the total cross section and the Λ effective form factor are shown. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different √s are also described.

  4. Magnetic moments of the baryons: An experimental review

    International Nuclear Information System (INIS)

    Lach, J.

    1990-11-01

    Measurements of baryon magnetic moments have provided important insights into the composition of baryons as well as important constraints for model builders. These measurements show that a simple quark model describes most of the salient features. However, the significant discrepancies have raised fundamental questions about baryon structure and produced a steady stream of theoretical papers. I would like to briefly review the technology for making these measurements, the current state of the measurements, and the near term prospects for improvements. 14 refs., 5 figs., 1 tab

  5. Modelling baryonic effects on galaxy cluster mass profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  6. An investigation of triply heavy baryon production at hadron colliders

    CERN Document Server

    Gomshi Nobary, M A

    2006-01-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the Ωccc and Ωbbb baryons as the prototypes of triply heavy baryons at the hadron colliders with different . We present and compare the transverse momentum distributions of the differential cross sections, distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  7. An investigation of triply heavy baryon production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gomshi Nobary, M.A. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of) and Center for Theoretical Physics and Mathematics, AEOI, Roosbeh Building, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: mnobary@razi.ac.ir; Sepahvand, R. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2006-05-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the {omega}{sub ccc} and {omega}{sub bbb} baryons as the prototypes of triply heavy baryons at the hadron colliders with different s. We present and compare the transverse momentum distributions of the differential cross sections, p{sub T}{sup min} distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  8. Hadronic production of baryons containing two heavy quarks

    International Nuclear Information System (INIS)

    Berezhnoj, A.V.; Kiselev, V.V.; Likhoded, A.K.

    1995-01-01

    In the framework of the QCD perturbation theory, total and differential cross sections of the Ξ bc ' , Ξ bc ( * ) and Ξ cc ( * ) baryons production in gluon collisions are calculated in the leading order over α s for the doubly heavy (bc) and (cc) diquarks. At both small and large transverse momenta of baryons, a use of the mechanism of the heavy quark fragmentation into the heavy diquark is shown to underestimate the cross section values in comparison with the exact numerical calculations of a complete set of diagrams. The expected in Tevatron experiments yield of baryons with two heavy quarks is evaluated [ru

  9. Are narrow mesons, baryons and dibaryons evidence for multiquark states?

    International Nuclear Information System (INIS)

    Tatischeff, B.; Yonnet, J.

    2000-01-01

    Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)

  10. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  11. Entropy per baryon in a 'many-worlds' cosmology

    International Nuclear Information System (INIS)

    Clutton-Brock, M.

    1977-01-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10 9 : other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10 11 do not form galaxies, but only giant black holes. Low entropy worlds with xi 5 do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10 5 11 , and life is abundant only in a much narrower range. (Auth.)

  12. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  13. Derivation of sum rules for quark and baryon fields

    International Nuclear Information System (INIS)

    Bongardt, K.

    1978-01-01

    In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU 3 as well as for SU 4 and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data

  14. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  15. The Evolution of Galaxies by the Incompatibility between Dark Matter and Baryonic Matter

    OpenAIRE

    Chung, Ding-Yu

    2001-01-01

    In this paper, the evolution of galaxies is by the incompatibility between dark matter and baryonic matter. Due to the structural difference, baryonic matter and dark matter are incompatible to each other as oil droplet and water in emulsion. In the interfacial zone between dark matter and baryonic matter, this incompatibility generates the modification of Newtonian dynamics to keep dark matter and baryonic matter apart. The five periods of baryonic structure development in the order of incre...

  16. Entropy and baryon number conservation in the deconfinement phase transition

    International Nuclear Information System (INIS)

    Leonidov, A.; Redlich, K.; Satz, H.; Suhonen, E.; Weber, G.

    1994-01-01

    The conservation of entropy and baryon number in the deconfinement phase transition is studied in the framework of the bag model. In the standard construction of the equilibrium phase transition from a quark-gluon plasma into a hadron gas a subsequent dilution and reheating of the system on the phase boundary is necessary to preserve the entropy and baryon number conservation. We propose modifying the bag pressure to depend explicitly on temperature and baryon chemical potential. It is shown that this modification is sufficient to construct a model in agreement with the Gibbs equilibrium criteria for a phase transition, while simultaneously assuring entropy and baryon number conservation on the phase boundary. Within this model the quark-gluon plasma hadronizes at a fixed temperature and chemical potential

  17. Glueballs, hermaphrodites and QCD problems for baryon spectroscopy

    International Nuclear Information System (INIS)

    Close, F.E.

    1981-08-01

    Spin-orbit splittings in baryon spectroscopy are examined with relevance to QCD: successes and failures are discussed. Claims to have seen glueballs are evaluated and the possibility of hermaphrodites-states containing quarks and glue - is mentioned. (author)

  18. The baryon asymmetry and CPT invariance in the early universe

    International Nuclear Information System (INIS)

    Barshay, S.

    1981-01-01

    We discuss, and give a definite, simple phenomenological example, of the possibility that the baryon asymmetry is related to a failure of CPT invariance for a brief time interval at the origin of the universe. (orig.)

  19. Masses and magnetic moments of triple heavy flavour baryons in ...

    Indian Academy of Sciences (India)

    The vital properties of these heaviest baryons in nature are their masses and ..... in bringing out a possible saturation property of the basic interactions within the ... forward to the experimental support to our predictions, from different future ...

  20. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  1. New paradigm for baryon and lepton number violation

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel

    2015-01-01

    The possible discovery of proton decay, neutron–antineutron oscillation, neutrinoless double beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.

  2. Properties of light flavour baryons in hypercentral quark model

    Indian Academy of Sciences (India)

    Light baryons; magnetic moments; transition magnetic moment; radiative decay width. ... particles are produced by scattering the pion, photon, or electron ... and decuplet) for testing any model hypothesis and understanding the dynamics of ...

  3. e+e--annihilation into baryon-antibaryon pairs

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kuroda, M.

    1976-07-01

    Using GVDM-type form factors we calculate the e + -e - production cross sections for the reactions e + e - → 1 + /2 - anti(1 +- /2), 1 + /2 - anti(3 +- /2), 1 + /2 - anti(5 + /2) and 3 + /2 - anti(3 + /2) including all prominent baryon resonances at energies of present and planned e + -e - storage ring machines. We also evaluate the cross section of charmed baryon pair production. Near their respective thresholds charmed and uncharmed baryon pair production are predicted to constitute comparable fractions of the total hadronic cross section. The calculated cross sections indicate that the interference of direct and 1-photon decay of the PSI-particles into baryon pairs is small. (orig.) [de

  4. Strange sea quark effects for low lying baryons

    International Nuclear Information System (INIS)

    Upadhyay, A.; Batra, Meenakshi

    2013-01-01

    Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)

  5. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  6. Baryon production in e+e--annihilation at PETRA

    International Nuclear Information System (INIS)

    Bartel, W.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Krehbiel, H.; Meier, K.; Naroska, B.; O'Neill, L.H.

    1981-06-01

    Data on anti p and anti Λ production by e + e - -annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon antibaryon pairs is seen. (orig.)

  7. Doubly heavy baryon production at γγ collider

    International Nuclear Information System (INIS)

    Li Shiyuan; Si Zongguo; Yang Zhongjuan

    2007-01-01

    The inclusive production of doubly heavy baryons Ξ cc and Ξ bb at γγ collider is investigated. It is found that the contribution from the heavy quark pair QQ in color triplet and color sextet are important

  8. Meson-baryon interactions in unitarized chiral perturbation theory

    International Nuclear Information System (INIS)

    Garcia Recio, G.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.

    2003-01-01

    Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The s-wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), Λ(1405) and Λ(1670) resonances which compare well with accepted numbers

  9. Coalescence and 2.7 K black body distorsion in baryon symmetric Big Bang Cosmology

    International Nuclear Information System (INIS)

    Ramani, A.; Puget, J.L.

    1976-01-01

    We discuss here the efficiency of coalescence during the late phases of a baryon symmetric Big Bang Cosmology. We show that during the radiative period, coalescence cannot be as efficient as it was stated in a previous paper. During the matter dominated period, matter and antimatter might be separated on the scale of clusters of galaxies, but only at the expense of substantive distorsions of the 2.7 K black body background radiation. We compute lower limits to these distorsions as functions of the density of matter in the universe and show that only in the case of a very dilute universe can these values be reconciled with experimental results. (orig.) [de

  10. Cosmological leverage from the matter power spectrum in the presence of baryon and nonlinear effects

    International Nuclear Information System (INIS)

    Bielefeld, Jannis; Huterer, Dragan; Linder, Eric V.

    2015-01-01

    We investigate how the use of higher wavenumbers (smaller scales) in the galaxy clustering power spectrum influences cosmological constraints. We take into account uncertainties from nonlinear density fluctuations, (scale dependent) galaxy bias, and baryonic effects. Allowing for substantially model independent uncertainties through separate fit parameters in each wavenumber bin that also allow for the redshift evolution, we quantify strong gains in dark energy and neutrino mass leverage with increasing maximum wavenumber, despite marginalizing over numerous (up to 125) extra fit parameters. The leverage is due to not only an increased number of modes but, more significantly, breaking of degeneracies beyond the linear regime

  11. A calculation of baryon diffusion constant in hot and dense hadronic matter based on an event generator URASiMA

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Nonaka, C.; Muroya, S.

    2000-01-01

    We evaluate thermodynamical quantities and transport coefficient of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter. (author)

  12. Self-Energy of Decuplet Baryons in Nuclear Matter

    OpenAIRE

    Ouellette, Stephen M.; Seki, Ryoichi

    1997-01-01

    We calculate, in chiral perturbation theory, the change in the self-energy of decuplet baryons in nuclear matter. These self-energy shifts are relevant in studies of meson-nucleus scattering and of neutron stars. Our results are leading order in an expansion in powers of the ratio of characteristic momenta to the chiral symmetry-breaking scale (or the nucleon mass). Included are contact diagrams generated by 4-baryon operators, which were neglected in earlier studies for the $\\Delta$ isomulti...

  13. Quark potential model of baryon spin-orbit mass splittings

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1987-01-01

    We show that it is possible to make the P-wave spin-orbit mass splittings in Λ baryons consistent with those of nonstrange baryons in a naive quark model, but only by introducing additional terms in the quark-quark effective interaction. These terms might be related to contributions due to pomeron exchange and sea excitations. The implications of our model in meson spectroscopy and nuclear forces are discussed. (orig.)

  14. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  15. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  16. Test of right-handed currents in baryon semileptonic decays

    International Nuclear Information System (INIS)

    Garcia, A.; Huerta, R.; Maya, M.; Perez Marcial, R.

    1985-01-01

    The effect of a right-handed boson on baryon semileptonic decay is considered. The analysis of polarized and unpolarized decays is carried out and it is shown that the best place to look for a right-handed current (RHC) signature is in polarized baryon decay. However, our results are useful for high statistics experiments. In order to see the contribution of the right-handed currents in the case of unpolarized hyperon decay, the Cabibbo theory should be assumed. (orig.)

  17. The quark mass and baryon numbers of empty chiral bags

    International Nuclear Information System (INIS)

    Jezabek, M.; Zalewski, K.

    1984-01-01

    We show that for spherical chiral bags the baryon number of the Dirac vacuum inside the bag does not depend on quark masses. Thus, the sum of the baryon numbers of an empty chiral bag and the skyrmion surrounding the bag is an integer, which depends on the boundary condition on the surface of the bag. This extends the result obtained by Goldstone and Jaffe for massless quarks. (orig.)

  18. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  19. Heavy baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Koerner, J.G.; Thompson, G.

    1991-10-01

    We give a mini-review of recent results on current-induced transitions between heavy baryons (and between heavy and light baryons) in the light of the new spin and flavour symmetries of the Heavy Quark Effective Theory (HQET). We discuss the structure of the 1/m corrections to the heavy mass limit and outline a diagrammatic proof that there are no 0(1/m) correction to the Voloshin-Shifman normalization condition at zero recoil. (orig.)

  20. Charmed and beauty baryon in hyper central model

    International Nuclear Information System (INIS)

    Patel, Bhavin; Vinodkumar, P.C.; Rai, Ajay Kumar

    2006-01-01

    For the present study the hyper central description of the three-body problem has been employed for the baryons constituting one or more charm and beauty quarks. The confinement potential is assumed in the hyper central co-ordinates as hyper central coulomb plus power potential. The charm and beauty baryons under this potential has been studied for different power indices starting from 0.5 to 2.0. The methods and results are briefly described

  1. QCD phase diagram : heating or compressing ?

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch tries to address the question of the difference between heating and compressing the baryonic matter in relativistic heavy-ion collisions, i.e. how one can reach in the laboratory "high" temperature at "low" net baryon density (baryon chemical potential) or "low" temperature at "high" net baryon density.

  2. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  3. In-medium covariant propagator of baryons under a strong magnetic field: Effect of the intrinsic magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)

    2016-11-15

    We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)

  4. Complex saddle points in QCD at finite temperature and density

    Science.gov (United States)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2014-08-01

    The sign problem in QCD at finite temperature and density leads naturally to the consideration of complex saddle points of the action or effective action. The global symmetry CK of the finite-density action, where C is charge conjugation and K is complex conjugation, constrains the eigenvalues of the Polyakov loop operator P at a saddle point in such a way that the action is real at a saddle point, and net color charge is zero. The values of TrFP and TrFP† at the saddle point are real but not identical, indicating the different free energy cost associated with inserting a heavy quark versus an antiquark into the system. At such complex saddle points, the mass matrix associated with Polyakov loops may have complex eigenvalues, reflecting oscillatory behavior in color-charge densities. We illustrate these properties with a simple model which includes the one-loop contribution of gluons and two flavors of massless quarks moving in a constant Polyakov loop background. Confinement-deconfinement effects are modeled phenomenologically via an added potential term depending on the Polyakov loop eigenvalues. For sufficiently large temperature T and quark chemical potential μ, the results obtained reduce to those of perturbation theory at the complex saddle point. These results may be experimentally relevant for the compressed baryonic matter experiment at FAIR.

  5. Study of ψ(3770 decaying to baryon anti-baryon pairs

    Directory of Open Access Journals (Sweden)

    Li-Gang Xia

    2016-05-01

    Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.

  6. On the effective quark potential in baryons

    International Nuclear Information System (INIS)

    Gromes, D.

    1977-01-01

    The splitting of the non-strange members of the first excited level [70,1 - ] 1 of baryon resonances is analysed. The spin-dependent forces (spin-spin, spin-orbit, tensor) are supposed to arise from the Coulomb term due to one-gluon exchange, from the long-range linearly rising part of the potential, and from additional 'hard-core' spin-spin terms which may be generated by higher-order graphs contributing to the qq kernel. For the long range part it is assumed either that it comes from a superposition of a vector and a scalar kernel of the form epsilon(γsup(μ) X γsub(μ) X 1) + (1 - epsilon)(1 X 1 X 1) (+ permutations), or, alternatively, that it arises from a vector exchange with an anomalous moment kappa in the quark-gluon vertex. Values of epsilon approximately 0 or kappa approximately -1 turn out to be favoured. The strong coupling constant and the slope of the linear potential come out in the correct order of magnitude. Very large hard-core spin-spin terms are needed. This fact makes the determination of the effective potential from the underlying theory of quantum chromodynamics as well as the phenomenological analysis of the observed spectra rather problematic. (Auth.)

  7. First observation of a baryonic Bc+ decay.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-10

    A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.

  8. Baryon Acoustic Oscillations reconstruction with pixels

    Energy Technology Data Exchange (ETDEWEB)

    Obuljen, Andrej [SISSA—International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Ave, New York, NY, 10010 (United States); Castorina, Emanuele [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Viel, Matteo, E-mail: aobuljen@sissa.it, E-mail: fvillaescusa@simonsfoundation.org, E-mail: ecastorina@berkeley.edu, E-mail: viel@oats.inaf.it [INAF, Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131 Trieste (Italy)

    2017-09-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.

  9. Soft RPV through the baryon portal

    International Nuclear Information System (INIS)

    Krnjaic, Gordan; Tsai, Yuhsin

    2014-01-01

    Supersymmetric (SUSY) models with R-parity generically predict sparticle decays with invisible neutralinos, which yield distinctive missing energy events at colliders. Since most LHC searches are designed with this expectation, the putative bounds on sparticle masses become considerably weaker if R-parity is violated so that squarks and gluinos decay to jets with large QCD backgrounds. Here we introduce a scenario in which baryonic R-parity violation (RPV) arises effectively from soft SUSY breaking interactions, but leptonic RPV remains accidentally forbidden to evade constraints from proton decay and FCNCs. The model features a global R-symmetry that initially forbids RPV interactions, a hidden R-breaking sector, and a heavy mediator that communicates this breaking to the visible sector. After R-symmetry breaking, the mediator is integrated out and an effective RPV A-term arises at tree level; RPV couplings between quarks and squarks arise only at loop level and receive additional suppression. Although this mediator must be heavy compared to soft masses, the model introduces no new hierarchy since viable RPV can arise when the mediator mass is near the SUSY breaking scale. In generic regions of parameter space, a light thermally-produced gravitino is stable and can be a viable dark matter candidate

  10. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  11. Search for missing baryons through scintillation

    International Nuclear Information System (INIS)

    Habibi, F.

    2011-06-01

    Cool molecular hydrogen H 2 may be the ultimate possible constituent to the Milky-Way missing baryon. We describe a new way to search for such transparent matter in the Galactic disc and halo, through the diffractive and refractive effects on the light of background stars. By simulating the phase delay induced by a turbulent medium, we computed the corresponding illumination pattern on the earth for an extended source and a given passband. We show that in favorable cases, the light of a background star can be subjected to stochastic fluctuations of the order of a few percent at a characteristic time scale of a few minutes. We have searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H 2 -He) during two nights, using the NTT telescope and the IR SOFI detector. Amongst a few thousands of monitored stars, we found one light-curve that is compatible with a strong scintillation effect through a turbulent structure in the B68 nebula. Because no candidate were found toward the SMC (Small Magellan Cloud), we are able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass. We show that the short time-scale monitoring of a few 10 6 star*hour in the visible band with a >4 m telescope and a fast readout camera should allow one to interestingly quantify or constrain the contribution of turbulent molecular gas to the Galactic halo. (author)

  12. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  13. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  14. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  15. Heavy baryons as polarimeters at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, Mario [Department of Physics and Astronomy, University of Rochester,Rochester, NY 14627-0171 (United States); Giammanco, Andrea [Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain,B-1348 Louvain-la-Neuve (Belgium); National Institute of Chemical Physics and Biophysics,10143 Tallinn (Estonia); Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Kats, Yevgeny; Stamou, Emmanuel [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Zupan, Jure [Department of Physics, University of Cincinnati,Cincinnati, OH 45221 (United States)

    2015-11-10

    In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Λ{sub b} and Λ{sub c}, respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Λ{sub b} decays, and the c-quark polarization using Λ{sub c}{sup +}→pK{sup −}π{sup +} decays. For calibrating both measurements we suggest to use tt̄ samples in which these polarizations can be measured with precision of order 10% using 100 fb{sup −1} of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.

  16. Neutron star properties and the relativistic nuclear equation of state of many-baryon matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    A relativistic model of baryons interacting via the exchange of σ-, ω-, π- and ρ-mesons (scalar-vector-isovector (SVI) theory) is used to describe the properties of both dense and superdense matter. For the theoretical frame, we used the temperature-dependent Green's function formalism. The equation of state (EOS) is calculated for nuclear as well as neutron matter in the Hartree (H) and Hartree-Fock (HF) approximation. The existence of phase transitions has been investigated. The isotherms of pressure as a function of density show for nuclear matter a critical temperature of about T c HF =16.6 MeV. (As in the usual scalar-vector (SV) theory, the phase transition is absent for neutron matter. A phase transition of both many-baryon systems in the high-pressure and high-density region, which has been found within the SV many-baryon theory, appears in the SVI theory too. The calculated maximum stable masses of neutron stars depend on 1. the underlying parameter set and/or 2. on the chosen approximation (i.e., H, HF; SV-, SVI theory, respectively). Hartree calculations lead to a mass stability limit of M max H ≤2.87 M sun (M max H ≤2.44 M sun when hyperons are taken into account). For the HF calculations we obtained M max HF ≤3.00 M sun (M max HF ≤2.85 M sun ). The corresponding maximum radii are (same notation as above) R H ≤13.2 km (R H ≤11.8 km), R HF ≤14.0 km (R HF ≤13.94 km).) The influence of the approximations, parameter sets and hyperons on the neutron star's moment of inertia is exhibited. (orig.)

  17. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  18. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  19. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  20. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  1. Baryon Wilson loop area law in QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1996-01-01

    There is still confusion about the correct form of the area law for the baryonic Wilson loop (BWL) of QCD. Strong-coupling (i.e., finite lattice spacing in lattice gauge theory) approximations suggest the form exp[-KA Y ], where K is the q bar q string tension and A Y is the global minimum area, generically a three-bladed area with the blades joined along a Steiner line (Y configuration). However, the correct answer is exp[-(K/2)(A 12 +A 13 +A 23 )], where, e.g., A 12 is the minimal area between quark lines 1 and 2 (Δ configuration). This second answer was given long ago, based on certain approximations, and is also strongly favored in lattice computations. In the present work, we derive the Δ law from the usual vortex-monopole picture of confinement, and show that, in any case, because of the 1/2 in the Δ law, this law leads to a larger value for the BWL (smaller exponent) than does the Y law. We show that the three-bladed, strong-coupling surfaces, which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the non-Abelian Stokes close-quote theorem for the BWL, which we derive, and lead via this Stokes close-quote theorem to the correct Δ law. Finally, we extend these considerations, including perturbative contributions, to gauge groups SU(N), with N>3. copyright 1996 The American Physical Society

  2. Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys

    Science.gov (United States)

    Ding, Zhejie; Seo, Hee-Jong; Vlah, Zvonimir; Feng, Yu; Schmittfull, Marcel; Beutler, Florian

    2018-05-01

    Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the ΛCDM model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ˜0.01%. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically-motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and nonlinear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1% - 0.2% for matter while the dependence is substantially reduced to less than 0.07% for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1% in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3%. Meanwhile, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.

  3. The Baryonic Tully Fisher Relation for the ALFALFA 100 Sample

    Science.gov (United States)

    Finney, Elizabeth E.; Haynes, Martha P.; APPSS Team

    2018-01-01

    The APPSS (Arecibo Pisces-Perseus Supercluster Survey) team aims to quantify the over-densities of matter in the Pisces-Perseus Supercluster (PPS) filament by exploring the Baryonic Tully Fisher Relation (BTFR) of the ALFALFA (Arecibo Legacy Fast ALFA) 100 survey – (α.100) and, in the future, using targeted observations of low mass star-forming galaxies. Galaxies in the PPS filament region and its foreground and background voids are influenced by the gravitational pull of the large concentration of matter, and are expected to show velocities that deviate significantly from the smooth Hubble expansion. By deriving the peculiar motions of galaxies in the ALFALFA 100 survey as measured by the BTFR, we will further our understanding of the amount and distribution of the underlying dark matter in the supercluster. In this project, we make a first attempt to investigate the BTFR of the α.100 sample, and discuss our findings. This sample was corrected for inclination, extinction, and other sources of scatter, and a least squares linear regression fit was applied to determine the slope of the BTFR. We compare the slope of the α.100 sample to various literature values, and find that the slope is shallower due to slower-rotating, low-mass galaxies. Investigation of this shallow slope is needed in future work, as well as a modification of the intrinsic axial ratio assumed for this sample of galaxies. EF participated in the summer 2017 REU program in the Center for Astrophysics and Planetary Science at Cornell University under NSF award AST-1659264.

  4. Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations

    Science.gov (United States)

    Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael

    2017-06-01

    Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.

  5. Improved bag models of P-wave baryons

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1988-01-01

    Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)

  6. Decays of J/psi (3100) to baryon final states

    International Nuclear Information System (INIS)

    Eaton, M.W.

    1982-05-01

    We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi → anti ppγ, the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi → baryons has clearly been observed. The reduced matrix elements for psi → B anti B are presented for final states of different SU(3) content. The B 8 anti B 8 results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi → B 10 anti B 10 . We present the first evidence for the SU(3) violating decays of the type psi → B 8 anti B 10 + c.c.. Angular distributions for psi → B 8 anti B 8 are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos 2 theta distribution

  7. A topological model for baryon production in jets

    International Nuclear Information System (INIS)

    Ellis, J.; Kowalski, H.

    1988-01-01

    We present a conceptual model for baryon production in jets, inspired by the Skyrme picture of baryons as topological defects in a chiral quark-antiquark condensate. High energy collisions produce ''hot'' partons which split perturbatively into showers of ''cool'' partons which hadronize non-perturbatively. We visualize each of these as corresponding to a connected domain with a common orientation of the chiral condensate. Topological defects, namely baryons, are formed when there are mismatches in the orientations of adjacent field domains, rather as cosmic strings or monopoles are formed in the early Universe. Our model gives a good qualitative description of various salient features of baryon production in jets, which previously could be described only with a large number of free parameters. In particular, we give a qualitative explanation of the high baryon production rate in Υ decays compared to the e + e - continuum. When combined with a perturbative QCD parton shower Monte Carlo it could become a basis for a fully-fledged fragmentation model. (orig.)

  8. On determination of the charmed Λc+ baryon polarization

    International Nuclear Information System (INIS)

    Lednitski, R.

    1986-01-01

    Expressions have been obtained for angular distributions in various cascade decays of the Λ c + baryon, which make it possible to evaluate its polarization and the corresponding asymmetry parameters. Errors in these parameters are estimated. An importance of polarizational measurements for the study of quark interactions at ''large'' distances is indicated. The following conclusions are made: 1.Polarization measurement of Λ c + baryon P c and measurement of asymmetry parameters of its α c decays is of importance for determination of mechanisms of quark production and hadronization. In particular, difference of asymmetries of angular distributions of decay nucleons and Λ hyperons is a measure of contribution of non-spectrum diagrams, sensitive to quark interactions at large distances. 2.Since parameters of α c asymmetry are unknown it is possible to determine only the lowe boundary corresponding to α c =1 with the help of measurement of Λ c + baryon decay asymmetries. 3.Λ c + baryon polarization and asymmetry parameters can be determined with the help of analysis of angular distributions in its cascade decays under the condition that the asymmetry parameter or other odd multipole parameter characterizing secondary decay, is known before. For measurement of Λ c + baryon polarization its two-particle or quasi-two-particle decays are mostly efficient

  9. Search for the doubly charmed baryon at LHCb

    CERN Document Server

    Zhong, Liang

    The doubly charmed baryon $\\Xi_{cc}^+$, containing two charm quarks, is a baryon predicted by the SU(4) quark model. Experimentally its existence has not been established yet. Many Quantum Chromodynamics (QCD) based theoretical models have predicted its properties with a mass in the range 3500-3700 MeV/$c^2$ and a lifetime in the range 110-250 fs. The experimental searches for the $\\Xi_{cc}^+$ baryon and the measurements of its properties can test these models directly, providing an important input for the understanding of the non-perturbative aspect of QCD. The SELEX collaboration claimed the observation of the $\\Xi_{cc}^+$ baryon in the $\\Xi_{cc}^+ \\to \\Lambda_{c}^+K^-\\pi^+$ decay in 2003. However, the measured lifetime was much shorter than theoretical predictions. Searches for the $\\Xi_{cc}^+$ baryon in the same decay mode by FOCUS, Belle and BaBar experiments failed to reproduce the results. This does not mean that the SELEX result is excluded, however, since production environments at these experi...

  10. Multistrange Meson-Baryon Dynamics and Resonance Generation

    Science.gov (United States)

    Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.

    2018-05-01

    In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.

  11. Spectroscopy of doubly charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  12. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  13. Determination of the average lifetime of b-baryons

    International Nuclear Information System (INIS)

    Abreu, P.; Adam, W.

    1996-01-01

    The average lifetime of b-baryons has been studied using 3.10 6 hadronic Z 0 decays collected by the DELPHI detector at LEP. Three methods have been used, based on the measurement of different observables: the proper decay time distribution of 206 vertices reconstructed with a Λ, a lepton and an oppositely charged pion; the impact parameter distribution of 441 muons with high transverse momentum accompanied by a Λ in the same jet; and the proper decay time distribution of 125 Λ c -lepton decay vertices with the Λ c exclusively reconstructed through its pKπ, pK 0 and Λ3π decay modes. The combined result is: τ(b-baryon)=(1.254 +0.121 -0.109 (stat) ±0.04(syst) +0.03 -0.05 (syst)) ps where the first systematic error is due to experimental uncertainties and the second to the uncertainties in the modelling of the b-baryon production and semi-leptonic decay. Including the measurement recently published by DELPHI based on a sample of proton-muon vertices, the average b-baryon lifetime is: τ(b-baryon)=(1.255 +0.115 -0.102 (stat) ±0.05) ps. (orig.)

  14. Baryonic 3P2-dominant superfluidity under combined pion condensation with Δ isobar. II). Properties of pairing interaction and numerical results

    International Nuclear Information System (INIS)

    Tamagaki, Ryozo

    2007-01-01

    According to the formulation developed in I, we calculate energy gaps of the baryonic 3 P 2 -dominant superfluidity under the combined pion condensation with Δ-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a 'root' NN potential to be workable in the N+Δ space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a 'root' NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the 3 P 2 -dominant superfluid is realized with the critical temperatures T c of the order of 10 9 K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the

  15. Baryonic 3 P2-Dominant Superfluidity under Combined Pion Condensation with Δ Isobar. II --- Properties of Pairing Interaction and Numerical Results ---

    Science.gov (United States)

    Tamagaki, R.; Takatsuka, T.

    2007-05-01

    According to the formulation developed in I, we calculate energy gaps of the baryonic (3) P_2-dominant superfluidity under the combined pion condensation with Delta-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a ``root" NN potential to be workable in the N + Delta space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a ``root" NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the (3) P_2-dominant superfluid is realized with the critical temperatures T_c of the order of 10(9) K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the

  16. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    Science.gov (United States)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  17. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  18. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  19. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  20. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  1. Fragmentation production of Ωccc baryons at LHC energies

    International Nuclear Information System (INIS)

    Saleev, V.A.

    2000-01-01

    Within the nonrelativistic quark-diquark model for heavy baryons, the fragmentation functions for the transitions of a c-quark and a doubly charmed vector diquark into an Ω ccc baryon are calculated in the leading order of perturbative QCD. The cross section for Ω ccc production in high-energy hadron interactions is estimated. It is assumed that Ω ccc baryons are formed via the fragmentation of a c quark or a vector (cc) diquark produced in the partonic subprocesses gg → cc-bar, qq-bar → cc-bar, gg → (cc) + c-bar + c-bar, and qq-bar → (cc) + c-bar + c-bar

  2. Comments on 'The OZI rule does not apply to baryons'

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Longacre, R.S.

    1990-01-01

    We demonstrate that the arguments made by Ellis, Gabathuler and Karliner that meson-baryon couplings could evade the OZI rule are irrelevant to the arguments we have made before. This is so since even if we assume that meson-baryon couplings can violate OZI, we clearly demonstrate that the coupling involved in our π - p→φφn is ππ→φφ which does not involve meson-baryon couplings. Thus our arguments that the g T (2010), g T' (2300) and g T'' (2340) are naturally explained in the context of QCD by the hypothesis that one to three glueballs are produced in the intermediate state are not affected by arguments made by Ellis et al. (orig.)

  3. Mesonic and baryonic Regge trajectories with quantized masses

    International Nuclear Information System (INIS)

    Hothi, N.; Bisht, S.

    2011-01-01

    We have constructed some Regge trajectories for mesons and baryons by taking the 70 MeV spinless mass quanta as the ultimate building block for the light hadrons. In order to make masses integral multiples of seventy, small changes in masses has been made with due explanation. We have shown how a linear relationship between J and M 2 is maintained by considering quantized hadron masses, which is a direct consequence of the string model and gives a strong clue for quark confinement. It has also been established that mesons and baryons have different slopes and the slopes of baryons is less than the slope of the mesons. This clearly defies the concept of universality of slopes (α ≅ 1.1 GeV 2 ) of hadrons, which can only be achieved if the strings joining the quarks have constant string tension α 1/(2πω) (where ω is the string tension). (author)

  4. Quantization State of Baryonic Mass in Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Potter F.

    2007-01-01

    Full Text Available The rotational velocity curves for clusters of galaxies cannot be explained by Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing this discrepancy to acceptable differences. The dark matter hypothesis appears to offer a solution; however, non-baryonic dark matter has never been detected. As an alternative approach, quantum celestial mechanics (QCM predicts that galactic clusters are in quantization states determined solely by the total baryonic mass of the cluster and its total angular momentum. We find excellent agreement with QCM for ten galactic clusters, demonstrating that dark matter is not needed to explain the rotation velocities and providing further support to the hypothesis that all gravitationally bound systems have QCM quantization states.

  5. Exotic charmed baryon production in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.; Biro, T.S.; Levai, P.

    1993-01-01

    The authors investigate multi-heavy baryon formation in Au + Au collision using an extended version of the combinatoric break up model for rehadronization. A penalty factor, p, is introduced to characterize the coalescence probability of a light quark with a heavy one. At LHC energy large production rate is found for certain multi-heavy baryons and mesons such as Ω ccc , Ξ cc , J/Ψ and suppression for Λ c , D. They speculate also on the possible existence of a heavy bottom-charm six-quark baryon. A semiclassical and a gaussian estimate reveal that the octet-octet bbb-cc configuration can be energetically favored with respect to the singlet-singlet one

  6. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  7. Hyperfine splitting of low-lying heavy baryons

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)

    1997-11-10

    We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.

  8. Entropy per baryon in a 'many-worlds' cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Clutton-Brock, M [Manitoba Univ., Winnipeg (Canada)

    1977-04-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10/sup 9/: other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10/sup 11/ do not form galaxies, but only giant black holes. Low entropy worlds with xi < 3x10/sup 5/ do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10/sup 5/ < xi < 5x10/sup 11/, and life is abundant only in a much narrower range.

  9. Measurement of inclusive B meson decays into baryons

    International Nuclear Information System (INIS)

    Albrecht, H.; Boeckmann, P.; Glaeser, R.; Harder, G.; Krueger, A.; Nippe, A.; Reidenbach, M.; Schaefer, M.; Schmidt-Parzefall, W.; Schroeder, H.; Schulz, H.D.; Sefkow, F.; Spengler, J.; Wurth, R.; Yagil, A.; Appuhn, R.D.; Drescher, A.; Hast, C.; Kamp, D.; Kolanoski, H.; Lindner, A.; Mankel, R.; Matthiesen, U.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Frisken, W.R.; Kutschke, R.; Orr, R.S.; Parsons, J.A.; Prentice, J.D.; Seidel, S.C.; Swain, J.D.; Yoon, T.S.; MacFarlane, D.B.; McLean, K.W.; Nilsson, A.W.; Patel, P.M.; Tsipolitis, G.; Ammar, R.; Ball, S.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Ruf, T.; Schael, S.; Schubert, K.R.; Strahl, K.; Waldi, R.

    1989-01-01

    The decay of B mesons into the baryons p, Λ and Ξ - has been studied. The measured inclusive branching ratios for these decays are Br(B → pX) = (8.2±0.5 +1.3 -1.0 )%, Br(B → ΛX) = (4.2±0.5±0.6)% and Br(B → Ξ - X) < 0.51% at the 90% confidence level. In addition investigations on panti p, Λanti p and Λanti Λ correlations were performed, yielding an approximately equal rate of protons and neutrons. From this one can derive a total baryonic branching ratio Br(B → baryons) of (7.6±1.4)%. (orig.)

  10. Proposal for the systematic naming of mesons and baryons

    International Nuclear Information System (INIS)

    Porter, F.C.; Hernandez, J.J.; Montanet, L.

    1984-10-01

    Twenty years ago, the Particle Data Group adopted a systematic naming convention for baryons: the symbols N, Δ, Λ, Σ, Ψ, and Ω were to identify the isospin and strangeness, The mesons, by contrast, have become an alphabet soup of uninformative names - theta, iota, xi, zeta, g/sub T/, g/sub s/, H, E, delta, h, g, r, kappa, etc. -, and in some cases identical names are used for mesons with different quantum numbers (A, B, and D). Furthermore, experimentalists are now discovering baryons that contain heavy quarks. It is therefore timely to consider systematic naming conventions both for mesons and for baryons with heavy quarks. The Particle Data Group is circulating this proposal in the hope of generating feedback, and we attach a sheet for responses. It should be emphasized that the Particle Tables would show both the old and new names for some time

  11. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  12. Chiral gravitational waves and baryon superfluid dark matter

    Science.gov (United States)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  13. Diquark correlations in baryons on the lattice with overlap quarks

    Energy Technology Data Exchange (ETDEWEB)

    Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik

    2007-01-15

    We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)

  14. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  15. Diquark correlations in baryons on the lattice with overlap quarks

    International Nuclear Information System (INIS)

    Babich, R.; Howard, J.; Rebbi, C.; Hoelbling, C.; Lellouch, L.; Wuppertal Univ.

    2007-01-01

    We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at β=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)

  16. SU(6), baryonic decays of B-mesons and CP

    International Nuclear Information System (INIS)

    Wu, D.

    1990-01-01

    In this paper the four fermion weak decay Hamiltonian is expressed in terms of quark-antiquark creation operators with specific spin orientations. Then the SU(6) symmetry of the strong interactions among light quarks is imposed to find 8 invariant decay amplitudes for two body charmful baryonic decays of the B-mesons, 3 S-waves, 4 P- waves and 1 D-wave. Λ c branching ratio and some exclusive branching ratios are calculated based on the assumption of two body dominance in baryonic decay modes. Results on two body mesonic decays are also given. Relation between the SU(6) scheme and the quark diagram scheme is discussed

  17. Asymmetric dark matter, baryon asymmetry and lepton number violation

    OpenAIRE

    Frandsen, Mads T.; Hagedorn, Claudia; Huang, Wei-Chih; Molinaro, Emiliano; Päs, Heinrich

    2018-01-01

    We study the effect of lepton number violation (LNV) on baryon asymmetry, generated in the early Universe, in the presence of a dark sector with a global symmetry U(1)X , featuring asymmetric dark matter (ADM). We show that in general LNV, observable at the LHC or in neutrinoless double beta decay experiments, cannot wash out a baryon asymmetry generated at higher scales, unlike in scenarios without such dark sector. An observation of LNV at the TeV scale may thus support ADM scenarios. Consi...

  18. Study of flavor-tagged baryon production in B decay

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, N. [University of Kansas, Lawrence, Kansas 66045 (United States); Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Poling, R.; Riehle, T.; Savinov, V.; Wang, R. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; ONeill, J.J.; Severini, H.; Sun, C.R.; Timm, S.; Wappler, F. [State University of New York at Albany, Albany, New York 12222 (United States); Crawford, G.; Duboscq, J.E.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Sung, M.; White, C.; Wanke, R.; Wolf, A.; Zoeller, M.M. [Ohio State University, Columbus, Ohio, 43210 (United States); Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Bishai, M.; Fast, J.; Gerndt, E.; Hinson, J.W.; Miao, T.; Miller, D.H.; Modesitt, M.; Shibata, E.I.; Shipsey, I.P.; Wang, P.N. [Purdue University, West Lafayette, Indiana 47907 (United States); Gibbons, L.; Johnson, S.D.; Kwon, Y.; Roberts, S.; Thorndike, E.H. [University of Rochester, Rochester, New York 14627 (United States); Coan, T.E.; Dominick, J.; Fadeyev, V.; Korolkov, I.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Stroynowski, R.; Volobouev, I.; Wei, G. [Southern Methodist University, Dallas, Texas 75275 (United States); Artuso, M.; Gao, M.; Goldberg, M.; He, D.; Horwitz, N.; Kopp, S.; Moneti, G.C.; Mountain, R.; Muheim, F.; Mukhin, Y.; Playfer, S.; Skwarnicki, T.; Stone, S.; Xing, X. [Syracuse University, Syracuse, New York 13244 (United States); Bartelt, J.; Csorna, S.E.; Jain, V.; Marka, S. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Gibaut, D.; Kinoshita, K.; Pomianowski, P.; Schrenk, S. [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Barish, B.; Chadha, M.; Chan, S.; Cowen, D.

    1997-01-01

    Using data collected on the {Upsilon}(4S) resonance and the nearby continuum by the CLEO-II detector, we have studied combinations of baryons with leptons produced in the process {Upsilon}(4S){r_arrow}B{bar B}, B{r_arrow}lepton+X, {bar B}{r_arrow}baryon+X. Our results do not support models which Attribute the bulk of {Lambda}{sub c} production in {bar B} decay to the process b{r_arrow}cW{sup {minus}},W{sup {minus}}{r_arrow}{bar c}s. {copyright} {ital 1997} {ital The American Physical Society}

  19. Experimental study of charmed baryons at SuperLEAR

    International Nuclear Information System (INIS)

    Poulet, M.

    1991-01-01

    The possibility to study and detect the charmed baryons at SuperLEAR was examined. It was found that it is possible only if the search is restricted to the single charm baryons Λ c , Σ c , Ξ c . The experimental approach requires high luminosity and some complexity of the detection system. It has to be considered as a second generation jet target experiment in a range of p-bar momentum from 8 to 15 GeV/c. (R.P.) 12 refs., 2 figs

  20. Search for low mass exotic baryons in one pion electroproduction data measured at JLAB

    International Nuclear Information System (INIS)

    Tatischeff, B.; Tomasi-Gustafsson, E.

    2007-02-01

    This paper aims to give further evidence for the existence of low mass exotic baryons. Narrow structures in baryonic missing mass or baryonic invariant mass were previously observed during the last ten years. Since their existence is sometimes questionable, the structure functions of one pion electroproduction cross sections, measured at JLAB, are studied to add information on the possible existence of these narrow exotic baryonic resonances. (authors)

  1. Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutt-mazumder, A. K. [McGill Univ., Montreal, QC (Canada); Gale, C. [McGill Univ., Montreal, QC (Canada); Ko, C. M. [Texas A & M Univ., College Station, TX (United States); Koch, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.

  2. A Monte Carlo model to produce baryons in e+e- annihilation

    International Nuclear Information System (INIS)

    Meyer, T.

    1981-08-01

    A simple model is described extending the Field-Feynman model to baryon production in quark fragmentation. The model predicts baryon baryon correlations within jets and in opposite jets produced in electron-positron annihilation. Existing data is well described by the model. (orig.)

  3. On the quark-mass dependence of baryon ground-state masses

    International Nuclear Information System (INIS)

    Semke, Alexander

    2010-01-01

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  4. The effective baryon-lepton coupling constant and the parity of leptons

    International Nuclear Information System (INIS)

    Lucha, W.; Stremnitzer, H.

    1981-01-01

    Using a phenomenological ansatz for the Lagrangian of baryon- and lepton-number violating interactions the effective baryon-lepton coupling constant is calculated within the framework of a relativistic quark model. Apart from a calculation of B-number violating cross-sections and decays this ansatz allows for a definition of the parity of leptons relative to baryons. (Auth.)

  5. On the quark-mass dependence of baryon ground-state masses

    Energy Technology Data Exchange (ETDEWEB)

    Semke, Alexander

    2010-02-17

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  6. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  7. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  8. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  9. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...

  10. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, I.; et al.

    2017-11-02

    We estimate total mass ($M_{500}$), intracluster medium (ICM) mass ($M_{\\mathrm{ICM}}$) and stellar mass ($M_{\\star}$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $M_{500}$ are estimated from the SZE observable, the ICM masses $M_{\\mathrm{ICM}}$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $M_{\\star}$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $\\approx9$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.

  11. Detection of baryon acoustic oscillations in the Lyman-α forests of BOSS quasar spectra

    International Nuclear Information System (INIS)

    Delubac, Timothee

    2013-01-01

    Baryon acoustic oscillations (BAO) form a standard ruler that can be used to constrain different cosmological models. This thesis reports the first measurement of the BAO feature in the correlation function of the transmitted flux fraction in the Lyman-α forests of high redshift quasars. This detection uses 89322 quasar spectra measured by the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). Redshift of used quasars belong to the range 2.1≤z≤3.5. A peak in the correlation function is seen at 1.043"+"0"."0"2"1_-_0_._0_2_0 times the expected BAO peak position for a concordance ΛCDM model. In addition this thesis presents a new method of quasar selection through their variability. This method is applied to the Stripe 82 region where an important number of multi-epoch photometric data is available. On this region it achieves a quasar density of 30 deg"-"2 to be compared with the 18 deg"-"2 of usual color selections. (author) [fr

  12. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  13. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  14. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  15. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  16. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  17. NET SALARY ADJUSTMENT

    CERN Multimedia

    Finance Division

    2001-01-01

    On 15 June 2001 the Council approved the correction of the discrepancy identified in the net salary adjustment implemented on 1st January 2001 by retroactively increasing the scale of basic salaries to achieve the 2.8% average net salary adjustment approved in December 2000. We should like to inform you that the corresponding adjustment will be made to your July salary. Full details of the retroactive adjustments will consequently be shown on your pay slip.

  18. Charge radii of octet and decuplet baryons in chiral constituent ...

    Indian Academy of Sciences (India)

    in electron–baryon scattering experiments [4,5] giving rp = 0.877 ± 0.007 fm ... breaking of the SU(3) symmetry and a non-vanishing neutron charge mean square radius ... QCD Lagrangian is not invariant under the chiral transformation. ... of a constituent quark GBs [34–37], successfully explains the 'proton spin problem'.

  19. On the electromagnetic properties of the baryon octet

    International Nuclear Information System (INIS)

    Leinweber, D.B.; Woloshyn, R.M.; Draper, T.

    1990-11-01

    A numerical simulation of quenched QCD on a 24x12x12x24 lattice at β=5.9 is used to calculate the electric and magnetic form factors of the baryon octet. Magnetic moments, electric radii, magnetic radii, and magnetic transition moments are extracted from the form factors. (Author) (4 refs., 4 figs.)

  20. Moduli induced cogenesis of baryon asymmetry and dark matter

    Directory of Open Access Journals (Sweden)

    Mansi Dhuria

    2016-05-01

    Full Text Available We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM superfields. Assuming that the mass of the additional singlet fermions is O(GeV and of the color triplet fermions is O(TeV, we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.