WorldWideScience

Sample records for nervous activity based

  1. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity

    OpenAIRE

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-01-01

    Background: The thermic effect of food (TEF) is higher in lean than in obese human subjects. Objective: Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Methods : Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04 - 0.15Hz...

  2. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity.

    Science.gov (United States)

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-02-01

    The thermic effect of food (TEF) is higher in lean than in obese human subjects. Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04-0.15 Hz), high frequency components (HF power, 0.15-0.40 Hz), and LF/HF ratios. Energy expenditure and the TEF were measured 30 min after a meal. Homeostasis model of insulin resistance index (HOMA-IR) was also measured. The LF/HF ratio was significantly increased 30 min after a meal (pinsulin sensitivity induces a poor response of sympathetic nervous activity in the postprandial phase and a reduction in postprandial energy expenditure.

  3. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  4. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    Science.gov (United States)

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  5. Some Central Nervous System Activities of Nerium Oleander Linn ...

    African Journals Online (AJOL)

    Purpose: The purpose of the study was to evaluate the activity of 50 % hydroalcohol flower extract of Nerium oleander Linn. on the central nervous system (CNS) of mice. Methods: The effect of the 50 % hydroalcohol extract of N. oleander flowers at dosage levels of 100 and 200 mg/kg p.o. on the locomotor activity of mice ...

  6. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  7. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variabil......Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  8. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  9. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  10. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  11. Bone mineral density in subjects using central nervous system-active medications.

    Science.gov (United States)

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  12. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  13. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  14. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  15. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    Science.gov (United States)

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  16. DNA methylation-based classification of central nervous system tumours.

    Science.gov (United States)

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  17. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  18. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions......Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  19. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  20. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    International Nuclear Information System (INIS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-01-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  1. Monitoring the autonomic nervous activity as the objective evaluation of music therapy for severely and multiply disabled children.

    Science.gov (United States)

    Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru

    2012-07-01

    Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.

  2. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  3. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture

    DEFF Research Database (Denmark)

    Benrick, Anna; Kokosar, Milana; Hu, Min

    2017-01-01

    was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS...... of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M......., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture....

  4. [The influence of single moderate exercise on the sympathetic nervous system activity in patients with essential hypertension].

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota

    2002-12-01

    Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.

  5. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    Science.gov (United States)

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  6. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  7. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    Science.gov (United States)

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  8. Assessment of Practical Research-Based Activity Program as a Tool ...

    African Journals Online (AJOL)

    practical research–based activity program (PRBAP) may be considered as a good way for learning at medical schools; ... nervous system, cardiovascular, respiratory and ..... our department where the higher grades depend on the recall and ...

  9. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  10. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    Science.gov (United States)

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  11. Gangliosides in the Nervous System: Biosynthesis and Degradation

    Science.gov (United States)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  12. Pavlov's Position on Old Age within the Framework of the Theory of Higher Nervous Activity.

    Science.gov (United States)

    Windholz, George

    1995-01-01

    In later life, I. P. Pavlov incorporated his findings on aging into his theory of higher nervous activity. Some of the major findings showed that salivary conditioning and stimulus differentiation were difficult to establish in old dogs, but that conditioned reflexes established earlier in life persisted into old age. Pavlov hypothesized that…

  13. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    Science.gov (United States)

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  14. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature

    NARCIS (Netherlands)

    Bahler, L.; Molenaars, R. J.; Verberne, H. J.; Holleman, F.

    2015-01-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although

  15. Central nervous system activity of Illicium verum fruit extracts.

    Science.gov (United States)

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Pneumatic antishock garment inflation activates the human sympathetic nervous system by abdominal compression.

    Science.gov (United States)

    Garvin, Nathan M; Levine, Benjamin D; Raven, Peter B; Pawelczyk, James A

    2014-01-01

    Pneumatic antishock garments (PASG) have been proposed to exert their blood pressure-raising effect mechanically, i.e. by increasing venous return and vascular resistance of the lower body. We tested whether, alternatively, PASG inflation activates the sympathetic nervous system. Five men and four women wore PASG while mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), heart rate and stroke volume were measured. One leg bladder (LEG) and the abdominal bladder (ABD) of the trousers were inflated individually and in combination (ABD+LEG), at 60 or 90 mmHg for 3 min. By the end of 3 min of inflation, conditions that included the ABD region caused significant increases in MAP in a dose-dependent fashion (7 ± 2, 8 ± 3, 14 ± 4 and 13 ± 5 mmHg for ABD60, ABD+LEG60, ABD90 and ABD+LEG90, respectively, P < 0.05). Likewise, inflation that included ABD caused significant increases in total MSNA compared with control values [306 ± 70, 426 ± 98 and 247 ± 79 units for ABD60, ABD90 and ABD+LEG90, respectively, P < 0.05 (units = burst frequency × burst amplitude]. There were no changes in MAP or MSNA in the LEG-alone conditions. The ABD inflation also caused a significant decrease in stroke volume (-11 ± 3 and -10 ± 3 ml per beat in ABD90 and ABD+LEG90, respectively, P < 0.05) with no change in cardiac output. Neither cardiopulmonary receptor deactivation nor mechanical effects can account for a slowly developing rise in both sympathetic activity and blood pressure during ABD inflation. Rather, these data provide direct evidence that PASG inflation activates the sympathetic nervous system secondarily to abdominal, but not leg, compression.

  17. Some Central Nervous System Activities of Nerium Oleander Linn ...

    African Journals Online (AJOL)

    Erah

    Nerium oleander Linn. on the central nervous system (CNS) of mice. Methods: The effect of the 50 % hydroalcohol extract of N. oleander flowers at dosage levels of 100 and 200 mg/kg ..... in the brain and inhibition of neuronal output could be ...

  18. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  19. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  20. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis.

    Science.gov (United States)

    Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas

    2016-06-15

    Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  2. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  3. Acute irradiation injury and autonomic nervous system. 2

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Sekine, Ichiro; Shichijo, Kazuko; Ito, Masahiro; Ikeda, Yuzi; Matsuzaki, Sumihiro; Zea-Iriate, W.-L.; Kondo, Takahito

    1996-01-01

    In order to elucidate the mechanism of occurrence of radiation sickness, whole body irradiation of various doses of X-ray was done on male spontaneously hypertensive rats (SHR) whose sympathetic nervous system is functionally activated and on their original male Wistar Kyoto rats (WKY) and the change of their body weights was examined. Further, changes of blood pressure in rats irradiated at 7.5 Gy, of norepinephrine contents in their gut as a parameter of sympathetic nervous function and of acetylcholine contents as that of parasympathetic nervous function were measured. Histopathological examinations were also performed. SHR died at smaller dose than WKY. The blood pressure as a parameter of systemic sympathetic nervous system varied greatly in SHR. Norepinephrine contents elevated rapidly and greatly in SHR after irradiation and acetylcholine contents rapidly elevated in WKY. Apoptosis was more frequently observed in the intestinal crypt of SHR. Participation of autonomic nervous system was thus shown in the appearance of acute radiation injury and sickness in SHR, which was thought to be a useful model for the investigation. (K.H.)

  4. Central Nervous System Vasculitis

    Science.gov (United States)

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  5. The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: a case study.

    NARCIS (Netherlands)

    Kox, M.; Stoffels, M.; Smeekens, S.P.; Alfen, N. van; Gomes, M.E.R.; Eijsvogels, T.M.H.; Hopman, M.T.E.; Hoeven, J.G. van der; Netea, M.G.; Pickkers, P.

    2012-01-01

    OBJECTIVE: In this case study, we describe the effects of a particular individual's concentration/meditation technique on autonomic nervous system activity and the innate immune response. The study participant holds several world records with regard to tolerating extreme cold and claims that he can

  6. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  7. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review.

    Science.gov (United States)

    Deep, Aakash; Narasimhan, Balasubramanian; Aggarwal, Swati; Kaushik, Dhirender; Sharma, Arun K

    2016-01-01

    Heterocyclic compounds are extensively dispersed in nature and are vital for life. Various investigational approaches towards Structural Activity Relationship that focus upon the exploration of optimized candidates have become vastly important. Literature studies tell that for a series of compounds that are imperative in industrial and medicinal chemistry, thiophene acts as parent. Among various classes of heterocyclic compounds that have potential central nervous system activity, thiophene is the most important one. In the largely escalating chemical world of heterocyclic compounds showing potential pharmacological character, thiophene nucleus has been recognized as the budding entity. Seventeen Papers were included in this review article to define the central nervous system potential of thiophene. This review article enlightens the rationalized use and scope of thiophene scaffold as novel central nervous system activity such as anticonvulsant, acetylcholinesterase inhibitor, cyclin-dependent kinase 5 (cdk5/p25) inhibitors, CNS depressant, capability to block norepinephrine, serotonin and dopamine reuptake by their respective transporters etc. The Finding of this review confirm the importance of thiophene scaffold as potential central nervous system agents. From this outcome, ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential may be derived.

  8. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  9. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis.

    Science.gov (United States)

    Pirger, Zsolt; Laszlo, Zita; Hiripi, Laszlo; Hernadi, Laszlo; Toth, Gabor; Lubics, Andrea; Reglodi, Dora; Kemenes, Gyorgy; Mark, Laszlo

    2010-11-01

    PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.

  10. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  11. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  12. Identification of cholinergic synaptic transmission in the insect nervous system.

    Science.gov (United States)

    Thany, Steeve Hervé; Tricoire-Leignel, Hélène; Lapied, Bruno

    2010-01-01

    A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes. Combined application of all these techniques reveals a widespread expression of ChAT and AChE activities in the insect central nervous system and peripheral sensory neurons which implicates ACh as a key neurotransmitter. The discovery of the snake toxin alpha-bungatoxin has helped to identify nicotinic acetylcholine receptors (nAChRs). In fact, nicotine when applied to insect neurons, resulted in the generation of an inward current through the activation of nicotinic receptors which were blocked by alpha-bungarotoxin. Thus, insect nAChRs have been divided into two categories, sensitive and insensitive to this snake toxin. Up to now, the recent characterization and distribution pattern of insect nAChR subunits and the biochemical evidence that the insect central nervous system contains different classes of cholinergic receptors indicated that ACh is involved in several sensory pathways.

  13. 3D printed nervous system on a chip.

    Science.gov (United States)

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  14. A Role of the Parasympathetic Nervous System in Cognitive Training.

    Science.gov (United States)

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Central and peripheral nervous systems: master controllers in cancer metastasis.

    Science.gov (United States)

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  16. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  17. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  18. Effect of experimental hyperinsulinemia on sympathetic nervous system activity in the rat

    International Nuclear Information System (INIS)

    Young, J.B.

    1988-01-01

    Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, [ 3 H]norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion

  19. Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system.

    Science.gov (United States)

    Wang, Baile; Li, Ang; Li, Xiaomu; Ho, Philip Wl; Wu, Donghai; Wang, Xiaoqi; Liu, Zhuohao; Wu, Kelvin Kl; Yau, Sonata Sy; Xu, Aimin; Cheng, Kenneth Ky

    2018-04-01

    Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a β3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity. © 2018 The Authors.

  20. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  1. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio

    2007-04-01

    We investigated whether capsaicin ingestion (150 mg) enhances substrate oxidation associated with thermogenic sympathetic activity as an energy metabolic modulator without causing prolongation of the cardiac OT interval during aerobic exercise in humans. Ten healthy males [24.4 (4.3) y] volunteered for this study. The cardiac autonomic nervous activities evaluated by means of heart rate variability of power spectral analysis, energy metabolism, and ECG QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilatory threshold (50% VT(max)) on a stationary ergometer with placebo or capsaicin oral administration chosen at random. The results indicated that there were no significant differences in heart rate during rest or exercise between the two trials. Autonomic nervous activity increased in the capsaicin tablet trial during exercise, but the difference did not reach statistical significance. Capsaicin, however, significantly induced a lower respiratory gas exchange ratio [0.92 (0.02) vs. 0.94 (0.02), means (SE), p means (SE), p < 0.05] during exercise. On the other hand, the data on the cardiac OT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, it may be considered that capsaicin consumption 1 h before low intensity exercise (50% VT(max)) is a valuable supplement for the treatment of individuals with hyperlipidemia and/or obesity because it improves lipolysis without any adverse effects on the cardiac depolarization and repolarization process.

  2. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  3. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    Science.gov (United States)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (pdifferent in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57± 7%, respectively; presponse to combined effects of a reduced plasma volume and an increased vascular capacity in flight.

  4. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  5. Explanation of diagnostic criteria for radiation-induced nervous system disease

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai

    2012-01-01

    National occupational health standard-Diagnostic Criteria for Radiation-Induced Nervous System Disease has been issued and implemented by the Ministry of health. This standard contained three independent criteria of the brain, spinal cord and peripheral nerve injury. These three kinds of disease often go together in clinic,therefore,the three diagnostic criteria were merged into radioactive nervous system disease diagnostic criteria for entirety and maneuverability of the standard. This standard was formulated based on collection of the clinical practice experience, extensive research of relevant literature and foreign relevant publications. It is mainly applied to diagnosis and treatment of occupational radiation-induced nervous system diseases, and to nervous system diseases caused by medical radiation exposure as well. In order to properly implement this standard, also to correctly deal with radioactive nervous system injury, the main contents of this standard including dose threshold, clinical manifestation, indexing standard and treatment principle were interpreted in this article. (authors)

  6. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  7. Influence of tilt training on activation of the autonomic nervous system in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna

    2006-04-01

    Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.

  8. Social Adversity and Antisocial Behavior: Mediating Effects of Autonomic Nervous System Activity.

    Science.gov (United States)

    Fagan, Shawn E; Zhang, Wei; Gao, Yu

    2017-11-01

    The display of antisocial behaviors in children and adolescents has been of interest to criminologists and developmental psychologists for years. Exposure to social adversity is a well-documented predictor of antisocial behavior. Additionally, measures of autonomic nervous system (ANS) activity, including heart rate variability (HRV), pre-ejection period (PEP), and heart rate, have been associated with antisocial behaviors including rule-breaking and aggression. Social neuroscience research has begun to investigate how neurobiological underpinnings affect the relationship between social adversity and antisocial/psychopathic behavior in children and adolescents. This study investigated the potential mediating effects of ANS activity on the relationship between social adversity and antisocial behavior in a group of 7- to 10-year-old children from the community (N = 339; 48.2% male). Moderated multiple mediation analyses revealed that low resting heart rate, but not PEP or HRV, mediated the relationship between social adversity and antisocial behavior in males only. Social adversity but not ANS measures were associated with antisocial behavior in females. Findings have implications for understanding the neural influences that underlie antisocial behavior, illustrate the importance of the social environment regarding the expression of these behaviors, and highlight essential gender differences.

  9. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors....

  10. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  11. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    Science.gov (United States)

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. ["Nervous breakdown": a diagnostic characterization study].

    Science.gov (United States)

    Salmán, E; Carrasco, J L; Liebowitz, M; Díaz Marsá, M; Prieto, R; Jusino, C; Cárdenas, D; Klein, D

    1997-01-01

    An evaluation was made of the influence of different psychiatric co-morbidities on the symptoms of the disorder popularly known as "ataque de nervios" (nervous breakdown) among the US Hispanic population. Using a self-completed instrument designed specially for both traditional nervous breakdown and for panic symptoms, and structured or semi-structured psychiatric interviews for Axis I disorders, and evaluation was made of Hispanic subjects who sought treatment for anxiety in a clinic (n = 156). This study centered on 102 subjects who presented symptoms of "nervous breakdown" and comorbidity with panic disorder, other anxiety disorders, or affective disorder. Variations in co-morbidity with "nervous breakdown" enabled the identification of different patterns of "nervous breakdown" presenting symptoms. Individuals with "nervous breakdown" and panic disorder characteristically expressed a greater sense of asphyxiation, fear of dying, and growing fear (panic-like) during their breakdowns. Subjects with "nervous breakdown" and affective disorder had a greater sensation of anger and more tendency toward screaming and aggressive behavior such as breaking things during the breakdown (emotional anger). Finally, subjects with "nervous breakdown" and co-morbidity with another anxiety disorder had fewer "paniclike" or "emotional anger" symptoms. These findings suggest that: a) the widely used term "nervous breakdown" is a popular label for different patterns of loss of emotional control; b) the type of loss of emotional control is influenced by the associated psychiatric disorder; and c) the symptoms characteristics of the "nervous breakdown" can be useful clinical markers for associated psychiatric disorders. Future research is needed to determine whether the known Hispanic entity "ataque de nervios" is simply a popular description for different aspects of well-known psychiatric disorders, or if it reflects specific demographic, environmental, personality and/or clinical

  13. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  14. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... Email Print What are the parts of the nervous system? The nervous system consists of two main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and ...

  15. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system.

    Science.gov (United States)

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan

    2011-09-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.

  16. Changes in peripheral nervous system activity produced in rats by prenatal exposure to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, M.R. (Inst. of Pharmacology, Bari Univ. (Italy)); Renna, G. (Inst. of Pharmacology, Bari Univ. (Italy)); Giustino, A. (Inst. of Pharmacology, Bari Univ. (Italy)); De Salvia, M.A. (Inst. of Pharmacology, Bari Univ. (Italy)); Cuomo, V. (Inst. of Pharmacology, Bari Univ. (Italy))

    1993-06-01

    The present experiments were designed to investigate whether alterations of peripheral nervous system activity may be produced in male Wistar rats by prenatal exposure (from day 0 to day 20 of pregnancy) to relatively low levels of CO (75 and 150 ppm). The voltage clamp analysis of ionic currents recorded from sciatic nerve fibres showed that prenatal exposure to CO produced modifications of sodium current properties. In particular, in 40-day-old rats exposed to CO (75 and 150 ppm) during gestation, the inactivation kinetics of transient sodium current were significantly slowed. Analysis of the potential dependence of steady-state Na inactivation, h[sub [infinity

  17. Classification of activity engagement in individuals with severe physical disabilities using signals of the peripheral nervous system.

    Directory of Open Access Journals (Sweden)

    Azadeh Kushki

    Full Text Available Communication barriers often result in exclusion of children and youth with disabilities from activities and social settings that are essential to their psychosocial development. In particular, difficulties in describing their experiences of activities and social settings hinder our understanding of the factors that promote inclusion and participation of this group of individuals. To address this specific communication challenge, we examined the feasibility of developing a language-free measure of experience in youth with severe physical disabilities. To do this, we used the activity of the peripheral nervous system to detect patterns of psychological arousal associated with activities requiring different patterns of cognitive/affective and interpersonal involvement (activity engagement. We demonstrated that these signals can differentiate among patterns of arousal associated with these activities with high accuracy (two levels: 81%, three levels: 74%. These results demonstrate the potential for development of a real-time, motor- and language-free measure for describing the experiences of children and youth with disabilities.

  18. Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo-3-substituted Urea Derivatives

    Directory of Open Access Journals (Sweden)

    Elżbieta Szacoń

    2015-02-01

    Full Text Available A series of 10 novel urea derivatives has been synthesized and evaluated for their central nervous system activity. Compounds 3a–3h were prepared in the reaction between the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a and 1b and appropriate benzyl-, phenethyl-isocyanate or ethyl 4-isocyanatobenzoate and ethyl isocyanatoacetate 2 in dichloromethane. Derivatives 4c and 4g resulted from the conversion of 3c and 3g into the respective amides due to action of an aqueous ammonia solution. The results obtained in this study, based on literature data suggest a possible involvement of serotonin system and/or the opioid system in the effects of tested compounds, and especially in the effect of compound 3h. The best activity of compound 3h may be primarily attributed to its favourable ADMET properties, i.e., higher lipophilicity (related to lower polar surface area and greater molecular surface, volume and mass than for other compounds and good blood-brain permeation. This compound has also the greatest polarizability and ovality. The HOMO and LUMO energies do not seem to be directly related to activity.

  19. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    Science.gov (United States)

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    Science.gov (United States)

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  1. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  2. The relationship between nature-based tourism and autonomic nervous system function among older adults.

    Science.gov (United States)

    Chang, Liang-Chih

    2014-01-01

    Nature-based tourism has recently become a topic of interest in health research. This study was aimed at examining relationships among nature-based tourism, stress, and the function of the autonomic nervous system (ANS). Three hundred and twenty-two older adults living in Taichung City, Taiwan, were selected as participants. Data were collected by a face-to-face survey that included measures of the frequency of participation in domestic and international nature-based tourism and the stress and ANS function of these participants. The data were analyzed using a path analysis. The results demonstrated that the frequency of participation in domestic nature-based tourism directly contributed to ANS function and that it also indirectly contributed to ANS function through stress reduction. Domestic nature-based tourism can directly and indirectly contribute to ANS function among older adults. Increasing the frequency of participation in domestic nature-based tourism should be considered a critical element of health programs for older adults. © 2014 International Society of Travel Medicine.

  3. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder.

    Science.gov (United States)

    Matsumoto, Tamaki; Ushiroyama, Takahisa; Kimura, Tetsuya; Hayashi, Tatsuya; Moritani, Toshio

    2007-12-20

    Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology. No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the

  4. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system and that glial cells were a mere glue holding neurons in place, Schleich ... fact that these cells did not show any electrical activity like neurons or muscles ... membrane potential higher than that of the surrounding neu- rons.

  5. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  6. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  7. Effect of single and binary combinations of plant-derived molluscicides on different enzyme activities in the nervous tissue of Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, Amrita; Singh, V K; Singh, D K

    2003-01-01

    Effect of single and binary treatments of plant-derived molluscicides on different enzymes--acetylcholinesterase (AChE), lactic dehydrogenase (LDH) and acid/alkaline phosphatase (ACP/ALP)--in the nervous tissue of the harmful terrestrial snail Achatina fulica were studied. Sublethal in vivo 24-h exposure to 40% and 80% LC(50) of Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, Nerium indicum bark powder and binary combinations of A. sativum (AS) + C. deodara (CD) and CD + A. indica (AI) oils significantly altered the activity of these enzymes in the nervous tissue of Achatina fulica. The binary treatment of AS + CD was more effective against AChE, LDH, and ALP than the single ones. However, binary treatment of AI + CD was more effective against ALP. Copyright 2003 John Wiley & Sons, Ltd.

  8. The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy

    Directory of Open Access Journals (Sweden)

    David N. Ruskin

    2012-03-01

    Full Text Available A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high-fat, low-carbohydrate ketogenic diet debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, ketogenic diet therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. More recently, cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders - although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a ketogenic diet and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a ketogenic diet on cognition and recent data on the effects of a ketogenic diet on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system.

  9. The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    Science.gov (United States)

    Ruskin, David N.; Masino, Susan A.

    2012-01-01

    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316

  10. Central- and autonomic nervous system coupling in schizophrenia

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  11. R1 autonomic nervous system in acute kidney injury.

    Science.gov (United States)

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  12. Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke.

    Science.gov (United States)

    Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K

    2018-02-01

    Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.

  13. Protein A from orange-spotted nervous necrosis virus triggers type I interferon production in fish cell.

    Science.gov (United States)

    Huang, Runqing; Zhou, Qiong; Shi, Yan; Zhang, Jing; He, Jianguo; Xie, Junfeng

    2018-05-04

    Family Nodaviridae consists of two genera: Alphanodavirus and Betanodavirus, and the latter is classified into four genotypes, including red-spotted grouper nervous necrosis virus, tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, and barfin flounder nervous necrosis virus. Type I interferons (IFNs) play a central role in the innate immune system and antiviral responses, and the interactions between IFN and NNV have been investigated in this study. We have found that the RNA-dependent RNA polymerase (RdRp) from orange-spotted nervous necrosis virus (OGNNV), named protein A, was capable of activating IFN promoter in fathead minnow (FHM) cells. Transient expression of protein A was found to induce IFN expression and secretion, endowing FHM cells with anti-tiger frog virus ability. Protein A from SJNNV can also induce IFN expression in FHM cells but that from Flock House virus (FHV), a well-studied representative species of genus Alphanodavirus, cannot. RdRp activity and mitochondrial localization were shown to be required for protein A to induce IFN expression by means of activating IRF3 but not NFκB. Furthermore, DsRNA synthesized in vitro transcription and poly I:C activated IFN promoter activity when transfected into FHM cells, and dsRNA were also detected in NNV-infected cells. We postulated that dsRNA, a PAMP, was produced by protein A, leading to activation of innate immune response. These results suggest that protein As from NNV are the agonists of innate immune response. This is the first work to demonstrate the interaction between NNV protein A and innate immune system, and may help to understand pathogenesis of NNV. Copyright © 2018. Published by Elsevier Ltd.

  14. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  15. Marital conflict and children's externalizing behavior: interactions between parasympathetic and sympathetic nervous system activity

    National Research Council Canada - National Science Library

    El-Sheikh, Mona; Beauchaine, Theodore P; Moore, Ginger A

    2009-01-01

    "Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS...

  16. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system

    Directory of Open Access Journals (Sweden)

    Gomes MJ

    2014-04-01

    Full Text Available Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB, Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS, Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targeting

  17. The central nervous system

    International Nuclear Information System (INIS)

    Holmes, R.A.

    1984-01-01

    The first section presents a comprehensive evaluation of radionuclide imaging of the central nervous system and provides a comparison of the detection accuracies of radionuclide imaging (RNI) and XCT in certain lesions, realizing that the XCT results may vary when radiocontrast or newer generation XCT scanners are used. Although conventional radionuclide imaging of the central nervous system has experienced no significant changes over the last 7 years except for mild refinements, a new section has been added on positron emission tomography (PET). Most positron radiopharmaceuticals passively cross the intact blood-brain barrier, and their localization has catalyzed renewed interest in our ability to metabolically study and obtain images of the central nervous system. The section on radionuclide cisternography has been rewritten to reflect present day practice and the wider application of XCT in describing conditions affecting the ventricular system

  18. Pazopanib efficacy in recurrent central nervous system hemangiopericytomas.

    Science.gov (United States)

    Apra, Caroline; Alentorn, Agusti; Mokhtari, Karima; Kalamarides, Michel; Sanson, Marc

    2018-04-26

    There is currently no treatment for solitary fibrous tumors/hemangiopericytomas (SFT/H) of the central nervous system recurring after multiple surgeries and radiotherapies. The NAB2-STAT6 gene fusion is the hallmark of these tumors, and upregulates Early Growth Factor, activating several growth pathways. We treated two patients presenting pluri-recurrent meningeal SFT/H with Pazopanib, a broad-spectrum tyrosine kinase inhibitor. We analyzed the exome and RNA sequencing data of one of them and, in addition to another meningeal SFT/H, compared it to the transcriptomic profiling of 5 systemic SFT/H. A dramatic clinical and radiological response was observed in both cases, respectively 84 and 43% decrease after 3 months. As a comparison, Pazopanib has only a stabilizing effect in systemic SFT/H. Indeed, central nervous system SFT/H show overexpression of different tyrosine kinases targeted by Pazopanib. Two consecutive patients with untreatable central nervous system SFT/H showed a spectacular partial response to Pazopanib, an unprecedented result in SFT/H. This result could be explained by differences in expression profiles and calls for a confirmation in a larger cohort of patients.

  19. The Potential of the Bi-Directional Gaze: A Call for Neuroscientific Research on the Simultaneous Activation of the Sympathetic and Parasympathetic Nervous Systems through Tantric Practice

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lidke

    2016-11-01

    Full Text Available This paper is a call for the development of a neuroscientific research protocol for the study of the impact of Tantric practice on the autonomic nervous system. Tantric texts like Abhinavagupta’s Tantrāloka map out a complex meditative ritual system in which inward-gazing, apophatic, sense-denying contemplative practices are combined with outward-gazing, kataphatic sense-activating ritual practices. Abhinavagupta announces a culminating “bi-directional” state (pratimīlana-samādhi as the highest natural state (sahaja-samādhi in which the practitioner becomes a perfected yogi (siddhayogi. This state of maximized cognitive capacities, in which one’s inward gaze and outward world-engagement are held in balance, appears to be one in which the anabolic metabolic processes of the parasympathetic nervous system and the catabolic metabolic processes of the sympathetic nervous systems are simultaneously activated and integrated. Akin to secularized mindfulness and compassion training protocols like Emory’s CBCT, I propose the development of secularized “Tantric protocols” for the development of secular and tradition-specific methods for further exploring the potential of the human neurological system.

  20. Appreciating the difference between design-based and model-based sampling strategies in quantitative morphology of the nervous system.

    Science.gov (United States)

    Geuna, S

    2000-11-20

    Quantitative morphology of the nervous system has undergone great developments over recent years, and several new technical procedures have been devised and applied successfully to neuromorphological research. However, a lively debate has arisen on some issues, and a great deal of confusion appears to exist that is definitely responsible for the slow spread of the new techniques among scientists. One such element of confusion is related to uncertainty about the meaning, implications, and advantages of the design-based sampling strategy that characterize the new techniques. In this article, to help remove this uncertainty, morphoquantitative methods are described and contrasted on the basis of the inferential paradigm of the sampling strategy: design-based vs model-based. Moreover, some recommendations are made to help scientists judge the appropriateness of a method used for a given study in relation to its specific goals. Finally, the use of the term stereology to label, more or less expressly, only some methods is critically discussed. Copyright 2000 Wiley-Liss, Inc.

  1. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  2. The nervous systems of basally branching nemertea (palaeonemertea.

    Directory of Open Access Journals (Sweden)

    Patrick Beckers

    Full Text Available In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  3. Central nervous system activity of the ethanol leaf extract of Sida acuta in rats.

    Science.gov (United States)

    Ibironke, G F; Umukoro, A S; Ajonijebu, D C

    2014-03-01

    The study investigated the pharmacological effects of ethanol extract of Sida acuta leaves on central nervous system activities in mice. Adult male mice (18 - 25g) were used for the study. The extract was administered orally in male mice and evaluated in the following tests: forced swimming, tail suspension, formalin-induced paw licking, acetic acid--induced mouse writhing and apomorphine-induced stereotypy. The results revealed a reduction in the frequency of abdominal constrictions induced by acetic acid, decreased licking times in both phases of the formalin test, reduction in immobility times in forced swimming and tail suspension tests. However, the extract produced no effect on apomorphine-induced stereotyped behaviour. These results suggest that the ethanol extract of Sida acuta contains psychoactive substances with analgesic and antidepressant-like properties which may be beneficial in the management of pain.

  4. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  5. Aging changes in the nervous system

    Science.gov (United States)

    ... ency/article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  6. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system

    International Nuclear Information System (INIS)

    An Yihua; Tsang, Kent K S; Zhang Han

    2006-01-01

    The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS. (topical review)

  7. A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3 is activated by dopamine and is widely expressed in the nervous system.

    Directory of Open Access Journals (Sweden)

    Fouad El-Shehabi

    Full Text Available Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3 that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of "orphan" amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs.

  8. The influence of the training loads of different on the nervousness level of the young sportsmen aged 13-16.

    Directory of Open Access Journals (Sweden)

    Khoroshukha M.F.

    2011-07-01

    Full Text Available The dynamics, structure and the indexes of the level of the teenagers' personal nervousness are considered. The teenagers are specialized in the following sporting activities: light athletics, skiing, cycling, swimming, boxing and free style fighting. 123 young sportsmen and 30 secondary school pupils, who don't go in for sports, aged 13-16 took part in the experiment. The comparative analysis nervousness level of the two groups was conducted: the first group - the speedy and powerful sporting activities and the second - the sporting activities concerning endurance. The fact of the specific influence of the loads of different directions on displaying the nervousness by young sportsmen was established.

  9. Involvement of autonomic nervous activity changes in gastroesophageal reflux in neonates during sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Djamal-Dine Djeddi

    Full Text Available BACKGROUND: It has been suggested that disturbed activity of the autonomic nervous system is one of the factors involved in gastroesophageal reflux (GER in adults. We sought to establish whether transient ANS dysfunction (as assessed by heart rate variability is associated with the occurrence of GER events in neonates during sleep and wakefulness. METHODS: Nineteen neonates with suspected GER underwent simultaneous, synchronized 12-hour polysomnography and esophageal multichannel impedance-pH monitoring. We compared changes in HRV parameters during three types of periods (control and prior to and during reflux with respect to the vigilance state. RESULTS: The vigilance state influenced the distribution of GER events (P<0.001, with 53.4% observed during wakefulness, 37.6% observed during active sleep and only 9% observed during quiet sleep. A significant increase in the sympathovagal ratio (+32%, P=0.013 was observed in the period immediately prior to reflux (due to a 15% reduction in parasympathetic activity (P=0.017, relative to the control period. This phenomenon was observed during both wakefulness and active sleep. CONCLUSION: Our results showed that GER events were preceded by a vigilance-state-independent decrease in parasympathetic tone. This suggests that a pre-reflux change in ANS activity is one of the factors contributing to the mechanism of reflux in neonates.

  10. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  11. Acute urinary retention due to benign inflammatory nervous diseases.

    Science.gov (United States)

    Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi

    2006-08-01

    Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.

  12. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  13. Central nervous system tumors

    International Nuclear Information System (INIS)

    Curran, W.J. Jr.

    1991-01-01

    Intrinsic tumors of the central nervous system (CNS) pose a particularly challenging problem to practicing oncologists. These tumors rarely metastasize outside the CNS, yet even histologically benign tumors can be life-threatening due to their local invasiveness and strategic location. The surrounding normal tissues of the nervous system is often incapable of full functional regeneration, therefore prohibiting aggressive attempts to use either complete surgical resection or high doses of irradiation. Despite these limitations, notable achievements have recently been recorded in the management of these tumors

  14. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    Science.gov (United States)

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  15. Peripheral Nervous System Manifestations in Systemic Autoimmune Diseases

    OpenAIRE

    COJOCARU, Inimioara Mihaela; COJOCARU, Manole; SILOSI, Isabela; VRABIE, Camelia Doina

    2014-01-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement ...

  16. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system.

    Science.gov (United States)

    Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2018-02-01

    High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Dietary Carotenoids and the Nervous System

    Directory of Open Access Journals (Sweden)

    Billy R. Hammond

    2015-12-01

    Full Text Available This issue of Foods is focused on the general topic of carotenoids within the nervous system. The focus is on the effects of the xanthophylls on the central nervous system (CNS, reflecting the majority of work in this area. [...

  18. CT and MRI analysis of central nervous system Rosai-Dorfman disease

    International Nuclear Information System (INIS)

    Zhang Jiatang; Lang Senyang; Pu Chuanqiang; Zhu Ruyuan; Wang Dianjun

    2008-01-01

    Objective: To study the CT and MRI imaging features of central nervous system Rosai-Dorfman disease and to enhance knowledge and differential diagnostic ability for central nervous system Rosai-Doffman disease. Methods: The CT and MRI imaging appearances in 4 cases of pathologically proven Rosai-Dorfman disease were retrospectively evaluated and the literature of central nervous system Rosai- Dorfman disease were reviewed. Results: Two cases had cranial CT scans, 4 cases had cranial MRI scans. On CT scans, cerebral edema was demonstrated in one case and the other case was normal. MRI scans showed the lesions were solitary in saddle area in 3 cases, and multiple in anterior cranial fossa in 1 case. The lesions exhibited iso- to hypointensity on both T 1 WI and T 2 WI images. Following intravenous injection of contrast medium, ring-like enhancement was seen in 2 cases and homogeneous enhancement in 1 case. Nodular enhancement was seen in the case of multiple lesions in the anterior cranial fossa. All lesions were dural-based. Conclusions: In patients with fever, headache, elevation of the erythrocyte sedimentation rate (ESR) and a polyclonal increase in γ-globulins, the possibility of central nervous system Rosai-Dorfman disease should be considered when single or multiple dural-based mass lesions, especially in sellar region, were identified by CT and MRI. (authors)

  19. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders

    International Nuclear Information System (INIS)

    Montagne, Axel; Gauberti, Maxime; Jullienne, Amandine; Briens, Aurelien; Docagne, Fabian; Vivien, Denis; Maubert, Eric; Macrez, Richard; Defer, Gilles; Raynaud, Jean-Sebastien; Louin, Gaelle; Buisson, Alain; Haelewyn, Benoit

    2012-01-01

    Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuro-inflammation. (authors)

  20. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  1. Central nervous system involvement in the autonomic responses to psychological distress

    NARCIS (Netherlands)

    de Morree, H.M.; Szabó, B.M.; Rutten, G.J.; Kop, W.J.

    2013-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and

  2. Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: plasma norepinephrine concentration, hepatic extraction, and renal release

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Hesse, B; Henriksen, Jens Henrik Sahl

    1982-01-01

    as previously reported in healthy controls. The right kidney released NE into the systemic circulation. Renal venous plasma NE exceeded arterial concentration by 34% (p less than 0.01). It is concluded that sympathetic nervous activity is enhanced in patients with cirrhosis, and that this hyperactivity may...... in patients than controls (82 vs. 95 mm Hg, p less than 0.05) but did not change during the tilt. Plasma norepinephrine (NE) concentration was significantly higher in another eight patients with cirrhosis than in eight healthy controls (mean: 0.45 vs. 0.21 ng per ml in recumbency, p less than 0.02). Following...

  3. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.

    Directory of Open Access Journals (Sweden)

    Raj Kumar Pan

    Full Text Available One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many different co-occurring processes at this level underlies the command and control of overall network activity. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost and communication efficiency (i.e., network path length. Even including information about the genetic relatedness of the cells cannot account for the observed modular structure. Comparison with other complex networks designed for efficient transport (of signals or resources implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including

  4. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Ferreira, Gabrielle de Jesus; Geihs, Márcio Alberto; Vargas, Marcelo Alves

    2015-01-01

    Highlights: • Ultraviolet (UV) radiation produces biological damage, principally oxidative stress. • We analyzed oxidative stress in the central nervous system (CNS) of a crab. • The damage was evaluated using biochemical tests and immunohistochemistry. • We verified the occurrence of apoptosis in the brain of the UV-exposed crabs. • Environmental doses of UV can cause oxidative damage to CNS, including apoptosis. - Abstract: Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA + UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting

  5. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Ferreira, Gabrielle de Jesus, E-mail: gabi_ferreiira@hotmail.com [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Geihs, Márcio Alberto, E-mail: geihs@hotmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); Vargas, Marcelo Alves, E-mail: biovargas@gmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); and others

    2015-03-15

    Highlights: • Ultraviolet (UV) radiation produces biological damage, principally oxidative stress. • We analyzed oxidative stress in the central nervous system (CNS) of a crab. • The damage was evaluated using biochemical tests and immunohistochemistry. • We verified the occurrence of apoptosis in the brain of the UV-exposed crabs. • Environmental doses of UV can cause oxidative damage to CNS, including apoptosis. - Abstract: Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA + UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting

  6. Imaging findings of central nervous system infections. Case-based review

    International Nuclear Information System (INIS)

    Yagishita, Akira

    2008-01-01

    Prompt detection and an accurate diagnosis of central nervous system (CNS) infections are important because most of these disorders are readily treatable. Imaging plays a crucial role in the diagnosis of the disorders. Infections of CNS pose a worldwide public health problem. Global scale transportation means that disorders once relatively confined to certain geographic areas are now readily ''outside the window'' of practicing radiologists everywhere. Therefore, we, neuroradiologists are in the need of studying foreign infectious diseases, such as West Nile fever, enterovirus poliomyelitis, etc. (author)

  7. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    Science.gov (United States)

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  8. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  9. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  10. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Oey, P. Liam; Vos, Pieter E.; Wieneke, George H.; Wokke, John H. J.; Blankestijn, Peter J.; Karemaker, John M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  11. Neutron activation analysis in the central nervous system tissues and bones of rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    It is presumed that by the shortage of Mg, Zn and Ca, functional or organic diseases may occur. When Al deposits to central nervous tissues and bones, various diseases are induced. As the degeneracy of central nervous system, in which minerals are presumed to take part, amyotrophic lateral sclerosis, Parkinsonism dementia, Alzheimer disease and Parkinson`s disease are enumerated. Four groups of Winstar rats were bred for 90 days with standard diet, low Ca diet, low Ca and Mg diet and low Ca and Mg, high Al diet, and the contents of Mg, Ca and Zn in the tissues of various parts were analyzed by plasma luminescence analysis, and the content of Al was analyzed by activation analysis. The results for blood serum, bones, soft tissues and the correlation of respective minerals in thighbones and lumbars are reported. It was presumed that the adjustment of the mineralization of bones was disturbed by low Ca and Mg diet, and consequently, also the adjustment of Al, Mn, Zn and other elements caused failure in living bodies. It is considered that as the adjustment of the mineralization of bones was disturbed, the deposit of Al in living bodies was increased. The possibility of preventing Al deposit can be expected by the rational adjustment of mineral metabolism. (K.I.).

  12. Neutron activation analysis in the central nervous system tissues and bones of rats maintained on minerally unbalanced diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa.

    1994-01-01

    It is presumed that by the shortage of Mg, Zn and Ca, functional or organic diseases may occur. When Al deposits to central nervous tissues and bones, various diseases are induced. As the degeneracy of central nervous system, in which minerals are presumed to take part, amyotrophic lateral sclerosis, Parkinsonism dementia, Alzheimer disease and Parkinson's disease are enumerated. Four groups of Winstar rats were bred for 90 days with standard diet, low Ca diet, low Ca and Mg diet and low Ca and Mg, high Al diet, and the contents of Mg, Ca and Zn in the tissues of various parts were analyzed by plasma luminescence analysis, and the content of Al was analyzed by activation analysis. The results for blood serum, bones, soft tissues and the correlation of respective minerals in thighbones and lumbars are reported. It was presumed that the adjustment of the mineralization of bones was disturbed by low Ca and Mg diet, and consequently, also the adjustment of Al, Mn, Zn and other elements caused failure in living bodies. It is considered that as the adjustment of the mineralization of bones was disturbed, the deposit of Al in living bodies was increased. The possibility of preventing Al deposit can be expected by the rational adjustment of mineral metabolism. (K.I.)

  13. Effects of Gentiana lutea ssp. symphyandra on the central nervous system in mice.

    Science.gov (United States)

    Oztürk, Nilgün; Başer, K Hüsnü Can; Aydin, Süleyman; Oztürk, Yusuf; Caliş, Ihsan

    2002-11-01

    A methanolic extact of Gentiana lutea ssp. symphyandra roots has been investigated for its possible effects on the central nervous system of mice. At doses of 250 and 500 mg/kg (i.p.), the methanol extract of Gentiana roots caused a significant increase in the swimming endurance test and exhibited slight analgesic activity, but no lethality in mice suggesting some activity on the central nervous system. However, there was no indication of sedation or muscular fatigue at the doses employed. HPLC analysis showed that three secoiridoid compounds, gentiopicroside, swertiamarine and sweroside were present and may have been responsible for the CNS effects of the methanol extract of Gentiana lutea ssp. symphyandra roots. Copyright 2002 John Wiley & Sons, Ltd.

  14. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    Science.gov (United States)

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions

  15. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women.

    Science.gov (United States)

    Tentolouris, N; Tsigos, C; Perea, D; Koukou, E; Kyriaki, D; Kitsou, E; Daskas, S; Daifotis, Z; Makrilakis, K; Raptis, S A; Katsilambros, N

    2003-11-01

    Food ingestion can influence autonomic nervous system activity. This study compares the effects of 2 different isoenergetic meals on sympathetic nervous system (SNS) activity, assessed by heart rate variability (HRV) and plasma norepinephrine (NE) levels, in lean and obese women. Fifteen lean and 15 obese healthy women were examined on 2 occasions: after a carbohydrate (CHO)-rich and after a fat-rich test meal. Measurements of blood pressure, heart rate, resting energy expenditure, plasma glucose, lipids, insulin, leptin, and NE, as well as spectral analysis of the HRV, were performed at baseline and every 1 hour for 3 hours after meals. At baseline, obese women had higher SNS activity than lean controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 +/- 0.31 v 0.78 +/- 0.13, P=.04; and plasma NE levels, 405.6 +/- 197.9 v 240.5 +/- 95.8 pg/mL, Pmeal a greater increase in LF/HF and in plasma NE levels was observed in lean, compared to obese women (1.21 +/- 0.6 v 0.32 +/- 0.06, P=.04; and 102.9 +/- 35.4 v 38.7 +/- 12.3 pg/mL, P=.01, respectively), while no differences were observed after the fat-rich meal. Meal-induced thermogenesis was higher after the CHO-rich as compared to the fat-rich meal and was comparable between lean and obese women. Changes in HRV were not associated with the thermogenic response to the test meals. In conclusion, consumption of a CHO-rich meal causes greater cardiac SNS activation in lean than in obese women, while fat ingestion does not result in any appreciable change in either group. SNS activation does not appear to influence the thermic effect of the food in either lean or obese women.

  17. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2017-06-01

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  18. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  19. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  20. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  1. Nervous system examination on YouTube.

    Science.gov (United States)

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  2. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  3. Primary central nervous system lymphoma: is absence of intratumoral hemorrhage a characteristic finding on MRI?

    Science.gov (United States)

    Sakata, Akihiko; Okada, Tomohisa; Yamamoto, Akira; Kanagaki, Mitsunori; Fushimi, Yasutaka; Dodo, Toshiki; Arakawa, Yoshiki; Takahashi, Jun C; Miyamoto, Susumu; Togashi, Kaori

    2015-06-01

    Previous studies have shown that intratumoral hemorrhage is a common finding in glioblastoma multi-forme, but is rarely observed in primary central nervous system lymphoma. Our aim was to reevaluate whether intratumoral hemorrhage observed on T2-weighted imaging (T2WI) as gross intratumoral hemorrhage and on susceptibility-weighted imaging as intratumoral susceptibility signal can differentiate primary central nervous system lymphoma from glioblastoma multiforme. A retrospective cohort of brain tumors from August 2008 to March 2013 was searched, and 58 patients (19 with primary central nervous system lymphoma, 39 with glioblastoma multiforme) satisfied the inclusion criteria. Absence of gross intratumoral hemorrhage was examined on T2WI, and an intratumoral susceptibility signal was graded using a 3-point scale on susceptibility-weighted imaging. Results were compared between primary central nervous system lymphoma and glioblastoma multiforme, and values of P central nervous system lymphoma and 23 patients (59%) with glioblastoma multiforme. Absence of gross intratumoral hemorrhage could not differentiate between the two disorders (P = 0.20). However, intratumoral susceptibility signal grade 1 or 2 was diagnostic of primary central nervous system lymphoma with 78.9% sensitivity and 66.7% specificity (P central nervous system lymphoma from glioblastoma multiforme. However, specificity in this study was relatively low, and primary central nervous system lymphoma cannot be excluded based solely on the presence of an intratumoral susceptibility signal.

  4. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden.

    Science.gov (United States)

    Spudich, Serena; Gisslen, Magnus; Hagberg, Lars; Lee, Evelyn; Liegler, Teri; Brew, Bruce; Fuchs, Dietmar; Tambussi, Giuseppe; Cinque, Paola; Hecht, Frederick M; Price, Richard W

    2011-09-01

    Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.

  5. Relationships between sensory stimuli and autonomic nervous regulation during real and virtual exercises

    Directory of Open Access Journals (Sweden)

    Iijima Atsuhiko

    2007-10-01

    Full Text Available Abstract Background Application of virtual environment (VE technology to motor rehabilitation increases the number of possible rehabilitation tasks and/or exercises. However, enhancing a specific sensory stimulus sometimes causes unpleasant sensations or fatigue, which would in turn decrease motivation for continuous rehabilitation. To select appropriate tasks and/or exercises for individuals, evaluation of physical activity during recovery is necessary, particularly the changes in the relationship between autonomic nervous activity (ANA and sensory stimuli. Methods We estimated the ANA from the R-R interval time series of electrocardiogram and incoming sensory stimuli that would activate the ANA. For experiments in real exercise, we measured vehicle data and electromyogram signals during cycling exercise. For experiments in virtual exercise, we measured eye movement in relation to image motion vectors while the subject was viewing a mountain-bike video image from a first-person viewpoint. Results For the real cycling exercise, the results were categorized into four groups by evaluating muscle fatigue in relation to the ANA. They suggested that fatigue should be evaluated on the basis of not only muscle activity but also autonomic nervous regulation after exercise. For the virtual exercise, the ANA-related conditions revealed a remarkable time distribution of trigger points that would change eye movement and evoke unpleasant sensations. Conclusion For expanding the options of motor rehabilitation using VE technology, approaches need to be developed for simultaneously monitoring and separately evaluating the activation of autonomic nervous regulation in relation to neuromuscular and sensory systems with different time scales.

  6. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  7. Central nervous system mesenchymal chondrosarcoma

    International Nuclear Information System (INIS)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F.; Caroli, E.

    2005-01-01

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  8. The PCR-Based Diagnosis of Central Nervous System Tuberculosis: Up to Date

    Directory of Open Access Journals (Sweden)

    Teruyuki Takahashi

    2012-01-01

    Full Text Available Central nervous system (CNS tuberculosis, particularly tuberculous meningitis (TBM, is the severest form of Mycobacterium tuberculosis (M.Tb infection, causing death or severe neurological defects in more than half of those affected, in spite of recent advancements in available anti-tuberculosis treatment. The definitive diagnosis of CNS tuberculosis depends upon the detection of M.Tb bacilli in the cerebrospinal fluid (CSF. At present, the diagnosis of CNS tuberculosis remains a complex issue because the most widely used conventional “gold standard” based on bacteriological detection methods, such as direct smear and culture identification, cannot rapidly detect M.Tb in CSF specimens with sufficient sensitivity in the acute phase of TBM. Recently, instead of the conventional “gold standard”, the various molecular-based methods including nucleic acid amplification (NAA assay technique, particularly polymerase chain reaction (PCR assay, has emerged as a promising new method for the diagnosis of CNS tuberculosis because of its rapidity, sensitivity and specificity. In addition, the innovation of nested PCR assay technique is worthy of note given its contribution to improve the diagnosis of CNS tuberculosis. In this review, an overview of recent progress of the NAA methods, mainly highlighting the PCR assay technique, was presented.

  9. Lack of circadian variation in the activity of the autonomic nervous system after major abdominal operations

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Rosenberg-Adamsen, Susan; Lie, Claus

    2002-01-01

    OBJECTIVE: Most sudden postoperative deaths occur during the night and we conjectured that this was associated with circadian variations in the autonomic nervous tone, reflected in heart rate variability. DESIGN: Prospective clinical study. SETTINGS: University hospital, Denmark. SUBJECTS: 44...... OUTCOME MEASURES: Heart rate and heart rate variability. RESULTS: Circadian variation calculated from the SDNN (p = 0.43) the pNN50 (p = 0.11), the RMSSD (p = 0.47), and mean NN:SDNN ratio (p = 0.13) was absent postoperatively. Circadian variation in the heart rate was present but was set on a higher...... level compared with reference values. CONCLUSION: After major abdominal operations there was a lack of circadian variation in the autonomic nervous tone....

  10. Advances in Roles of miR-132 in the Nervous System

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available miR-132 is an endogenous small RNA and controls post-transcriptional regulation of gene expression via controlled degradation of mRNA or transcription inhibition. In the nervous system, miR-132 is significant for regulating neuronal differentiation, maturation and functioning, and widely participates in axon growth, neural migration, and plasticity. The miR-132 is affected by factors like mRNA expression, functional redundancy, and signaling cascades. It targets multiple downstream molecules to influence physiological and pathological neuronal activities. MiR-132 can influence the pathogenesis of many diseases, especially in the nervous system. The dysregulation of miR-132 results in the occurrence and exacerbation of neural developmental, degenerative diseases, like Alzheimer’s disease, Parkinson’s disease and epilepsy, neural infection and psychiatric disorders including disturbance of consciousness, cognition and memory, depression and schizophrenia. Regulation of miR-132 expression relieves symptoms, alleviates severity and finally effects a cure. This review aims to discuss the clinical potentials of miR-132 in the nervous system.

  11. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.

    Science.gov (United States)

    De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele

    2017-10-12

    Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.

  12. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  13. Changes in autonomic nervous system activity after treatment with alpha-blocker in men with lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Kang Hee Shim

    2018-01-01

    Full Text Available Purpose: To determine changes in autonomic nervous system activity after treatment in men with lower urinary tract symptoms (LUTS, we evaluated changes in patients' symptoms, uroflowmetry, and heart rate variability (HRV after treatment with alpha-blockers for 12 weeks. Materials and Methods: Ninety-five men who had LUTS (International Prostate Symptom Score [IPSS] ≥8 were included in this study. We divided them into two groups on the basis of a low frequency/high frequency (LF/HF ratio of 1.6. After treatment with Xatral XL (Handok Inc., Korea 10 mg for 3 months, we rechecked their IPSS, uroflowmetry, HRV and compared these with the baseline measurements. Results: Fifty-four men were assigned to the low LF/HF group (group A: LF/HF ≤1.6 and 41 men to the high LF/HF group (group B: LF/HF >1.6. At baseline and 12 weeks, none of the parameters differed significantly between the groups except for HF, which is one of the parameters of HRV. IPSS, the IPSS-voiding subscore, and the IPSS-storage subscore decreased and maximal uroflow increased significantly after 12 weeks of treatment. Whereas the baseline LF/HF ratio increased from 0.89±0.407 to 1.80±1.804 after treatment in group A, it decreased from 3.93±5.471 to 1.79±1.153 in group B. Conclusions: The efficacies of Xatral XL were clear in both groups. We found that the LF/HF ratio in the two groups merged to a value of approximately 1.79 after treatment. We suggest that this could be a clue to the importance of balance in autonomic nervous system activity in men with LUTS.

  14. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  15. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  16. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Science.gov (United States)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  17. Combined effect of head down tilt (HDT) and gamma radiation on the higher nervous activity of the rats

    International Nuclear Information System (INIS)

    Shtemberg, A.S.

    1992-01-01

    The paper deals with a combined effect of 30-day head down tilt (HDT) and gamma-radiation at a dose of 3 Gy on the higher nervous activity of the rats. The 30-day HDT disturbs the process of forming the motor-drinking differentiated conditioned reflex coming to a reduction of internal inhibition, generalization and sluggishness of a stimulation process. Functionally, these processes are reflected by a behavioral pattern shifting to stable stereotype impeding the formation of differentiated inhibition. Against HDT the unidirectional gamma-radiation exposure increases this effects. In some cases, it leads to blocking the adaptational procesess showing in the development of neurotic responses or deep, beyond the limits, inhibition

  18. Nutritional and metabolic diseases involving the nervous system.

    Science.gov (United States)

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  19. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  20. New methodology for preventing pressure ulcers using actimetry and autonomous nervous system recording.

    Science.gov (United States)

    Meffre, R; Gehin, C; Schmitt, P M; De Oliveira, F; Dittmar, A

    2006-01-01

    Pressure ulcers constitute an important health problem. They affect lots of people with mobility disorder and they are difficult to detect and prevent because the damage begins on the muscle. This paper proposes a new approach to study pressure ulcers. We aim at developing a methodology to analyse the probability for a patient to develop a pressure ulcer, and that can detect risky situation. The idea is to relate the mobility disorder to autonomic nervous system (ANS) trouble. More precisely, the evaluation of the consequence of the discomfort on the ANS (stress induced by discomfort) can be relevant for the early detection of the pressure ulcer. Mobility is evaluated through movement measurement. This evaluation, at the interface between soft living tissues and any support has to consider the specificity of the human environment. Soft living tissues have non-linear mechanical properties making conventional rigid sensors non suitable for interface parameters measurement. A new actimeter system has been designed in order to study movements of the human body whatever its support while seating. The device is based on elementary active cells. The number of pressure cells can be easily adapted to the application. The spatial resolution is about 4 cm(2). In this paper, we compare activity measurement of a seated subject with his autonomic nervous system activity, recorded by E.motion device. It has been developed in order to record six parameters: skin potential, skin resistance, skin temperature, skin blood rate, instantaneous cardiac frequency and instantaneous respiratory frequency. The design, instrumentation, and first results are presented.

  1. Central nervous system complications in non-Hodgkin-lymphomas and radiotherapy

    International Nuclear Information System (INIS)

    Liffers, R.

    1981-01-01

    261 case historys of malignant non-Hodgkin-lymphomas were analysed in the years from 1969 until 1978 in the 'Radiologische Universitaetsklinik Kiel'/West-Germany. 18 Patients got a central nervous complication of Non Hodgkin-Lymphoma earlier or later, a percentage of about 7. There were 7 cases of lymphoblastic lymphoma (LB), a percentage of 10 for this entity. In the group of immunoblastic lymphoma (IB) 6 cases of central nervous infiltration were detected, that is a ratio of 7.7 percent. 4 case histories M. Brill-Symmers (CC/CB) were complicated by central nervous dissemination, a percentage of 5.3. Patients with lymphoblastic lymphoma have the highest risk of central nervous complication. The beginning of central nervous dissemination in the single case histories is very different between the histological groups. Patients with lymphoblastic lymphoma suffered from central nervous complication in an early phase of history, in cases of M. Brill-Symmers central nervous infiltration can occur also in a late phase. The results may determine the discussion about stratifying of radiotherapy. Early radiotherapy including central nervous system may be discussed and investigated in special histological entities of malignant non-Hodgkin-lymphoma. (orig.) [de

  2. Radiation induced effects in the developing central nervous system

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Michelin, S.C.; Perez, M.R. Del

    1997-01-01

    The embryo and the human foetus are particularly sensitive to ionizing radiation and this sensitivity presents various qualitative and quantitative functional changes during intra-uterine development. Apart from radiation induced carcinogenesis, the most serious consequence of prenatal exposure in human beings is severe mental retardation. The principal data on radiation effects on human beings in the development of the central nervous system come form epidemiological studies carried out in individuals exposed in utero during the atomic explosion at Hiroshima and Nagasaki. These observations demonstrate the existence of a time of maximum radiosensitivity between the weeks 8 and 15 of the gestational period, a period in which the proliferation and neuronal migration takes place. Determination of the characteristics of dose-response relationship and the possible existence of a threshold dose of radiation effects on the development of the central nervous system is relevant to radiation protection against low dose radiation and the establishment of dose limits for occupational exposure and the public. Studies were conducted on the generation of nitrous-oxide and its relation with the production of active species of oxygen in brains of exposed rats in utero exposed to doses of up to 1 Gy during their maximum radiosensitivity. The possible role of the mechanism of radiation induced damage in the development of the central nervous system is discussed

  3. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    Science.gov (United States)

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  4. Neuroprotective Effects of Lipoxin A4 in Central Nervous System Pathologies

    Directory of Open Access Journals (Sweden)

    Alessandra Cadete Martini

    2014-01-01

    Full Text Available Many diseases of the central nervous system are characterized and sometimes worsened by an intense inflammatory response in the affected tissue. It is now accepted that resolution of inflammation is an active process mediated by a group of mediators that can act in synchrony to switch the phenotype of cells, from a proinflammatory one to another that favors the return to homeostasis. This new genus of proresolving mediators includes resolvins, protectins, maresins, and lipoxins, the first to be discovered. In this short review we provide an overview of current knowledge into the cellular and molecular interactions of lipoxins in diseases of the central nervous system in which they appear to facilitate the resolution of inflammation, thus exerting a neuroprotective action.

  5. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  6. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.

    Science.gov (United States)

    Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R

    2017-06-01

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (PFanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (PFanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.

  7. Chapter 1. Central nervous system

    International Nuclear Information System (INIS)

    Planiol, T.; Veyre, A.; Plagne, R.

    1975-01-01

    The present situation with regard to explorations of the central nervous system by radioactive compounds is reviewed. For the sake of clarity the brain and cerebrospinal fluid examinations are described separately, with emphasis nevertheless on their complementarity. The tracers used in each of these examinations are listed, together with the criteria governing their choice. The different techniques employed are described. Scintigraphy is presented apart from gamma-angio-encephalography since it is not possible with rectilinear scintigraphs to observe the circulatory phase. The results are interpreted by an analysis of normal and pathological aspects of the different stages of the central nervous system [fr

  8. What Health-Related Functions Are Regulated by the Nervous System?

    Science.gov (United States)

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  9. HHV-6 symptoms in central nervous system. Encephalitis and encephalopathy

    International Nuclear Information System (INIS)

    Yoshinari, Satoshi; Hamano, Shinichiro

    2007-01-01

    Described is the present knowledge of central nervous symptoms, mainly encephalitis and encephalopathy, caused by the primary infection of human herpes virus-6 (HHV-6) in the pediatric field. Discovery of HHV-6 is in 1986, the virus, normally latent, has a high nervous affinity, and most infants are infected until the age of 3 years. Encephalitis and encephalopathy caused by the primary infection can be derived from direct viral invasion in nervous system or secondary like that through angitis. Most of early clinical symptoms are febrile convulsion. Imaging of the head by MRI particularly with diffusion weighted imaging and by cerebral blood flow SPECT with 123 I-infetamine (IMP) is important for classification of encephalitis and encephalopathy by HHV-6: Four types of them are defined according to the area of lesion observed in abnormal images, the basal nuclei-diencephalon-brainstem, frontal lobe-dominant one, cerebral hemisphere and diffusive one. Further reviewed are the diagnosis, treatment and prognosis together with other HHV-6 related problems like infection in neonate, temporal lobe epilepsy and drug-induced hypersensitivity syndrome. Current topics are related with activation of latent HHV-6. Despite numerous findings, many remain to be elucidated in acute encephalitis and encephalopathy which are most important in pediatrics. (R.T.)

  10. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.

    Science.gov (United States)

    Gordon, Tessa; Udina, Esther; Verge, Valerie M K; de Chaves, Elena I Posse

    2009-10-01

    Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

  11. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  12. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    Science.gov (United States)

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation

    OpenAIRE

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relati...

  14. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  15. Activation in the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system in women with carpal tunnel syndrome.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Díaz-Rodríguez, Lourdes; Salom-Moreno, Jaime; Galiano-Castillo, Noelia; Valverde-Herreros, Lis; Martínez-Martín, Javier; Pareja, Juan A

    2014-08-01

    The aim of this study is to investigate the differences in salivary cortisol (hypothalamic-pituitary-adrenocortical [HPA] axis), α-amylase activity (sympathetic nervous system [SNS]), and immunoglobulin A (IgA; immune system) concentrations between women with carpal tunnel syndrome (CTS) and healthy women. A cross-sectional study. Activation of HPA, SNS, and immune system in CTS has not been clearly determined. One hundred two women (age: 45 ± 7 years) with electrodiagnostic and clinical diagnosis of CTS and 102 matched healthy women. The intensity of the pain was assessed with a Numerical Pain Rating Scale (0-10), and disability was determined with Boston Carpal Tunnel Questionnaire. Salivary cortisol concentration, α-amylase activity, salivary flow rate, and IgA concentration were collected from nonstimulated saliva. Women with CTS exhibited lower salivary flow rate (P  0.2) were found between groups as a total. Women with severe CTS exhibited lower salivary flow rate (P < 0.001), higher α-amylase activity (P = 0.002), and higher cortisol concentration (P = 0.03) than healthy women and than those with minimal/moderate CTS (P < 0.05). Within women with CTS, significant positive associations between α-amylase activity and the intensity of pain were found: the highest the level of pain, the higher the α-amylase activity, i.e., higher SNS activation. These results suggest that women with severe CTS exhibit changes in activation in the HPA axis and SNS but not in the humoral immune system. Activation of the SNS was associated with the intensity of pain. Future studies are needed to elucidate the direction of this relationship. Wiley Periodicals, Inc.

  16. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Detection and Cellular Localization of Phospho-STAT2 in the Central Nervous System by Immunohistochemical Staining

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Owens, Trevor

    2013-01-01

    Phosphorylation of signal transducers and activators of transcription (STATs) indicates their involvement in active signaling. Here we describe immunohistochemical staining procedures for detection and identification of the cellular localization of phospho-STAT2 in the central nervous system (CNS...

  18. Anxiety during pregnancy and autonomic nervous system activity: A longitudinal observational and cross-sectional study.

    Science.gov (United States)

    Mizuno, Taeko; Tamakoshi, Koji; Tanabe, Keiko

    2017-08-01

    To assess the longitudinal change in autonomic nervous system (ANS) activity during pregnancy and the association between anxiety during pregnancy and ANS activity. Pregnant Japanese women with a singleton fetus and normal pregnancy were recruited (n=65). ANS activity and anxiety were measured using a self-rating questionnaire at approximately 20, 30, and 36weeks of gestation. Very low (VLF) and high (HF) frequency bands of heart rate variability spectrums were used. Anxiety was assessed using the Japanese version of the State-Trait Anxiety Inventory. A score of 45 or more on trait-anxiety and the other represent the trait-anxiety group and the non- trait-anxiety group, respectively. The state-anxiety group and the non-state-anxiety group were defined in the same manner. Longitudinal observation of individual pregnant women indicated the significant increasing trend (p=0.002) of VLF power and the significant decreasing trend (p<0.001) of HF power during 20 to 36 gestation weeks. Compared with the non-trait-anxiety group, the trait-anxiety group had significantly lower VLF values at 20 gestational weeks (p=0.033) and had significantly lower HF values at 30 and 36 gestational weeks (p=0.015 and p=0.044, respectively). The increasing rate of VLF from 20 to 36 gestational weeks was higher among the trait-anxiety group. The same associations were observed between the state-anxiety and non-state-anxiety groups at 20 gestational weeks. Anxiety during pregnancy decreased heart rate variability. Anxiety in second trimester pregnancy promoted a subsequent increase in sympathetic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  20. Bioactivity of marine organisms: Part 7- Effect of seaweed extract on central nervous system

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Jain, S.; Goel, A.K.; Srimal, R.C.

    Alcohol extracts of marine algae (Rhodophyceae, Phaeophyceae and Chlorophyceae) was screened for their effect on central nervous system. Of 69 species investigated 8 appeared biologically active, 6 being CNS stimulant, sites and dates of collection...

  1. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    Science.gov (United States)

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  2. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  3. Lichen-derived compounds show potential for central nervous system therapeutics.

    Science.gov (United States)

    Reddy, R Gajendra; Veeraval, Lenin; Maitra, Swati; Chollet-Krugler, Marylène; Tomasi, Sophie; Dévéhat, Françoise Lohézic-Le; Boustie, Joël; Chakravarty, Sumana

    2016-11-15

    Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders. Copyright © 2016 Elsevier Gmb

  4. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups

    International Nuclear Information System (INIS)

    Johnson-Tesch, Benjamin A.; Gawande, Rakhee S.; Nascene, David R.; Zhang, Lei; MacMillan, Margaret L.

    2017-01-01

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations. (orig.)

  5. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups

    Energy Technology Data Exchange (ETDEWEB)

    Johnson-Tesch, Benjamin A. [University of Minnesota, Department of Radiology, Minneapolis, MN (United States); Gawande, Rakhee S.; Nascene, David R. [University of Minnesota, Department of Radiology, Neuroradiology Section, Minneapolis, MN (United States); Zhang, Lei [University of Minnesota, Biostatistical Design and Analysis Centre, Minneapolis, MN (United States); MacMillan, Margaret L. [University of Minnesota, Blood and Marrow Transplant Program, Department of Pediatrics, Minneapolis, MN (United States)

    2017-06-15

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations. (orig.)

  6. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  7. Regulation of somatostatin release in the nervous system of the rat

    International Nuclear Information System (INIS)

    Sheppard, M.

    1979-08-01

    This thesis represents the work done to study the release of somatostatin from the rat central nervous system in vitro, providing some evidence for a physiological role for somatostatin. Somatostatin was measured by a sensitive and specific radioimmunoassay devoloped in the laboratory. Chapter 2 reviews the literature on hypothalamic peptides and control of an anterior pituitary function, somatostatin, other central nervous system peptides and neurosecretion. Chapter 3 describes the central nervous system tissue dissection technique, the radioimmunoassay for somatostatin and the tissue levels of somatostatin immunoreactivity in different areas of the central nervous system. Chapter 4 deals with the release of immunoreactive somatostatin from incubated rat hypothalamus in vitro and the influence of other hormones and neuropeptides on this release. Chapter 5 describes the preparation of isolated nerve endings (synaptosomes) from four different areas of rat brain, the localisation of somatostatin to the synaptosome fraction of brain homogenates and the release of somatostatin from these synaptosomes. Chapter 6 deals with the release of somatostatin from incubated rat spinal cord in vitro. Chapter 7 presents the results of the characterisation of released immunoreactive material, the technique utilised being serial dilution of immunoreactive material and comparison to the standard curve, Sephadex gel chromatography, affinity chromatography, and the effect of released immunoreactive somatostatin on growth hormone release from perifused hemipituitaries in vitro, i.e. biological activity. Chapter 8 provides a summary of the main conclusions reached in this study and is followed by the Appendix describing chemical and biochemical methods, histological techniques, and statistical methods

  8. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  9. Temperament Affects Sympathetic Nervous Function in a Normal Population

    OpenAIRE

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean vers...

  10. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    Science.gov (United States)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  11. [3H]-2-Deoxyglucose autoradiography in a molluscan nervous system

    International Nuclear Information System (INIS)

    Reingold, S.C.; Sejnowski, T.J.; Gelperin, A.

    1981-01-01

    The authors have used [ 3 H]2-deoxyglucose autoradiography to correlate the labeling of individual neurons with electrical activity within the central nervous system of a terrestrial mollusc, Limax maximus. In an electrically quiescent control preparation where a single neuron is impaled with a glass microelectrode but not stimulated, several somata are uniformly labeled at 3-5 times background. In preparations where a single cell is impaled and stimulated, one or more somata are heavily labeled with [ 3 H]2-deoxyglucose at 10-50 times tissue background. This technique may be useful for surveying metabolically active neurons during spontaneous and driven electrical activity. (Auth.)

  12. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  13. On the mathematical integration of the nervous tissue based on the S-propagator formalism.

    Science.gov (United States)

    Chauvet, Gilbert A

    2002-06-01

    The integration of physiological functions in living organisms corresponds to the reconstruction of a biological system from its components. This calls for a sound theoretical framework based on the rigorous definition of the elementary physiological function within the context of multiple levels of biological organization. One of the main problems encountered in the neurosciences is that of extending the current theory of automata, as used in the study of artificial neural networks, to real neural networks. The difficulty arises because the theory of automata fails to take into account the various levels of biological organization involved in nervous activity. This article recalls the main elements of G. A. Chauvet's novel n-level field theory, i.e., the properties of non-symmetry and non-locality of functional interactions, and the S-propagator formalism that governs the propagation of a functional interaction across the different levels of the structural organization of a biological system. The neural field equations derived from this theory allow the inclusion of multiple organizational levels of a biological system into the analysis by incorporating specific local models into a global non-local model. The main advantage of the method presented here is the simplification obtained by breaking down the physiological function into its components according to the time scales and space scales of operation. Moreover, the method takes into account the non-locality of the functional interaction, assuming it to be propagated at finite velocity in a continuous and hierarchical space. Finally, this approach allows the systematic study of physiological functions within a single theoretical framework, the complexity of which could be progressively increased by integrating specific local models as new findings become available.

  14. Extraversion, Neuroticism and Strength of the Nervous System

    Science.gov (United States)

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  15. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  16. Left-right asymmetries of behaviour and nervous system in invertebrates.

    Science.gov (United States)

    Frasnelli, Elisa; Vallortigara, Giorgio; Rogers, Lesley J

    2012-04-01

    Evidence of left-right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. A variety of studies have revealed sensory and motor asymmetries in behaviour, as well as asymmetries in the nervous system, in invertebrates. Asymmetries in behaviour are apparent in olfaction (antennal asymmetries) and in vision (preferential use of the left or right visual hemifield during activities such as foraging or escape from predators) in animals as different as bees, fruitflies, cockroaches, octopuses, locusts, ants, spiders, crabs, snails, water bugs and cuttlefish. Asymmetries of the nervous system include lateralized position of specific brain structures (e.g., in fruitflies and snails) and of specific neurons (e.g., in nematodes). As in vertebrates, lateralization can occur both at the individual and at the population-level in invertebrates. Theoretical models have been developed supporting the hypothesis that the alignment of the direction of behavioural and brain asymmetries at the population-level could have arisen as a result of social selective pressures, when individually asymmetrical organisms had to coordinate with each other. The evidence reviewed suggests that lateralization at the population-level may be more likely to occur in social species among invertebrates, as well as vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Microbiota-gut-brain axis and the central nervous system

    OpenAIRE

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-01-01

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated ...

  18. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    Science.gov (United States)

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  19. A Central Nervous System-Dependent Intron-Embedded Gene Encodes a Novel Murine Fyn Binding Protein.

    Science.gov (United States)

    Ben Khalaf, Noureddine; Taha, Safa; Bakhiet, Moiz; Fathallah, M Dahmani

    2016-01-01

    The interplay between the nervous and immune systems is gradually being unraveled. We previously reported in the mouse the novel soluble immune system factor ISRAA, whose activation in the spleen is central nervous system-dependent. We also showed that ISRAA plays a role in modulating anti-infection immunity. Herein, we report the genomic description of the israa locus, along with some insights into the structure-function relationship of the protein. Our findings revealed that israa is nested within intron 6 of the mouse zmiz1 gene. Protein sequence analysis revealed a typical SH2 binding motif (Y102TEV), with Fyn being the most likely binding partner. Docking simulation showed a favorable conformation for the ISRAA-Fyn complex, with a specific binding mode for the binding of the YTEV motif to the SH2 domain. Experimental studies showed that in vitro, recombinant ISRAA is phosphorylated by Fyn at tyrosine 102. Cell transfection and pull-down experiments revealed Fyn as a binding partner of ISRAA in the EL4 mouse T-cell line. Indeed, we demonstrated that ISRAA downregulates T-cell activation and the phosphorylation of an activation tyrosine (Y416) of Src-family kinases in mouse splenocytes. Our observations highlight ISRAA as a novel Fyn binding protein that is likely to be involved in a signaling pathway driven by the nervous system.

  20. A Central Nervous System-Dependent Intron-Embedded Gene Encodes a Novel Murine Fyn Binding Protein.

    Directory of Open Access Journals (Sweden)

    Noureddine Ben Khalaf

    Full Text Available The interplay between the nervous and immune systems is gradually being unraveled. We previously reported in the mouse the novel soluble immune system factor ISRAA, whose activation in the spleen is central nervous system-dependent. We also showed that ISRAA plays a role in modulating anti-infection immunity. Herein, we report the genomic description of the israa locus, along with some insights into the structure-function relationship of the protein. Our findings revealed that israa is nested within intron 6 of the mouse zmiz1 gene. Protein sequence analysis revealed a typical SH2 binding motif (Y102TEV, with Fyn being the most likely binding partner. Docking simulation showed a favorable conformation for the ISRAA-Fyn complex, with a specific binding mode for the binding of the YTEV motif to the SH2 domain. Experimental studies showed that in vitro, recombinant ISRAA is phosphorylated by Fyn at tyrosine 102. Cell transfection and pull-down experiments revealed Fyn as a binding partner of ISRAA in the EL4 mouse T-cell line. Indeed, we demonstrated that ISRAA downregulates T-cell activation and the phosphorylation of an activation tyrosine (Y416 of Src-family kinases in mouse splenocytes. Our observations highlight ISRAA as a novel Fyn binding protein that is likely to be involved in a signaling pathway driven by the nervous system.

  1. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.

  2. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    Central nervous system affecting drugs and road traffic accidents among commercial motorcyclists. ... including driving under the influence of drugs that affect the central nervous system (CNS). ... Keywords: Brain, influence, riders, substances ...

  3. The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites

    Directory of Open Access Journals (Sweden)

    Elena K. Schneider

    2018-03-01

    Full Text Available Ivacaftor–lumacaftor and ivacaftor are two new breakthrough cystic fibrosis transmembrane conductance modulators. The interactions of ivacaftor and its two metabolites hydroxymethylivacaftor (iva-M1 and ivacaftorcarboxylate (iva-M6 with neurotransmitter receptors were investigated in radioligand binding assays. Ivacaftor displayed significant affinity to the 5-hydroxytryptamine (5-HT; serotonin 5-HT2C receptor (pKi=6.06±0.03, β3-adrenergic receptor (pKi=5.71±0.07, δ-opioid receptor (pKi=5.59±0.06 and the dopamine transporter (pKi=5.50±0.20; iva-M1 displayed significant affinity to the 5-HT2C receptor (pKi=5.81±0.04 and the muscarinic M3 receptor (pKi=5.70±0.10; iva-M6 displayed significant affinity to the 5-HT2A receptor (pKi=7.33±0.05. The in vivo central nervous system activity of ivacaftor (40 mg·kg−1 intraperitoneally for 21 days was assessed in a chronic mouse model of depression. In the forced swim test, the ivacaftor-treated group displayed decreased immobility (52.8±7.6 s, similarly to fluoxetine (33.8±11.0 s, and increased climbing/swimming activity (181.5±9.2 s. In the open field test, ivacaftor produced higher locomotor activity than the fluoxetine group, measured both as mean number of paw touches (ivacaftor 81.1±9.6 versus fluoxetine 57.9±9.5 and total distance travelled (ivacaftor 120.6±16.8 cm versus fluoxetine 84.5±16.0 cm in 600 s. Treatment of 23 cystic fibrosis patients with ivacaftor–lumacaftor resulted in significant improvements in quality of life (including anxiety in all five domains of the AweScoreCF questionnaire (p=0.092–0.096. Our findings suggest ivacaftor displays potential clinical anxiolytic and stimulating properties, and may have beneficial effects on mood.

  4. Biological restoration of central nervous system architecture and function: part 3-stem cell- and cell-based applications and realities in the biological management of central nervous system disorders: traumatic, vascular, and epilepsy disorders.

    Science.gov (United States)

    Farin, Azadeh; Liu, Charles Y; Langmoen, Iver A; Apuzzo, Michael L J

    2009-11-01

    STEM CELL THERAPY has emerged as a promising novel therapeutic endeavor for traumatic brain injury, spinal cord injury, stroke, and epilepsy in experimental studies. A few preliminary clinical trials have further supported its safety and early efficacy after transplantation into humans. Although not yet clinically available for central nervous system disorders, stem cell technology is expected to evolve into one of the most powerful tools in the biological management of complex central nervous system disorders, many of which currently have limited treatment modalities. The identification of stem cells, discovery of neurogenesis, and application of stem cells to treat central nervous system disorders represent a dramatic evolution and expansion of the neurosurgeon's capabilities into the neurorestoration and neuroregeneration realms. In Part 3 of a 5-part series on stem cells, we discuss the theory, experimental evidence, and clinical data pertaining to the use of stem cells for the treatment of traumatic, vascular, and epileptic disorders.

  5. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    Science.gov (United States)

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  6. The Multifactorial role of Peripheral Nervous System in Bone Growth

    Science.gov (United States)

    Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios

    2017-09-01

    Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  7. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system

    Directory of Open Access Journals (Sweden)

    Zhong ZF

    2018-05-01

    Full Text Available Zhifeng Zhong,1 Jing Han,1 Jizhou Zhang,1 Qing Xiao,1 Juan Hu,1,2 Lidian Chen1,2 1Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China; 2School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China Abstract: The primary objective of this review article was to summarize comprehensive information related to the neuropharmacological activity, mechanisms of action, toxicity, and safety of salidroside in medicine. A number of studies have revealed that salidroside exhibits neuroprotective activities, including anti-Alzheimer’s disease, anti-Parkinson’s disease, anti-Huntington’s disease, anti-stroke, anti-depressive effects, and anti-traumatic brain injury; it is also useful for improving cognitive function, treating addiction, and preventing epilepsy. The mechanisms underlying the potential protective effects of salidroside involvement are the regulation of oxidative stress response, inflammation, apoptosis, hypothalamus-pituitary-adrenal axis, neurotransmission, neural regeneration, and the cholinergic system. Being free of side effects makes salidroside potentially attractive as a candidate drug for the treatment of neurological disorders. It is evident from the available published literature that salidroside has potential use as a beneficial therapeutic medicine with high efficacy and low toxicity to the central nervous system. However, the definite target protein molecules remain unclear, and clinical trials regarding this are currently insufficient; thus, guidance for further research on the molecular mechanisms and clinical applications of salidroside is urgent. Keywords: salidroside, Alzheimer’s disease, Parkinson’s disease, stroke, cognitive impairment, clinical trials

  8. Model of Artificial Intelligence Medium and its Use in Treating Disorders of the Nervous System

    Directory of Open Access Journals (Sweden)

    Shumilov Vladimir

    2016-01-01

    Full Text Available The work is devoted to modeling of the nervous system, the brain. The article considers the mechanism of formation of event traces fixed in the brain in the form of connections between neurons and the effect of these traces on the later passage of signals through the brain. That is, the influence of experience (traces of previous events on the organism’s reaction by forecasting upcoming events. This «forecast» and anticipatory avoidance of dangers based on traces of previous events makes the nervous system, the brain useful for the organism, for its survival and expansion. The author proposes to use a computational model of the brain to study disorders of the nervous system, brain, and make recommendations for their prevention.

  9. The Adverse Effects of Air Pollution on the Nervous System

    Science.gov (United States)

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  10. Axogenesis in the antennal nervous system of the grasshopper Schistocerca gregaria revisited: the base pioneers.

    Science.gov (United States)

    Ehrhardt, Erica; Liu, Yu; Boyan, George

    2015-01-01

    The antennal nervous system of the grasshopper Schistocerca gregaria comprises two parallel pathways projecting to the brain, each pioneered early in embryogenesis by a pair of sibling cells located at the antennal tip. En route, the growth cones of pioneers from one pathway have been shown to contact a guidepost-like cell called the base pioneer. Its role in axon guidance remains unclear as do the cellular guidance cues regulating axogenesis in the other pathway supposedly without a base pioneer. Further, while the tip pioneers are known to delaminate from the antennal epithelium into the lumen, the origin of this base pioneer is unknown. Here, we use immunolabeling and immunoblocking methods to clarify these issues. Co-labeling against the neuron-specific marker horseradish peroxidase and the pioneer-specific cell surface glycoprotein Lazarillo identifies not only the tip pioneers but also a base pioneer associated with each of the developing antennal pathways. Both base pioneers co-express the mesodermal label Mes3, consistent with a lumenal origin, whereas the tip pioneers proved Mes3-negative confirming their affiliation with the ectodermal epithelium. Lazarillo antigen expression in the antennal pioneers followed a different temporal dynamic: continuous in the tip pioneers, but in the base pioneers, only at the time their filopodia and those of the tip pioneers first recognize one another. Immunoblocking of Lazarillo expression in cultured embryos disrupts this recognition resulting in misguided axogenesis in both antennal pathways.

  11. 50-57 Effects of the Autonomic Nervous System, Centra

    African Journals Online (AJOL)

    admin

    facilitation of absorption process and expulsion of the undigested food material through ... which is associated with the enteric nervous system , autonomic nervous system and the higher ..... short-chain neutralized fatty acids and 5-HT or radial ...

  12. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    Science.gov (United States)

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  13. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  14. Influence of thyroid in nervous system growth.

    Science.gov (United States)

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  15. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment

    Science.gov (United States)

    ... teratoid/rhabdoid tumor. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. The extent or spread ... different types of treatment for patients with central nervous system atypical teratoid/rhabdoid tumor. Different types of treatment ...

  16. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    Science.gov (United States)

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  17. Skeletal effects of central nervous system active drugs: anxiolytics, sedatives, antidepressants, lithium and neuroleptics.

    Science.gov (United States)

    Vestergaard, Peter

    2008-09-01

    Many central nervous system active drugs can alter postural balance, increasing the risk of fractures. Anxiolytics and sedatives include the benzodiazepines, and these have been associated with a limited increase in the risk of fractures, even at low doses, probably from an increased risk of falls. No systematic differences have been shown between benzodiazepines with long and short half-lives. Although the increase in risk of fractures was limited, care must still be taken when prescribing for older fall-prone subjects at risk of osteoporosis. Neuroleptics may be associated with a decrease in bone mineral density and a very limited increase in fracture risk. Antidepressants are associated with a dose-dependent increase in the risk of fractures. The increase in relative risk of fractures seems to be larger with selective serotonin reuptake inhibitors (SSRIs) than with tricyclic antidepressants. The reason for this is not known but may be linked to serotonin effects on bone cells and the risk of falls. With the wide use of SSRIs, more research is needed. Lithium is associated with a decrease in the risk of fractures. This may be linked to its effects on the Wnt glycoprotein family, which is a specialised signalling system for certain cell types.

  18. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  19. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system. The present .... In the vertebrate nervous system, special types of cells called radial glia .... As men- tioned earlier, astrocytes extend a 'foot process' (Figure 3) that ... capillaries that for a long time it was thought that these cells.

  20. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Budinger, T.F.; Tobias, C.A.; Born, J.L.

    1980-01-01

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  1. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  2. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  3. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  4. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    Science.gov (United States)

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  5. [Central nervous system involvement in systemic lupus erythematosus - diagnosis and therapy].

    Science.gov (United States)

    Szmyrka, Magdalena

    Nervous system involvement in lupus belongs to its severe complications and significantly impacts its prognosis. Neuropsychiatric lupus includes 19 disease manifestations concerning both central and peripheral nervous system. This paper presents clinical aspects of central nervous system involvement in lupus. It reviews its epidemiology, risk factors and principles of diagnosis and therapy.

  6. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    OpenAIRE

    Schor, Nina F.

    2008-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel...

  7. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  8. Temperament affects sympathetic nervous function in a normal population.

    Science.gov (United States)

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  9. Autonomic nervous system activity as risk predictor in the medical emergency department: a prospective cohort study.

    Science.gov (United States)

    Eick, Christian; Rizas, Konstantinos D; Meyer-Zürn, Christine S; Groga-Bada, Patrick; Hamm, Wolfgang; Kreth, Florian; Overkamp, Dietrich; Weyrich, Peter; Gawaz, Meinrad; Bauer, Axel

    2015-05-01

    To evaluate heart rate deceleration capacity, an electrocardiogram-based marker of autonomic nervous system activity, as risk predictor in a medical emergency department and to test its incremental predictive value to the modified early warning score. Prospective cohort study. Medical emergency department of a large university hospital. Five thousand seven hundred thirty consecutive patients of either sex in sinus rhythm, who were admitted to the medical emergency department of the University of Tübingen, Germany, between November 2010 and March 2012. None. Deceleration capacity of heart rate was calculated within the first minutes after emergency department admission. The modified early warning score was assessed from respiratory rate, heart rate, systolic blood pressure, body temperature, and level of consciousness as previously described. Primary endpoint was intrahospital mortality; secondary endpoints included transfer to the ICU as well as 30-day and 180-day mortality. One hundred forty-two patients (2.5%) reached the primary endpoint. Deceleration capacity was highly significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; p model yielded an area under the receiver-operator characteristic curve of 0.706 (0.667-0.750). Implementing deceleration capacity into the modified early warning score model led to a highly significant increase of the area under the receiver-operator characteristic curve to 0.804 (0.770-0.835; p capacity was also a highly significant predictor of 30-day and 180-day mortality as well as transfer to the ICU. Deceleration capacity is a strong and independent predictor of short-term mortality among patients admitted to a medical emergency department.

  10. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    Science.gov (United States)

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  11. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    Science.gov (United States)

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    their activity and their role in controlling inflammation in the central nervous system.

  12. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  13. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  14. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  15. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  16. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  17. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  18. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    Science.gov (United States)

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  19. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  20. In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis

    Directory of Open Access Journals (Sweden)

    González Jorge M

    2011-02-01

    Full Text Available Abstract Background Nanoparticles (NPs are widely studied for biomedical applications. Understanding interactions between NPs and biomolecules or cells has yet to be achieved. Here we present a novel in vivo method to study interactions between NPs and the nervous system of the discoid or false dead-head roach, Blaberus discoidalis. The aims of this study were to present a new and effective method to observe NPs in vivo that opens the door to new methods of study to observe the interactions between NPs and biological systems and to present an inexpensive and easy-to-handle biological system. Results Negatively charged gold nanoparticles (nAuNPs of 50 nm in diameter were injected into the central nervous system (CNS of the insect. By using such a cost effective method, we were able to characterize nAuNPs and to analyze their interactions with a biological system. It showed that the charged particles affected the insect's locomotion. The nAuNPs affected the insect's behavior but had no major impacts on the life expectancy of the cockroach after two months of observation. This was apparently due to the encapsulation of nAuNPs inside the insect's brain. Based on cockroach's daily activity, we believed that the encapsulation occurred in the first 17 days. Conclusions The method proposed here is an inexpensive and reliable way of observing the response of biological systems to nanoparticles in-vivo. It opens new windows to further understand how nanoparticles affect neural communication by monitoring insect activity and locomotion.

  1. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included......), and the amount of SA correlated inversely with reflex activity and nerve length. Fibular nerve entrapment across the knee was seen in 6 subjects, and sciatic nerve entrapment was seen in 1. Apart from entrapment neuropathies, NCS changes were found predominantly in motor nerves. Conclusion: The presence...

  2. Autonomic nervous system activity in purebred Arabian horses evaluated according to the low frequency and high frequency spectrum versus racing performance

    Directory of Open Access Journals (Sweden)

    Iwona Janczarek

    2016-01-01

    Full Text Available Emotional excitability influences horses’ performance in sports and races. The aim of the study was to analyse whether the balance of the autonomic system which can occur when sympathetic system activity is at various levels might impact the horses’ racing performance. The study was carried out on 67 purebred Arabian horses trained for racing. The following indices were analysed: low frequency (LF, high frequency (HF, and the ratio of spectrum power at low frequencies to high frequencies (LF/HF. The autonomic nervous system activity was measured × 3 during the training season, at three-month intervals. Each examination included a 30-min measurement at rest and after a training session. The racing performance indices in these horses were also analysed. Better racing results were found in horses with enhanced LF/HF. The worst racing results were determined in horses with low LF.

  3. The effect of solar activity on ill and healthy people under conditions of nervous (correction of neurous) and emotional stresses.

    Science.gov (United States)

    Zakharov, I G; Tyrnov, O F

    2001-01-01

    It is commonly agreed that solar activity has adverse effects first of all on enfeebled and ill organisms. In our study we have traced that under conditions of neurvous and emotional stresses (at work, in the street, and in cars) the effect may be larger (~ 30%) for healthy people. Our calculations have been carried out applying the epoch-superposition method, spectrum and correlation analyses to daily data over a 1992 to 1994 period from three independent databases (Kharkiv City) on patients (adults and children) suffering from mental diseases and physical traumas. The effect is most marked during the recovery phase of geomagnetic storms and accompanied by the inhibition in the central nervous system. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  4. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  5. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System.

    Science.gov (United States)

    Sun, Yongjun; Zhan, Liying; Cheng, Xiaokun; Zhang, Linan; Hu, Jie; Gao, Zibin

    2017-04-01

    The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.

  6. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  7. Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection.

    Science.gov (United States)

    Suh, Joome; Sinclair, Elizabeth; Peterson, Julia; Lee, Evelyn; Kyriakides, Tassos C; Li, Fang-Yong; Hagberg, Lars; Fuchs, Dietmar; Price, Richard W; Gisslen, Magnus; Spudich, Serena

    2014-12-03

    Central nervous system (CNS) inflammation is a mediator of brain injury in HIV infection. To study the natural course of CNS inflammation in the early phase of infection, we analyzed longitudinal levels of soluble and cellular markers of inflammation in cerebrospinal fluid (CSF) and blood, beginning with primary HIV-1 infection (PHI). Antiretroviral-naïve subjects identified as having PHI (less than one year since HIV transmission) participated in phlebotomy and lumbar puncture at baseline and at variable intervals thereafter. Mixed-effects models were used to analyze longitudinal levels of CSF neopterin and percentages of activated cluster of differentiation (CD)4+ and CD8+ T-cells (co-expressing CD38 and human leukocyte antigen-D-related (HLA-DR)) in blood and CSF. A total of 81 subjects were enrolled at an average of 100 days after HIV transmission and had an average follow-up period of 321 days, with the number of visits ranging from one to 13. At baseline, the majority of subjects had CSF neopterin concentrations above the upper limit of normal. The baseline concentration was associated with the longitudinal trajectory of CSF neopterin. In subjects with baseline levels of less than 21 nmol/L, a cutoff value obtained from a mixed-effects model, CSF neopterin increased by 2.9% per 10 weeks (n = 33; P <0.001), whereas it decreased by 6.7% in subjects with baseline levels of more than 21 nmol/L (n = 11; P = 0.001). In a subset with available flow cytometry data (n = 42), the percentages of activated CD4+ and CD8+ T-cells in CSF increased by 0.8 (P <0.001) and 0.73 (P = 0.02) per 10 weeks, respectively. Neopterin levels and the percentages of activated CD4+ and CD8+ T-cells in CSF progressively increase in most subjects without treatment during early HIV-1 infection, suggesting an accrual of intrathecal inflammation, a major contributor to neuropathology in HIV infection.

  8. Metastatic neoplasms of the central nervous system

    International Nuclear Information System (INIS)

    Fenner, W.R.

    1990-01-01

    Metastatic neoplasms to the central nervous system are often encountered in the practice of surgical neuropathology. It is not uncommon for patients with systemic malignancies to present to medical attention because of symptoms from a brain metastasis and for the tissue samples procured from these lesions to represent the first tissue available to study a malignancy from an unknown primary. In general surgical pathology, the evaluation of a metastatic neoplasm of unknown primary is a very complicated process, requiring knowledge of numerous different tumor types, reagents, and staining patterns. The past few years, however, have seen a remarkable refinement in the immunohistochemical tools at our disposal that now empower neuropathologists to take an active role in defining the relatively limited subset of neoplasms that commonly metastasize to the central nervous system. This information can direct imaging studies to find the primary tumor in a patient with an unknown primary, clarify the likely primary site of origin in patients who have small tumors in multiple sites without an obvious primary lesion, or establish lesions as late metastases of remote malignancies. Furthermore, specific treatments can begin and additional invasive procedures may be prevented if the neuropathologic evaluation of metastatic neoplasms provides information beyond the traditional diagnosis of ''metastatic neoplasm.'' In this review, differential cytokeratins, adjuvant markers, and organ-specific antibodies are described and the immunohistochemical signatures of metastatic neoplasms that are commonly seen by neuropathologists are discussed

  9. CT diagnosis of congenital anomalies of the central nervous system

    International Nuclear Information System (INIS)

    Mori, Koreaki

    1980-01-01

    In the diagnosis of central nervous system congenital anomalies, understanding of embryology of the central nervous system and pathophysiology of each anomaly are essential. It is important for clinical approach to central nervous system congenital anomalies to evaluate the size of the head and tention of the anterior fontanelle. Accurate diagnosis of congenital anomalies depends on a correlation of CT findings to clinical pictures. Clinical diagnosis of congenital anomalies should include prediction of treatability and prognosis, in addition to recognition of a disease. (author)

  10. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.

    Science.gov (United States)

    Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro

    2013-04-15

    When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Experience of nervousness and anxiety disorders in Puerto Rican women: psychiatric and ethnopsychological perspectives.

    Science.gov (United States)

    Koss-Chioino, J D

    1989-01-01

    Analyses of case materials describe variations in the experiences of Puerto Rican women diagnosed as having an anxiety disorder, in treatment with mental health clinicians, physicians, or traditional healers. Their common complaints are examined as core symbolic elements in culturally patterned complexes of meanings focused around personal trauma, stressful life events, personal and social reactions, expectations about treatment, and the course of illness. Many of these women report themselves to be "nervous," to be "sick from nerves," or to have had an "ataque de nervios." "Nervousness" is the base symbolic domain in Puerto Rico of what psychiatry labels "anxiety disorder," although it is also a common complaint of many disorders. What "nervousness" means to patients/clients and their clinicians or healers is examined within the frames of multilayered popular and biomedical interpretations. The special difficulties of women in Puerto Rico are highlighted, and psychiatric and ethnopsychological (Spiritist) models of etiology and treatment are compared.

  12. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.

    Science.gov (United States)

    Maurer, Laura L; Philbert, Martin A

    2015-01-01

    The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.

  13. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  14. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals.

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-08-09

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of "tension-anxiety", "anger-hostility", "fatigue-inertia", "depression-dejection", and "confusion-bewilderment" were significantly lower, whereas the positive mood subscale score of "vigor-activity" was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  15. Paeoniflorin Attenuates Inflammatory Pain by Inhibiting Microglial Activation and Akt-NF-κB Signaling in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-05-01

    Full Text Available Background/Aims: Paeoniflorin (PF is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.

  16. Ongoing myocardial damage relates to cardiac sympathetic nervous disintegrity in patients with heart failure

    International Nuclear Information System (INIS)

    Arimoto, Takanori; Takeishi, Yasuchika; Niizeki, Takeshi

    2005-01-01

    Iodine-123-metaiodobenzylguanidine ( 123 I-MIBG) has been used to assess the integrity and function of the cardiac sympathetic nervous system in patients with heart failure. Heart-type fatty acid binding protein (H-FABP) is released into the circulation when the myocardium is injured, and H-FABP has been recently used as a novel marker for the diagnosis of ongoing myocardial damage. The aim of the present study was to compare cardiac sympathetic nervous activity assessed by 123 I-MIBG imaging with serum levels of H-FABP in patients with heart failure. Fifty patients with chronic heart failure were studied. 123 I-MIBG imaging was carried out at 30 min (early) and 240 min (delayed) after the tracer injection. We measured serum levels of H-FABP using a sandwich enzyme linked immunosorbent assay. Heart to mediastinum (H/M) ratios of 123 I-MIBG decreased and washout rate increased with higher New York Heart Association (NYHA) functional class. H-FABP, norepinephrine and brain natriuretic peptide (BNP) levels increased as the severity of NYHA class advanced. Delayed H/M ratio was significantly correlated with H-FABP (r=-0.296, p=0.029) and BNP (r=-0.335, p=0.0213). Myocardial washout rate of 123 I-MIBG was also correlated with H-FABP (r=0.469, p 123 I-MIBG imaging is an appropriate approach to evaluate non-invasively not only cardiac sympathetic nervous activity, but also latent ongoing myocardial damage in the failing heart. (author)

  17. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.

    Science.gov (United States)

    Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J

    2013-01-01

    Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  18. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    Science.gov (United States)

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  19. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  20. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    Science.gov (United States)

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  1. Altered activity of the sympathetic nervous system and changes in the balance of hypophyseal, pituitary and adrenal hormones in patients with cluster headache.

    Science.gov (United States)

    Strittmatter, M; Hamann, G F; Grauer, M; Fischer, C; Blaes, F; Hoffmann, K H; Schimrigk, K

    1996-05-17

    Twelve patients (age 43.4 +/- 6.3 years) with episodic cluster headache (CH) were examined during the cluster period. Plasma norepinephrine levels in patients suffering from CH were significantly decreased compared with the control group (p < 0.01). There were also statistically significant correlations between norepinephrine levels and clinical features of the pain attacks including duration (r = 0.75, p < 0.05), intensity (r = 0.64, p < 0.05) and frequency (r = 0.68, p < 0.06), thereby suggesting a pathophysiological involvement of the sympathetic nervous system in CH. Increased plasma levels of plasmacortisol and ACTH in patients with CH, especially in the morning and in the evening, suggest an alteration of the feedback circuit involving the hypothalamus, the pituitary and the adrenal gland, an imbalance in the hormones related to these structures, as well as an alteration of the circadian rhythm. In addition, CH patients demonstrated significantly decreased levels of norepinephrine (p < 0.05), HVA (p < 0.01) and 5-HIAA (p < 0.01) in the cerebrospinal fluid (CSF) consistent with a central genesis of CH. These significant relationships between neurochemical parameters and the clinical patterns suggest a complex interplay between the hypothalamus, neuroendocrinological parameters, activity of the autonomic nervous system and the pain of CH.

  2. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    Science.gov (United States)

    2016-10-01

    necessary to unlock the full therapeutic value of stem cell -based regenerative therapies. The present proposal takes advantage of a long- standing, cross...the Journal of Controlled Release (J Control Release. 2015 Jun 28;208:76-84). 15. SUBJECT TERMS prevalence, trauma, hydrogel, stem cell therapy...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also

  3. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  4. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    Science.gov (United States)

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  5. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  6. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...

  7. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets

    Directory of Open Access Journals (Sweden)

    Michael J. Wasko

    2015-09-01

    Full Text Available Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacologic screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening, which employs computer models of the target protein to narrow the search for possible leads. A variant of virtual screening is fragment-based drug design, an emerging in silico lead discovery method that introduces low molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for growing the lead candidate. Current efforts in virtual fragment-based drug design within central nervous system (CNS targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor binding pocket using the fragment as a scaffold. This process places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  8. Cardiointervalography investigation of the nervous system of children from the radionuclide contaminated districts

    International Nuclear Information System (INIS)

    Nedvetskaya, V.V.; Lyalikov, S.A.

    1994-01-01

    Using cardiointervalography the vegetative status of 177 children living in the supervised Belarus regions (more 15 Ci/km 2 of 137 Cs) and of 1291 children from the areas which are not contaminated with radionuclides is assessed. It is stated that the most characteristic peculiarity common for children living on supervised territories is an increase of the subcortical nervous centers activity, reinforcement of the central regulation stability, bettering of relations between the central and peripheral regulation profiles at rest and damage of these relations under physical load. Changes in the vegetative regulation developing in children from these districts are more pronounced in girls as compared to boys and are characterized by the nervous system sympathetic section tone decrease, by the liability to hyporeactivity accompanied by the parasympathetic section compensatory mechanisms tension. (author). 4 refs., 2 tabs

  9. Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy.

    Science.gov (United States)

    Stoll, Elizabeth A

    2014-01-01

    Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.

  10. Reorganization of the human central nervous system.

    Science.gov (United States)

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  11. Involvement of the central nervous system in myotonic dystrophy

    International Nuclear Information System (INIS)

    Fukui, Ritsuko; Tobimatsu, Shozo; Kuroiwa, Yoshigoro; Iwashita, Hiroshi; Kato, Motohiro.

    1985-01-01

    In order to evaluate the central nervous system involvement in myotonic dystrophy, intelligence quotient (IQ), brain CT scan, EEG and pattern-reversal visual evoked potential (VEP) were analyzed in 10 patients with myotonic dystrophy. Impaired intelligence was observed in 9 out of 10 patients, abnormal brain CT in 7, and EEG abnormality in 7. The brain CT showed a diffuse cortical atrophy, a dilatation of the ventricles, and a periventricular lucency, mainly around the anterior horn of the lateral ventricle. The EEG findings showed a tendency toward generalized slowing of the background activity. These abnormal findings were well related to the clinical severity of MD, indicating that there is a diffuse cerebral involvement in the majority of the MD patients. VEP showed a prolonged P100 latency in 5 out of 10 patints, or 7 out of 19 eyes examined. These prolonged latency of the P100 component was considered to be due to dysfunctions of the visual pathway in the cerebral hemisphere, rather than due to cataracts and retinal dysfunctions because it was observed only in moderate and severe cases. These severe and moderate cases showed abnormalities in all four examinations. It was concluded that combination of different parameters might be useful to evaluate the central nervous system involvement in patients with MD. (author)

  12. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Science.gov (United States)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  13. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Science.gov (United States)

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004

  14. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2013-11-01

    Full Text Available Within the nervous system, intracellular Cl- and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission and network excitability. Cl- and pH are often co-regulated, and network activity results in the movement of both Cl- and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl- and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN - a new genetically-encoded ratiometric Cl- and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl- and H+ concentrations under a variety of conditions. In addition, we establish the sensor’s utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  15. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  16. The role of the autonomic nervous system in Tourette Syndrome

    Science.gov (United States)

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  17. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system

    Science.gov (United States)

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. T...

  18. Aetiologies of Central Nervous System Infection in Viet Nam: A Prospective Provincial Hospital-Based Descriptive Surveillance Study

    NARCIS (Netherlands)

    Ho Dang Trung, Nghia; Le Thi Phuong, Tu; Wolbers, Marcel; Nguyen van Minh, Hoang; Nguyen Thanh, Vinh; van, Minh Pham; Thieu, Nga Tran Vu; van, Tan Le; Song, Diep To; Thi, Phuong Le; Thi Phuong, Thao Nguyen; van, Cong Bui; Tang, Vu; Ngoc Anh, Tuan Hoang; Nguyen, Dong; Trung, Tien Phan; Thi Nam, Lien Nguyen; Kiem, Hao Tran; Thi Thanh, Tam Nguyen; Campbell, James; Caws, Maxine; Day, Jeremy; de Jong, Menno D.; van Vinh, Chau Nguyen; van Doorn, H. Rogier; Tinh, Hien Tran; Farrar, Jeremy; Schultsz, Constance; Loi, Tran Quoc; Son, Nguyen Truong; Bay, Phan Van Be; Tham, Nguyen Thi Hong; Phuong, Le Thi; Tri, Le Trung; Binh, Nguyen Thi Nguyet; Du, Doan Cong; Thao, Nguyen Thi Phuong; Tien, Truong Thi My; La, Tran Thi Phi; Cong, Bui Van; Diep, Pham Ngoc; Dong, Duong Phuoc; Lanh, Tran Thi Mong; Dom, Pham Van; Dung, Tran Quang; Tri, Phan Nhut; Ho, Tang Thi; Tai, Nguyen Anh; Luc, Quach Van; Phuoc, Dinh Xuan

    2012-01-01

    Background: Infectious diseases of the central nervous system (CNS) remain common and life-threatening, especially in developing countries. Knowledge of the aetiological agents responsible for these infections is essential to guide empiric therapy and develop a rational public health policy. To date

  19. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  20. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) are considered central to multiple sclerosis (MS) pathogenesis. Molecular cues that mediate mononuclear phagocyte accumulation and activation in the central nervous system (CNS) of MS patients may include chemokines RANTES/CCL5...

  1. Radiation therapy of tumours of the central nervous system

    International Nuclear Information System (INIS)

    Skolyszewski, J.

    1980-01-01

    The aim of this work is to present the principles of radiation therapy of tumours of the central nervous system, according to the experience of the Institute of Oncology in Krakow. The text was designed primarily for the radiotherapists involved in the treatment of tumours of the central nervous system, and may be used as an auxiliary textbook for those preparing for the examination in radiotherapy. (author)

  2. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  3. Peptides in the nervous systems of cnidarians: structure, function, and biosynthesis

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Leviev, I; Carstensen, Kathrine

    1996-01-01

    Cnidarians are the lowest animal group having a nervous system and it was probably within this phylum or in a related ancestor group that nervous systems first evolved. The primitive nervous systems of cnidarians are strongly peptidergic. From a single sea anemone species, Anthopleura elegantissima...... molecule. In addition to well-known, "classical" processing enzymes, novel prohormone processing enzymes must be present in cnidarian neurons. These include a processing enzyme hydrolyzing at the C-terminal sides of acidic (Asp and Glu) residues and a dipeptidyl aminopeptidase digesting at the C......-terminal sides of N-terminally located X-Pro and X-Ala sequences. All this shows that the primitive nervous systems of cnidarians are already quite complex, and that neuropeptides play a central role in the physiology of these animals....

  4. Autonomic Nervous System Responses to Hearing-Related Demand and Evaluative Threat.

    Science.gov (United States)

    Mackersie, Carol L; Kearney, Lucia

    2017-10-12

    This paper consists of 2 parts. The purpose of Part 1 was to review the potential influence of internal (person-related) factors on listening effort. The purpose of Part 2 was to present, in support of Part 1, preliminary data illustrating the interactive effects of an external factor (task demand) and an internal factor (evaluative threat) on autonomic nervous system measures. For Part 1, we provided a brief narrative review of motivation and stress as modulators of listening effort. For Part 2, we described preliminary data from a study using a repeated-measures (2 × 2) design involving manipulations of task demand (high, low) and evaluative threat (high, low). The low-demand task consisted of repetition of sentences from a narrative. The high-demand task consisted of answering questions about the narrative, requiring both comprehension and recall. During the high evaluative threat condition, participants were filmed and told that their video recordings would be evaluated by a panel of experts. During the low evaluative threat condition, no filming occurred; participants were instructed to "do your best." Skin conductance (sympathetic nervous system activity) and heart rate variability (HRV, parasympathetic activity) were measured during the listening tasks. The HRV measure was the root mean square of successive differences of adjacent interbeat intervals. Twelve adults with hearing loss participated. Skin conductance increased and HRV decreased relative to baseline (no task) for all listening conditions. Skin conductance increased significantly with an increase in evaluative threat, but only for the more demanding task. There was no significant change in HRV in response to increasing evaluative threat or task demand. Listening effort may be influenced by factors other than task difficulty, as reviewed in Part 1. This idea is supported by the preliminary data indicating that the sympathetic nervous system response to task demand is modulated by social evaluative

  5. Zolpidem, A Clinical Hypnotic that Affects Electronic Transfer, Alters Synaptic Activity Through Potential Gaba Receptors in the Nervous System Without Significant Free Radical Generation

    Directory of Open Access Journals (Sweden)

    Peter Kovacic

    2009-01-01

    Full Text Available Zolpidem (trade name Ambien has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET, pharmacodynamics, structure activity relationships (SAR and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action.

  6. Evaluation of Autonomic Nervous System, Saliva Cortisol Levels, and Cognitive Function in Major Depressive Disorder Patients

    Directory of Open Access Journals (Sweden)

    Sukonthar Ngampramuan

    2018-01-01

    Full Text Available Major depressive disorder (MDD is associated with changes in autonomic nervous system (ANS and cognitive impairment. Heart rate variability (HRV and Pulse pressure (PP parameters reflect influences of the sympathetic and parasympathetic nervous system. Cortisol exerts its greatest effect on the hippocampus, a brain area closely related to cognitive function. This study aims to examine the effect of HRV, PPG, salivary cortisol levels, and cognitive function in MDD patients by using noninvasive techniques. We have recruited MDD patients, diagnosed based on DSM-V-TR criteria compared with healthy control subjects. Their HRV and PP were measured by electrocardiogram (ECG and photoplethysmography (PPG. Salivary cortisol levels were collected and measured on the same day. MDD patients exhibited elevated values of mean HR, standard deviation of HR (SDHR, low frequency (LF power, low frequency/high frequency (LF/HF ratio, mean PP, standard deviation of pulse pressure (SDPP, and salivary cortisol levels. Simultaneously, they displayed lower values of mean of R-R intervals (mean NN, standard deviation of R-R intervals (SDNN, high frequency (HF power, and WCST scores. Results have shown that the ANS of MDD patients were dominated by the sympathetic activity and that they have cognitive deficits especially in the domain of executive functioning.

  7. EVALUATION OF THE BODY ADAPTIVE POTENTIAL AND ORIGINAL OF THE SYMPATHETIC NERVOUS SYSTEM TONE IN GIRLS AGED FROM 8 TO 17

    Directory of Open Access Journals (Sweden)

    A.A. Bolova

    2008-01-01

    Full Text Available The article highlights the findings obtained from the examination of 200 girls aged from 8 to 17, who underwent active orthostatic tests to study the adaptive capabilities of the body and initial tone of the sympathetic nervous system. The examination was carried out with ankar 131 computer cardio analyzer. The given try allowed the researchers to get an idea about the state of the compensatory and adaptive mechanisms of the girls during the puberty and identify the high risk groups of school students in terms of dysregulation of the sympathetic nervous system and genital system pathology.Key words: puberty, vegetative tone, active orthostatic test, girls.

  8. Consequences for central nervous system functional state of exposure to ionizing radiation modification with antioxidants

    International Nuclear Information System (INIS)

    Tukalenko, Je.V.; Varets'kij, V.V.; Rakochyi, O.G.; Dmyitryijeva, Yi.R.

    2004-01-01

    Aim: to estimate the pattern of ionizing radiation effects modification by antioxidants using central nervous system functional state indices. The studies were carried out using 84 rats. Beta-carotene and alpha-tocopherol were found to significantly improve conditioned activity indices level of the animals exposed to ionizing radiation and emotional-pain stress

  9. Diagnosis abnormalities of limb movement in disorders of the nervous system

    Science.gov (United States)

    Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul

    2017-08-01

    The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.

  10. Pluralistic roles for glycogen in the central and peripheral nervous systems.

    Science.gov (United States)

    Fryer, Kirsty L; Brown, Angus M

    2015-02-01

    Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

  11. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets.

    Science.gov (United States)

    Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  12. The Nervous Flyer: Nerves, Flying and the First World War.

    Science.gov (United States)

    Shaw Cobden, Lynsey

    2018-02-02

    This is not an article about 'shell-shock'. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of 'trauma' in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from 'shell-shocked' soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also 'wore down' the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel.

  13. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  14. Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae

    Directory of Open Access Journals (Sweden)

    Jacobs David K

    2010-06-01

    Full Text Available Abstract Background Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results At hatching (2-3 chaetigers, the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves, and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers, cephalic sensory structures (e.g., nuchal organs, Langdon's organs and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions N. arenaceodentata has apparently lost all essential trochophore characteristics typical of

  15. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  16. Central nervous system promotes thermotolerance via FoxO/DAF-16 activation through octopamine and acetylcholine signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2016-03-25

    The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Multiple myeloma and central nervous system involvement: experience of a Brazilian center

    Directory of Open Access Journals (Sweden)

    Ana Luiza Miranda Silva Dias

    2018-01-01

    Full Text Available Introduction: The estimated involvement of the central nervous system in patients with multiple myeloma is rare at about 1%. The infiltration can be identified at the time multiple myeloma is diagnosed or during its progression. However, it is more common in refractory disease or during relapse. Methods: This retrospective cohort study reviewed data from medical records of patients followed up at the Gammopathy Outpatient Clinic of Santa Casa de Misericórdia de São Paulo from January 2008 to December 2016. Results: Twenty patients were included, with a median follow-up of 33.5 months after central nervous system infiltration. The prevalence was 7%. The median age at diagnosis of multiple myeloma was 56.1 years, with 70% of participants being female. Sixteen patients had central nervous system infiltration at diagnosis of multiple myeloma. Seventeen patients had exclusive osteodural lesions and three had infiltrations of the leptomeninge, of which one had exclusive involvement and two had associated osteodural lesions. The median overall survival was 40.3 months after central nervous system involvement. The median overall survival in the group with central nervous system infiltration at relapse was 7.4 months. The patients with leptomeningeal involvement had a median overall survival of 5.8 months. Conclusion: Central nervous system infiltration is a rare condition, but it should be considered as a possibility in patients with multiple myeloma and neurological symptoms. The best treatment regimen for this condition remains unknown and, in most cases, the prognosis is unfavorable. Keywords: Central nervous system, Multiple myeloma, Radiotherapy, Chemotherapy, Prognosis

  18. Radiation risks to the developing nervous system

    International Nuclear Information System (INIS)

    Kriegel, H.; Schmahl, W.; Stieve, F.E.; Gerber, G.B.

    1986-01-01

    A symposium dealing with 'Radiation Risks to the Developing Nervous System' held at Neuherberg, June 18-20, 1985 was organised by the Radiation Protection Programme of the Commission of the European Communities and the Gesellschaft fuer Strahlen- und Umweltforschung mbH. The proceedings of this symposium present up-to-date information on the development of the nervous system and the modifications caused by prenatal radiation there upon. A large part of the proceedings is devoted to the consequences of prenatal irradiation in experimental animals with respect to alterations in morphology, biochemistry and behaviour, to the influence of dose, dose rate and radiation quality and to the question whether damage of the brain can arise from a synergistic action of radiation together with other agents. Since animal models for damage to the human central nervous system have inherent short-comings due to the differences in structure, complexity and development it is discussed how experimental studies could be applied to the human situation. The most recent data on persons exposed in utero at Hiroshima and Nagasaki are reviewed. A round table discussion, published in full, analyses all this information with a view to radiation protection, and defines the areas where future studies are needed. Separate abstracts were prepared for papers in these proceedings. (orig./MG)

  19. FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J

    1983-01-01

    Abundant FMRFamide immunoreactivity has been found in the nervous systems of all hydrozoan, anthozoan, scyphozoan and ctenophoran species that were looked upon. This general and abundant occurrence shows that FMRFamide-like material must play a crucial role in the functioning of primitive nervous...

  20. Structure-Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel PDE10 Inhibitors with Antioxidant Activities

    Science.gov (United States)

    Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin

    2018-05-01

    Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.

  1. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  2. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  3. Involvement of central nervous system in the schistosomiasis

    Directory of Open Access Journals (Sweden)

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  4. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism

    NARCIS (Netherlands)

    Eustatia-Rutten, Carmen F. A.; Corssmit, Eleonora P. M.; Heemstra, Karen A.; Smit, Johannes W. A.; Schoemaker, Rik C.; Romijn, Johannes A.; Burggraaf, Jacobus

    2008-01-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the

  5. Effects of Brazilian scorpion venoms on the central nervous system.

    Science.gov (United States)

    Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado

    2018-01-01

    In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.

  6. human immunodeficiency virus and the nervous system

    African Journals Online (AJOL)

    drclement

    pathogenicity, drug resistance and predisposition to ... tropical countries, antiretroviral therapy is not available ... induced peripheral nervous system disorders ... ataxia and intractable vomiting. ... eligibility for chemotherapy and survival after.

  7. Association of evening smartphone use with cardiac autonomic nervous activity after awakening in adolescents living in high school dormitories.

    Science.gov (United States)

    Nose, Yoko; Fujinaga, Rina; Suzuki, Maki; Hayashi, Ikuyo; Moritani, Toshio; Kotani, Kazuhiko; Nagai, Narumi

    2017-04-01

    Smartphones are prevalently used among adolescents; however, nighttime exposure to blue-enriched light, through electric devices, is known to induce delays of the circadian rhythm phases and poor morning somatic conditions. We therefore investigated whether evening smartphone use may affect sleep-wake cycle and cardiac autonomic nervous system (ANS) activity after awaking in dormitory students. The participants were high school students, living under dormitory rules regarding the curfew, study, meals, lights-out, and wake-up times. The students were forbidden from the use of both television and personal computer in their private rooms, and only the use of a smartphone was permitted. According to prior assessment of smartphone use, we chose age-, sex-, exercise time-matched long (n = 22, >120 min) and short (n = 14, ≤60 min) groups and compared sleep-wake cycle and physiological parameters, such as cardiac ANS activity, blood pressure, and intra-aural temperature. All measurements were performed during 6:30 to 7:00 a.m. in the dormitories. Compared with the short group, the long group showed a significantly lower cardiac ANS activity (2727 ± 308 vs. 4455 ± 667 ms 2 , p = 0.030) with a tendency toward a high heart rate, in addition to later bedtimes during weekdays and more delayed wake-up times over the weekend. Blood pressure and intra-aural temperature did not differ between the groups. In this population, evening smartphone use may be associated with altered sleep-wake cycle and a diminished cardiac ANS activity after awakening could be affecting daytime activities.

  8. Neuroimunomodulação: sobre o diálogo entre os sistemas nervoso e imune Neuroimmunomodulation: the cross-talk between nervous and immune systems

    Directory of Open Access Journals (Sweden)

    Glaucie Jussilane Alves

    2007-12-01

    Full Text Available OBJETIVO: Trabalhos de pesquisa provenientes do campo da neuroimunomodulação vêm tornando explícitas as intrincadas relações existentes entre o sistema nervoso central e o sistema imune. Uma revisão bibliográfica foi realizada com o objetivo de descrever as bases de estudo da neuroimunomodulação. MODELOS EXPERIMENTAIS: Sabe-se, hoje, que estados emocionais como ansiedade e depressão são capazes de modificar a atividade do sistema imune como também o fazem o estresse e fármacos com ação no sistema nervoso central. COMPORTAMENTO DOENTIO: Os comportamentos apresentados por um organismo doente devem ser encarados como decorrência de estratégias homeostáticas de cada indivíduo. POSSÍVEIS MECANISMOS DE SINALIZAÇÃO DO SISTEMA IMUNE PARA O SISTEMA NERVOSO CENTRAL: Grande destaque tem sido atribuído para a participação do eixo hipotálamo-pituitária-adrenal, do sistema nervoso autônomo simpático e das citocinas nas sinalizações entre o sistema nervoso central e o sistema imune. CONCLUSÃO: O presente artigo pretende mostrar a relevância dos fenômenos de neuroimunomodulação; ele faz uma análise crítica das influências do sistema nervoso central sobre o sistema imune e vice-versa.OBJECTIVE: Several papers arriving from the neuroimmunomodulation field are showing the relevant relationships between the nervous and the immune systems. A review of studies was carried out to describe the bases of the studies on neuroimmunomodulation. EXPERIMENTAL MODELS: It is clear nowadays that emotional states such as anxiety and depression change immune system activity, an affect also observed after both stress and use of nervous system acting drugs. SICK BEHAVIOR: The behavior displayed by sick organisms might be thought as being a consequence of homeostatic strategies. POSSIBLE MECHANISM OF THE ACTION BY MEANS OF IMMUNE SYSTEM TO NERVOUS SYSTEM: A very big emphasis is being given to Hipothalamus-pituitary-adrenal axis, simpathetic

  9. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    Science.gov (United States)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  10. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-01-01

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals. PMID:28792445

  11. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yu

    2017-08-01

    Full Text Available The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h forest bathing program in the Xitou Nature Education Area (XNEA, Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV, and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  12. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  13. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).

    Science.gov (United States)

    Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas

    2016-01-05

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.

  14. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  15. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ...] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...) and/or abnormal vascularity (abnormal blood supply and circulation) of the central nervous system. The...

  16. CT findings of central nervous system in congenital syphilis infant

    International Nuclear Information System (INIS)

    Yang Cheng; Yang Xinghui; Wang Man

    2005-01-01

    Objective: To investigate the CT features of the central nervous system in congenital syphilis infant. Methods: CT findings of central nervous system in 11 infants with clinically proved congenital syphilis were analyzed retrospectively. Results: CT findings in 10 syphilis neonates were diffuse hypodense lesions in the white matter, with subarachnoid and intra-encephalic hemorrhage in 3 and 1 cases, respectively. One 2-month-old syphilis infant case and 5 cases of follow-up after 45 days to 6 months of treatment demonstrated bilateral widened sulci and cistern with enlarged ventricles in 3 of them. Conclusion: CT findings of the central nervous system in congenital syphilis infant are similar to those of hypoxic-ischemic encephalopathy in neonates, and extra-encephalic hydrocephalus or brain hypogenesis ensues later on. (authors)

  17. [Characteristics of central nervous system activity in patients with complications of arterial hypertension and dependence on psychomotor status and treatment].

    Science.gov (United States)

    Usenko, A G; Velichko, N P; Usenko, G A; Nishcheta, O V; Kozyreva, T Iu; Demin, A A

    2013-01-01

    Changes in certain CNS characteristics were used as indicators of the efficacy of antihypertensive therapy (AHT) both targeted (T-AHT) and empirical (E-AHT) designed to suppress activity of the sympathetic component of vegetative nervous system (VNS) and renin-angiotensin-aldosterone system (RAAS) in patients of different psychic status and AH. A group of 835 men (mean age 54.2+-1.8yr) was divided into cholerics, sanguinics, melancholics and phlegmatics with a high and low anxiety level (HA and LA). 416 healthy men served as controls. The following parameters were estimated: mobility of cortical processes, balance between sympathetic and parasympathetic activities, blood corrisol and aldosterone levels, oxygen utilization coefficient, resistance to breath holding, severity of dyscirculatory encephalopathy and the fraction of patients with AH complications during 12 month T-AHT for the suppression of sympathetic activity in cholerics and sanguinics by beta-adrenoblockers and PAA C- ACE inhibitors in phlegmatics and melancholics and during E-AHT (ACE inhibitors in cholerics and sanguinics, BAB in phlegmatics and melancholics). The functional activity of CNS in phlegmatics and melancholics before and during AHT was lower and severity of encephalopathy and the number ofAH complications higher than in cholerics and sanguinics. . The changes wiere more pronounced in patients with HA than in those with LA. Unlike E-AHT T-AHT (anxiolytics for cholerics and sanguinics with HA, antidepressants for phlegmatics and melancholics with HA) normalized the study parameters and decreased the frequency of complications by 2-3 times.

  18. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    Science.gov (United States)

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  19. Influence of selected dietary components on the functioning of the human nervous system

    Science.gov (United States)

    Wendołowicz, Agnieszka; Stefańska, Ewa; Ostrowska, Lucyna

    The diet is directly connected not only with the physical status but also with the functioning of the brain and the mental status. The potentially beneficial nutrients with a protective effect on the nervous system function include amino acids (tryptophan, phenylalanine, tyrosine, taurine), glucose and vitamins C, E, D and beta-carotene, B group vitamins (vitamin B12, vitamin B6, vitamin B4, vitamin B1) and minerals (selenium, zinc, magnesium, sodium, iron, copper, manganese, iodine). The presence of antioxidants in the diet protects against oxidative damage to nervous system cells. Biochemical data indicate that polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) as structural components of the nervous system play a key role in its function. The nutrition of the entire body also influences the production of neurotransmitters in the brain. A diet without an appropriate supply of protein, mineral nutrients or vitamins may result in a failure to form appropriately balanced numbers of neurotransmitters, which, as a result, may lead to neurotransmission dysfunction. This is the reason why proper nutrition is based on vegetables, fruits, whole-grain cereal products supplemented with products providing full-value protein (dairy products, fish, lean meat) and high-quality fat products (vegetable oils, fish fats).

  20. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    Science.gov (United States)

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  1. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196

  2. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    Science.gov (United States)

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  3. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection.

    Science.gov (United States)

    Hagberg, Lars; Cinque, Paola; Gisslen, Magnus; Brew, Bruce J; Spudich, Serena; Bestetti, Arabella; Price, Richard W; Fuchs, Dietmar

    2010-06-03

    HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients.In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury.Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.

  4. Changing trends in nervous system diseases among hospitalized children in the Chongqing region

    Institute of Scientific and Technical Information of China (English)

    Xin Zou; Nong Xiao; Bei Xu

    2008-01-01

    OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 (X2= 27.832, P<0.01). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common, with the lowest fatality rate.

  5. Space for the Nervous Tissue: Instead of introduction

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2015-05-01

    Full Text Available A university campus is not only a complex of living, education and auxiliary facilities. It is a certain style of life. It is developed to fulfill a certain task: knowledge preservation and generation.The system of preservation and processing of the society’s knowledge has functions similar to the nervous system. The stronger the society’s scientific and academic network is, the more intellectual, advanced, diverse and flexible is the society’s response to extrinsic stimuli. The nervous system of present day states is similar to the nervous system of insects – with ganglions and different sense organs.A university campus is an elaborate complex of “sense organs” (research laboratories and “ganglions” (theoretic groups, seminars etc.. The nervous tissue is the most delicate and volatile of all tissues in the organism. Under nutritional deficiency, too strong or too light external effects, the nervous system fails. Its signals malfunction, and either neuralgia or anesthesia occurs. If disorders in the nervous system become more serious, they can lead to a complete paralysis.A university campus is to provide comfortable working conditions for scientists – preservers and generators of knowledge. Comfort is a special thing for them. The level of material needs among campus residents is usually not very high. Their food, clothing and housing requirements are rather modest. Certainly, the sense of security is necessary – any violation in the campus is very painful, like touching a naked nerve. But the most important and vital thing in the campus is a constant and intense flow of all kinds of information.The Internet, libraries, scientific conferences, symposiums and forums are necessary to the campus as the breath of life. It makes dying gasps without it. At the same time, all these “adventures of a thought” are outwardly almost undistinguished. Intensively thinking people look lazy and even inert. A true brainwork is not

  6. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  7. 3H-digoxin distribution in the nervous system in ventricular tachycardia

    International Nuclear Information System (INIS)

    Frazer, G.; Binnion, P.

    1981-01-01

    The distribution of 3H-digoxin has been measured in a large number of tissues from the central, autonomic, and peripheral nervous system after the induction of ventricular tachycardia by infusing digoxin into anesthetized dogs. In most parts of the nervous system the tissue digoxin concentration was close to that in the cerebrospinal fluid. Digoxin accumulation in the choroid plexus probably represented a labeling of adenosine triphosphatase. There was a markedly higher concentration of digoxin in the neurohypophysis than in the adenohypophysis, and the very high levels in the neurohypophysis are hard to explain. There may be a relationship between the pituitary and the hypothalamic digoxin levels, although the concentration in the latter was unimpressive. The fornix showed a modest increase in 3H-digoxin concentration and may play a role, as its efferent discharge goes to the hypothalamus. The high concentration of digoxin in the area postrema suggests that this central nervous system structure is responsible, at least in part, for producing digoxin-induced cardiac arrhythmias. It may act as a sensing organ sensitive to blood digoxin concentration. Either it is the only central nervous structure implicated, or it is involved together with the fornix-hypothalamus-hypophysis pathways. Further proof is given for the importance of the autonomic nervous system in cardiac arrhythmias by the high digoxin levels in the superior cervical sympathetic ganglion and adrenal medulla

  8. A Case Of Primary Central Nervous System Vasculitis Who Presented With Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Sırma Geyik

    2014-12-01

    Full Text Available Primary central nervous system vasculitis (PCNV is limited with central nervous system and rare vasculitis that mostly seen in middle-aged men. PCNV vasculitis is usually presented that headache, dementia, stroke and multifocal common neurological symptoms. PCNV especially involves small medium-sized leptomeningeal and cortical arteries. 43 years old male patient who have been progressive forgetfulness and headache for 3 years. He applied with recurrent that before starting right focal and than sprawling whole body which generalized tonic-clonic seizures to us. During management that he was transfered to the intensive care unit due to status epilepticus (SE. Later than we found right hemiparesis, motor aphasia and right babinski positivity in neurologic examination. Diffusion restriction was revealed in left MCA territory in diffusion magnetic resonance imaging(MRI. EEG showed two types abnormality that a slow background ritm and epileptiform activity. Biochemistry of blood, complete blood count, blood sedimentation rate, CRP and markers of vasculitis were found in the normal range. Cerebral anjiography revealed that irregularities in the distal vascular areas and fusiform aneurysm at the top of basilar artery. He was consulted with rheumatology and diagnosed central nervous system vasculitis with the existing findings. Biopsy couldn't be taken from the brain to verify the diagnosis. Finally, we applied treatment that pulse steroid and cyclophosphamide to patient. This case has been presented due to emphasize that PCNV rarely may play a role in the etiology of recurrent stroke and status epilepticus.

  9. Primary angiitis of the central nervous system: an ante-mortem diagnosis.

    Directory of Open Access Journals (Sweden)

    Singh S

    2000-10-01

    Full Text Available A rare case of primary angiitis of the central nervous system (PACNS is reported with its clinical and magnetic resonance imaging (MRI features. A 20-year-old girl presented with headache, projectile vomiting, unsteadiness of gait and urgency of micturition. She had left seventh nerve upper motor neuron type paresis, increased tone in all four limbs, exaggerated deep tendon reflexes, cerebellar signs, and papilloedema. Cerebrospinal fluid showed lymphocytosis with elevated protein and normal glucose level. Cerebral computerised tomographic scan and MRI showed bilateral diffuse asymmetric supra- and infra-tentorial lesions (predominantly in the supratentorial and left cerebrum. On MRI, the lesions were hyperintense on T2, and proton density-weighted images and hypointense on T1-weighted images. Based on the clinical findings of raised intracranial tension and MRI features, initial diagnoses of gliomatosis cerebrii, tuberculous meningitis, primary central nervous system lymphoma and chronic viral encephalitis were considered. PACNS was not included in the initial differentials and, an open brain biopsy was advised which established the definitive diagnosis.

  10. N-Methyl-D-aspartic Acid (NMDA in the nervous system of the amphioxus Branchiostoma lanceolatum

    Directory of Open Access Journals (Sweden)

    Garcia-Fernàndez Jordi

    2007-12-01

    Full Text Available Abstract Background NMDA (N-methyl-D-aspartic acid is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone in the hypothalamus, and of LH (Luteinizing Hormone and PRL (Prolactin in the pituitary gland. Results In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle. As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp by a NMDA synthase (also called D-aspartate methyl transferase. Conclusion Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.

  11. Implication of coumarins towards central nervous system disorders.

    Science.gov (United States)

    Skalicka-Woźniak, Krystyna; Orhan, Ilkay Erdogan; Cordell, Geoffrey A; Nabavi, Seyed Mohammad; Budzyńska, Barbara

    2016-01-01

    Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In vivo imaging in autoimmune diseases in the central nervous system.

    Science.gov (United States)

    Kawakami, Naoto

    2016-07-01

    Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  13. The Nervous Flyer: Nerves, Flying and the First World War1

    Science.gov (United States)

    Shaw Cobden, Lynsey

    2018-01-01

    This is not an article about ‘shell-shock’. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of ‘trauma’ in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from ‘shell-shocked’ soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also ‘wore down’ the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel. PMID:29528049

  14. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    Science.gov (United States)

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    Science.gov (United States)

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  16. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Bestetti Arabella

    2010-06-01

    Full Text Available Abstract HIV-1 invades the central nervous system (CNS in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF. In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients. In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays ( Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.

  17. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  18. Primary central nervous system B-cell lymphoma in a young dog

    Science.gov (United States)

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372

  19. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  20. Multiple myeloma and central nervous system involvement: experience of a Brazilian center.

    Science.gov (United States)

    Dias, Ana Luiza Miranda Silva; Higashi, Fabiana; Peres, Ana Lúcia M; Cury, Pricilla; Crusoé, Edvan de Queiroz; Hungria, Vânia Tietsche de Moraes

    The estimated involvement of the central nervous system in patients with multiple myeloma is rare at about 1%. The infiltration can be identified at the time multiple myeloma is diagnosed or during its progression. However, it is more common in refractory disease or during relapse. This retrospective cohort study reviewed data from medical records of patients followed up at the Gammopathy Outpatient Clinic of Santa Casa de Misericórdia de São Paulo from January 2008 to December 2016. Twenty patients were included, with a median follow-up of 33.5 months after central nervous system infiltration. The prevalence was 7%. The median age at diagnosis of multiple myeloma was 56.1 years, with 70% of participants being female. Sixteen patients had central nervous system infiltration at diagnosis of multiple myeloma. Seventeen patients had exclusive osteodural lesions and three had infiltrations of the leptomeninge, of which one had exclusive involvement and two had associated osteodural lesions. The median overall survival was 40.3 months after central nervous system involvement. The median overall survival in the group with central nervous system infiltration at relapse was 7.4 months. The patients with leptomeningeal involvement had a median overall survival of 5.8 months. Central nervous system infiltration is a rare condition, but it should be considered as a possibility in patients with multiple myeloma and neurological symptoms. The best treatment regimen for this condition remains unknown and, in most cases, the prognosis is unfavorable. Copyright © 2017. Published by Elsevier Editora Ltda.

  1. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    Science.gov (United States)

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  2. Restoring nervous system structure and function using tissue engineered living scaffolds

    Institute of Scientific and Technical Information of China (English)

    Laura A Struzyna; James P Harris; Kritika S Katiyar; H Isaac Chen; D KacyCullen

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner-vous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance ifbers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regenera-tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi-neered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a deifned, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  3. Restoring nervous system structure and function using tissue engineered living scaffolds

    Directory of Open Access Journals (Sweden)

    Laura A Struzyna

    2015-01-01

    Full Text Available Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  4. Selection of option of pregame warm-up in handball taking into account features of force of the nervous system of sportsmen

    Directory of Open Access Journals (Sweden)

    Helen Gant

    2016-06-01

    Full Text Available Purpose: to develop recommendations about the organization of warm-up for handball players of 13–14 years old taking into account force of the nervous system (NS of players. Material & Methods: 28 handball players of 13–14 years old of Kharkov and Ternovka took part in the research; methods were used: analysis of scientific and methodical literature, technique of "Tapping-test". Results: need of the search of new ways of the increase of efficiency of the competitive activity of young handball players is proved theoretically. Psychological characteristics of handball players of 13–14 years old with a different force of the nervous system are provided. Practical recommendations about the organization of pregame warm-up of handball players of 13–14 years old taking into account force of nervous system of sportsmen are developed. Conclusions: handball players of 13–14 years old can be divided into five groups, concerning force of their nervous system by the results of the conducted research: strong NS (28,57%, average (21,43%, weak (17,86% and average and weak (14,29%, average and strong (17,86%. Recommendations about the organization and carrying out pregame warm-up of handball players of 13–14 years old, taking into account force of the nervous system of sportsmen were developed, considering the results of the psychological research of sportsmen.

  5. Central nervous system tumors and related intracranial pathologies in radium dial workers

    International Nuclear Information System (INIS)

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs

  6. Magnetic resonance imaging of central nervous system haemorrhage

    International Nuclear Information System (INIS)

    Silberstein, M.; Hennessy, O.

    1993-01-01

    The variable magnetic resonance imaging appearances of central nervous system haemorrhage, both intra- and extra-axial, are described. These will vary with the type of image contrast (T1 or T2 weighting), the nature of the imaging sequence (spin-echo or gradient-echo) and the time from onset of haemorrhage. Magnetic resonance imaging is a useful technique for imaging haemorrhage in the central nervous system as it yields temporal information about haematoma development, and it is the only non-invasive means of imaging intraspinal haemorrhage. However, in the imaging of haematomas within 24 h of onset and in subarachnoid haemorrhage computed tomography is the investigation of choice. 13 refs., 6 figs

  7. Harnessing the capacity of cell-penetrating peptides for drug delivery to the central nervous system.

    Science.gov (United States)

    Kang, Ting; Gao, Xiaoling; Chen, Jun

    2014-01-01

    The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.

  8. Autonomic nervous system activity and anxiety and depressive symptoms in mothers up to 2 years postpartum.

    Science.gov (United States)

    Izumi, Mie; Manabe, Emiko; Uematsu, Sayo; Watanabe, Ayako; Moritani, Toshio

    2016-01-01

    We investigated the association between autonomic nervous system (ANS) activity and symptoms of anxiety and depression for the first 2 years postpartum. A total of 108 participants within 2 years postpartum underwent physiological measurements of ANS activity using the heart rate variability (HRV) power spectrum and self-reported questionnaires (14-item Hospital Anxiety and Depression Score). The cutoff points for anxiety and depressive symptom scores in this questionnaire were as follows: 7 or less, non-cases; 8-10, doubtful cases; 11 or more, definite cases. This study was conducted from 2012 to 2014 at University Hospital in Kyoto Prefectural University of Medicine and a nearby obstetrics and gynecology department clinic in Japan. Anxiety and depression non-cases accounted for 67.6% (n = 73) of subjects, anxiety non-cases and depression doubtful and definite cases 7.4% (n = 8), anxiety doubtful and definite cases and depression non-cases 8.3% (n = 9), and anxiety and depression doubtful and definite cases 16.7% (n = 18). Findings were similar for women with anxiety or depression, with total power (TP), low-frequency (LF) and high-frequency (HF) components of HRV among doubtful and definite cases significantly lower than among non-cases for both anxiety (p = 0.006, 0.034, 0.029, respectively) and depression (p = 0.001, 0.004, 0.007). Significant correlations were observed between TP, LF and HF and anxiety and depression scores (respective values for anxiety: rs = -0.331, p <0.001; rs = -0.286, p = 0.003; rs = -0.269, p = 0.005; and depression: rs = -0.389, rs = -0.353, rs = -0.337, all p <0.001). The present study demonstrated that mothers with anxiety or depressive symptoms had significantly lower HRV (HF, LF and TP) than those without.

  9. Nervous system and receptors. Chapter 3.5

    International Nuclear Information System (INIS)

    Beaumariage, M.L.

    1975-01-01

    The literature is reviewed for the effects of sulphur-containing radioprotective agents on the nervous system and receptors. Studies of the neurological changes observed in alert animals and their modification by anaesthetics have indicated that a direct effect is exerted on the cortical and subcortical structures. Some local anaesthetic effects may result from nerve endings being squeezed by the edematous papule formed on the site of the injection. MEA and, to a lesser extent, cystamine, competitively block the neuromuscular junction by inhibiting the action of acetylcholine on the motor end-plate. The effects of radioprotective substances on the autonomic nervous system in different species have also been considered. The sensitivity of the chemo- and pressor-sensitive endings of the aortic branch, the carotids and the lungs is not affected by the administration of radioprotective agents. (U.K.)

  10. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  11. Learning priors for Bayesian computations in the nervous system.

    Directory of Open Access Journals (Sweden)

    Max Berniker

    Full Text Available Our nervous system continuously combines new information from our senses with information it has acquired throughout life. Numerous studies have found that human subjects manage this by integrating their observations with their previous experience (priors in a way that is close to the statistical optimum. However, little is known about the way the nervous system acquires or learns priors. Here we present results from experiments where the underlying distribution of target locations in an estimation task was switched, manipulating the prior subjects should use. Our experimental design allowed us to measure a subject's evolving prior while they learned. We confirm that through extensive practice subjects learn the correct prior for the task. We found that subjects can rapidly learn the mean of a new prior while the variance is learned more slowly and with a variable learning rate. In addition, we found that a Bayesian inference model could predict the time course of the observed learning while offering an intuitive explanation for the findings. The evidence suggests the nervous system continuously updates its priors to enable efficient behavior.

  12. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  13. Diverse roles of extracellular calcium-sensing receptor in the central nervous system

    DEFF Research Database (Denmark)

    Bandyopadhyay, Sanghamitra; Tfelt-Hansen, Jacob; Chattopadhyay, Naibedya

    2010-01-01

    The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its...... to astrocytic or neuronal lineages. In adult CNS, CaSR has broad relevance in maintaining local ionic homeostasis. CaSR shares an evolutionary relationship with the metabotropic glutamate receptor and forms heteromeric complexes with the type B-aminobutyric acid receptor subunits that affects its cell surface...

  14. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  15. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  16. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  17. Central nervous system lupus erythematosus in childhood

    International Nuclear Information System (INIS)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko

    1989-01-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author)

  18. Calm Merino ewes have a higher ovulation rate and more multiple pregnancies than nervous ewes.

    Science.gov (United States)

    van Lier, E; Hart, K W; Viñoles, C; Paganoni, B; Blache, D

    2017-07-01

    In 1990, two selection lines of Merino sheep were established for low and high behavioural reactivity (calm and nervous temperament) at the University of Western Australia. Breeding records consistently showed that calm ewes weaned 10% to 19% more lambs than the nervous ewes. We hypothesise that calm ewes could have a higher ovulation rate than nervous ewes and/or calm ewes could have a lower rate of embryo mortality than nervous ewes. We tested these hypotheses by comparing the ovulation rate and the rate of embryo mortality between the calm and nervous lines before and after synchronisation and artificial insemination. Merino ewes from the temperament selection lines (calm, n=100; nervous, n=100) were synchronised (early breeding season) for artificial insemination (day 0) (intravaginal sponges containing fluogestone acetate and eCG immediately after sponge withdrawal). On day-17 and 11 ovarian cyclicity and corpora lutea, and on days 30 and 74 pregnancies and embryos/foetuses were determined by ultrasound. Progesterone, insulin and leptin concentrations were determined in blood plasma samples from days 5, 12 and 17. Ovarian cyclicity before and after oestrus synchronisation did not differ between the lines, but ovulation rate did (day-17: calm 1.63; nervous 1.26; Pewes was higher than on day-17. Loss of embryos by day 30 was high (calm: 71/150; nervous: 68/130); but nervous ewes had a lower proportion (15/47) of multiple pregnancies compared with calm ewes (30/46; Pewes had higher insulin (32.0 pmol/l±1.17 SEM; P=0.013) and lower leptin (1.18 μg/l±0.04 SEM; P=0.002) concentrations than calm ewes (insulin: 27.8 pmol/l±1.17 SEM; leptin: 1.35 μg/l±0.04 SEM). The differences in reproductive outcomes between the calm and nervous ewes were mainly due to a higher ovulation rate in calm ewes. We suggest that reproduction in nervous ewes is compromised by factors leading up to ovulation and conception, or the uterine environment during early pregnancy, that reflect

  19. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  20. Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates

    International Nuclear Information System (INIS)

    Jacob, M.H.

    1984-01-01

    The pattern of neurogenesis of the central nervous system of Aplysia californica was investigated by [ 3 H]thymidine autoradiography. Large numbers of animals at a series of early developmental stages were labeled with [ 3 H]thymidine for 24 or 48 hr and were subsequently sampled at specific intervals throughout the life cycle. I found that proliferative zones, consisting of columnar and placodal ectodermal cells, are established in regions of the body wall adjacent to underlying mesodermal cells. Mitosis in the proliferative zones generates a population of cells which leave the surface and migrate inward to join the nearby forming ganglia. Tracing specific [ 3 H]thymidine-labeled cells from the body wall to a particular ganglion and within the ganglion over time suggests that the final genomic replication of the neuronal precursors occurs before the cells join the ganglion while glial cell precursors and differentiating glial cells continue to divide within the ganglion for some time. Ultrastructural examination of the morphological features of the few mitosing cells observed within the Aplysia central nervous system supports this interpretation. The pattern of neurogenesis in the Aplysia central nervous system resembles the proliferation of cells in the neural tube and the migration of neural crest and ectodermal placode cells in the vertebrate nervous system but differs from the pattern described for other invertebrates

  1. Next-Generation Sequencing in Neuropathologic Diagnosis of Infections of the Nervous System (Open Access)

    Science.gov (United States)

    2016-06-13

    nervous system ABSTRACT Objective: To determine the feasibility of next-generation sequencing (NGS) microbiome ap- proaches in the diagnosis of infectious...V, van Doorn HR, Nghia HD, et al. Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections...Kumar, et al. system Next-generation sequencing in neuropathologic diagnosis of infections of the nervous This information is current as of June 13

  2. Central nervous system tumours and related intracranial pathologies in radium dial workers

    International Nuclear Information System (INIS)

    Stebbings, J.H.; Semkiw, W.

    1989-01-01

    Among female radiation workers in the radium dial industry there is no overall excess of fatal brain or central nervous system tumours. A significant excess did appear, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumours outside of the brain was observed, consistent with irradiation of nervous system tissue from adjacent bone. Excess tumours of the eye, pituitary or pineal did not occur. Early deaths from brain abscess or mastoiditis, coded as diseases of the nervous system and sense organs, were observed. (author)

  3. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jorgensen, L.S.; Christiansen, P.; Raundahl, U.

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...... and serum cortisol did not increase at all in any of the groups. As a measure of parasympathetic neural activity, independent of sympathetic neural activity, the beat-to-beat variation of the heart rate was calculated. The functional patients had a significantly higher beat-to-beat variation expressed...... as the mean square successive differences of the R-R intervals (MSSD), indicating a higher basal parasympathetic neural activity (mean MSSD +/- SEM = 64 +/- 6 msec in the functional group, 46 +/- 6 msec in the healthy group, and 49 +/- 6 msec in the organic group; P = 0.03). A reduced sympathetic neural...

  4. The BIRN Project: Imaging the Nervous System

    International Nuclear Information System (INIS)

    Ellisman, Mark

    2006-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  5. The Use of Central Nervous System Active Drugs During Pregnancy

    Directory of Open Access Journals (Sweden)

    Bengt Källén

    2013-10-01

    Full Text Available CNS-active drugs are used relatively often during pregnancy. Use during early pregnancy may increase the risk of a congenital malformation; use during the later part of pregnancy may be associated with preterm birth, intrauterine growth disturbances and neonatal morbidity. There is also a possibility that drug exposure can affect brain development with long-term neuropsychological harm as a result. This paper summarizes the literature on such drugs used during pregnancy: opioids, anticonvulsants, drugs used for Parkinson’s disease, neuroleptics, sedatives and hypnotics, antidepressants, psychostimulants, and some other CNS-active drugs. In addition to an overview of the literature, data from the Swedish Medical Birth Register (1996–2011 are presented. The exposure data are either based on midwife interviews towards the end of the first trimester or on linkage with a prescribed drug register. An association between malformations and maternal use of anticonvulsants and notably valproic acid is well known from the literature and also demonstrated in the present study. Some other associations between drug exposure and outcome were found.

  6. Applications of CRISPR/Cas9 in the Mammalian Central Nervous System.

    Science.gov (United States)

    Savell, Katherine E; Day, Jeremy J

    2017-12-01

    Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases.

  7. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...... recipients but not into non-transgenic recipients. These data provide evidence that B7/CD28 interactions within the nervous tissue are critical determinants of disease development. Our findings have important implications for understanding the etiology of nervous system autoimmune diseases such as multiple...

  8. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our

  9. Glucose, epithelium, and enteric nervous system: dialogue in the dark.

    Science.gov (United States)

    Pfannkuche, H; Gäbel, G

    2009-06-01

    The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.

  10. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  11. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  12. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  13. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology.

    Science.gov (United States)

    Shafit-Zagardo, Bridget; Gruber, Ross C; DuBois, Juwen C

    2018-03-04

    Tyro3, Axl, and Mertk, referred to as the TAM family of receptor tyrosine kinases, are instrumental in maintaining cell survival and homeostasis in mammals. TAM receptors interact with multiple signaling molecules to regulate cell migration, survival, phagocytosis and clearance of metabolic products and cell debris called efferocytosis. The TAMs also function as rheostats to reduce the expression of proinflammatory molecules and prevent autoimmunity. All three TAM receptors are activated in a concentration-dependent manner by the vitamin K-dependent growth arrest-specific protein 6 (Gas6). Gas6 and the TAMs are abundantly expressed in the nervous system. Gas6, secreted by neurons and endothelial cells, is the sole ligand for Axl. ProteinS1 (ProS1), another vitamin K-dependent protein functions mainly as an anti-coagulant, and independent of this function can activate Tyro3 and Mertk, but not Axl. This review will focus on the role of the TAM receptors and their ligands in the nervous system. We highlight studies that explore the function of TAM signaling in myelination, the visual cortex, neural cancers, and multiple sclerosis (MS) using Gas6 -/- and TAM mutant mice models. Copyright © 2018. Published by Elsevier Inc.

  14. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    Science.gov (United States)

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    Science.gov (United States)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  16. Child maltreatment under the skin : basal activity and stress reactivity of the autonomic nervous system and attachment representations in maltreating parents

    NARCIS (Netherlands)

    Reijman, Sophie

    2015-01-01

    This dissertation comprises an empirical study and a meta-analytical study on autonomic nervous system (ANS) functioning and attachment representations in maltreating parents. For the empirical study we recruited a sample of 45 mothers with substantiated abuse and neglect and 45 non-maltreating

  17. Effects of heavy particle irradiation on central nervous system

    International Nuclear Information System (INIS)

    Nojima, Kumie; Nakadai, Taeko; Khono, Yukio

    2006-01-01

    Effects of low dose heavy particle radiation to central nervous system were studied using human embryonal carcinoma (Ntera2=NT2) and Human neuroblastoma cell (NB1). They exposed to heavy ions and X ray 80% confluent cells in culture bottles. The cells were different type about growth and differentiation in the neuron. The apoptosis profile was measured by AnnexinV-EGFP, PI stained and fluorescence-activated cell sorter (FACS). Memory and learning function of adult mice were studied using water maze test after carbon- or iron-ion irradiation. Memory functions were rapidly decreased after irradiation both ions. Iron -ion group were recovered 20 weeks after irradiation C-ion group were recovered 25 weeks after irradiation. Tier memory were still keep at over 100 weeks after irradiation. (author)

  18. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  19. Substance P immunoreactivity in the enteric nervous system in Rett syndrome.

    Science.gov (United States)

    Deguchi, K; Reyes, C; Chakraborty, S; Antalffy, B; Glaze, D; Armstrong, D

    2001-12-01

    Rett syndrome is associated with profound mental retardation and motor disability in girls. It has a characteristic clinical phenotype which includes abnormalities of the autonomic nervous system. Feeding impairment and severe constipation are two symptoms of this autonomic dysfunction. Substance P, an important peptide in the autonomic nervous system, is decreased in the cerebrospinal fluid of Rett syndrome. We have demonstrated that substance P immunoreactivity is significantly decreased in Rett syndrome brain-stem and may be related to the autonomic dysfunction. In this study, we have continued the investigation of substance P in the enteric nervous system. We immunohistochemically examined the normal developing bowel in 22 controls (ages, 14 gestational weeks to 31 years) using formalin fixed tissue, with antibodies to substance P, tyrosine hydroxylase and vasoactive intestinal peptide. We compared the immunoreactivity of normal controls with 14 cases of Rett syndrome (ages, 5-41 years) and observed that the expression of substance P, tyrosine hydroxylase and vasoactive intestinal peptide immunoreactivity in the bowel in Rett syndrome was not significantly different from that of controls. This suggests that the feeding impairment and constipation in Rett syndrome relate to dysfunction of the autonomic nervous system originating outside of the bowel, in the brain-stem, as suggested by our previous study.

  20. The effect of anaerobic and aerobic tests on autonomic nervous system activity in healthy young athletes

    Directory of Open Access Journals (Sweden)

    W Ratkowski

    2010-03-01

    Full Text Available INTRODUCTION. In the evaluation of physical efficiency in professional athletes two tests are used: Wingate test (WT and incremental test for maximal oxygen uptake (IT. In the former anaerobic power is evaluated and in the latter aerobic power. The influence of these tests on autonomic nervous system (ANS activity is not fully examined. The aim of the study was to assess the influence of anaerobic and aerobic tests performed on the consecutive days, on the ANS activity in young healthy athletes. MATERIALS AND METHODS. Ten athletes aged 17 ± 1 were included in the study. The ANS parameters (baroreflex sensitivity – BRS_WBA, heart rate variability–HRV were analysed on the basis of 10-minute systolic arterial pressure and heart period (HP records during controlled breathing (0.23 Hz. BRS_WBA, HRV indices and mean HP were analysed before (examination 1 and 1 hour after WT (examination 2, 1 hour after IT (examination 3, and on the day after the tests (examination 4. RESULTS. The borderline statistically significant decrease in BRS_WBA in examination 2 in comparison to 1 was found (16.4 ± 10.5 vs 9.4 ± 3.9 ms/mmHg, p=0.059. In examination 3 in comparison to 1 the significant decrease in BRS_WBA was found (8.8 ± 6.2 ms/mmHg, p<0.05. SDNN, PNN50, RMSSD and HF were significantly lower in examination 2 comparing to 1 (p<0.05; the changes of HFnu were borderline statistically significant (p=0.059. These lower values were also noticed after examination 3 and returned to the initial values in examination 4. The mean HP showed similar changes. LF/HF increased significantly in examination 2 in comparison to 1 (p<0.05. The changes in LFnu were borderline statistically significant. CONCLUSIONS. Anaerobic and aerobic exercise tests lead to the decrease in ANS parasympathetic activity and to the increase in sympathetic one in young healthy athletes. These changes persist for at least one hour after exertion. The return to the initial values is observed the

  1. [Central nervous system control of energy homeostasis].

    Science.gov (United States)

    Machleidt, F; Lehnert, H

    2011-03-01

    The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  2. The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin

    Science.gov (United States)

    Mason, B.L.; Wang, Q.; Zigman, J.M.

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  3. Neurotropic Enterovirus Infections in the Central Nervous System.

    Science.gov (United States)

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  4. Neurotropic Enterovirus Infections in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hsing-I Huang

    2015-11-01

    Full Text Available Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  5. Histologic examination of the rat central nervous system after intrathecal administration of human beta-endorphin

    DEFF Research Database (Denmark)

    Hée, P.; Klinken, Leif; Ballegaard, Martin

    1992-01-01

    Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity......Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity...

  6. Kalrn plays key roles within and outside of the nervous system

    Directory of Open Access Journals (Sweden)

    Mandela Prashant

    2012-11-01

    Full Text Available Abstract Background The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. Results We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSRKO/KO; transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSRKO/KO mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSRKO/KO mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSRKO/KO mice were evaluated in the rotarod and wire hang tests. KalSRKO/KO mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR+/KO mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Conclusions Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system.

  7. A Review on Central Nervous System Effects of Gastrodin

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2018-02-01

    Full Text Available Rhizoma Gastrodiae (also known as Tian ma, the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders.

  8. Central nervous system tuberculomata presenting as internuclear ...

    African Journals Online (AJOL)

    Central nervous system (CNS) tuberculoma can have variable presentation depending upon the site and number of tuberculomata. We are reporting a rare case of a 15 years old girl who presented to our hospital with binocular diplopia on right gaze. Clinical examination revealed left sided internuclear ophthalmoplegia ...

  9. Clinical application of MRI to fetal central nervous system

    International Nuclear Information System (INIS)

    Wang Guangbing; Chen Liguang; Ma Yuxiang; Liu Wen; Lin Xiangtao; Shi Hao; Yang Zhenzhen; Qu Jun

    2005-01-01

    Objective: To explore the value of MRI on fetal central nervous system. Methods: Twenty-four women with complicated pregnancies, aged from 22 to 32 years (average 27 years) and with gestation from 23-39 weeks (average 30 weeks) were studied with a 1.5T superconductive MR unit within 24 hours after ultrasound studies. T 2 -weighted MR imaging was performed using HASTE and T 1 -weighted MR imaging was using FLASH. Comparison of the diagnosis of MRI and ultrasound were done with autopsy or postnatal follow-up MRI. Results: Of the 24 cases, 24 fetus were found. The fetal brain, gyrus, sulcus, corpus callosum, thalamus, cerebellum, brain stem, and spinal cord were shown more clearly on MR T 2 -weighted images. T 1 -weighted images were not as good as T 2 -weighted images. Twenty-seven lesions were visualized by ultrasound and thirty-one by MRI in these twenty-four fetuses. By MRI study, two cases were conformed their ultrasound diagnosis, ten cases were completed their ultrasound diagnosis, and twelve cases were made the same diagnosis as ultrasound. Conclusion: MR has advantages in displaying fetal central nervous system anatomy over ultrasound, the quality of MR images is not affected by maternal somatotype, volume of amniotic fluid, fetal skull and the pelvic skeleton of pregnant women. Based on ultrasound, MR imaging is a valuable complement to sonography in difficult cases, it can conforming, completing, even more correcting the diagnosis made by ultrasound. (authors)

  10. Central nervous system infections in heart transplant recipients

    NARCIS (Netherlands)

    van de Beek, Diederik; Patel, Robin; Daly, Richard C.; McGregor, Christopher G. A.; Wijdicks, Eelco F. M.

    2007-01-01

    OBJECTIVE: To study central nervous system infections after heart transplantations. DESIGN: Retrospective cohort study. SETTING: Cardiac Transplant Program at Mayo Clinic, Rochester, Minnesota. Patients Three hundred fifteen consecutive patients who underwent heart transplantation from January 1988

  11. Defining the endpoints: how to measure the efficacy of drugs that are active against central nervous system metastases

    OpenAIRE

    Fabi, Alessandra; Vidiri, Antonello

    2016-01-01

    Brain metastases (BMs) are the most common cause of malignant central nervous system (CNS) tumors in adults. In the recent past, patients with BMs were excluded from clinical trials, but now, with the advent of new biological and immunological drugs, their inclusion is more common. In the last era response and progression criteria used across clinical trials have defined the importance to consider not only measurement changes of brain lesions but also the modification of parameters related to...

  12. Research progress on the role of virtual reality technology in rehabilitation of nervous system diseases

    Directory of Open Access Journals (Sweden)

    Bei-bei LIU

    2018-04-01

    Full Text Available With a standard and repeatable environment, virtual reality (VR technology can precisely detect even a single sense. As a novel tool to test neural activities, VR is a brand new method to explore the connections between actions and senses. In this review, we summarize the application, prospect and limitation of VR technology in the rehabilitations of nervous system diseases. DOI: 10.3969/j.issn.1672-6731.2018.03.012

  13. Central nervous system tuberculosis | Cherian | African Health ...

    African Journals Online (AJOL)

    Central nervous system (CNS) involvement, one of the most devastating clinical manifestations of tuberculosis (TB) is noted in 5 to 10% of extrapulmonary TB cases, and accounts for approximately 1% of all TB cases. Definitive diagnosis of tuberculous meningitis (TBM) depends upon the detection of the tubercle bacilli in ...

  14. A pediatric renal lymphoma case presenting with central nervous system findings.

    Science.gov (United States)

    Baran, Ahmet; Küpeli, Serhan; Doğru, Omer

    2013-06-01

    In pediatric patients renal lymphoma frequently presents in the form of multiple, bilateral mass lesions, infrequently as a single or retroperitoneal mass, and rarely as diffuse infiltrative lesions. In patients with apparent central nervous system involvement close attention to other physical and laboratory findings are essential for preventing a delay in the final diagnosis. Herein we present a pediatric patient with renal lymphoma that presented with central nervous system findings that caused a delay in diagnosis. None declared.

  15. MRI findings in central nervous system of neurofibromatosis-II

    International Nuclear Information System (INIS)

    Chen Maoen; Huang Suiqiao; Shen Jun; Hong Guobin; Wu Zhuo; Lin Xiaofeng

    2007-01-01

    Objective: To investigate the diagnostic value of MR imaging in central nervous system involvement of neurofibromatosis II. Methods: 7 patients with surgically and pathologically proved neurofibromatosis II were included. Their MR imaging findings and clinical features were retrospectively analyzed. Results: The main findings of 7 cases of neurofibraomaosis II on MR imaging included bilateral acoustic neurilemoma, multiple neurofibroma, meningioma and schwannoma. Among the 7 patients, Tl-weighted imaging after contrast enhancement displayed additional lesions which had been ignored on un-enhanced scan. Conclusion: MR imaging has advantages in the detection of central nervous sys- tem involvement of neurofibromatosis II with regard to its ability to show the lesions well, meanwhile displaying the size, morphology and signal features clearly. (authors)

  16. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    Science.gov (United States)

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  17. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Radon exposure and tumors of the central nervous system.

    Science.gov (United States)

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. [The Role of Imaging in Central Nervous System Infections].

    Science.gov (United States)

    Yokota, Hajime; Tazoe, Jun; Yamada, Kei

    2015-07-01

    Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.

  20. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  2. Human herpesvirus infections of the central nervous system: laboratory diagnosis based on DNA detection by nested PCR in plasma and cerebrospinal fluid samples.

    Science.gov (United States)

    Rimério, Carla Aparecida Tavares; De Oliveira, Renato Souza; de Almeida Bonatelli, Murilo Queiroz; Nucci, Anamarli; Costa, Sandra Cecília Botelho; Bonon, Sandra Helena Alves

    2015-04-01

    Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the "gold standard," and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture. © 2015 Wiley Periodicals, Inc.

  3. Hydatid disease of the Central Nervous System: imaging characteristics and general features

    International Nuclear Information System (INIS)

    Abbassioun, K.; Amirjamshidi, A.; Sabouri Deylamie, M.

    2003-01-01

    Background: Hydatid disease primarily affects the liver and typically demonstrates characteristic imaging findings. Secondary involvement due to hematogenous dissemination may be seen in almost any locations, e.g., lung, kidney, spleen, bone and central nervous system. Objectives: To review the different aspects of hydatidosis of the central nervous system briefly and discuss the pathognomonic features and rare varieties of radiological findings useful in preoperative diagnosis of the disease in the human central nervous system. Materials and Methods: In a retrospective study, the records of almost 100 cases of central nervous system hydatidosis were analyzed . The available images were reviewed by independent observers, either a radiologist or a neurosurgeon, and reported separately. Results: In skull x-ray films, nonspecific changes denoted increased intracranial pressure, skull asymmetry and curvilinear calcification in rare instances. Computed tomography and magnetic resonance imaging demonstrated the round or oval, well-defined cystic mass with an attenuation or signal intensity similar to that of cerebrospinal fluid, with no associated perifocal edema, and no contrast enhancement as the pathognomonic findings of brain hydatidosis. Similar findings were detected in hydatid cysts involving the orbit, spinal column and spinal cord with some variations. Such findings as mild perifocal edema, non homogenous contrast enhancement, non-uniform shapes, calcification and multiplicity or septations have been the atypical radiological findings. Conclusion: In endemic areas, familiarity with typical and atypical radiological manifestations of hydatid disease of the central nervous system, will be helpful in making prompt and correct preoperative diagnosis leading to a better surgical outcome

  4. Lactate overrides central nervous but not beta-cell glucose sensing in humans.

    Science.gov (United States)

    Schmid, Sebastian M; Jauch-Chara, Kamila; Hallschmid, Manfred; Oltmanns, Kerstin M; Peters, Achim; Born, Jan; Schultes, Bernd

    2008-12-01

    Lactate has been shown to serve as an alternative energy substrate in the central nervous system and to interact with hypothalamic glucose sensors. On the background of marked similarities between central nervous and beta-cell glucose sensing, we examined whether lactate also interacts with pancreatic glucose-sensing mechanisms in vivo. The effects of intravenously infused lactate vs placebo (saline) on central nervous and pancreatic glucose sensing were assessed during euglycemic and hypoglycemic clamp experiments in 10 healthy men. The release of neuroendocrine counterregulatory hormones during hypoglycemia was considered to reflect central nervous glucose sensing, whereas endogenous insulin secretion as assessed by serum C-peptide levels served as an indicator of pancreatic beta-cell glucose sensing. Lactate infusion blunted the counterregulatory hormonal responses to hypoglycemia, in particular, the release of epinephrine (P = .007) and growth hormone (P = .004), so that higher glucose infusion rates (P = .012) were required to maintain the target blood glucose levels. In contrast, the decrease in C-peptide concentrations during the hypoglycemic clamp remained completely unaffected by lactate (P = .60). During euglycemic clamp conditions, lactate infusion did not affect the concentrations of C-peptide and of counterregulatory hormones, with the exception of norepinephrine levels that were lower during lactate than saline infusion (P = .049) independently of the glycemic condition. Data indicate that glucose sensing of beta-cells is specific to glucose, whereas glucose sensing at the central nervous level can be overridden by lactate, reflecting the brain's ability to rely on lactate as an alternative major energy source.

  5. Progress in study on central nervous system injuries caused by obstructive sleep apnea syndrome

    Directory of Open Access Journals (Sweden)

    ZHAO Xiang-xiang

    2013-05-01

    Full Text Available Chronic and repetitive intermittent hypoxia and dysfunction of sleep architecture mainly contribute to obstructive sleep apnea syndrome (OSAS. More and more evidences demonstrate it is a systemic disease, which is common encountered in clinic and strongly related to the systemic lesion of central nervous system. The central nervous system complications comprise cognitive impairment, brain atrophy and the growing risk of stroke and so on. Early treatment for OSAS has a positive significance on complications of central nervous system, and even the damage can be completely reversed.

  6. Risk of central nervous system defects in offspring of women with and without mental illness.

    Science.gov (United States)

    Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie

    2018-02-22

    We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.

  7. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system

    Directory of Open Access Journals (Sweden)

    Andrew Charles Penn

    2013-04-01

    Full Text Available The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal responsiveness during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signalling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus ‘hardwiring’ modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine resulting in a change in the nucleotide to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases and RNA secondary structure forming capacity. In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. We will describe here the recoding function of key RNA editing targets in the mammalian central nervous system (CNS and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarising new findings from high-throughput studies.

  8. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  9. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  10. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  11. The role of organizers in patterning the nervous system.

    Science.gov (United States)

    Kiecker, Clemens; Lumsden, Andrew

    2012-01-01

    The foundation for the anatomical and functional complexity of the vertebrate central nervous system is laid during embryogenesis. After Spemann's organizer and its derivatives have endowed the neural plate with a coarse pattern along its anteroposterior and mediolateral axes, this basis is progressively refined by the activity of secondary organizers within the neuroepithelium that function by releasing diffusible signaling factors. Dorsoventral patterning is mediated by two organizer regions that extend along the dorsal and ventral midlines of the entire neuraxis, whereas anteroposterior patterning is controlled by several discrete organizers. Here we review how these secondary organizers are established and how they exert their signaling functions. Organizer signals come from a surprisingly limited set of signaling factor families, indicating that the competence of target cells to respond to those signals plays an important part in neural patterning.

  12. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  13. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Chang, C C; Hsiao, T C; Kao, S C; Hsu, H Y

    2014-01-01

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  14. The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions

    Directory of Open Access Journals (Sweden)

    Nelly eDaur

    2012-03-01

    Full Text Available The perception of proprioceptive signals that report the internal state of the body is one of the essential tasks of the nervous system and helps to continuously adapt body movements to changing circumstances. Despite the impact of proprioceptive feedback on motor activity it has rarely been studied in conditions in which motor output and sensory activity interact as they do in behaving animals, i.e. in closed-loop conditions. The interaction of motor and sensory activities, however, can create emergent properties that may govern the functional characteristics of the system. We here demonstrate the use of a well-characterized model system for central pattern generation, the stomatogastric nervous system, for studying these properties in vitro. We created a real-time computer model of a single-cell muscle tendon organ in the gastric mill of the crab foregut that uses intracellular current injections to control the activity of the biological proprioceptor. The resulting motor output of a gastric mill motor neuron is then recorded intracellularly and fed into a simple muscle model consisting of a series of low-pass filters. The muscle output is used to activate a one-dimensional Hodgkin-Huxley type model of the muscle tendon organ in real-time, allowing closed-loop conditions. Model properties were either hand-tuned to achieve the best match with data from semi-intact muscle preparations, or an exhaustive search was performed to determine the best set of parameters. We report the real-time capabilities of our models, its performance and its interaction with the biological motor system.

  15. Features of the nervous system lesion in primary hypothyroidism (literature review

    Directory of Open Access Journals (Sweden)

    I.I. Bilous

    2018-03-01

    Full Text Available The review presents the pathogenetic mechanisms of central and peripheral nervous system pathology in primary hypothyroidism. Lack of thyroid hormones leads to changes in the organization of the central nervous system, decrease in the energy supply of neurons, changes in the synthesis of some specific proteins of the nervous system that cause the development of cretinism in children. The role of hypothyroidism in the development of cognitive impairment in adults, such as decreased cognitive function, memory and attention, has been proved. The impairment of logical thinking is found already in patients with subclinical hypothyroidism. Disorders in mediation exchange lead to the development of depression. Neuromuscular disorders (hypothyroid myopathy and myotonic phenomenon and affection to the peripheral nerves are best studied in hypothyroidism. Primary hypothyroidism may be masked by tunnel neuropathy, polyneuropathy and atactic syndrome. Despite the existing papers on the problem of hypothyroidism and its neurological complications, some issues of pathogenesis, diagnosis, course and treatment of neurological pathology in primary hypothyroidism require further research.

  16. Lipomas of the central nervous system in the newborns – a report of eight cases

    International Nuclear Information System (INIS)

    Gradowska, Kinga; Czech-Kowalska, Justyna; Jurkiewicz, Elżbieta; Komornicka, Justyna; Dobrzańska, Anna

    2011-01-01

    Central nervous system lipomas are rare tumours. In most of the cases they are located in corpus callosum of the brain. The ultrasonographic image of lipomas tends to be quite characteristic. Final diagnosis is however done on a basis of brain resonance. The purpose of this work is to present proceeding in case of central nervous system lipomas with particular attention to diagnostic imaging. This work is based on own research. There are eight patients with central nervous system lipomas described in this work. The ultrasonographic imaging performed upon patients’ birth revealed features of agenesis of corpus callosum with presence of hyperechoic structure in the area of median line within corpus callosum. This image correlated with Nuclear Magnetic Resonance examination results. Our research confirms that patients with central nervous system lipomas represent rare diagnostic and therapeutic cases. Due to characteristic results of ultrasonographic imaging of the brain, recognition of agenesis of corpus callosum would not cause difficulties. However the presence of hyperechoic structure without vascular flow which may suggest lipomas of corpus callosum would require final verification of the diagnosis and wider assessment of brain with NMR examination. We did not recognize any relation between corpus callosum pathology and neuroinfection of cytomegalovirus etiology. In all of the eight research cases there were malformations diagnostics conducted. There were genetic irregularities in case of two of the neonates only. Until today, all of the patients remain under neurological care. Their psychomotor development is regularly controlled. Taking into consideration that numerous malformations occur altogether with brain lipomas, it is recommended to conduct appropriate diagnostics, to inform parents on an essence of diagnosis and on necessity of observing child’s psychomotor development. Obviously, it is crucial to secure a patient with paediatric and neurological

  17. Characterization of D1 dopamine receptors in the central nervous system

    International Nuclear Information System (INIS)

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D 1 dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D 1 dopamine receptor antagonists, SCH23390. [ 3 H]SCH23390 represents a superior radioligand for labeling the two-state striatal D 1 dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D 1 dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D 1 dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity

  18. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  19. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  20. Role of autonomic nervous activity, as measured by heart rate variability, on the effect of mortality in disabled older adults with low blood pressure in long-term care.

    Science.gov (United States)

    Shibasaki, Koji; Ogawa, Sumito; Yamada, Shizuru; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-04-11

    Previous studies have shown the relationship between low blood pressure and high mortality in frail, disabled older adults in long-term care. However, the mechanism of this relationship is still unclear. We hypothesized that autonomic nervous activity decline is involved in the relationship between low blood pressure and high mortality. The present prospective cohort study recruited 61 participants aged ≥75 years. The data from 24-h Holter monitoring and blood pressure recorded by ambulatory blood pressure monitoring were collected. Measured data were divided into three categories: 24-h, daytime and night-time. From power spectral density in the electrocardiogram, low frequency, high frequency and low frequency/high frequency ratio were calculated. The primary end-point was death. High blood pressure was connected to both high daytime low frequency and high frequency (partial correlation coefficients: 0.42, P blood pressure group had higher mortality than the high blood pressure group, and disabled older adults in long-term care and those with elevated daytime systolic and diastolic blood pressure had less risk of mortality compared with those without (systolic: hazard ratio 0.89, 95% confidence interval 0.83-0.96, P = 0.003; diastolic: hazard ratio 0.98, 95% confidence interval 0.79-1.00, P = 0.049). The average blood pressures in the high blood pressure groups were approximately 140/80 mmHg and were connected to low mortality. Attenuated autonomic nervous activity might lead to low blood pressure in the daytime and high mortality in disabled older adults in long-term care. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  1. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Science.gov (United States)

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  2. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories.

    Directory of Open Access Journals (Sweden)

    Manfred Hallschmid

    Full Text Available Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05. The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05. Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.

  3. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Directory of Open Access Journals (Sweden)

    Lisa Fricke

    2017-04-01

    Full Text Available Objectives: Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. Methods: A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Results: Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1 and normal or enhanced in nine patients (group 2. The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1–21 mmHg, p = 0.035 and from 166 to 145 mmHg (8–34 mmHg, p = 0.005, respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3–22 mmHg greater in group 2 than in group 1 (p = 0.045. Conclusion: Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  4. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    Science.gov (United States)

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  5. International society of neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading

    NARCIS (Netherlands)

    Louis, D.N.; Perry, A.; Burger, P.; Ellison, D.W.; Reifenberger, G.; Deimling, A. Von; Aldape, K.; Brat, D.; Collins, V.P.; Eberhart, C.; Figarella-Branger, D.; Fuller, G.N.; Giangaspero, F.; Giannini, C.; Hawkins, C.; Kleihues, P.; Korshunov, A.; Kros, J.M.; Lopes, M. Beatriz; Ng, H.K.; Ohgaki, H.; Paulus, W.; Pietsch, T.; Rosenblum, M.; Rushing, E.; Soylemezoglu, F.; Wiestler, O.; Wesseling, P.

    2014-01-01

    Major discoveries in the biology of nervous system tumors have raised the question of how non-histological data such as molecular information can be incorporated into the next World Health Organization (WHO) classification of central nervous system tumors. To address this question, a meeting of

  6. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  7. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  8. Confocal Synaptology: Synaptic Rearrangements in Neurodegenerative Disorders and upon Nervous System Injury

    Directory of Open Access Journals (Sweden)

    Maja Vulovic

    2018-02-01

    Full Text Available The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system. In the past decade the development of antibodies specific to presynaptic terminals has enabled us to assess, at the optical, laser scanning microscopy level, these subcellular structures, and has provided a simple method for the quantification of various synapses. Indeed, excitatory (glutamatergic and inhibitory synapses can be visualized using antibodies against the respective vesicular transporters, and choline-acetyl transferase (ChAT immunoreactivity identifies cholinergic synapses throughout the central nervous system. Here we review the results of several studies in which these methods were used to estimate synaptic numbers as the structural equivalent of functional outcome measures in spinal cord and femoral nerve injuries, as well as in genetic mouse models of neurodegeneration, including Alzheimer’s disease (AD. The results implicate disease- and brain region-specific changes in specific types of synapses, which correlate well with the degree of functional deficit caused by the disease process. Additionally, results are reproducible between various studies and experimental paradigms, supporting the reliability of the method. To conclude, this quantitative approach enables fast and reliable estimation of the degree of the progression of neurodegenerative changes and can be used as a parameter of recovery in experimental models.

  9. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    OpenAIRE

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either l...

  10. [Late sequelae of central nervous system prophylaxis in children with acute lymphoblastic leukemia: high doses of intravenous methotrexate versus radiotherapy of the central nervous system--review of literature].

    Science.gov (United States)

    Zając-Spychała, Olga; Wachowiak, Jacek

    2012-01-01

    Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in

  11. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    Science.gov (United States)

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Low-frequency electromagnetic radiation field interaction with cerebral nervous MT

    International Nuclear Information System (INIS)

    Gao Feng; Zhou Yi; Xiao Detao; Zhang Dengyu

    2009-01-01

    We investigate the interaction characteristics and mechanism of electromagnetic radiation field and cerebral nervous system. When the electromagnetic radiation is non-ionization low-frequency electromagnetic field, the two-state physical system in the cytoskeletal microtubule (MT) can be quantized. The state of information bits in cerebral neurons system is described by density matrix, and the system dynamics equation is established and solved. It indicates that when the brain is exposed to non-ionization low-frequency electromagnetic field, the density matrix non-opposite angle element of cerebral nervous qubit will never be zero, its quantum coherence characteristic can keep well, and the brain function will also be not damaged. (authors)

  13. Role of semaphorins in the adult nervous system

    NARCIS (Netherlands)

    de Wit, Joris; Verhaagen, J.

    2003-01-01

    In the developing nervous system, extending axons are directed towards their appropriate targets by a myriad of attractive and repulsive guidance cues. Work in the past decade has significantly advanced our understanding of these molecules and has made it increasingly clear that their function is

  14. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  15. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  16. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  17. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  18. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  19. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  20. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  1. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  2. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  3. Central nervous system stimulants and drugs that suppress appetite

    DEFF Research Database (Denmark)

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  4. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  5. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.

    Science.gov (United States)

    Darwazeh, Rami; Yan, Yi

    2013-10-05

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  6. Parental overcontrol x OPRM1 genotype interaction predicts school-aged children's sympathetic nervous system activation in response to performance challenge.

    Science.gov (United States)

    Partington, Lindsey C; Borelli, Jessica L; Smiley, Patricia; Jarvik, Ella; Rasmussen, Hannah F; Seaman, Lauren C; Nurmi, Erika L

    2018-04-26

    Parental overcontrol (OC), the excessive regulation of a child's behavior, cognition, and emotion, is associated with the development of child anxiety. While studies have shown that genetic factors may increase sensitivity to stress, genetic vulnerability to parental OC has not been examined in anxiety etiology. A functional polymorphism in the mu opioid receptor OPRM1 (A118G, rs1799971) has been shown to impact stress reactivity. Using a community sample of children (N = 85, 9-12 years old), we examined the main and interactive effects of maternal OC and child OPRM1 genotype in predicting children's sympathetic nervous system reactivity during a performance stressor. Neither OC nor genotype predicted children's electrodermal activity (EDA); however, the interaction between OC and child genotype significantly predicted stress reactivity, as indexed by EDA, during the challenging task. Among children with the minor G-allele, higher maternal OC was associated with higher reactivity. In A homozygotes, maternal OC was not associated with EDA, suggesting a diathesis-stress pattern of gene x environment interaction. We discuss implications for anxiety etiology and intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery-

    Directory of Open Access Journals (Sweden)

    Joong Chul An

    2011-09-01

    Full Text Available Objectives: This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV-pure melittin, the major component of honey bee venom on the central nervous system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, Sweet BV was administered in thigh muscle of rats. And checked the effects of Sweet BV on the central nervous system using the functional observational battery (FOB, which is a neuro-toxicity screening assay composed of 30 descriptive, scalar, binary, and continuous endpoints. And home cage observations, home cage removal and handling, open field activity, sensorimotor reflex test/physiological measurements were conducted. Results: 1. In the home cage observation, there was not observed any abnormal signs in rats. 2. In the observation of open field activity, the reduction of number of unit areas crossed and rearing count was observed caused by Sweet BV treatment. 3. In the observation of handling reactivity, there was not observed any abnormal signs in rats. 4. In the observation of sensorimotor reflex tests/physiological measurements, there was not observed any neurotoxic signs in rats. 5. In the measurement of rectal temperature, treatment of Sweet BV did not showed great influences in the body temperature of rats. Conclusions: Above findings suggest that Sweet BV is relatively safe treatment in the central nervous system. But in the using of over dose, Sweet BV may the cause of local pain and disturbance of movement. Further studies on the subject should be conducted to yield more concrete evidences.

  8. Parasympathetic Nervous System Reactivity Moderates Associations Between Children's Executive Functioning and Social and Academic Competence.

    Science.gov (United States)

    McQuade, Julia D; Penzel, Taylor E; Silk, Jennifer S; Lee, Kyung Hwa

    2017-10-01

    This study examined whether children with poor executive functioning (EF) evidenced less social and academic impairments, compared to other children, if they demonstrated adaptive parasympathetic nervous system (PNS) regulation during experiences of failure. Participants with and without clinical elevations in ADHD symptoms (N = 61; 9-13 years; 48% male; 85% Caucasian) were administered a battery of EF tests and completed manipulated social and cognitive failure tasks. While participants completed failure tasks, respiratory sinus arrhythmia reactivity (RSA-R) was measured as an indicator of PNS reactivity. Children's social and academic impairment in daily life was assessed based on parent and teacher report on multiple measures. RSA-R during social failure moderated the association between poor EF and adult-rated social impairment and RSA-R during cognitive failure moderated the association between poor EF and adult-rated academic impairment. Simple effects indicated that poor EF was significantly associated with impairment when children demonstrated RSA activation (increased PNS activity) but not when children demonstrated RSA withdrawal (decreases in PNS activity). Domain-crossed models (e.g., reactivity to social failure predicting academic impairment) were not significant, suggesting that the moderating effect of RSA-R was domain-specific. Results suggest that not all children with poor EF evidence social and academic impairment; RSA withdrawal during experiences of failure may be protective specifically for children with impaired EF skills.

  9. Experimental alkylmercurial poisoning in swine. Lesions in the peripheral and central nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, K M

    1974-01-01

    The effects of alkylmercurial poisoning were studied in 16 pigs poisoned with daily oral doses of a fungicide containing methylmercury 2, 3-dihydroxy propyl mercaptide and methylmercury acetate. Clinical signs included weakness, wobbling gait, blindness, recumbency and death. Microscopic studies of the peripheral nervous system revealed Wallerian degeneration in sensory fibers and neuronal degeneration in dorsal root ganglia. In the central nervous system, there were neuronal degeneration of ischemic type, glial degeneration, gliosis and necrosis of the media of meningeal arterioles. The last mentioned lesion was not extensive. The sequential development of lesions and the absence of segmental demyelination suggest that the primary lesion in the peripheral nervous system was neuronal-axonal degeneration rather than degeneration of the Schwann cell and myelin sheath. 25 references.

  10. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  11. Is Ghrelin Synthesized in the Central Nervous System?

    Directory of Open Access Journals (Sweden)

    Agustina Cabral

    2017-03-01

    Full Text Available Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a, and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  12. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  13. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system

    NARCIS (Netherlands)

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  14. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  15. A theoretical model of naturally occurring cell death in the nervous system

    OpenAIRE

    Galli, Resta; Resta, Giovanni

    1991-01-01

    Throughout the animal kingdom, the formation of the nervous system involves the elimination of many cells, soon after their generation. This phenomenon, known as naturally occurring cell death, has precise time schedules, is observed in the vast majority of nervous structures and causes the 1oss of 15 - 85% of the neurones generated initially. Elimination of erroneous projections, as well as proper size matching between connecting structures can be achieved through cell death. However if elim...

  16. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...... or by intrathecal administration to naive mice. NMO may be characterized as a channelopathy of the central nervous system with autoimmune characteristics....

  17. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood.

    Science.gov (United States)

    Lee, Seung-Hwan; Zabolotny, Janice M; Huang, Hu; Lee, Hyon; Kim, Young-Bum

    2016-08-01

    Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.

  18. Cellular changes in the enteric nervous system during ageing.

    Science.gov (United States)

    Saffrey, M Jill

    2013-10-01

    The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable

  19. Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    International Nuclear Information System (INIS)

    Iida, Yuko; Matsuzaki, Toshiyuki; Morishima, Tetsuro; Sasano, Hiroshi; Asai, Kiyofumi; Sobue, Kazuya; Takata, Kuniaki

    2009-01-01

    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

  20. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe

    NARCIS (Netherlands)

    Nakajima, K.; Scholte, A.; Nakata, T.; Dimitriu-Leen, A.C.; Chikamori, T.; Vitola, J.V.; Yoshinaga, K.

    2017-01-01

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging,

  1. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate,

  2. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    Science.gov (United States)

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  3. Dynamic regulation of neurotransmitter specification: Relevance to nervous system homeostasis

    Science.gov (United States)

    Borodinsky, Laura N.; Belgacem, Yesser Hadj; Swapna, Immani; Sequerra, Eduardo Bouth

    2013-01-01

    During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. PMID:23270605

  4. Nervous control of photophores in luminescent fishes.

    Science.gov (United States)

    Zaccone, Giacomo; Abelli, Luigi; Salpietro, Lorenza; Zaccone, Daniele; Macrì, Battesimo; Marino, Fabio

    2011-07-01

    Functional studies of the autonomic innervation in the photophores of luminescent fishes are scarce. The majority of studies have involved either the stimulation of isolated photophores or the modulatory effects of adrenaline-induced light emission. The fish skin is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervations. The latter includes autonomic nerve fibers of spinal sympathetic origin having a secretomotor function. More recent evidence indicates that neuropeptide-containing nerve fibers, such as those that express tachykinin and its NK1 receptor, neuropeptide Y, or nitric oxide, may also play an important role in the nervous control of photophores. There is no anatomical evidence that shows that nNOS positive (nitrergic) neurons form a population distinct from the secretomotor neurons with perikarya in the sympathetic ganglia. The distribution and function of the nitrergic nerves in the luminous cells, however, is less clear. It is likely that the chemical properties of the sympathetic postganglionic neurons in the ganglia of luminescent fishes are target-specific, such as observed in mammals. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Downs, Anna G; Scholles, Katie R; Hollis, David M

    2016-12-01

    Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca 2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff

    1985-01-01

    By using immunocytochemistry and radioimmunoassays, several substances resembling vertebrate or invertebrate neuropeptides have been found in the nervous systems of coelenterates. The most abundant neuropeptides were those related to the molluscan neuropeptide Phe-Met-Arg-Phe-amide (FMRFamide......). Of antisera against different fragments of FMRFamide, those against RFamide were superior in recognizing the coelenterate peptide. Incubation of whole mounts with these RFamide antisera visualized the coelenterate nervous system in such a detail as has previously not been possible. By using a radioimmunoassay...

  7. The evolution of nervous system patterning: insights from sea urchin development

    Science.gov (United States)

    Angerer, Lynne M.; Yaguchi, Shunsuke; Angerer, Robert C.; Burke, Robert D.

    2011-01-01

    Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields – the anterior neuroectoderm and the more posterior ciliary band neuroectoderm – during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution. PMID:21828090

  8. ESHAP chemotherapy is efficient in refractory/relapsed primary central nervous system lymphoma: report of four cases

    Directory of Open Access Journals (Sweden)

    Ungur R

    2015-10-01

    Full Text Available Rodica Ungur,1,2 Adrian Tempescul,3 Christian Berthou,3 Cristina Bagacean,1,2 Doinel Radeanu,1 Adriana Muresan,1 Mihnea Zdrenghea1,21Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj, 2Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania; 3Department of Clinical Hematology, Institute of Cancerology and Hematology, Brest Teaching Hospital, Brest, FranceAbstract: Primary central nervous system non-Hodgkin’s lymphoma is a rare presentation, almost always of diffuse large B-cell type. Although there is no consensus regarding therapy for this condition, induction regimens are based on high-dose methotrexate and consolidation whole-brain radiotherapy, or, more preferred recently, blood–brain barrier penetrating drugs such as etoposide, cytarabine, and alkylating agents like temozolomide, ifosfamide, and lomustine. We present here four cases of relapsed/refractory primary central nervous system lymphoma treated with ESHAP (etoposide, solumedrol, high-dose cytarabine, and platinum chemotherapy to complete remission, with the eligible patients proceeding to autologous transplantation. We want to draw attention to this interesting, relatively well tolerated, underused therapeutic option, in a setting where treatment options are scarce and evidence-based recommendations are lacking.Keywords: cerebral lymphoma, PCNSL, refractory, relapsed, platinum

  9. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  10. Invasive central nervous system aspergillosis in bone marrow transplantation recipients: an overview

    International Nuclear Information System (INIS)

    Guermazi, Ali; Gluckman, Eliane; Tabti, Bachir; Miaux, Yves

    2003-01-01

    Invasive central nervous system aspergillosis is being seen with an increased frequency, particularly due to the increased number of immunosuppressed patients. The major cause of invasive central nervous system aspergillosis is bone marrow transplantation. In most cases, aspergillosis develops in the paranasal sinuses and in the lungs, and secondarily spreads to the brain. Imaging of cerebral aspergillosis may present different patterns depending on the lesion's age and the immunologic status of the patient. Lesions of the spinal cord are far less common but has been encountered in our series. In this article we review the clinical and radiologic features of aspergillosis affecting the central nervous system in patients who underwent bone marrow transplantation. Different CT and MR patterns are presented, including pertinent clinical and pathologic material. Significant morbidity and mortality can be associated with this fungal infection, and it is therefore incumbent upon the radiologist to identify intracranial aspergillosis as early as possible so that appropriate therapy can be administered. (orig.)

  11. Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue

    Directory of Open Access Journals (Sweden)

    R. Linden

    1999-07-01

    Full Text Available Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.

  12. Application of modelling and nanotechnology-based approaches: The emergence of breakthroughs in theranostics of central nervous system disorders.

    Science.gov (United States)

    Hassanzadeh, Parichehr; Atyabi, Fatemeh; Dinarvand, Rassoul

    2017-08-01

    The limited efficiency of the current treatment options against the central nervous system (CNS) disorders has created increasing demands towards the development of novel theranostic strategies. The enormous research efforts in nanotechnology have led to the production of highly-advanced nanodevices and biomaterials in a variety of geometries and configurations for targeted delivery of genes, drugs, or growth factors across the blood-brain barrier. Meanwhile, the richness or reliability of data, drug delivery methods, therapeutic effects or potential toxicity of nanoparticles, occurrence of the unexpected phenomena due to the polydisperse or polymorphic nature of nanomaterials, and personalized theranostics have remained as challenging issues. In this respect, computational modelling has emerged as a powerful tool for rational design of nanoparticles with optimized characteristics including the selectivity, improved bioactivity, and reduced toxicity that might lead to the effective delivery of therapeutic agents. High-performance simulation techniques by shedding more light on the dynamical behaviour of neural networks and pathomechanisms of CNS disorders may provide imminent breakthroughs in nanomedicine. In the present review, the importance of integration of nanotechnology-based approaches with computational techniques for targeted delivery of theranostics to the CNS has been highlighted. Copyright © 2017. Published by Elsevier Inc.

  13. The impact of occurrence of exceptional solar events on mortality from diseases of the nervous system

    Science.gov (United States)

    Podolska, Katerina

    2015-04-01

    The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.

  14. Radiation induced effects in the developing central nervous system; Effectos radioinducidos sobre el sistema nervioso central en desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, P; Dubner, D; Michelin, S C; Perez, M.R. Del [Autoridad Regulatoria Nuclear, Gerencia de Apoyo Cientifico, Buenos Aires (Argentina)

    1997-11-01

    The embryo and the human foetus are particularly sensitive to ionizing radiation and this sensitivity presents various qualitative and quantitative functional changes during intra-uterine development. Apart from radiation induced carcinogenesis, the most serious consequence of prenatal exposure in human beings is severe mental retardation. The principal data on radiation effects on human beings in the development of the central nervous system come form epidemiological studies carried out in individuals exposed in utero during the atomic explosion at Hiroshima and Nagasaki. These observations demonstrate the existence of a time of maximum radiosensitivity between the weeks 8 and 15 of the gestational period, a period in which the proliferation and neuronal migration takes place. Determination of the characteristics of dose-response relationship and the possible existence of a threshold dose of radiation effects on the development of the central nervous system is relevant to radiation protection against low dose radiation and the establishment of dose limits for occupational exposure and the public. Studies were conducted on the generation of nitrous-oxide and its relation with the production of active species of oxygen in brains of exposed rats in utero exposed to doses of up to 1 Gy during their maximum radiosensitivity. The possible role of the mechanism of radiation induced damage in the development of the central nervous system is discussed. 8 refs.

  15. Sino-orbital aspergillosis with central nervous system complication ...

    African Journals Online (AJOL)

    A central nervous system (CNS) complication (cerebral abscess) was diagnosed following seizures in the patient. The patient died a few days later. Conclusion: The diagnosis of aspergillosis of the orbit was only made from fungal culture after the patient's death. It requires a high index of suspicion to make a diagnosis of ...

  16. Parallel simulation of axon growth in the nervous system

    NARCIS (Netherlands)

    J. Wensch; B.P. Sommeijer (Ben)

    2002-01-01

    textabstractIn this paper we discuss a model from neurobiology, which describes theoutgrowth of axons from neurons in the nervous system. The model combines ordinary differential equations, defining the movement of the axons, with parabolic partial differential equations. The parabolic equations

  17. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    Science.gov (United States)

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  18. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  19. Coordination dynamics in a socially situated nervous system

    Directory of Open Access Journals (Sweden)

    Charles A. Coey

    2012-06-01

    Full Text Available Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing the requisite computational or representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via explanatory concepts such as common-coding and co-representation, and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization of human social interactions, there is good reason to question whether they should be accorded causal primacy. Specifically, research on interpersonal rhythmic motor coordination suggests that the organization of human behavior, including social behavior, can result from self-organizing processes and the lawful dynamics of animal-environment systems. Here we review this research, and in doing so propose that the role of the nervous system in joint action and interpersonal coordination be recast from the sole cause of behavior to one of many interdependent processes.

  20. Lipomas of the central nervous system in childhood. Apropos of 3 cases

    International Nuclear Information System (INIS)

    Delucchi Bottato, M.; Scavone Mauro, C.; Delfino Albornoz, A.

    2004-01-01

    Lipomas of the central nervous system occur as a phenomenon consequences developmental malformations of the central nervous system (CNS) and are not considered neoplasms . It is often associated with other congenital malformations. Representing 0.5 percent of intracranial tumors. Imaging studies are central CT or MRI for diagnosis. They are generally associated with other malformations of the CNS. The surgical treatment is always discussed by the high morbidity associated with it. We present three cases of children with lipomas of different topography. (author) [es

  1. An investigation to evaluate the analgesic and central nervous system depressant activities of Solanum nigrum (Linn. in Homoeopathic potencies in experimental animal models

    Directory of Open Access Journals (Sweden)

    Echur Natarajan Sundaram

    2015-01-01

    Full Text Available Background and Objective: In Homoeopathy, Solanum nigrum is clinically used in the treatment of ergotism, meningitis, irritation during dentition and some of the symptoms of neurological disorders but its Central Nervous System (CNS potential has not been explored experimentally yet. Therefore, a preliminary study was conducted with an objective to evaluate the analgesic and CNS depressant effects of homoeopathic potencies of S. nigrum in experimental animal models. Materials and Methods: The study was conducted in Wistar albino rats using a hot plate, ice plate and Randall-Selitto assay for analgesic; rota-rod and open field test for CNS depressant activities. The different potencies (3X, 6X, 12X and 30C of Solanum nigrum were administered orally (0.5 ml/rat/day for 30 days and response was assessed after 30 minutes of drug administration on 10 th , 20 th and 30 th day. Results: The result shows that all the four potencies of Solanum nigrum has increased the latency time required to raise and lick the paws for thermal sensation on hot plate test and for cold sensation on ice plate test and also increased the degree of threshold pressure to mechanically induced pain on Randall-Selitto assay but depressed the motor coordination and locomotor activities. Conclusion: The result obtained from this preliminary study suggests that homoeopathic preparation of Solanum nigrum in different potencies possess analgesic and CNS depressant activities. Further detailed investigations are required for its possible human use.

  2. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea shows positive immunostaining for a chordate glial secretion

    Directory of Open Access Journals (Sweden)

    Grondona Jesus M

    2009-06-01

    Full Text Available Abstract Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS, a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common

  3. Nanofibrous scaffolds supporting optimal central nervous system regeneration: an evidence-based review

    Directory of Open Access Journals (Sweden)

    Kamudzandu M

    2015-12-01

    Full Text Available Munyaradzi Kamudzandu, Paul Roach, Rosemary A Fricker, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, UK Abstract: Restoration of function following damage to the central nervous system (CNS is severely restricted by several factors. These include the hindrance of axonal regeneration imposed by glial scars resulting from inflammatory response to damage, and limited axonal outgrowth toward target tissue. Strategies for promoting CNS functional regeneration include the use of nanotechnology. Due to their structural similarity, synthetic nanofibers could play an important role in regeneration of CNS neural tissue toward restoration of function following injury. Two-dimensional nanofibrous scaffolds have been used to provide contact guidance for developing brain and spinal cord neurites, particularly from neurons cultured in vitro. Three-dimensional nanofibrous scaffolds have been used, both in vitro and in vivo, for creating cell adhesion permissive milieu, in addition to contact guidance or structural bridges for axons, to control reconnection in brain and spinal cord injury models. It is postulated that nanofibrous scaffolds made from biodegradable and biocompatible materials can become powerful structural bridges for both guiding the outgrowth of neurites and rebuilding glial circuitry over the “lesion gaps” resulting from injury in the CNS. Keywords: scaffold, nanofibrous scaffold, CNS, regeneration, alignment

  4. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  5. Radiotherapy applied to tumours of the intracranial central nervous systems in the dog

    International Nuclear Information System (INIS)

    Tortereau, Antonin

    2009-01-01

    As domestic animals such as dogs are living older because of a better life quality and better cares, they may more frequently develop tumours in their intracranial central nervous system. In this research thesis, the author addresses this specific topic. He first recalls fundamental physical and biological aspects for the understanding of radiotherapy action mechanisms, and the modalities of such a treatment. He addresses the general study of intracranial central nervous system tumours in dogs: brief recall on anatomic and histological aspects, presentation of their classification and their prevalence, and precise descriptions of their characteristics. In the third part, the author reports clinical and para-clinical data which allow the diagnosis of an intracranial nervous tissue tumour. The last part presents different available therapeutic modalities, more particularly addresses the interest of radiotherapy in neuro-oncology, and compares published results [fr

  6. Spontaneous nervous system concussion in dogs: A description of ...

    African Journals Online (AJOL)

    In human medicine, central nervous system (CNS) concussion is defined as a transient neurological dysfunction following a traumatic event, without evidence of structural abnormalities of the affected region on advanced diagnostic imaging. Depending on the anatomical region involved, three forms of concussive ...

  7. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  8. Risk of Central Nervous System Tumors in Children Related to Parental Occupational Pesticide Exposures in three European Case-Control Studies

    NARCIS (Netherlands)

    Febvey, Olivia; Schüz, Joachim; Bailey, Helen D; Clavel, Jacqueline; Lacour, Brigitte; Orsi, Laurent; Lightfoot, Tracy; Roman, Eve; Vermeulen, Roel; Kromhout, Hans; Olsson, Ann

    2016-01-01

    OBJECTIVE: The aim of this study was to assess the risk of childhood central nervous system (CNS) tumors associated with parental occupational pesticide exposure. METHODS: We pooled three population-based case-control studies from France, Germany, and the United Kingdom. Cases were children below 15

  9. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  10. Role of vegetative nervous system in regulation of excretory function of irradiated dog stomach

    International Nuclear Information System (INIS)

    Kostesha, N.Ya.

    1989-01-01

    Dogs and rats were exposed to γ/neutron- and X-radiation. The anterior part of dog's stomach was exposed to 10 Gy and 13 Gy respectively; rats were subjected to whole-body irradiation with absolutely lethal doses. Prior to irradiation, various parts of the vegetative nervous system of both types of animals were switched off pharmocologically. In addition to clinical investigation of radiation sickness the excretory function of the stomach was studied by the excretion of intravenously injected neutral red. The switching-off of the parasympathetic nervous system prior to irradiation stabilized the excretory processes in the stomach, increased the resistance of animals, and, vice wersa, the switching-off of the sympathetic nervous system destabilized the excetory processes and decreased the resistance of the organism

  11. Turning sex inside-out: Peripheral contributions to sexual differentiation of the central nervous system

    Directory of Open Access Journals (Sweden)

    Swift-Gallant Ashlyn

    2012-05-01

    Full Text Available Abstract Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social experience through development. Much of the research into mechanisms of sexual differentiation has been driven by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic neural populations within the central nervous system. This review will examine an alternative explanation by describing what is known about the role of peripheral structures and mechanisms (both neural and non-neural in producing sex differences in the central nervous system. The focus of the review will be on experimental evidence obtained from studies of androgenic masculinization of the spinal nucleus of the bulbocavernosus, but other systems will also be considered.

  12. Cysticercosis of the nervous system. Treatment by means of specific internal radiation

    International Nuclear Information System (INIS)

    Skromne-Kadlubik, G.; Celis, C.

    1981-01-01

    Five hundred patients with cysticercosis of the nervous system were evaluated by scanning that used anti-Cysticercus antibodies labeled with indium 113. The same antibodies, labeled with iodine 131, were used for radioimmunotreatment. Ninety-six percent of the patients had good or excellent results, whereas only 4% had poor results. None of the patients showed intolerance or radiotoxicity during three months of clinical and laboratory follow-up. The diagnosis, treatment, and prognosis of cysticercosis of the nervous system are dramatically changing, due to the development of anti-Cysticercus antibodies labeled with radionuclides

  13. Progress of radionuclide diagnostic methods in central nervous system diseases

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Zen'kovich, S.G.

    1982-01-01

    A summarry on modern radionuclide diagnosis achivements of central nervous system diseases is presented. Most optimal tumorotropic preparations and compounds in the view of decreasing irradiation does and optimazing image are given

  14. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) are proteins mediating cell-cell or cell-extracellular matrix (ECM) interactions. CAMs are traditionally divided into four groups, the cadherins, the selectins, the integrins and CAMs belonging to the immunoglobulin superfamily (IgSF). The present chapter describes...... CAMs belonging to IgSF, that exclusively or in part, are expressed in the nervous system. The chapter includes descriptions of myelin protein zero (P0), integrin-associated protein (CD47), neuroplastin, activated leukocyte-cell adhesion molecule (ALCAM), melanoma cell adhesion molecule (MCAM......), myelinassociated glycoprotein (MAG), the neural cell adhesion molecules 1 and 2 (NCAM, NCAM2), Down Syndrome cell adhesion molecule (DSCAM) and Down Syndrome cell adhesion molecule-like-1 (DSCAML1), sidekick 1 and 2 (SDK1, SDK2), signal-regulatory proteins (SIRPs), nectins, nectin-like proteins (necls...

  15. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-10-01

    Full Text Available The presence of bones around the central nervous system (CNS provides it with highly effective physiologically crucial mechanical protection. The peripheral nervous system (PNS, in contrast, lacks this barrier. Consequently, the long held belief is that the PNS is mechanically vulnerable. On the other hand, the PNS is exposed to a variety of physiological mechanical stresses during regular daily activities. This fact prompts us to question the dogma of PNS mechanical vulnerability. As a matter of fact, impaired mechanics of PNS nerves is associated with neuropathies with the liability to mechanical stresses paralleled by significant impairment of PNS physiological functions. Our recent biomechanical integrity investigations on nerve fibers from wild-type and neuropathic mice lend strong support in favor of natural mechanical protection of the PNS and demonstrate a key role of Schwann cells (SCs therein. Moreover, recent works point out that SCs can sense mechanical properties of their microenvironment and the evidence is growing that SCs mechanosensitivity is important for PNS development and myelination. Hence, SCs exhibit mechanical strength necessary for PNS mechanoprotection as well as mechanosensitivity necessary for PNS development and myelination. This mini review reflects on the intriguing dual ability of SCs and implications for PNS physiology and pathophysiology.

  16. Radiation-induced tumors of the nervous system

    International Nuclear Information System (INIS)

    Bernstein, M.; Laperriere, N.

    1991-01-01

    Therapeutic and nontherapeutic ionizing radiation has long been recognized as a putative carcinogenic agent, but the evidence that radiation causes tumors is circumstantial at worst and statistically significant at best. There are no distinct histological, biochemical, cytogenetic, or clinical criteria that can be used to determine if an individual tumor was caused directly by previous irradiation of the anatomic area. Additional supportive evidence for radiation-induced tumors includes a position correlation between radiation dose and tumor incidence (usually in the low dose range) and experimental induction of the same neoplasm in appropriate animal models. even if these criteria are fulfilled, coincidental development of a second tumor can never be discounted in an individual patient, particularly if there is an underlying diathesis to develop multiple tumors of different histology, such as in Recklinghausen's disease, or if there is an strong family history for the development of neoplastic disease. In this paper, the authors critically evaluate the available evidence to support the hypothesis that radiation induces tumors in the nervous system. The current concepts of radiation carcinogenesis are discussed and are followed by a discussion of animal data and clinical experience in humans. Finally, a brief discussion on treatment of radiation-induced nervous system tumors is presented

  17. Aberrant nerve fibres within the central nervous system.

    Science.gov (United States)

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  18. MRI changes in the central nervous system in a child with lupus erythematosus

    International Nuclear Information System (INIS)

    Gieron, M.A.; Khoromi, S.; Campos, A.

    1995-01-01

    We report on a 10-year-old girl with systemic lupus erythematosus who presented in status epilepticus as the only manifestation of central nervous system involvement. MRI of the brain showed diffuse gray and white matter lesions which almost completely resolved after treatment with methylprednisolone. MRI findings in this child are similar to those in adults with diffuse clinical manifestations. The study is essential in the initial evaluation of patients suspected of central nervous system lupus. (orig.)

  19. MRI changes in the central nervous system in a child with lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Gieron, M A [Dept. of Pediatrics, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States); Khoromi, S [Dept. of Neurology, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States); Campos, A [Dept. of Pediatrics, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States)

    1995-05-01

    We report on a 10-year-old girl with systemic lupus erythematosus who presented in status epilepticus as the only manifestation of central nervous system involvement. MRI of the brain showed diffuse gray and white matter lesions which almost completely resolved after treatment with methylprednisolone. MRI findings in this child are similar to those in adults with diffuse clinical manifestations. The study is essential in the initial evaluation of patients suspected of central nervous system lupus. (orig.)

  20. Evolution of bilaterian central nervous systems: a single origin?

    Science.gov (United States)

    2013-01-01

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates