WorldWideScience

Sample records for neptune power system

  1. Lessons learned from the NEPTUNE power system, and other deep-sea adventures

    International Nuclear Information System (INIS)

    Kirkham, Harold

    2006-01-01

    The development of underwater science systems presents some challenging technical issues. It seems that the best efforts of the engineers and scientists involved are sometimes inadequate, and projects that once seemed straightforward end up being late or over-budget, or cancelled. This paper will review some of the lessons that may be learned from the examples of three science projects in the deep ocean: the Deep Underwater Muon and Neutrino Detector neutrino detector, the H 2 O observatory, and the power system part of the NEPTUNE regional cabled observatory

  2. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  3. Neptune

    CERN Document Server

    Roza, Greg

    2017-01-01

    This accessible and engaging book teaches young readers the fundamentals of Neptune, one of the most intriguing planets in our solar system. They will learn about Neptune's physical features, it's super storms that can reach 1,500 miles per hour, its ring system, the Voyager missions, and its status as one of the gas giants. Since the book includes images directly from NASA and with those taken by the Voyager missions themselves, readers can feel like they're really there, traveling to the planet and observing its physical features close up.

  4. Did Triton Destroy Neptune's First Moons?

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Neptunes moon system is not what we would expect for a gas giant in our solar system. Scientists have now explored the possibility that Neptune started its life with an ordinary system of moons that was later destroyed by the capture of its current giant moon, Triton.An Odd SystemOur current understanding of giant-planet formation predicts a period of gas accretion to build up the large size of these planets. According to models, the circumplanetary gas disks that surround the planets during this time then become the birthplaces of the giant planets satellite systems, producing systems of co-planar and prograde (i.e., orbiting in the same direction as the planets rotation) satellites similar to the many-moon systems of Jupiter or Saturn.Tritons orbit is tilted relative to the inner Neptunian satellite orbits. [NASA, ESA, and A. Feild (STScI)]Neptune, however, is quirky. This gas giant has surprisingly few satellites only 14 compared to, say, the nearly 70 moons of Jupiter and most of them are extremely small. One of Neptunes moons is an exception to this, however: Triton, which contains 99.7% of the mass of Neptunes entire satellite system!Tritons orbit has a number of unusual properties. The orbit is retrograde Triton orbits in the opposite direction as Neptunes rotation which is unique behavior among large moons in our solar system. Tritons orbit is also highly inclined, and yet the moons path is nearly circular and lies very close to Neptune.The distribution of impact velocities in the authors simulations for primordial satellite interactions with Triton, in three cases of different satellite mass ratios. In the low-mass case a third of the mass ratio of the Uranian satellite system 88% of simulations ended with Triton surviving on its high-inclination orbit. The survival rate was only 12% in the high-mass case. [Adapted from Rufu et al. 2017]How did this monster of a satellite get its strange properties, and why is Neptunes system so odd compared to what we

  5. The NEPTUNE Network

    DEFF Research Database (Denmark)

    Blanke, M.; Nielsen, Jens Frederik Dalsgaard; Degre, T.

    The main aim for NEPTUNE is the establishing of an "open" European network of universities and research institutes engaged in research, training and education for waterborne (maritime and inland navigation) transport. This network should constitute an European knowledge base to support....... For the support to the objectives of NEPTUNE the association is developing the NEPTUNE Information Network. A pilot demonstration on the basis of the world wide web technique on Internet has been established. Two NEPTUNE server, on the premises of ISL in Bremen and NTUA in Athens, can be adressed via the URL......=http://www.isl.uni-bremen.de/NEPTUNE/ and URL=http://www.maritime.deslab.naval.ntua.gr/neptune/framelayout.html The pilot will be enlarged concerning the number of NEPTUNE servers as well as regarding the scope of information provided by the various servers. The implementation and operating of such an European Waterborne Information Network...

  6. Aerospace Engineering Space Mission Concept Feasibility Study: A Neptune Mission Design Example

    Science.gov (United States)

    Esper, Jaime

    2007-01-01

    This viewgraph document reviews the feasibility study of a mission to Neptune. Included are discussions of the science instruments, the design methodology, the trajectory, the spacecraft design, the alternative propulsion systems, (chemical, solar electric (SEP)), the communications systems, the power systems, the thermal system.

  7. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems

    International Nuclear Information System (INIS)

    Martin Taylor, S.

    2009-01-01

    The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.

  8. Hot plasma parameters in Neptune's magnetosphere

    International Nuclear Information System (INIS)

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  9. Voyager 2 Neptune targeting strategy

    Science.gov (United States)

    Potts, C. L.; Francis, K.; Matousek, S. E.; Cesarone, R. J.; Gray, D. L.

    1989-01-01

    The success of the Voyager 2 flybys of Neptune and Triton depends upon the ability to correct the spacecraft's trajectory. Accurate spacecraft delivery to the desired encounter conditions will promote the maximum science return. However, Neptune's great distance causes large a priori uncertainties in Neptune and Triton ephemerides and planetary system parameters. Consequently, the 'ideal' trajectory is unknown beforehand. The targeting challenge is to utilize the gradually improving knowledge as the spacecraft approaches Neptune to meet the science objectives, but with an overriding concern for spacecraft safety and a desire to limit propellant expenditure. A unique targeting strategy has been developed in response to this challenge. Through the use of a Monte Carlo simulation, candidate strategies are evaluated by the degree to which they meet these objectives and are compared against each other in determining the targeting strategy to be adopted.

  10. NEPTUN/5052, PWR LOCA Cooling Heat Transfer Tests for Loft, Reflood Test

    International Nuclear Information System (INIS)

    Richner, M.; Analytis, G.Th.; Aksan, S.N.

    1993-01-01

    1 - Description of test facility: NEPTUN is designed to perform PWR LOCA simulation experiments, which provide the full length emergency cooling heat transfer tests for LOFT. Therefore the NEPTUN heater bundle with 33 electrical heater elements and 4 guide tubes simulates a section of the LOFT nuclear core. The main test loop also contains measuring systems for the carry-over rate and for the steam expelled, and a back-pressure control system. A water loop brings the water to the initial reflooding conditions. In addition, auxiliary systems maintain normal operating conditions. 2 - Description of test: Test 5052 is one of a series of 40 reflood tests performed in NEPTUN. Before the start of the test, the flooding water in its circuit is brought to the following conditions: pressure = 4.1 bar; velocity = 2.5 cm/sec; subcooling temperature = 78 C; single rod power = 2.45 kW; maximal initial cladding temperature = 867 C. 3 - Status: CSNI1013/01, 21-Jul-1993 Arrived at NEADB

  11. An extrasolar planetary system with three Neptune-mass planets.

    Science.gov (United States)

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  12. CHAOTIC CAPTURE OF NEPTUNE TROJANS

    International Nuclear Information System (INIS)

    Nesvorny, David; Vokrouhlicky, David

    2009-01-01

    Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps ∼10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching ∼25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an ∼35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the ∼4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.

  13. Energetic charged particles in the magnetosphere of Neptune

    International Nuclear Information System (INIS)

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S.; Lal, N.; McDonald, F.B.; Trainor, J.H.; Chenette, D.L.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [approx-lt 1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet

  14. A component architecture for the two-phase flows simulation system Neptune

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C; Boucker, M; Douce, A [Electricite de France (EDF-RD/MFTT), 78 - Chatou (France); Grandotto, M [CEA Cadarache (DEN/DTP/STH), 13 - Saint-Paul-lez-Durance (France); Tajchman, M [CEA Saclay (DEN/DM2S/SFME), 91 - Gif-sur-Yvette (France)

    2003-07-01

    Electricite de France (EdF) and the French atomic energy commission (Cea) have planed a large project to build a new set of software in nuclear reactors analysis. One of the main idea is to allow coupled calculations in which several scientific domains are involved. This paper presents the software architecture of the two-phase flows simulation Neptune project. Neptune should allow computations of two-phase flows in 3 dimensions under normal operating conditions as well as safety conditions. Three scales are identified: the local scale where there is only homogenization between the two phases, an intermediate scale where solid internal structures are homogenized with the fluid and the system scale where some parts of the geometry under study are considered point-wise or subject to one dimensional simplifications. The main properties of this architecture are as follow: -) coupling with scientific domains, and between different scales, -) re-using of quite all or parts of existing validated codes, -) components usable by the different scales, -) easy introducing of new physical modeling as well as new numerical methods, -) local, distributed and parallel computing. The Neptune architecture is based on the component concept with stable and well suited interface. In the case of a distributed application the components are managed through a Corba bus. The building of the components is organized in shell: a programming shell (Fortran or C++ routines), a managing shell (C++ language), an interpreted shell (Python language), a Corba shell and a global driving shell (C++ or Python). Neptune will use the facilities offered by the Salome project: pre and post processors and controls. A data model has been built to have a common access to the information exchanged between the components (meshes, fields, physical and technical information). This architecture has first been setup and tested on some simple but significant cases and is now currently in use to build the Neptune

  15. A component architecture for the two-phase flows simulation system Neptune

    International Nuclear Information System (INIS)

    Bechaud, C.; Boucker, M.; Douce, A.; Grandotto, M.; Tajchman, M.

    2003-01-01

    Electricite de France (EdF) and the French atomic energy commission (Cea) have planed a large project to build a new set of software in nuclear reactors analysis. One of the main idea is to allow coupled calculations in which several scientific domains are involved. This paper presents the software architecture of the two-phase flows simulation Neptune project. Neptune should allow computations of two-phase flows in 3 dimensions under normal operating conditions as well as safety conditions. Three scales are identified: the local scale where there is only homogenization between the two phases, an intermediate scale where solid internal structures are homogenized with the fluid and the system scale where some parts of the geometry under study are considered point-wise or subject to one dimensional simplifications. The main properties of this architecture are as follow: -) coupling with scientific domains, and between different scales, -) re-using of quite all or parts of existing validated codes, -) components usable by the different scales, -) easy introducing of new physical modeling as well as new numerical methods, -) local, distributed and parallel computing. The Neptune architecture is based on the component concept with stable and well suited interface. In the case of a distributed application the components are managed through a Corba bus. The building of the components is organized in shell: a programming shell (Fortran or C++ routines), a managing shell (C++ language), an interpreted shell (Python language), a Corba shell and a global driving shell (C++ or Python). Neptune will use the facilities offered by the Salome project: pre and post processors and controls. A data model has been built to have a common access to the information exchanged between the components (meshes, fields, physical and technical information). This architecture has first been setup and tested on some simple but significant cases and is now currently in use to build the Neptune

  16. Uranus, Neptune, Pluto, and the outer solar system

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Unlike all the planets closer to the Sun, known since antiquity, the farthest reaches are the discoveries of the modern world. Uranus was discovered in 1781, Neptune in 1846, Pluto in 1930, the Kuiper belt group of objects in 1992, and though the Oort cloud has been theorized since 1950, its first member was found in 2004. The discovery of the outer planets made such an impression on the minds of mankind that they were immortalized in the names of the newly discovered elements: uranium, neptunium, and plutonium, an astonishingly deadly constituent of atomic bombs. Uranus, Neptune, Pluto, and t

  17. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    Science.gov (United States)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  18. Uranus and Neptune: The distant giants

    International Nuclear Information System (INIS)

    Burgess, E.

    1988-01-01

    The history of observations and probe missions to the outer planets is reviewed, and major results are summarized, in an overview for general readers. Consideration is given to Voyager images of the Uranian satellite Miranda; the ring system of Uranus; zonal bands on Jupiter, Saturn, and Uranus; the Voyager instruments, mission profile, and ground support system; Saturn and its satellites; the discovery of Uranus by Herschel; the surface and atmosphere of Uranus; and theoretical models of the Uranian interior structure. Also discussed are the discovery of Neptune by Galle and d'Arrest, ground-based knowledge of Neptune and its satellites, the discovery of Pluto, and the possible existence of additional planets. Extensive diagrams, drawings, and photographs are provided

  19. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  20. Atmospheric tides on Neptune

    International Nuclear Information System (INIS)

    Dement'ev, M.S.; Morozhenko, A.V.

    1989-01-01

    The dependence of the equivalent width of the methane absorption band at 619 nm in the Neptune's spectrum upon the Triton's orbital position is discovered. It is assumed that observed changes of the equivalent width of the band and colour index (J - K) (Belton et al., 1981; Brown et al., 1981; Cruikshank, 1978) are due to atmospheric tides (period 2 d .9375) and Neptune's rotation (period 10 h .14)

  1. Voyager radio science observations of Neptune and triton

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, G.L.; Eshleman, V.R.; Gresh, D.L.; Gurrola, E.M.; Hinson, D.P.; Marouf, E.A.; Rosen, P.A.; Simpson, R.A. (Stanford Univ. (USA)); Sweetnam, D.N.; Anderson, J.D.; Borutzki, S.E.; Campbell, J.K.; Kursinski, E.R.; Levy, G.S.; Lindal, G.F.; Lyons, J.R.; Wood, G.E. (California Institute of Technology, Pasadena (USA)); Kawashima, N. (Institute of Space and Astronautical Science, Sagamihara (Japan))

    1989-12-15

    The Voyager 2 encounter with the Neptune system included radio science investigations of the masses and densities of Neptune and Triton, the low-order gravitational harmonics of Neptune, the vertical structures of the atmospheres and ionospheres of Neptune and Triton, the composition of the atmosphere of Neptune, and characteristics of ring material. Demanding experimental requirements were met successfully, and study of the large store of collected data has begun. Neptune's atmosphere was probed to a pressure level of about 5 x 10{sup 5} pascals, and effects of a methane cloud region and probable ammonia absorption below the cloud are evident in the data. Results for the mixing ratios of helium and ammonia are still being investigated; the methane abundance below the clouds is at least 1 percent by volume. Derived temperature-pressure profiles to 1.2 x 10{sup 5} pascals and 78 kelvins (K) show a lapse rate corresponding to frozen equilibrium of the para- and ortho-hydrogen states. Neptune's ionosphere exhibits an extended topside at a temperature of 950 {plus minus} 160 K if H{sup +} is the dominant ion, and narrow ionization layers of the type previously seen at the other three giant planets. Triton has a dense ionosphere with a peak electron concentration of 46 x 10{sup 9} per cubic meter at an altitude of 340 kilometers measured during occultation egress. Its topside plasma temperature is about 80 {plus minus} 16 K in N{sub 2}{sup +} is the principal ion. The tenuous neutral atmosphere of Triton produced distinct signatures in the occultation data; however, the accuracy of the measurements is limited by uncertainties in the frequency of the spacecraft reference oscillator. Preliminary values for the surface pressure of 1.6 {plus minus} 0.3 pascals and an equivalent isothermal temperature of 48 {plus minus} 5 K are suggested, on the assumption that molecular nitrogen dominates the atmosphere.

  2. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  3. Long-term safety and efficacy of single-tablet combinations of solifenacin and tamsulosin oral controlled absorption system in men with storage and voiding lower urinary tract symptoms: results from the NEPTUNE Study and NEPTUNE II open-label extension.

    Science.gov (United States)

    Drake, Marcus J; Chapple, Christopher; Sokol, Roman; Oelke, Matthias; Traudtner, Klaudia; Klaver, Monique; Drogendijk, Ted; Van Kerrebroeck, Philip

    2015-02-01

    Short-term trials have demonstrated the efficacy and safety of combination therapy using antimuscarinics and α-blockers in men with lower urinary tract symptoms (LUTS). The Study of Solifenacin Succinate and Tamsulosin Hydrochloride OCAS (oral controlled absorption system) in Males with Lower Urinary Tract Symptoms (NEPTUNE) II is the first long-term study using solifenacin (Soli) and the oral controlled absorption system formulation of tamsulosin (TOCAS). To evaluate long-term (up to 52 wk) safety and efficacy of flexible dosing of two fixed-dose combinations (FDC) of Soli plus TOCAS in men with moderate to severe storage symptoms and voiding symptoms. Patients with both storage and voiding LUTS, maximum urinary flow rate of 4.0-12.0 ml/s, prostate size storage and voiding subscores, micturition diary variables, and quality of life parameters. In all, 1066 men completed NEPTUNE and received one dose or more of study medication in NEPTUNE II. Treatment-emergent adverse events were reported in 499 (46.8%) patients who participated in NEPTUNE II; most were mild or moderate. Urinary retention occurred in 13 of 1208 (1.1%) patients receiving one or more FDCs in NEPTUNE and/or NEPTUNE II; 8 (0.7%) required catheterisation (acute urinary retention [AUR]). Reductions in total IPSS and TUFS during NEPTUNE were maintained for up to 52 wk of FDC treatment, with mean reductions of 9.0 (standard deviation [SD]: 5.7) and 10.1 (SD: 9.2), respectively, from baseline to end of treatment. Clinically relevant improvements were also observed for secondary efficacy end points. Long-term treatment with FDC Soli plus TOCAS was well tolerated and efficacious in men with storage and voiding LUTS, with a low incidence of AUR. Treatment with solifenacin plus tamsulosin in a fixed-dose combination tablet was well tolerated by men with lower urinary tract symptoms. Improvements in symptoms were achieved after 4 wk of treatment, with further improvements at week 16 maintained for up to 52 wk

  4. Blackbody Radiation from Isolated Neptunes

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em; Loeb, Abraham

    2016-05-01

    Recent analyses of the orbits of some Kuiper belt objects hypothesize the presence of an undiscovered Neptune-size planet at a very large separation from the Sun. The energy budget of Neptunes on such distant orbits is dominated by the internal heat released by their cooling rather than solar irradiation (making them effectively “isolated”). The blackbody radiation that these planets emit as they cool may provide the means for their detection. Here, we use an analytical toy model to study the cooling and radiation of isolated Neptunes. This model can translate a detection (or a null detection) to a constraint on the size and composition of the hypothesized “Planet Nine.” Specifically, the thick gas atmosphere of Neptune-like planets serves as an insulating blanket that slows down their cooling. Therefore, a measurement of the blackbody temperature, {T}{{eff}}˜ 50 {{K}}, at which a Neptune emits, can be used to estimate the mass of its atmosphere, {M}{{atm}}. Explicitly, we find the relation {T}{{eff}}\\propto {M}{{atm}}1/12. Despite this weak relation, a measurement of the flux at the Wien tail can constrain the atmospheric mass, at least to within a factor of a few, and provide useful limits to possible formation scenarios of these planets. Finally, we constrain the size and composition of Planet Nine by combining our model with the null results of recent all-sky surveys.

  5. Progress on the NEPTUNE Canada Seismograph Network

    Science.gov (United States)

    Rogers, G. C.; Meldrum, R. D.; Heesemann, M.; Mulder, T. L.; Brillon, C. D.; Cassidy, J. F.

    2012-12-01

    NEPTUNE Canada is the world's first deep-sea regional multi-disciplinary scientific cabled ocean observatory. In the fall of 2007 an 800 kilometer ring of powered fiber optic cable was laid on the seafloor over the northern part of the Juan de Fuca plate and connected to a shore facility near Port Alberni on Vancouver Island. In September 2009, three broadband OBS packages were deployed in the form of a large triangle with apexes at mid plate near ODP 1027 (water depth of 2654m) and two sites on the continental slope, near ODP 889 (1256m) and Barkley Canyon (396m). The broadband systems comprise a broadband seismometer and strong motion accelerometer in a spherical titanium case surficially buried in a caisson backfilled with glass beads. Noise levels observed are as expected with the spectra being similar to, or quieter than, coastal seismograph stations in approximately the 10 to 20 second period range. The OBS's have higher noise levels at longer periods where ocean swells and the resultant infragravity waves dominate the noise spectra, and in the 1-10 Hz bandwidth typically used for locating local earthquakes. The shallowest site at Barkley Canyon has the highest noise levels. A small array, about 6 km in maximum dimension, is under construction on the Endeavour segment of the Juan de Fuca Ridge to record earthquake activity in the vicinity of the many NEPTUNE Canada multi-disciplinary ridge experiments. Two short period instruments were installed there in 2010. A broadband instrument and two additional short period instruments are planned to complete the initial ridge array. Even though the NEPTUNE Canada seismograph network is not yet complete, measured by the use of its data, it is a success already. The data are routinely used along with data from land seismographs of the Canadian National Seismograph Network for locating earthquakes in the region. However, the smallest seismic arrivals picked on the land stations cannot be routinely picked on the OBS

  6. First results of Herschel-PACS observations of Neptune

    NARCIS (Netherlands)

    Lellouch, E.; Hartogh, P.; Feuchtgruber, H.; Vandenbussche, B.; de Graauw, Th.; Moreno, R.; Jarchow, C.; Cavalie, T.; Orton, G.; Banaszkiewicz, M.; Blecka, M. I.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Fulton, T.; Kueppers, M.; Lara, L. M.; Lis, D. C.; Medvedev, A. S.; Rengel, M.; Sagawa, H.; Swinyard, B.; Szutowicz, S.; Bensch, F.; Bergin, E.; Billebaud, F.; Biver, N.; Blake, G. A.; Blommaert, J. A. D. L.; Cernicharo, J.; Courtin, R.; Davis, G. R.; Decin, L.; Encrenaz, P.; Gonzalez, A.; Jehin, E.; Kidger, M.; Naylor, D.; Portyankina, G.; Schieder, R.; Sidher, S.; Thomas, N.; de Val-Borro, M.; Verdugo, E.; Waelkens, C.; Aarts, H.; Comito, C.; Kawamura, J. H.; Maestrini, A.; Peacocke, T.; Teipen, R.; Tils, T.; Wildeman, K.; Walker, H.; Blake, G.A.

    2010-01-01

    We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51-220 mu m range with a mean resolving power of similar to 3000, and complemented by a dedicated observation of CH(4) at 120 mu m. Numerous spectral features due to HD (R(0) and R(1)), H(2)O, CH(4),

  7. Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report

    International Nuclear Information System (INIS)

    Aksan, S.N.; Stierli, F.; Analytis, G.T.

    1992-03-01

    The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended

  8. Chaos in Kepler's Multiple Planet Systems and K2s Observations of the Atmospheres of Uranus Neptune

    Science.gov (United States)

    Lissauer, Jack J.

    2016-01-01

    More than one-third of the 4700 planet candidates found by NASA's Kepler spacecraft during its prime mission are associated with target stars that have more than one planet candidate, and such "multis" account for the vast majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship, but some of the systems lie in chaotic regions close to instability. The characteristics of some of the most interesting confirmed Kepler multi-planet systems will be discussed. The Kepler spacecraft's 'second life' in theK2 mission has allowed it to obtain long time-series observations of Solar System targets, including the giant planets Uranus & Neptune. These observations show variability caused by the chaotic weather patterns on Uranus & Neptune.

  9. Deliverable 4.1 Homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky; Wenzel, Henrik

    2007-01-01

    In order to do a life cycle assessment (LCA) of a waste water treatment technique, a system to handle the mapped inventory data and a life cycle impact assessment (LCIA) method/model is needed. Besides NEPTUNE, another EU-funded project has the same methodology need namely INNOWATECH (contract No....... 036882) running in parallel with NEPTUNE but focusing on industrial waste water. With the aim of facilitating cooperation between the two projects a common LCA methodology framework has been worked out and is described in the following. This methodology work has been done as a joint effort between...... NEPTUNE WP4 and INNOWATECH WP4 represented by the WP4 lead partner IVL. The aim of the co-operation is to establish common methodologies and/or LCA models and/or tools in order to achieve a homogenous approach in INNOWATECH and NEPTUNE. Further, the aim is to facilitate possibilities of data exchange...

  10. NEPTUNE Helping Program Managers Understand Their Program Customers

    National Research Council Canada - National Science Library

    Uriell, Zannette

    2004-01-01

    .... This annotated brief outlines some of these studies and discusses in greater detail a recent project that assessed a number of dissimilar programs, leading to the creation of the NEPTUNE System...

  11. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  12. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    International Nuclear Information System (INIS)

    Hu, Renyu; Yung, Yuk L.; Seager, Sara

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH 4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10 −3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets

  13. Multi-scale analysis of nuclear reactor thermal-hydraulics-first applications using the NEPTUNE platform

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.

    2005-01-01

    The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)

  14. On the detection of magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1975-11-01

    Earth, Jupiter, and Saturn are sources of intense but sporadic bursts of electromagnetic radiation or magnetospheric radio bursts (MRB). The similarity of the differential power flux spectra of the MRB from all three planets is examined. The intensity of the MRB is scaled for the solar wind power input into a planetary magnetosphere. The possibility of detecting MRB from Uranus and Neptune is considered

  15. NEPTUNE: a modular scheme for the calculation of light water reactors

    International Nuclear Information System (INIS)

    Kavenoky, A.

    1975-01-01

    The NEPTUNE modular scheme has been developed to provide the physicist and the design engineer with a single system of codes for the calculation of light water reactors. The APOLLO code is included in NEPTUNE for the multigroup transport treatment of cells, groups of cells and complete fuel assemblies; few groups cross section libraries are automatically transmitted to the reactor multidimensional diffusion modules. In the reactor phase, 1D and 2D diffusion calculations can be performed by use of the finite difference method; 2D and 3D calculations are done respectively by the BILAN and TRIDENT modules using the finite element method. For the depletion calculation coarse and refined computations are offered. NEPTUNE is characterized by two special features for the data processing: the OTOMAT system which provides a virtual memory simulation and the intervention Monitor which allow to disconnect the computation modules and the control modules [fr

  16. A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: COLD NEPTUNES ARE COMMON

    International Nuclear Information System (INIS)

    Sumi, T.; Abe, F.; Fukui, A.

    2010-01-01

    We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 ± 2.1] x 10 -5 via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M l = 0.64 +0.21 -0.26 M sun and D l = 5.9 +0.9 -1.4 kpc, respectively, so the mass and separation of the planet are M p = 20 +7 -8 M + and a = 3.3 +1.4 -0.8 AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN pl /dlog q ∝ q -0.7±0.2 with a 95% confidence level upper limit of n pl /dlog q ∝ q n ). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.

  17. Dynamical evolution of a fictitious population of binary Neptune Trojans

    Science.gov (United States)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  18. A parallel code named NEPTUNE for 3D fully electromagnetic and pic simulations

    International Nuclear Information System (INIS)

    Dong Ye; Yang Wenyuan; Chen Jun; Zhao Qiang; Xia Fang; Ma Yan; Xiao Li; Sun Huifang; Chen Hong; Zhou Haijing; Mao Zeyao; Dong Zhiwei

    2010-01-01

    A parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell (PIC) simulations is introduced, which could run on the Linux system with hundreds to thousand CPUs. NEPTUNE is suitable to simulate entire 3D HPM devices; many HPM devices are simulated and designed by using it. In NEPTUNE code, the electromagnetic fields are updated by using the finite-difference in time domain (FDTD) method of solving Maxwell equations and the particles are moved by using Buneman-Boris advance method of solving relativistic Newton-Lorentz equation. Electromagnetic fields and particles are coupled by using liner weighing interpolation PIC method, and the electric filed components are corrected by using Boris method of solve Poisson equation in order to ensure charge-conservation. NEPTUNE code could construct many complicated geometric structures, such as arbitrary axial-symmetric structures, plane transforming structures, slow-wave-structures, coupling holes, foils, and so on. The boundary conditions used in NEPTUNE code are introduced in brief, including perfectly electric conductor boundary, external wave boundary, and particle boundary. Finally, some typical HPM devices are simulated and test by using NEPTUNE code, including MILO, RBWO, VCO, and RKA. The simulation results are with correct and credible physical images, and the parallel efficiencies are also given. (authors)

  19. Global magnetic anomaly and aurora of Neptune

    International Nuclear Information System (INIS)

    Cheng, A.F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora

  20. Parametric Simulations of the Great Dark Spots of Neptune

    Science.gov (United States)

    Deng, Xiaolong; Le Beau, R.

    2006-09-01

    Observations by Voyager II and the Hubble Space Telescope of the Great Dark Spots (GDS) of Neptune suggest that large vortices with lifespans of years are not uncommon occurrences in the atmosphere of Neptune. The variability of these features over time, in particular the complex motions of GDS-89, make them challenging candidates to simulate in atmospheric models. Previously, using the Explicit Planetary Isentropic-Coordinate (EPIC) General Circulation Model, LeBeau and Dowling (1998) simulated the GDS-like vortex features. Qualitatively, the drift, oscillation, and tail-like features of GDS-89 were recreated, although precise numerical matches were only achieved for the meridional drift rate. In 2001, Stratman et al. applied EPIC to simulate the formation of bright companion clouds to the Great Dark Spots. In 2006, Dowling et al. presented a new version of EPIC, which includes hybrid vertical coordinate, cloud physics, advanced chemistry, and new turbulence models. With the new version of EPIC, more observation results, and more powerful computers, it is the time to revisit CFD simulations of the Neptune's atmosphere and do more detailed work on GDS-like vortices. In this presentation, we apply the new version of EPIC to simulate GDS-89. We test the influences of different parameters in the EPIC model: potential vorticity gradient, wind profile, initial latitude, vortex shape, and vertical structure. The observed motions, especially the latitudinal drift and oscillations in orientation angle and aspect ratio, are used as diagnostics of these unobserved atmospheric conditions. Increased computing power allows for more refined and longer simulations and greater coverage of the parameter space than previous efforts. Improved quantitative results have been achieved, including voritices with near eight-day oscillations and comparable variations in shape to GDS-89. This research has been supported by Kentucky NASA EPSCoR.

  1. MIGRATION THEN ASSEMBLY: FORMATION OF NEPTUNE-MASS PLANETS INSIDE 1 AU

    International Nuclear Information System (INIS)

    Hansen, Brad M. S.; Murray, Norm

    2012-01-01

    We demonstrate that the observed distribution of 'hot Neptune'/'super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration post-assembly. This is achieved only if the amount of mass in rocky material is ∼50-100 M ⊕ interior to 1 AU. Such a reservoir of material implies that significant radial migration of solid material takes place, and that it occurs before the stage of final planet assembly. The model not only reproduces the general distribution of mass versus period but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenario are that most planets in the 'hot Neptune/super-Earth' class inhabit multiple-planet systems, with characteristic orbital spacings. The model also provides a natural division into gas-rich (hot Neptune) and gas-poor (super-Earth) classes at fixed period. The dividing mass ranges from ∼3 M ⊕ at 10 day orbital periods to ∼10 M ⊕ at 100 day orbital periods. For orbital periods <10 days, the division is less clear because a gas atmosphere may be significantly eroded by stellar radiation.

  2. BLEACHING NEPTUNE BALLS

    Directory of Open Access Journals (Sweden)

    BONET Maria Angeles

    2014-05-01

    Full Text Available Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers.

  3. NEPTUNE: A new software platform for advanced nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Herard, J.M.; Peturaud, P.; Bestion, D.; Boudier, P.; Hervieu, E.; Fillion, P.; Grandotto, M.

    2007-01-01

    The NEPTUNE project constitutes the thermal-hydraulic part of the long-term Electricite de France and Commissariat a l'Energie Atomique joint research and development program for the next generation of nuclear reactor simulation tools. This program is also financially supported by the Institut de Radioprotection et Surete Nucleaire and AREVA NP. The project aims at developing a new software platform for advanced two-phase flow thermal hydraulics covering the whole range of modeling scales and allowing easy multi-scale and multidisciplinary calculations. NEPTUNE is a fully integrated project that covers the following fields: software development, research in physical modeling and numerical methods, development of advanced instrumentation techniques, and performance of new experimental programs. The analysis of the industrial needs points out that three main simulation scales are involved. The system scale is dedicated to the overall description of the reactor. The component or subchannel scale allows three-dimensional computations of the main components of the reactors: cores, steam generators, condensers, and heat exchangers. The current generation of system and component codes has reached a very high level of maturity for industrial applications. The third scale, computational fluid dynamics (CFD) in open medium, allows one to go beyond the limits of the component scale for a finer description of the flows. This scale opens promising perspectives for industrial simulations, and the development and validation of the NEPTUNE CFD module have been a priority since the beginning of the project. It is based on advanced physical models (two-fluid or multi field model combined with interfacial area transport and two-phase turbulence) and modern numerical methods (fully unstructured finite volume solvers). For the system and component scales, prototype developments have also started, including new physical models and numerical methods. In addition to scale

  4. MIGRATION THEN ASSEMBLY: FORMATION OF NEPTUNE-MASS PLANETS INSIDE 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Brad M. S. [Department of Physics and Astronomy and Institute of Geophysics and Planetary Physics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Murray, Norm, E-mail: hansen@astro.ucla.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario (Canada)

    2012-06-01

    We demonstrate that the observed distribution of 'hot Neptune'/'super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration post-assembly. This is achieved only if the amount of mass in rocky material is {approx}50-100 M{sub Circled-Plus} interior to 1 AU. Such a reservoir of material implies that significant radial migration of solid material takes place, and that it occurs before the stage of final planet assembly. The model not only reproduces the general distribution of mass versus period but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenario are that most planets in the 'hot Neptune/super-Earth' class inhabit multiple-planet systems, with characteristic orbital spacings. The model also provides a natural division into gas-rich (hot Neptune) and gas-poor (super-Earth) classes at fixed period. The dividing mass ranges from {approx}3 M{sub Circled-Plus} at 10 day orbital periods to {approx}10 M{sub Circled-Plus} at 100 day orbital periods. For orbital periods <10 days, the division is less clear because a gas atmosphere may be significantly eroded by stellar radiation.

  5. First Earth-based observations of Neptune's satellite Proteus

    Science.gov (United States)

    Colas, F.; Buil, C.

    1992-08-01

    Proteus (Neptune III) was discovered from Voyager Spacecraft images in 1989 (Smith, 1989). It was never observed from ground-based observatories because of its magnitude (m = 20.3) and closeness to Neptune (maximum elongation = 6 arcsec). In October 1991, we used the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) to look for it. The observation success is mainly due to the use of an anti blooming CCD and to good seeing conditions (less than 1 arcsec). We give the differential positions of Proteus referred to Neptune and we compare with theoretical positions issued from Voyager's data (Owen et al., 1991). We found that the rms orbital residual was about 0.1 arcsec.

  6. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  7. Detection of CS in Neptune's atmosphere from ALMA observations

    Science.gov (United States)

    Moreno, R.; Lellouch, E.; Cavalié, T.; Moullet, A.

    2017-12-01

    Context. The large and vertically non-uniform abundance of CO in Neptune's atmosphere has been interpreted as the result of past cometary impact(s), either single or distributed in size and time, which could also be at the origin of Neptune's HCN. Aims: We aim to provide observational support for this scenario by searching for other comet-induced species, in particular carbon sulfide (CS) which has been observed continuously in Jupiter since the 1994 Shoemaker-Levy 9 impacts. Methods: In April 2016 we used the ALMA interferometer to search for CS(7-6) at 342.883 GHz in Neptune. Results: We report on the detection of CS in Neptune's atmosphere, the first unambiguous observation of a sulfur-bearing species in a giant planet beyond Jupiter. Carbon sulfide appears to be present only at submillibar levels, with a column density of (2.0-3.1) × 1012 cm-2, and a typical mixing ratio of (2-20) × 10-11 that depends on its precise vertical location. The favoured origin of CS is deposition by a putative large comet impact several centuries ago, and the strong depletion of CS with respect to CO - compared to the Jupiter case - is likely due to the CS sticking to aerosols or clustering to form polymers in Neptune's lower stratosphere. Conclusions: The CS detection, along with recent analyses of the CO profile, reinforces the presumption of a large comet impact into Neptune 1000 yr ago, that delivered CO, CS, and HCN at the same time.

  8. Scientific rationale for Uranus and Neptune in situ explorations

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Cavalié, T.; Fletcher, L. N.; Amato, M. J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M. D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G. S.; Pearl, J. C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J. H.; Achterberg, R. K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N. J. P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P.; Villanueva, G. L.

    2018-06-01

    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

  9. Model tests in RAMONA and NEPTUN; Modellversuche in RAMONA und NEPTUN

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H.; Ehrhard, P.; Weinberg, D.; Carteciano, L.; Dres, K.; Frey, H.H.; Hayafune, H.; Hoelle, C.; Marten, K.; Rust, K.; Thomauske, K.

    1995-08-01

    In order to demonstrate passive decay heat removal (DHR) in an LMR such as the European Fast Reactor, the RAMONA and NEPTUN facilities, with water as a coolant medium, were used to measure transient flow data corresponding to a transition from forced convection (under normal operation) to natural convection under DHR conditions. The facilities were 1:20 and 1:5 models, respectively, of a pool-type reactor including the IHXs, pumps, and immersed coolers. Important results: The decay heat can be removed from all parts of the primary system by natural convection, even if the primary fluid circulation through the IHX is interrupted. This result could be transferred to liquid metal cooling by experiments in models with thermohydraulic similarity. (orig.)

  10. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  11. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  12. Stratospheric ethane on Neptune - Comparison of groundbased and Voyager IRIS retrievals

    Science.gov (United States)

    Kostiuk, Theodor; Romani, Paul; Espenak, Fred; Bezard, Bruno

    1992-01-01

    Near-simultaneous ground and spacecraft measurements of 12-micron ethane emission spectra during the Voyager encounter with Neptune have furnished bases for the determination of stratospheric ethane abundance and the testing and constraining of Neptune methane-photochemistry models. The ethane retrievals were sensitive to the thermal profile used. Contribution functions for warm thermal profiles peaked at higher altitudes, as expected, with the heterodyne functions covering lower-pressure regions. Both constant- and nonconstant-with-height profiles remain candidate distributions for Neptune's stratospheric ethane.

  13. Contribution to the qualification of the Neptune system. Application to the follow-up of the Tihange reactor

    International Nuclear Information System (INIS)

    Tournier, Dominique.

    1980-08-01

    For the calculations of light water reactors the modular system Neptune has been developed. It includes transport, diffusion, thermohydraulic and kinetic codes and so allows the treatment of the various problems of core physics. The first part of this thesis is devoted to a comparison of the most usually used modulus of the neutron transport code (APOLLO). Two examples are considered: a PWR lattice and a BWR U-Pu mixed assembly. The consequences of the different hypotheses made to solve the Boltzmann's equation by a collision probability method can be appreciated on these practical cases. The second part is a check of the complete calculation scheme against experimental results obtained during the first cycle of Tihange (900 MWe PWR). The core calculation is a 3D-diffusion calculation taking into account the thermohydraulic feedbacks; the macroscopic cross-sections needed by the neutron calculation are obtained by the transport code and tabulated versus the burn-up, the fuel temperature and the water density. The results prove that Neptune can now be considered as a precise and reliable tool [fr

  14. Significance of large Neptune-crossing objects for terrestrial catastrophism

    Science.gov (United States)

    Steel, D.

    2014-07-01

    Over the past few decades a substantial number of objects have been discovered on orbits beyond Neptune (i.e. transneptunian objects, in various sub-classes), crossing Neptune's orbit (here: the Neptune-crossers of interest), and also others crossing the orbits of any or all of the jovian planets (i.e. Centaurs). These range in size from tens of kilometres across to hundreds of kilometres and more. Although formally classified as minor planets/asteroids, plus a few dwarf planets, the physical reality of these objects is that they are giant comets. That is, they seem to be composed largely of ices and if they were to enter the inner solar system then they would demonstrate the commonly-observed behaviour of comets such as outgassing, and the formation of ion and dust tails. Commonly-observed cometary behaviour, however, also includes fragmentation events and sometimes complete disintegration for no apparent cause (such as tidal disruption or thermal stresses). One might therefore wonder what the implications would be for life on Earth and terrestrial catastrophism if and when one of these objects, say 100 to 500 kilometres in size, dropped into a short-period orbit with perihelion distance (q) less than 1 au; or even q ˜ 5 au, given what Jupiter's gravity might do to it. How often might such events occur? One way to address that question would be to conduct numerical integrations of suitable test orbits and identify how often small-q orbits result, but this comes up against the problem of identifying very-infrequent events (with annual probabilities per object perhaps of order 10^{-12}-10^{-10}. For example, Emel'yanenko et al. [1] recently followed test orbits for approximately 5 × 10^{14} particle-years (8,925 objects with 200 clones of each, for 300 Myr) but because these were selected on the basis of initial values of q only below 36 (rather than ˜30) au many were not immediately Neptune-crossers; however, many test particles did eventually migrate into small

  15. Featured Image: A New Dark Vortex on Neptune

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This remarkable series of images by the Hubble Space Telescope (click for the full view) track a dark vortex only the fifth ever observed on Neptune as it evolves in Neptunes atmosphere. These Hubble images, presented in a recent study led by Michael Wong (University of California, Berkeley), were taken in 2015 September, 2016 May, 2016 October, and 2017 October; the observations have monitored the evolution of the vortex as it has gradually weakened and drifted polewards. Confirmation of the vortex solved a puzzle that arose in 2015, when astronomers spotted an unexplained outburst of cloud activity on Neptune. This outburst was likely a group of bright companion clouds that form as air flows over high-pressure dark vortices, causing gases to freeze into methane ice crystals. To learn more about what the authors have since learned by studying this vortex, check out the paper below.CitationMichael H. Wong et al 2018 AJ 155 117. doi:10.3847/1538-3881/aaa6d6

  16. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  17. Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18

    International Nuclear Information System (INIS)

    Guan Pu; Zhou Liyong; Li Jian

    2012-01-01

    The population of Neptune Trojans is believed to be bigger than that of Jupiter Trojans and that of asteroids in the main belt, although only eight members of this distant asteroid swarm have been observed up to now. Six leading Neptune Trojans around the Lagrange point L 4 discovered earlier have been studied in detail, but two trailing ones found recently around the L 5 point, 2004 KV18 and 2008 LC18, have not yet been investigated. We report our investigations on the dynamical behaviors of these two new Neptune Trojans. Our calculations show that the asteroid 2004 KV18 is a temporary Neptune Trojan. Most probably, it was captured into the trailing Trojan cloud no earlier than 2.03 × 10 5 yr ago, and it will not maintain this position later than 1.65 × 10 5 yr in the future. Based on the statistics from our orbital simulations, we argue that this object is more like a scattered Kuiper belt object. By contrast, the orbit of 2008 LC18 is much more stable. Among the clone orbits spreading within the orbital uncertainties, a considerable portion of clones may survive on the L 5 tadpole orbits for 4 Gyr. The strong dependence of the stability on the semimajor axis and resonant angle suggests that further observations are badly required to constrain the orbit in the stable region. We also discuss the implications of the existence and dynamics of these two trailing Trojans over the history of the solar system.

  18. The quest for H_3^+ at Neptune: deep burn observations with NASA IRTF iSHELL

    Science.gov (United States)

    Melin, H.; Fletcher, L. N.; Stallard, T. S.; Johnson, R. E.; O'Donoghue, J.; Moore, L.; Donnelly, P. T.

    2018-03-01

    Emission from the molecular ion H_3^+ is a powerful diagnostic of the upper atmosphere of Jupiter, Saturn, and Uranus, but it remains undetected at Neptune. In search of this emission, we present near-infrared spectral observations of Neptune between 3.93 and 4.00 μm taken with the newly commissioned iSHELL instrument on the NASA Infrared Telescope Facility in Hawaii, obtained 2017 August 17-20. We spent 15.4 h integrating across the disc of the planet, yet were unable to unambiguously identify any H_3^+ line emissions. Assuming a temperature of 550 K, we derive an upper limit on the column integrated density of 1.0^{+1.2}_{-0.8}× 10^{13} m-2, which is an improvement of 30 per cent on the best previous observational constraint. This result means that models are overestimating the density by at least a factor of 5, highlighting the need for renewed modelling efforts. A potential solution is strong vertical mixing of polyatomic neutral species from Neptune's upper stratosphere to the thermosphere, reacting with H_3^+, thus greatly reducing the column integrated H_3^+ densities. This upper limit also provide constraints on future attempts at detecting H_3^+ using the James Webb Space Telescope.

  19. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  20. Investigation of atmospheric waves on Neptune

    Science.gov (United States)

    Eshleman, Von R.; Hinson, David P.

    1994-01-01

    This document constitutes the final report for grant NAGW-2442 of the Neptune Data Analysis Program, which supported research concerning atmospheric dynamics on Neptune. Professor Von R. Eshleman was the principal investigator. David P. Hinson was a Co-Investigator. The grant covered the period 1 March 1991 through 31 August 1994, including a six month no-cost extension. Funding from this grant resulted in publication of one journal article and one book chapter as well as presentation of results at two conferences and in numerous seminars. A complete bibliography is given below. A copy of the journal article is attached along with abstracts from the book chapter and the conference presentations. With support from this grant we extended our analysis and interpretation of the Voyager Project. This research contributed to an improvement in our basic understanding of atmospheric dynamics on Neptune. The highlight was the discovery and characterization of inertio-gravity waves in the troposphere and stratosphere. Results include measures of basic wave properties, such as amplitudes and vertical wavelengths, as well as estimates of the effect of the waves on the photochemistry and momentum balance of the stratosphere. This investigation also yielded a better understanding of the potential of radio occultation experiments for studies of atmospheric waves. At the same time we developed new methods of data analysis for exploiting these capabilities. These are currently being applied to radio occultation data obtained with the Magellan spacecraft to study waves in the atmosphere of Venus. Future planetary missions, such as Mars Global Surveyor and Cassini, will benefit from these accomplishments.

  1. U.S. Department of Energy Space and Defense Power Systems Program Ten-Year Strategic Plan, Volume 1 and Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, Carla

    2013-06-01

    The Department of Energy's Space and Defense Power Systems program provides a unique capability for supplying power systems that function in remote or hostile environments. This capability has been functioning since the early 1960s and counts the National Aeronautics and Space Administration as one of its most prominent customers. This enabling technology has assisted the exploration of our solar system including the planets Jupiter, Saturn, Mars, Neptune, and soon Pluto. This capability is one-of-kind in the world in terms of its experience (over five decades), breadth of power systems flown (over two dozen to date) and range of power levels (watts to hundreds of watts). This document describes the various components of that infrastructure, work scope, funding needs, and its strategic plans going forward.

  2. Validation of NEPTUNE-CFD on ULPU-V experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, Mathieu, E-mail: mathieu.jamet@edf.fr; Lavieville, Jerome; Atkhen, Kresna; Mechitoua, Namane

    2015-11-15

    In-vessel retention (IVR) of molten corium through external cooling of the reactor pressure vessel is one possible means of severe accident mitigation for a class of nuclear power plants. The aim is to successfully terminate the progression of a core melt within the reactor vessel. The probability of success depends on the efficacy of the cooling strategy; hence one of the key aspects of an IVR demonstration relates to the heat removal capability through the vessel wall by convection and boiling in the external water flow. This is only possible if the in-vessel thermal loading is lower than the local critical heat flux expected along the outer wall of the vessel, which is in turn highly dependent on the flow characteristics between the vessel and the insulator. The NEPTUNE-CFD multiphase flow solver is used to obtain a better understanding at local scale of the thermal hydraulics involved in this situation. The validation of the NEPTUNE-CFD code on the ULPU-V facility experiments carried out at the University of California Santa Barbara is presented as a first attempt of using CFD codes at EDF to address such an issue. Two types of computation are performed. On the one hand, a steady state algorithm is used to compute natural circulation flow rates and differential pressures and, on the other, a transient algorithm computation reveals the oscillatory nature of the pressure data recorded in the ULPU facility. Several dominant frequencies are highlighted. In both cases, the CFD simulations reproduce reasonably well the experimental data for these quantities.

  3. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)

    2017-02-15

    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  4. New vision solar system exploration missions study: Analysis of the use of biomodal space nuclear power systems to support outer solar system exploration missions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-08

    This report presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter mission s to Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of a NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. Concepts for microspacecraft capable of probing Jupiter`s atmosphere and exploring Titan were also developed. All mission designs considered use the Atlas 2AS for launch. It is shown that the bimodal nuclear power and propulsion system offers many attractive option for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination.

  5. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    International Nuclear Information System (INIS)

    Balandikov, N.I.; Ershov, V.P.; Fimushkin, V.V.; Kulikov, M.V.; Pilipenko, Y.K.; Shutov, V.B.

    1995-01-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented. copyright 1995 American Institute of Physics

  6. Using the Neptune project to benefit Australian aquatic animal health research.

    Science.gov (United States)

    McNamara, M; Ernst, I; Adlard, R D

    2015-06-29

    Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials.

  7. An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune

    Science.gov (United States)

    Beauchamp, P. M.; Spilker, T. R.

    2017-12-01

    Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.

  8. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  9. MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam; Ibgui, Laurent; Hubeny, Ivan; Milsom, John A.

    2010-01-01

    There are now many known exoplanets with Msin i within a factor of 2 of Neptune's, including the transiting planets GJ 436b and HAT-P-11b. Planets in this mass range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ 436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.

  10. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm.

    Science.gov (United States)

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681-685 nm, which exhibit the largest Stocks shifts (77-80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties.

  11. Model tests in RAMONA and NEPTUN

    International Nuclear Information System (INIS)

    Hoffmann, H.; Ehrhard, P.; Weinberg, D.; Carteciano, L.; Dres, K.; Frey, H.H.; Hayafune, H.; Hoelle, C.; Marten, K.; Rust, K.; Thomauske, K.

    1995-01-01

    In order to demonstrate passive decay heat removal (DHR) in an LMR such as the European Fast Reactor, the RAMONA and NEPTUN facilities, with water as a coolant medium, were used to measure transient flow data corresponding to a transition from forced convection (under normal operation) to natural convection under DHR conditions. The facilities were 1:20 and 1:5 models, respectively, of a pool-type reactor including the IHXs, pumps, and immersed coolers. Important results: The decay heat can be removed from all parts of the primary system by natural convection, even if the primary fluid circulation through the IHX is interrupted. This result could be transferred to liquid metal cooling by experiments in models with thermohydraulic similarity. (orig.)

  12. Incidence of urinary retention during treatment with single tablet combinations of solifenacin+tamsulosin OCAS™ for up to 1 year in adult men with both storage and voiding LUTS: A subanalysis of the NEPTUNE/NEPTUNE II randomized controlled studies.

    Directory of Open Access Journals (Sweden)

    Marcus J Drake

    Full Text Available The emergence of urinary retention (UR, specifically acute urinary retention (AUR, has been a concern when treating men with lower urinary tract symptoms (LUTS with antimuscarinic drugs.In NEPTUNE (12-week, double-blind, men (≥45 years with LUTS were randomized to receive tamsulosin oral-controlled absorption system (TOCAS 0.4 mg, fixed-dose combination (FDC of solifenacin (Soli 6 mg + TOCAS 0.4 mg, FDC Soli 9 mg + TOCAS 0.4 mg, or placebo. In NEPTUNE II (40-week, open-label extension of NEPTUNE, continuing patients received 4-week FDC Soli 6 mg + TOCAS, then FDC Soli 6 mg or 9 mg + TOCAS for the remainder of the study, switchable every 3 months.Across both studies, 1208 men received ≥1 dose of FDC Soli 6 mg or 9 mg + TOCAS for up to 52 weeks; 1199 men completed NEPTUNE and 1066 received ≥1 dose in NEPTUNE II. In total, 13 men (1.1%; 95% CI, 0.6%-1.8% reported a UR event while receiving FDC, eight of which were AUR (0.7%; 95% CI, 0.3%-1.3%, incidence 7/1000 man-years. Six men reported UR events while taking Soli 6 mg + TOCAS (three AUR, and seven men reported a UR event while taking Soli 9 mg + TOCAS (five AUR. One man developed AUR while taking TOCAS alone and four reported UR (three AUR during placebo run-in. Most AUR/UR events occurred within 4 months of treatment initiation.FDC Soli and TOCAS was associated with a low rate of UR and AUR in men with LUTS.

  13. Quality assurance program for prototype stereotactic system developed for neptun 10 Pc linac

    International Nuclear Information System (INIS)

    Khoshbin Khoshnazar, A.R.; Bahreyni Toossi, M.T.; Hashemiyan, A.R.; Bahreyni Toossi, M.T.; Salek, R.

    2005-01-01

    A prototype stereotactic radiosurgery set was designed and constructed for a Neptun 10 Pc linac that is currently being used at Imam Reza hospital in Mashad. Materials and Methods: A complete quality assurance program was designed and performed for the constructed system including isocentric accuracy test, localization accuracy test, dose delivery accuracy test and leakage radiation test. Target simulator, control alignment device and plexiglass phantom which were parts of the developed hardware were used to fulfill quality assurance program. Results: The average isocentric shift resulted from the gantry rotation and couch turning were respectively obtained to be 1.4 and 2 mm. The average localization error in the three coordinates was found to be 2.2 mm. The total treatment uncertainty due to all of the probable errors in the system was equal to 4.32 mm. The dose delivery accuracy test was carried out, the result indicated a 3.7% difference between the given and measured dose. Conclusion: The quality assurance tests showed consistent performance of the constructed system within the accepted limits; however, some inconsistency might exist in certain cases. The safety of stereotactic radiosurgery system method is increased when the overall uncertainty is minimized nd the treatment of the lesions adjacent to critical organs is avoided

  14. Neptune's New Dark Vortex: Aerosol Properties from Optical Data

    Science.gov (United States)

    Tollefson, J.; Luszcz-Cook, S.; Wong, M. H.; De Pater, I.

    2016-12-01

    Over the past year, amateur and professional astronomers alike have monitored the appearance of a new dark vortex on Neptune, dubbed SDS-2015 for "southern dark spot discovered in 2015" (Wong et al. 2016; CBET 4278). The discovery of SDS-2015 is fortuitous, being one of only five dark spots observed on Neptune since Voyager 2 imaged the Great Dark Spot (Smith et al. 1989, Science 246, 1422). A companion abstract (Wong et al., this meeting) will present Hubble Space Telescope images of SDS-2015, showcasing the discovery of the vortex in September 2015 and subsequent observations in May 2016. These observations span the optical regime. Longer wavelengths track bright companion clouds thought to form as air is diverted around SDS-2015. Shorter wavelengths reveal the dark spot itself. Combined, these data probe the vertical extent of the dark spot and Neptune's surrounding upper atmosphere. We present preliminary radiative transfer analyses of SDS-2015 using our multispectral data. Our model is the same as that in Luszcz-Cook et al. (2016, Icarus 276, 52) but extended to optical wavelengths. Prior to this work, little was known about the composition and vertical extent of Neptune's dark spots. Only data at optical wavelengths reveal these vortices, suggesting they consist of clearings in the background of fine, evenly-distributed haze particle. Alternatively, the spots may consist of low-albedo aerosols, causing their apparent darkness. Radiative transfer modeling is also one way to determine the vortex top altitude. Simulations of the Great Dark Spot by Stratman et al. (2001, Icarus 151, 275) found that the vortex top altitude is coupled to the brightness of companion clouds, where cloud opacity weakened as the top of the vortex reached higher into the tropopause region. The modeling presented here will compare these hypotheses and provide the first glimpses into the vertical structure of SDS-2015.

  15. Neptune's Discovery: Le Verrier, Adams, and the Assignment of Credit

    Science.gov (United States)

    Sheehan, William

    2011-01-01

    As one of the most significant achievements of 19th century astronomy, the discovery of Neptune has been the subject of a vast literature. A large part of this literature--beginning with the period immediately after the optical discovery in Berlin--has been the obsession with assigning credit to the two men who attempted to calculate the planet's position (and initially this played out against the international rivalry between France and England). Le Verrier and Adams occupied much different positions in the Scientific Establishments of their respective countries; had markedly different personalities; and approached the investigation using different methods. A psychiatrist and historian of astronomy tries to provide some new contexts to the familiar story of the discovery of Neptune, and argues that the personalities of these two men played crucial roles in their approaches to the problem they set themselves and the way others reacted to their stimuli. Adams had features of high-functioning autism, while Le Verrier's domineering, obsessive, orderly personality--though it allowed him to be immensely productive--eventually led to serious difficulties with his peers (and an outright revolt). Though it took extraordinary smarts to calculate the position of Neptune, the discovery required social skills that these men lacked--and thus the process to discovery was more bumbling and adventitious than it might have been. The discovery of Neptune occurred at a moment when astronomy was changing from that of heroic individuals to team collaborations involving multiple experts, and remains an object lesson in the sociological aspects of scientific endeavor.

  16. Further development of NEPTUN photon tagging facility

    Energy Technology Data Exchange (ETDEWEB)

    Symochko, Dmytro; Arnould, Michaela; Aumann, Thomas; Baumann, Martin; Pietralla, Norbert; Scheit, Heiko; Semmler, Diego; Walz, Christopher [Institut fuer Kernphysik, Darmstadt Univ. (Germany)

    2016-07-01

    The low-energy photon tagging facility NEPTUN at the superconducting Darmstadt linear accelerator (SDALINAC) has been constructed with the aim to study the photoabsorption cross section of the nuclei in the energy regions of Pygmy Dipole and Giant Dipole Resonances. Recently it went through the series of commissioning runs, which proved the concept and the ability of NEPTUN to tag the discreet nuclear states. Also, based on the results of the commissioning, major upgrade was developed to optimize the setup. Upgraded tagger will be able to operate with 60 MeV electron beam and will have extended focal plane with energy bite of more than 10 MeV. After completion of upgrade it will be possible to perform total dipole response measurement in the energy region 5-35 MeV for one target using only 2-3 settings of the spectrometer. Presentation will focus on the analysis results of commissioning runs and details of the proposed upgrade plan.

  17. Absolute spectrophotometry of Titan, Uranus, and Neptune 3500-10,500 A

    Science.gov (United States)

    Neff, J. S.; Humm, D. C.; Bergstralh, J. T.; Cochran, A. L.; Cochran, W. D.; Barker, E. S.; Tull, R. G.

    1984-01-01

    The present absolute measurements of Titan, Uranus and Neptune geometric albedo spectra in the 3500-10,500 A range have a resolution of about 7 A, together with high SNR, in virtue of the exceptional effeciency of the spectrograph and Reticon detector employed. The high precision and spectral resolution of the data, which are in excellent agreement with the Uranus albedo measurements of Lockwood et al. (1983), make possible quantitative measurements of the effects of Raman scattering by H2 in the Uranus and Neptune atmospheres.

  18. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    Science.gov (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  19. NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES.

    Science.gov (United States)

    Simon, Amy A; Rowe, Jason F; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S

    2016-02-01

    Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features.

  20. Building a Geologic Map of Neptune's Moon Triton

    Science.gov (United States)

    Martin, E. S.; Patthoff, D. A.; Bland, M. T.; Watters, T. R.; Collins, G. C.; Becker, T.

    2018-06-01

    Triton serves as a bridge between KBOs and icy satellites, and characterization of its terrains is important for advancing comparative planetological studies. We aim to create a geologic map of the Neptune-facing side of Triton at a scale of 1:5M.

  1. Haze production in the atmospheres of super-Earths and mini-Neptunes: Insight from PHAZER lab

    Science.gov (United States)

    Horst, Sarah; He, Chao; Kempton, Eliza; Moses, Julianne I.; Vuitton, Veronique; Lewis, Nikole

    2017-10-01

    Super-Earths and mini-Neptunes (~1.2-3 Earth radii) comprise a large fraction of planets in the universe and TESS (Transiting Exoplanet Survey Satellite) will increase the number that are amenable to atmospheric characterization with observatories like JWST (James Webb Space Telescope). These atmospheres should span a large range of temperature and atmospheric composition phase space, with no solar system analogues. Interpretation of current and future atmospheric observations of super-Earths and mini-Neptunes requires additional knowledge about atmospheric chemistry and photochemical haze production. We have experimentally investigated haze formation for H2, H2O, and CO2 dominated atmospheres (100x, 1000x, and 10000x solar metallicity) for a range of temperatures (300 K, 400 K, and 600 K) using the PHAZER (Planetary Haze Research) experiment at Johns Hopkins University. This is a necessary step in understanding which, if any, super-Earths and mini-Neptunes possess the conditions required for efficient production of photochemical haze in their atmospheres. We find that the production rates vary over a few orders of magnitudes with some higher than our nominal Titan experiments. We therefore expect that planets in this temperature and atmospheric composition phase space will exhibit a range of particle concentrations and some may be as hazy as Titan.

  2. Neptune's microwave spectrum from 1 mm to 20 cm

    International Nuclear Information System (INIS)

    De Pater, I.; Richmond, M.

    1989-01-01

    Total flux densities and disk-averaged brightness temperatures have been tabulated on the basis of VLA observations of Neptune at 1.3, 2, 6, and 20 cm wavelengths; a recalibration is also conducted of previous observations in order to accurately ascertain the spectral shape of this planet, which is found to have increasing brightness temperature with increasing wavelength, in contrast with that of Uranus. If all the detected emission is atmospheric thermal radiation, ammonia abundance must either be a factor of about 50 lower than the solar N value throughout the Neptune atmosphere, or the planet must emit about 0.3-0.5 mJy synchrotron radiation at 20 cm; the latter possibility is consistent with a planetary magnetic field strength of about 0.5 G at the surface. 39 refs

  3. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  4. Ethane abundance on Neptune

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, Fred; Romani, Paul; Zipoy, David; Goldstein, Jeff

    1990-01-01

    IR spectroscopic measurements of the C2H6 RR (4,5) emission line at 840.9764/cm have been used to infer Neptune's ethane mole fractions; while the resulting value is lower than that obtained by Orton et al. (1987), it lies within their 2-sigma error bounds. The present results are also found to require 2.0-5.8 times more ethane in the 0.02-2 mbar pressure region than predicted by the Romani and Atreya (1989) photochemical model. Better agreement is obtainable through a reduction of eddy mixing in the lower stratosphere and/or an increase of stratospheric temperature by more than 10 K above the 6-mbar level.

  5. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Directory of Open Access Journals (Sweden)

    Gaulme Patrick

    2017-01-01

    Full Text Available For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the

  6. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Science.gov (United States)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are

  7. Evaluation of the Trac-PF1 code for simulating the Neptun reflooding experiment

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.; Galetti, M.R.S.

    1991-01-01

    The present work presents an assessment of the TRAC-BF1 code using the results of the NEPTUN experiment which simulates the reflooding in a loss-of-coolant accident (LOCA) in a PWR. The NEPTUN experiment is composed of an array of electrically-heated tubes where the reflooding condition can be tested. Two types of tests results are presented and compared with the values obtained with the TRAC-BF1 code. From this comparison it is concluded that TRAC is suitable for verifying accident analysis. (author)

  8. What is Neptune's D/H ratio really telling us about its water abundance?

    Science.gov (United States)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-05-01

    We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.

  9. A new multi-scale platform for advanced nuclear thermal-hydraulics status and prospects of the Neptune project

    International Nuclear Information System (INIS)

    Bestion, D.; Boudier, P.; Hervieu, E.; Boucker, M.; Peturaud, P.; Guelfi, A.; Fillion, P.; Grandotto, M.; Herard, J.M.

    2005-01-01

    Full text of publication follows: Further to a thorough analysis of the industrial needs and of the limitations of current simulation tools, EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) launched in 2001 a new long-term joint development program for the next generation of nuclear reactors simulation tools. The NEPTUNE Project, which constitutes the Thermal-Hydraulics part of this comprehensive program, aims at building a new software platform for advanced two-phase flow thermal-hydraulics allowing easy multi-scale and multi-disciplinary calculations meeting the industrial needs. The NEPTUNE activities include software development, research in physical modeling and numerical methods, the development of advanced instrumentation techniques and performance of new experimental programs. The work focuses on the four different simulation scales: DNS (Direct Numerical Simulation), local CFD (Computational Fluid Dynamics), component (subchannel-type analysis) and system scales. New physical models and numerical methods are being developed for each scale as well as for their coupling. This paper gives an overview of the NEPTUNE activities. It presents the main scientific and technical achievements obtained during Phase 1 (2002-2003) and at the beginning of Phase 2 (2004- 2006). Planned work for the future is also presented. (authors)

  10. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  11. Contribution to the development and the qualification of a calculation method for the management of PWR reactors, by means of the system NEPTUNE. Fessenheim-2 follow-up

    International Nuclear Information System (INIS)

    Kamha, E.

    1981-05-01

    The aim of this study is the definition, from the NEPTUNE code system, of a neutron calculation scheme for the follow-up of pressurized water power reactors and its application to the Fessenheim-2 follow-up. First, a description of the Fessenheim reactor core and of the fission chamber which have been used for the measurements of activity in the instrumented assemblies is given, and some theoretical points on the codes and calculation methods are recalled. Then, one presents a sensitivity analysis for the choice of a calculation scheme and the calculation of an activity map of the new core without evolution. The results needed to analyze the first cycle are given. These results are obtained after the calculation of evolution using the evolutive variation-data collections, which allow to take into account feedback (Doppler effect, due to the fuel temperature variation, and effect due to the moderator temperature variation). Finally, the calculation results of the beginning of the second cycle are given [fr

  12. A retrieved upper limit of CS in Neptune's atmosphere

    Science.gov (United States)

    Iino, T.; Mizuno, A.; Nagahama, T.; Hirota, A.; Nakajima, T.

    2012-12-01

    We present our new result of CS(J=7-6), CO(J=3-2) observations of Neptune's atmosphere carried out with 10-m ASTE sub-mm waveband telescope on August 2010. As a result, while CS line was not detected with 6.4 mK 1-sigma r.m.s. noise level, CO line was detected as 282 mK with 9.7 mK noise level in antenna temperature scale. All of the observations were carried out with 512 MHz bandwidth and 500 kHz resolution, the total integration time for CS and CO were 23 m 40 s and 11 m 00 s, respectively. Abundances have been obtained from the comparison between the intensity and the synthesis spectra modeled by plane parallel 1-D radiative transfer code assuming various mixing ratio of each gas. The retrieved upper limit of CS mixing ratio was 0.03 ppb throughout tropopause to stratosphere. CO mixing ratio have been retrieved 1.0 ppm with errors +0.3 and -0.2 ppm, and the result was consistent with previous observation [1]. The origin of abundant CO in Neptune's atmosphere has been long discussed since its mixing ratio is 30 - 500 times higher than the value of other gas giants [2][3][4]. Assuming that all of CO is produced by thermochemical equilibrium process in deep interior of Neptune, required O/H value in interior is 440 times higher than the solar value [5]. For this reason, it is claimed that the external CO supply source, such as the impact of comet or asteroid, is also the possible candidates of the origin of CO along with the internal supply source [6]. In this observation, we searched the remnant gas of cometary impact in Neptune's atmosphere. Along with CO and HCN, CS could be one of the possible candidate of the remnant gas of cometary impact since CS was largely produced after the impact of comet SL/9 on Jupiter while many other major sulfur compounds have not been detected. Actually, derived L37-40. [7]Moreno et al., 2003. Planetary and Space Sciences 51, 591-611 [8]Zahnle et al.,1995. GRL 22, 1593-1596 [9]Feuchtgruber et al., 1999. Proceeding of the conference

  13. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  14. 2011 HM102: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET

    International Nuclear Information System (INIS)

    Parker, Alex H.; Holman, Matthew J.; McLeod, Brian A.; Buie, Marc W.; Borncamp, David M.; Spencer, John R.; Stern, S. Alan; Osip, David J.; Gwyn, Stephen D. J.; Fabbro, Sébastian; Kavelaars, J. J.; Benecchi, Susan D.; Sheppard, Scott S.; Binzel, Richard P.; DeMeo, Francesca E.; Fuentes, Cesar I.; Trilling, David E.; Gay, Pamela L.; Petit, Jean-Marc; Tholen, David J.

    2013-01-01

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM 102 , has the highest inclination (29.°4) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H V ∼ 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, suggesting similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ 103 and 2007 VL 305 ), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM 102 , and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospects for detecting 2011 HM 102 from the New Horizons spacecraft during its close approach in mid- to late-2013.

  15. Conceptual design of a 10^{13}-W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2016-07-01

    Full Text Available We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct–over an interval as long as 1  μs–the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18-mΩ load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international

  16. Development of the Neptune Deepwater Port: The Importance of Key Stakeholder Involvement and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Marc

    2010-09-15

    In 2005, a subsidiary of GDF SUEZ began developing the Neptune LNG Deepwater Port off the coast of Massachusetts. The project met with minimal opposition and maintained a very aggressive timeline. The reasons? Productive involvement with key stakeholders and well-defined benefits. This paper outlines the systematic approach to stakeholder outreach and mitigation planning that Neptune LNG LLC took to garner project acceptance. Details of the pre-planning phase, the stakeholder outreach phase, and the project mitigation phase are all discussed. The result was a major energy project that took less than 3.5 years to permit and 1.5 years to build.

  17. A New Dark Vortex on Neptune

    Science.gov (United States)

    Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph

    2018-03-01

    An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.

  18. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Verne, Wesley, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Computer Science, Princeton University, Princeton, NJ 08544 (United States)

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ⊕}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  19. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    International Nuclear Information System (INIS)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H 2 -He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 -He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  20. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    Science.gov (United States)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  1. 2011 HM{sub 102}: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Alex H.; Holman, Matthew J.; McLeod, Brian A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buie, Marc W.; Borncamp, David M.; Spencer, John R.; Stern, S. Alan [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Osip, David J. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Gwyn, Stephen D. J.; Fabbro, Sebastian; Kavelaars, J. J. [Canadian Astronomy Data Centre, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Benecchi, Susan D.; Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Binzel, Richard P.; DeMeo, Francesca E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fuentes, Cesar I.; Trilling, David E. [Department of Physics and Astronomy, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011 (United States); Gay, Pamela L. [Center for Science, Technology, Engineering and Mathematics (STEM) Research, Education, and Outreach, Southern Illinois University, 1220 Lincoln Dr, Carbondale, IL 62901 (United States); Petit, Jean-Marc [CNRS, UTINAM, Universite de Franche Comte, Route de Gray, F-25030 Besancon Cedex, (France); Tholen, David J., E-mail: aparker@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); and others

    2013-04-15

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM{sub 102}, has the highest inclination (29. Degree-Sign 4) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H{sub V} {approx} 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, suggesting similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ{sub 103} and 2007 VL{sub 305}), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM{sub 102}, and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospects for detecting 2011 HM{sub 102} from the New Horizons spacecraft during its close approach in mid- to late-2013.

  2. PENGARUH DARI NEPTUNE KRILL OIL PADA MANAJEMEN DISMINOREA PADA REMAJA PUTRI KELAS X DI SMA NEGERI 1 PRINGSEWU

    Directory of Open Access Journals (Sweden)

    Indri Retno Palupi

    2016-12-01

    Full Text Available Hasil survei Perkumpulan Keluarga Berencana Indonesia (PKBI cabang Bandar Lampung tahun 2014, dismenorhea  menempati urutan pertama keluhan yang sering dialami wanita, sebesar 65,3% selain siklus menstruasi yang tidak teratur. Prevalensi dismenorhea  lebih tinggi pada kelompok usia remaja 10-20 tahun sebesar 71,4%. Tujuan penelitian ini diketahui pengaruh dari neptune krill oil  pada manajemen disminorea pada remaja putri kelas X di SMA Negeri 1 Pringsewu tahun 2016. Jenis penelitian ini adalah kuantitatif dengan menggunakan rancangan desain  eksperimen dengan menggunakan pendekatan one group pre and post test. Populasi dalam penelitian ini adalah seluruh remaja putri kelas X di SMA Negeri 1 Pringsewu yang berjumlah 193 orang, sampel dalam penelitian ini berjumlah 30 orang. Teknik sampling dalam penelitian ini menggunakan teknik accidental. Analisis data yang digunakan dalam penelitian ini univariat dan bivariat dengan uji t-test.Tingkat nyeri dismenorhea  sebelum diberi Neptune krill oil  pada siswi kelas X SMA Negeri 1 Pringsewu memiliki rata-rata tingkatan nyeri yaitu 8,190 (pada skala 1-15, Tingkat nyeri dismenorhea  setelah diberi Neptune krill oil  pada siswi kelas X SMA Negeri 1 Pringsewu memiliki Rata-rata tingkat nyeri yaitu 4,747 (pada skala 1-15. Ada pengaruh pemberian Neptune krill oil  terhadap intensitas nyeri dismenorhea  pada siswi kelas X SMA Negeri 1 Pringsewu Tahun 2016 (p-value=0,000. Diharapkan remaja putri dapat mengetahui bahwa salah satu cara untuk mengurangi nyeri dismenorhea  adalah dengan mengkonsumsi Neptune krill oil. Sehingga remaja putri dapat menerapkannya dirumah saat mengalami dismenorhea.

  3. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys

    Science.gov (United States)

    Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-03-01

    Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.

  4. Multi scale analysis of thermal-hydraulics of nuclear reactors - the neptune project

    International Nuclear Information System (INIS)

    Bestion, D.

    2004-01-01

    Full text of publication follows:The NEPTUNE project aims at building a new two-phase thermalhydraulic platform for nuclear reactor simulation. It is jointly developed by CEA-DEN and EDF-DRD and also supported by IRSN and FRAMATOME-ANP. NEPTUNE is a new generation multi-scale platform. The system scale models the whole reactor circuit with 0D, 1D and 3D modules and is generally applied with a coarse meshing including about a thousand meshes. The component scale models components like the reactor Core or Steam Generators with a finer nodalization and is generally applied with 10 4 to 10 5 meshes. Since these components contain rod bundles or tube bundles the physical modelling uses a homogenization technique with a porosity. For some specific applications it was found necessary to add a two-phase CFD tool able to zoom on a portion of the circuit where small scale phenomena are of importance for design purpose or safety issues. Here the basic equations are still averaged like in RANS approach for single phase, but the space resolution is finer than in component codes and typical application may require 10 5 to 10 7 meshes. These three scales have to be coupled in order to simulate many reactor transients where both local effects and system effects play a role. In addition, two-phase Direct Numerical Simulation Tools with Interface Tracking Techniques can be used for even smaller scale investigations for a better understanding of basic physical processes and for developing closure relations for averaged models. The main challenges of this project are here presented and some first results are presented. (authors)

  5. OSSOS. IV. Discovery of a Dwarf Planet Candidate in the 9:2 Resonance with Neptune

    Science.gov (United States)

    Bannister, Michele T.; Alexandersen, Mike; Benecchi, Susan; Chen, Ying-Tung; Delsanti, Audrey; Fraser, Wesley C.; Gladman, Brett; Granvik, Mikael; Grundy, Will M.; Guilbert-Lepoutre, Aurelie; hide

    2016-01-01

    We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r 0.59 +/- 0.11 and absolute magnitude Hr 3.6 +/- 0.1; for an assumed albedo of pV 12, the object has a diameter of approximately 670 km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9:2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identied in this resonance. On hundred-megayear timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.

  6. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    Science.gov (United States)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l ~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  7. The atmosphere of Neptune - Results of radio occultation measurements with the Voyager 2 spacecraft

    Science.gov (United States)

    Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.

    1990-01-01

    This paper presents the vertical temperature and composition profiles of Neptune's troposphere and stratosphere, covering an altitude of 250 km, obtained from radio tracking data that were acquired during Voyager-2's occultation by Neptune, which began near 62 deg N planetographic latitude and ended near 45 deg S latitude. In the computations, the He/H2 abundance ratio 15/85 was adapted, which is consistent with solar abundance estimates and with recent results from Uranus. It was assumed that aerosols and heavier gases such as CH4, NH3, H2S, and H2O have a negligible effect on the microwave refractivity above the 0.5 bar pressure level.

  8. THE COLOR DIFFERENCES OF KUIPER BELT OBJECTS IN RESONANCE WITH NEPTUNE

    International Nuclear Information System (INIS)

    Sheppard, Scott S.

    2012-01-01

    The optical colors of 58 objects in mean motion resonance with Neptune were obtained. The various Neptune resonant populations were found to have significantly different surface color distributions. The 5:3 and 7:4 resonances have semimajor axes near the middle of the main Kuiper Belt and both are dominated by ultra-red material (spectral gradient: S ∼> 25). The 5:3 and 7:4 resonances have statistically the same color distribution as the low-inclination 'cold' classical belt. The inner 4:3 and distant 5:2 resonances have objects with mostly moderately red colors (S ∼ 15), similar to the scattered and detached disk populations. The 2:1 resonance, which is near the outer edge of the main Kuiper Belt, has a large range of colors with similar numbers of moderately red and ultra-red objects at all inclinations. The 2:1 resonance was also found to have a very rare neutral colored object showing that the 2:1 resonance is really a mix of all object types. The inner 3:2 resonance, like the outer 2:1, has a large range of objects from neutral to ultra-red. The Neptune Trojans (1:1 resonance) are only slightly red (S ∼ 9), similar to the Jupiter Trojans. The inner 5:4 resonance only has four objects with measured colors but shows equal numbers of ultra-red and moderately red objects. The 9:5, 12:5, 7:3, 3:1, and 11:3 resonances do not have reliable color distribution statistics since few objects have been observed in these resonances, though it appears noteworthy that all three of the measured 3:1 objects have only moderately red colors, similar to the 4:3 and 5:2 resonances. The different color distributions of objects in mean motion resonance with Neptune are likely a result from the disruption of the primordial Kuiper Belt from the scattering and migration of the giant planets. The few low-inclination objects known in the outer 2:1 and 5:2 resonances are mostly only moderately red. This suggests if the 2:1 and 5:2 have a cold low-inclination component, the objects

  9. 143 GHz BRIGHTNESS MEASUREMENTS OF URANUS, NEPTUNE, AND OTHER SECONDARY CALIBRATORS WITH BOLOCAM BETWEEN 2003 AND 2010

    International Nuclear Information System (INIS)

    Sayers, J.; Czakon, N. G.; Golwala, S. R.

    2012-01-01

    Bolocam began collecting science data in 2003 as the long-wavelength imaging camera at the Caltech Submillimeter Observatory. The planets, along with a handful of secondary calibrators, have been used to determine the flux calibration for all of the data collected with Bolocam. Uranus and Neptune stand out as the only two planets that are bright enough to be seen with high signal-to-noise in short integrations without saturating the standard Bolocam readout electronics. By analyzing all of the 143 GHz observations made with Bolocam between 2003 and 2010, we find that the brightness ratio of Uranus to Neptune is 1.027 ± 0.006, with no evidence for any variations over that period. Including previously published results at ≅ 150 GHz, we find a brightness ratio of 1.029 ± 0.006 with no evidence for time variability over the period 1983-2010. Additionally, we find no evidence for time variability in the brightness ratio of either Uranus or Neptune to the ultracompact H II region G34.3 or the protostellar source NGC 2071IR. Using recently published Wilkinson Microwave Anisotropy Probe results we constrain the absolute 143 GHz brightness of both Uranus and Neptune to ≅ 3%. Finally, we present ≅ 3% absolute 143 GHz peak flux density values for the ultracompact H II regions G34.3 and K3-50A and the protostellar source NGC 2071IR.

  10. The NEPTUN experiments on LOCA thermal-hydraulics for tight-lattice PWRs

    International Nuclear Information System (INIS)

    Dreier, J.; Chawla, R.; Rouge, N.; Yanar, S.

    1990-01-01

    The NEPTUN test facility at the Paul Scherrer Institute is currently being used to provide a broad data base for the validation of thermal-hydraulics codes used in predicting the reflooding behaviour of a tight-lattice PWR (light water highb conversion reactor, LWHCR). The present paper gives a description of the facility and the matrix to be covered in the experimental program. Results are presented from a number of forced-feed, bottom-reflooding experiments, comparisons being made with (a) measurements carried out earlier for standard-PWR geometry and (b) the results of a calculational benchmark exercise conducted in the framework of a Swiss/German LWHCR-development agreement. Rewetting for the tight, hexagonal-geometry (p/d = 1.13) NEPTUN-III test bundle has been found to occur in all tests carried out to date, in which reasonably LWHCR-representative values for the various thermal-hydraulics parameters are used. Results of the calculational benchmark exercise have confirmed the need for further code development efforts for achieving reliable predictions of LWHCR reflooding behaviour. (author) 11 figs., 3 tabs., 3 refs

  11. Monte Carlo Simulation for Neptun 10 PC medical linear accelerator and calculations of electron beam parameters

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Hashemi, S.M.; Momen Nezhad, M.

    2008-01-01

    In recent decades, cancer has been one of the main ever increasing causes of death in developed countries. In order to fulfill the aforementioned considerations different techniques have been used, one of which is Monte Carlo simulation technique. High accuracy of the Monte Carlo simulation has been one of the main reason for its wide spread application. In this study, MCNP-4C code was employed to simulate electron mode of the Neptun 10 PC Linac, dosimetric quantities for conventional fields have also been both measured and calculated. Although Neptun 10 PC Linac is no longer licensed for installation in European and some other countries but regrettably nearly 10 of them have been installed in different centers around the country and are in operation. Therefore, in this circumstance, to improve the accuracy of treatment planning, Monte Carlo simulation for Neptun 10 PC was recognized as a necessity. Simulated and measured values of depth dose curves, off axis dose distributions for 6 , 8 and 10 MeV electrons applied for four different size fields, 6 x 6 cm 2 , 10 x 10 cm 2 , 15 x 15 cm 2 and 20 x 20 cm 2 were obtained. The measurements were carried out by a Welhofer-Scanditronix dose scanning system, Semiconductor Detector and Ionization Chamber. The results of this study have revealed that the values of two main dosimetric quantities depth dose curves and off axis dose distributions, acquired by MCNP-4C simulation and the corresponding values achieved by direct measurements are in a very good agreement (within 1% to 2% difference). In general, very good consistency of simulated and measured results, is a good proof that the goal of this work has been accomplished. In other word where measurements of some parameters are not practically achievable, MCNP-4C simulation can be implemented confidently. (author)

  12. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  13. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  14. The photon tagger NEPTUN at S-DALINAC. Current status and research program

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Diego; Arnold, Michaela; Aumann, Thomas; Baumann, Martin; Beckstein, Michael; Blecher, Alexander; Cvejin, Nebojsa; Hug, Florian; Lehr, Christopher; Pietralla, Norbert; Scheit, Heiko; Symochko, Dmytro; Walz, Christopher; Wessels, Tim [Institut fuer Kernphysik, Darmstadt (Germany)

    2015-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 1MeV and 20MeV with a resolution of approximately 25keV. Tagged photons provide the possibility to measure the full dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3}:Ce based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. To measure (γ, n)- and (γ, nγ)-reactions the setup will be extended by neutron detectors based on liquid scintillators. The data will be combined with experiments at Duke University, GSI and RIKEN to obtain a complete picture of dipole strength function evolution in Sn isotopes. This talk covers the link between the different experiments and focus on the setup and status of the NEPTUN commissioning program. If available, data from the first runs with Sn will be shown.

  15. An Evaluation of NEPTUNE - A Program for Estimating Life-Cycle Cost of Oily Waste/Waste Oil Collection, Transportation and Treatment Systems.

    Science.gov (United States)

    1981-04-01

    are listed in Appendix B. There was a significant problem with the formal auditing of the NEPTUNE predictions since a complete manual checking effort...WRSE R. Z. ien BROKLY ! ACcA BSTON SATH CROTON SAT VALJLJO OUZ~A 5.3. NW AD AX A’s AMS AOFT AG! AZ AOSS AD "’s A AS& ASI AT! A’S AVM cc C"~ Cv DC OD963

  16. Neptune's 5:2 mean motion resonance in the Kuiper Belt

    Science.gov (United States)

    Lan, Lei; Malhotra, Renu

    2018-04-01

    Recent observations of distant Kuiper belt objects (KBOs) in Neptune's 5:2 mean motion resonance (MMR) present two dynamical puzzles: this third order MMR, located at a semi-major axis of about 55 AU, hosts a surprisingly large population, comparable to the well-known and prominent populations of Plutinos and Twotinos in the 3:2 and the 2:1 MMRs, respectively; secondly, the eccentricities of these resonant KBOs are concentrated near ∼0.4. To shed light on these puzzles, we investigate the phase space structure near this resonance with use of Poincaré sections of the circular planar restricted three body model, for the full range of eccentricities, (0—1). With this non-perturbative numerical analysis, we find that the resonance width in semi-major axis is narrow for very small eccentricities, but widens dramatically for eccentricities ≥ 0.2. The resonance width reaches a maximum near eccentricity 0.4, where it is similar to the maximum widths of the 2:1 and 3:2 MMRs. We confirm these results with numerical simulations of the three dimensional N-body problem of KBOs in the gravitational field of the Sun and the four giant planets; our simulations include a wide range of orbital inclinations of the KBOs relative to the solar system’s invariable plane. From these simulations, we find that the boundaries of the stable zone of the 5:2 MMR in the semimajor axis—eccentricity plane are very similar to those found with the simplified circular planar restricted three body model of the Sun-Neptune-KBO, with the caveat that orbits of eccentricity above ~0.55 are long term unstable; such orbits, which have perihelion distance less than ~25 AU, are phase-protected from close encounters with Neptune but not from destabilizing encounters with Uranus. Additionally, the numerical simulations show that the long term stability of KBOs in Neptune’s 5:2 MMR is only mildly sensitive to KBO inclination. We conclude that the two dynamical puzzles presented by the observations

  17. The HARPS search for southern extra-solar planets . XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone

    Science.gov (United States)

    Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hébrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Segransan, D.; Udry, S.

    2013-03-01

    The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla (Chile), under the GTO program ID 072.C-0488 and the regular programs: 085.C-0019, 087.C-0831 and 089.C-0732. RV data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A59

  18. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    Science.gov (United States)

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  19. On the existence of a comet belt beyond Neptune

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1980-01-01

    The possible existence of a comet belt in connection with the origin of the short-period comets is analysed. It is noted that the current theory - that these comets originate as near-parabolic comets captured by Jupiter and the other giant planets - implies an excessive wastage of comets lost in hyperbolic orbits, which is avoided in the present model. The following picture is predicted. Solid conglomerates up to approximately 10 18 g were formed by gravitational instabilities in the belt region (about 35 to 50 AU). A further fragmentation-accretion process led to a power-law mass distribution similar to that observed in the asteroids. Since then, close encounters between members of the belt have provoked the diffusion of some of them with the effect that they have become subject to the strong perturbations of Neptune. Of these a small number pass from one planet to the next inside and end as short-period comets. By means of a Monte Carlo method, the influence of close encounters between belt comets is then studied in relation to the diffusion of their orbits. It is concluded that if such a belt contains members with masses equal to or greater than that of Ceres, the orbital diffusion could proceed fast enough to maintain the number of observed short-period comets in a steady state. (author)

  20. Small Nuclear-powered Hot Air Balloons for the Exploration of the Deep Atmosphere of Uranus and Neptune

    Science.gov (United States)

    Van Cleve, J. E.; Grillmair, C. J.

    2001-01-01

    The Galileo probe gathered data in the Jovian atmosphere for about one hour before its destruction. For a wider perceptive on the atmospheres of the outer planets, multiple, long-lived observations platforms would be useful. In this paper we examine the basic physics of hot-air ballooning in a hydrogen atmosphere, using plutonium RTGs as a heat source. We find that such balloons are buoyant at a sufficiently great depth in these atmospheres, and derive equations for the balloon radius and mass of plutonium required as a function of atmospheric mass density and balloon material parameters. We solve for the buoyancy depth given the constraint that each probe may contain 1.0 kg of Pu, and find that the temperature at that depth is too great for conventional electronics (>70 C) for Jupiter and Saturn. However, the Pu mass constraint and the operating temperature constraint are consistent for Uranus and Neptune, and this concept may be applicable to those planets. Additional information is contained in the original extended abstract.

  1. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  2. Recent advances in modeling and validation of nuclear thermal-hydraulics applications with NEPTUNE CFD - 15471

    International Nuclear Information System (INIS)

    Guingo, M.; Baudry, C.; Hassanaly, M.; Lavieville, J.; Mechitouna, N.; Merigoux, N.; Mimouni, S.; Bestion, D.; Coste, P.; Morel, C.

    2015-01-01

    NEPTUNE CFD is a Computational Multi-(Fluid) Dynamics code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermo-hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase Pressurized Thermal Shock (PTS). It is co-developed within the joint research/development project NEPTUNE (AREVA, CEA, EDF, IRSN) since 2001. Over the years, to address the aforementioned applications, dedicated physical models and numerical methods have been developed and implemented in the code, including specific sets of models for turbulent boiling flows and two-phase non-adiabatic stratified flows. This paper aims at summarizing the current main modeling capabilities of the code, and gives an overview of the associated validation database. A brief summary of emerging applications of the code, such as containment simulation during a potential severe accident or in-vessel retention, is also provided. (authors)

  3. Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes: Particle Color and Size Distribution

    Science.gov (United States)

    He, Chao; Hörst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.-R.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Super-Earths and mini-Neptunes are the most abundant types of planets among the ∼3500 confirmed exoplanets, and are expected to exhibit a wide variety of atmospheric compositions. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. However, the compositions, size distributions, and optical properties of these particles in exoplanet atmospheres are poorly understood. Here, we present the results of experimental laboratory investigations of photochemical haze formation within a range of planetary atmospheric conditions, as well as observations of the color and size of produced haze particles. We find that atmospheric temperature and metallicity strongly affect particle color and size, thus altering the particles’ optical properties (e.g., absorptivity, scattering, etc.); on a larger scale, this affects the atmospheric and surface temperature of the exoplanets, and their potential habitability. Our results provide constraints on haze formation and particle properties that can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of super-Earths and mini-Neptunes with the Transiting Exoplanet Survey Satellite, the James Webb Space Telescope, and the Wide-Field Infrared Survey Telescope.

  4. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    Science.gov (United States)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  5. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Jørgensen, U. G. [Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Prester, D. Dominis [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P.; Harris, P. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Fukui, A., E-mail: furusawa@stelab.nagoya-u.ac.jp, E-mail: liweih@astro.ucla.edu, E-mail: tim.natusch@aut.ac.nz, E-mail: rzellem@lpl.arizona.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; MiNDSTEp Consortium; RoboNet Collaboration; PLANET Collaboration; and others

    2013-12-20

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M {sub h} = 0.11 ± 0.01 M {sub ☉} and M {sub p} = 9.2 ± 2.2 M {sub ⊕}, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D {sub L} = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  6. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    International Nuclear Information System (INIS)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Udalski, A.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Gould, A.; Jørgensen, U. G.; Snodgrass, C.; Prester, D. Dominis; Albrow, M. D.; Botzler, C. S.; Freeman, M.; Chote, P.; Harris, P.; Fukui, A.

    2013-01-01

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M h = 0.11 ± 0.01 M ☉ and M p = 9.2 ± 2.2 M ⊕ , corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D L = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions

  7. FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hilke E., E-mail: hilke@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2014-11-01

    Recent observations by the Kepler space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here, we calculate the required disk masses for in situ formation of the Kepler planets. We find that if close-in planets formed as isolation masses, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2v {sub esc}/Ω, where v {sub esc} is the escape velocity of the planet and Ω is the Keplerian frequency, and we use it to calculate the required disk masses for in situ formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes of less than 0.1 AU of 10{sup 3}-10{sup 5} g cm{sup –2}, implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below but not far from the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that the migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.

  8. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    Science.gov (United States)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean

  9. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Benneke, Björn; Seager, Sara, E-mail: bbenneke@mit.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-12-01

    One of the most profound questions about the newly discovered class of low-density super-Earths is whether these exoplanets are predominately H{sub 2}-dominated mini-Neptunes or volatile-rich worlds with gas envelopes dominated by H{sub 2}O, CO{sub 2}, CO, CH{sub 4}, or N{sub 2}. Transit observations of the super-Earth GJ 1214b rule out cloud-free H{sub 2}-dominated scenarios, but are not able to determine whether the lack of deep spectral features is due to high-altitude clouds or the presence of a high mean molecular mass atmosphere. Here, we demonstrate that one can unambiguously distinguish between cloudy mini-Neptunes and volatile-dominated worlds based on wing steepness and relative depths of absorption features in moderate-resolution near-infrared transmission spectra (R ∼ 100). In a numerical retrieval study, we show for GJ 1214b that an unambiguous distinction between a cloudy H{sub 2}-dominated atmosphere and cloud-free H{sub 2}O atmosphere will be possible if the uncertainties in the spectral transit depth measurements can be reduced by a factor of ∼3 compared to the published Hubble Space Telescope Wide-Field Camera 3 and Very Large Telescope transit observations by Berta et al. and Bean et al. We argue that the required precision for the distinction may be achievable with currently available instrumentation by stacking 10-15 repeated transit observations. We provide a scaling law that scales our quantitative results to other transiting super-Earths and Neptunes such as HD 97658b, 55 Cnc e, GJ 3470b and GJ 436b. The analysis in this work is performed using an improved version of our Bayesian atmospheric retrieval framework. The new framework not only constrains the gas composition and cloud/haze parameters, but also determines our confidence in having detected molecules and cloud/haze species through Bayesian model comparison. Using the Bayesian tool, we demonstrate quantitatively that the subtle transit depth variation in the Berta et al. data is

  10. A model of Neptune according to the Savic-Kasanin theory

    Science.gov (United States)

    Celebonovic, V.

    1983-10-01

    The structure and the distributions of temperature, pressure and density in the interior of Neptune are calculated using the pressure-ionization model of Savic and Kasanin (1961-1965). The model input data comprise only the mass, radius and moment of inertia; the results are presented in a graph and a table. A four-zone structure is defined, and the parameter values and profiles are found to be in good agreement with those of more complex models. Differences can be attributed to the crudeness of the present model but also to possible errors in the assumptions required by other models.

  11. A comparison of the basic photon and electron dosimetry data for Neptun 10PC linear accelerators

    International Nuclear Information System (INIS)

    Shokrani, P.; Monadi, S.

    2008-01-01

    In recent years the similarity of dosimetric characteristics of modern linear accelerators with the same make, model and nominal energy, has become more common. The goal of this study was to quantitatively investigate the reproducibility of the basic photon and electron dosimetry data from Neptun 10PC accelerators across the institutions. In the current study, the photon and electron dosimetry data collected during acceptance and initial commissioning of six Neptun 10PC linear accelerators are analyzed. The dates of original installations of these six machines were evenly spread out over a 5 year period and the series of measurements were conducted during an average of 1-2 months after original installations. All units had identical energies and beam modifiers. For photon beams, the collected data include depth dose data, output factors and beam profile data in water. For electron beams, in addition to depth dose data and output factors, the effective source skin distance for 10 x 10 cm field size is also presented. For most beam parameters the variation (one standard deviation), was less than 1.0% (less than 2% for 2 parameters). A variation of this magnitude is expected to be observed during annual calibration of well-maintained accelerators. In conclusion, this study is presenting a consistent set of data for Neptun 10PC linear accelerators. This consistency implies that for this model, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes. (authors)

  12. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune

  13. Maximizing the science return of interplanetary missions using nuclear electric power

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1995-01-01

    The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being. copyright 1995 American Institute of Physics

  14. The status of thermal-hydraulic studies on the decay heat removal by natural convection using RAMONA and NEPTUN models

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hain, K.; Marten, K.; Rust, K.; Weinberg, D.; Ohira, H.

    2004-01-01

    Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)

  15. Des premiers travaux de Le Verrier à la découverte de Neptune

    Science.gov (United States)

    Laskar, Jacques

    2017-11-01

    Urbain-Jean-Joseph Le Verrier was born in Saint-Lô on March 11, 1811. He entered the "École polytechnique" in 1831, from which he was to emerge eighth of his class two years later. After first devoting himself to chemistry, in 1836 he obtained a position as an astronomy assistant at the "École polytechnique". This choice will decide his future career, which culminates with the discovery of Neptune in 1846. Le Verrier wrote more than 200 contributions to the Comptes rendus de l'Académie des sciences. These contributions are very varied: some original articles, but also reports on publications published elsewhere, sometimes even simple notes of a single page. The whole set gives a very vivid vision of the development of the science of the 19th century. At that time, the Comptes rendus are really a reflection of the debates of the sessions of the Academy. They are published very quickly, and leave a large freedom of speech to the authors. They are therefore a snapshot of the sometimes lively polemics that animated the sessions of the French Academy of Sciences. In this limited essay, we will mainly look at the first years of the career of Le Verrier until the discovery of Neptune.

  16. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  17. APOL1-associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts.

    Science.gov (United States)

    Ng, Derek K; Robertson, Catherine C; Woroniecki, Robert P; Limou, Sophie; Gillies, Christopher E; Reidy, Kimberly J; Winkler, Cheryl A; Hingorani, Sangeeta; Gibson, Keisha L; Hjorten, Rebecca; Sethna, Christine B; Kopp, Jeffrey B; Moxey-Mims, Marva; Furth, Susan L; Warady, Bradley A; Kretzler, Matthias; Sedor, John R; Kaskel, Frederick J; Sampson, Matthew G

    2017-06-01

    Individuals of African ancestry harboring two variant alleles within apolipoprotein L1 ( APOL1 ) are classified with a high-risk (HR) genotype. Adults with an HR genotype have increased risk of focal segmental glomerulosclerosis and chronic kidney disease compared with those with a low-risk (LR) genotype (0 or 1 variants). The role of APOL1 risk genotypes in children with glomerular disease is less well known. This study characterized 104 African-American children with a glomerular disease by APOL1 genotype in two cohorts: the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE). Among these subjects, 46% had an HR genotype with a similar age at cohort enrollment. For APOL1 HR children, the median age of disease onset was older (CKiD: 4.5 versus 11.5 years for LR versus HR; NEPTUNE: 11 versus 14 years for LR versus HR, respectively) and preterm birth was more common [CKiD: 27 versus 4%; NEPTUNE: 26 versus 12%; combined odds ratio 4.6 (95% confidence interval: 1.4, 15.5)]. Within studies, HR children had lower initial estimated glomerular filtration rate (eGFR) (CKiD: 53 versus 69 mL/min/1.73 m 2 ; NEPTUNE: 74 versus 94 mL/min/1.73 m 2 ). Longitudinal eGFR decline was faster among HR children versus LR (CKiD: -18 versus -8% per year; NEPTUNE: -13 versus -3% per year). Children with an HR genotype in CKiD and NEPTUNE seem to have a more aggressive form of glomerular disease, in part due to a higher prevalence of focal segmental glomerulosclerosis. These consistent findings across independent cohorts suggest a common natural history for children with APOL1 -associated glomerular disease. Further study is needed to determine the generalizability of these findings. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  18. Achievement of a training simulator for PWR power plant: application to control parametric studies

    International Nuclear Information System (INIS)

    Salomon-Sigogne, A.

    1982-09-01

    A simulation tool adapted to training tasks is developed. One presents the description of the simulator. One studies the management of a model by NEPTUN X2. A general description of a 900 MW PWR power station and the modelling of the power station are presented. The results obtained on the FIDIANE version of the simulator are finally analyzed [fr

  19. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  20. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  1. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  2. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  3. The low energy photon tagger NEPTUN: Toward a detailed study of the Pygmy dipole resonance with real photons

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Diego; Aumann, T.; Bauer, C.; Baumann, M.; Beckstein, M.; Beller, J.; Blecher, A.; Cvejin, N.; Duchene, M.; Hug, F.; Kahlbow, J.; Knoerzer, M.; Kreis, K.; Kremer, C.; Ries, P.; Romig, C.; Scheit, H.; Schnorrenberger, L.; Symochko, D.; Walz, C. [Institut fuer Kernphysik, Darmstadt (Germany); Lefol, R. [University of Saskatchewan, Saskatoon (Canada); Loeher, B. [ExtreMe Matter Institute EMMI and Research Division, Frankfurt (Germany); Institute for Advanced Studies FIAS, Frankfurt (Germany)

    2014-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 4 MeV and 20 MeV with a resolution of approximately 25 keV. Tagged photons provide the possibility to measure the dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3} based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. We will measure (γ,n)- and (γ,nγ)-reactions with neutron detectors based on plastic scintillators. This talk provides an overview about setup and goals of the NEPTUN experiment as well as the current state of the commissioning phase. Planned optimizations of the setup, based on the results of a test beam time in June 2013, are also presented.

  4. Lifting Transit Signals from the Kepler Noise Floor. I. Discovery of a Warm Neptune

    Science.gov (United States)

    Kunimoto, Michelle; Matthews, Jaymie M.; Rowe, Jason F.; Hoffman, Kelsey

    2018-01-01

    Light curves from the 4-year Kepler exoplanet hunting mission have been searched for transits by NASA’s Kepler team and others, but there are still important discoveries to be made. We have searched the light curves of 400 Kepler Objects of Interest (KOIs) to find transit signals down to signal-to-noise ratio (S/N) ∼ 6, which is under the limit of S/N ∼ 7.1 that has been commonly adopted as a strict threshold to distinguish between a transit candidate and false alarm. We detect four new and convincing planet candidates ranging in radius from near-Mercury-size to slightly larger than Neptune. We highlight the discovery of KOI-408.05 (period = 637 days; radius = 4.9 R ⊕ incident flux = 0.6 S ⊕), a planet candidate within its host star’s Habitable Zone. We dub this planet a “warm Neptune,” a likely volatile-rich world that deserves closer inspection. KOI-408.05 joins 21 other confirmed and candidate planets in the current Kepler sample with semimajor axes a > 1.4 au. These discoveries are significant as a demonstration that the S/N threshold for detection used by the Kepler project is open to debate.

  5. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  6. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  7. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  8. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  9. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  10. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    Science.gov (United States)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  11. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  12. HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD

    International Nuclear Information System (INIS)

    Bakos, G. A.; Torres, G.; Pal, A.; Hartman, J.; Noyes, R. W.; Latham, D. W.; Sasselov, D. D.; Sipocz, B.; Esquerdo, G. A.; Kovacs, Gabor; Fernandez, J.; Kovacs, Geza; Moor, A.; Fischer, D. A.; Isaacson, H.; Johnson, J. A.; Marcy, G. W.; Howard, A.; Butler, R. P.; Vogt, S.

    2010-01-01

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V = 9.587) and metal rich ([Fe/H] = +0.31 ± 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 ± 0.0000071 days and produces a transit signal with depth of 4.2 mmag, the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial velocity (RV) data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 M + , 3.8 R + ) both in mass M p = 0.081 ± 0.009 M J (25.8 ± 2.9 M + ) and radius R p = 0.422 ± 0.014 R J (4.73 ± 0.16 R + ). HAT-P-11b orbits in an eccentric orbit with e = 0.198 ± 0.046 and ω = 355. 0 2 ± 17. 0 3, causing a reflex motion of its parent star with amplitude 11.6 ± 1.2 m s -1 , a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is T c = 2454605.89132 ± 0.00032 (BJD), with duration 0.0957 ± 0.0012 days, and secondary eclipse epoch of 2454608.96 ± 0.15 days (BJD). The basic stellar parameters of the host star are M * = 0.809 +0.020 -0.027 M sun , R * = 0.752 ± 0.021 R sun , and T eff* = 4780 ± 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission; this should make possible fruitful investigations of the detailed physical characteristic of both the planet and its parent star at unprecedented precision. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. This will be particularly useful for eccentric TEPs with low-amplitude RV variations in Kepler's field. We also present a blend analysis, that for the first time treats the case of a

  13. Analysis of Seven NEPTUN-III (Tight-Lattice) Bottom-Flooding Experiments with RELAP5/MOD3.3/BETA

    International Nuclear Information System (INIS)

    Analytis, G.Th.

    2004-01-01

    Seven tight-lattice NEPTUN-III bottom-flooding experiments are analyzed by using the frozen version of RELAP5, RELAP5/MOD3.3/BETA. This work is part of the Paul Scherrer Institute (PSI) contribution to the High Performance Light Water Reactor (HPLWR) European Union project and aims at assessing the capabilities of the code to model the reflooding phenomena in a tight hexagonal lattice (which was one of the core geometries considered at the time for an HPLWR) following a hypothetical loss-of-coolant accident scenario. Even though the latest version of the code has as a default the new PSI reflood model developed by the author, which was tested and assessed against reflooding data obtained at standard light water reactor lattices, this work shows that for tight lattices, the code underpredicts the peak clad temperatures measured during a series of reflooding experiments performed at the NEPTUN-III tight-lattice heater rod bundle facility. The reasons for these differences are discussed, and the (possible) changes needed in the framework of RELAP5/MOD3.3 for improving the modeling of reflooding in tight lattices are investigated

  14. Detection of HD in the atmospheres of Uranus and Neptune : a new determination of the D/H ratio

    NARCIS (Netherlands)

    Feuchtgruber, H; Lellouch, E; Bezard, B; Encrenaz, T; de Graauw, T.; Davis, GR

    Observations with the Short Wavelength Spectrometer (SWS) onboard the Infrared Space Observatory (ISO) have led to the first unambiguous detection of HD in the atmospheres of Uranus and Neptune, from its R(2) rotational line at 37.7 mu m Using S(0) and S(1) quadrupolar lines of H(2) at 28.2 and 17.0

  15. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    International Nuclear Information System (INIS)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J.

    2012-01-01

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  16. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  17. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  18. Revised sequence components power system models for unbalanced power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Akher, M. [Tunku Abdul Rahman Univ., Kuala Lumpur (Malaysia); Nor, K.-M. [Univ. of Technology Malaysia, Johor (Malaysia); Rashid, A.H.A. [Univ. of Malaya, Kuala Lumpur (Malaysia)

    2007-07-01

    The principle method of analysis using positive, negative, and zero-sequence networks has been used to examine the balanced power system under both balanced and unbalanced loading conditions. The significant advantage of the sequence networks is that the sequence networks become entirely uncoupled in the case of balanced three-phase power systems. The uncoupled sequence networks then can be solved in independent way such as in fault calculation programs. However, the hypothesis of balanced power systems cannot be considered in many cases due to untransposed transmission lines; multiphase line segments in a distribution power system; or transformer phase shifts which cannot be incorporated in the existing models. A revised sequence decoupled power system models for analyzing unbalanced power systems based on symmetrical networks was presented in this paper. These models included synchronous machines, transformers, transmission lines, and voltage regulators. The models were derived from their counterpart's models in phase coordinates frame of reference. In these models, the three sequence networks were fully decoupled with a three-phase coordinates features such as transformer phase shifts and transmission line coupling. The proposed models were used to develop an unbalanced power-flow program for analyzing both balanced and unbalanced networks. The power flow solution was identical to results obtained from a full phase coordinate three-phase power-flow program. 11 refs., 3 tabs.

  19. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  20. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  1. Salt Power: Is Neptune's Ole Salt a Tiger in the Tank?

    Science.gov (United States)

    Wick, Gerry Shishin

    1979-01-01

    Discussed is the utilization of salinity-gradient energy as a potential source of power. Detailed are the scientific principles, potential sources, latest research, and environmental effects associated with this alternative energy source. The future prospects are addressed. (BT)

  2. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  3. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  4. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  5. Epiphytic bryozoans on Neptune grass - a sample-based data set.

    Science.gov (United States)

    Lepoint, Gilles; Heughebaert, André; Michel, Loïc N

    2016-01-01

    The seagrass Posidonia oceanica L. Delile, commonly known as Neptune grass, is an endemic species of the Mediterranean Sea. It hosts a distinctive and diverse epiphytic community, dominated by various macroalgal and animal organisms. Mediterranean bryozoans have been extensively studied but quantitative data assessing temporal and spatial variability have rarely been documented. In Lepoint et al. (2014a, b) occurrence and abundance data of epiphytic bryozoan communities on leaves of Posidonia oceanica inhabiting Revellata Bay (Corsica, Mediterranean Sea) were reported and trophic ecology of Electra posidoniae Gautier assessed. Here, metadata information is provided on the data set discussed in Lepoint et al. (2014a) and published on the GBIF portal as a sampling-event data set: http://ipt.biodiversity.be/resource?r=ulg_bryozoa&v=1.0). The data set is enriched by data concerning species settled on Posidonia scales (dead petiole of Posidonia leaves, remaining after limb abscission).

  6. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  7. Power System Analysis

    Science.gov (United States)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  8. Neptun: an interactive code for calculating doses to man due to radionuclides in acquatic food chains

    International Nuclear Information System (INIS)

    Zach, Reto.

    1980-07-01

    A flexible and interactive code, NEPTUN, has been written in FORTRAN IV for the PDP-10 computer to assess the impact on man of radionuclides in aquatic food chains. NEPTUN is based on an equilibrium model of the linear-chain type, and calculates aquatic food concentrations and doses to man. A decay term is included for the holdup time of the various food types. A total of seven food types can be selected, which include drinking water, freshwater and salt-water plants, inverebrates and fish. Thirty different diets can be implemented and five different dose factor files can be chosen. These include dose conversion factors for infants and adults based on ICRP 2 and ICRP 26 methodologies. All dose factors involve a dose commitment of 50 years, or equivalently, 50 years of chronic exposure. To date, only stochastic ICRP 26 dose caluclations have been implemented. The basic concentration factor file contains data for 211 different radionuclides; the dose factor files are less comprehensive. However, all files can be readily expanded. The output includes tables of concentrations and doses for individual radionuclides, as well as summaries for groups of radionuclides. Existing aquatic food chain models and the sources of currently-used generic concentration factors are briefly reviewed, and dose factors based on ICRP 2 and ICRP 26 methodologies are contrasted. (auth)

  9. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  10. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  11. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  12. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  13. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  14. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  15. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  16. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  17. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  18. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  19. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  20. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  1. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  2. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  3. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Lopez, Eric [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH93HJ (United Kingdom); Vanderburg, Andrew; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Figueira, Pedro [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Mortier, Annelies; Cameron, Andrew Collier [Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Affer, Laura [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF—Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Bouchy, Francois [Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Buchhave, Lars A. [Centre for Star and Planet Formation, Natural History Museum of Denmark and Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Cosentino, Rosario, E-mail: luca.malavolta@unipd.it [INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); and others

    2017-05-01

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

  4. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  5. Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges

    Directory of Open Access Journals (Sweden)

    Aida Fazliana Abdul Kadir

    2014-01-01

    Full Text Available This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG. A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.

  6. The atmospheric structure and dynamical properties of Neptune derived from ground-based and IUE spectrophotometry

    Science.gov (United States)

    Baines, Kevin H.; Smith, Wm. Hayden

    1990-01-01

    A wide range of recent full-disk spectral observations is used to constrain the atmospheric structure and dynamical properties of Neptune; analytical determinations are made of the abundances of such spectrally active gas species as the deep-atmosphere CH4 molar fraction and the mean ortho/para hydrogen ratio in the visible atmosphere, as well as stratospheric and tropospheric aerosol properties. Compared to Uranus, the greater abundance and shorter lifetimes of Neptunian particulates in the stratospheric region irradiated by the solar UV flux indicate that such radiation is the darkening agent of stratospheric aerosols on both planets.

  7. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  8. Subchannel analysis of a boiloff experiment by a system thermalhydraulic code

    International Nuclear Information System (INIS)

    Bousbia-Salah, A.; D'Auria, F.

    2001-01-01

    This paper presents the results of system thermalhydraulic code using the sub-channel analysis approach in predicting the Neptun boil off experiments. This approach will be suitable for further works in view of coupling the system code with a 3D neutron kinetic one. The boil off tests were conducted in order to simulate the consequences of loss of coolant inventory leading to uncovery and heat up of fuel elements of a nuclear reactor core. In this framework, the Neptun low pressure test No5002, which is a good repeat experiment, is considered. The calculations were carried out using the system transient analysis code Relap5/Mod3.2. A detailed nodalization of the Neptun test section was developed. A reference case was run, and the overall data comparison shows good agreement between calculated and experimental thermalhydraulic parameters. A series of sensitivity analyses were also performed in order to assess the code prediction capabilities. The obtained results were almost satisfactory, this demonstrates, as well, the reasonable success of the subchannel analysis approach adopted in the present context for a system thermalhydraulic code.(author)

  9. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  10. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  11. Between history, art and medicine: the Dresden-Friedrichstadt hospital, its Neptune fountain and connections to Vienna.

    Science.gov (United States)

    Wollina, Uwe; Hunger, Sabine; Koch, André; França, Katlein; Lotti, Torello; Fioranelli, Massimo; Roccia, Maria Grazia

    2017-10-01

    The Dresden-Friedrichstadt hospital originated from Marcolini's summer palace. It was founded in 1845 and opened in 1849. It is a place where history and art of European importance mixes with technical and medical innovations. We reflect on the meetings of Napoleon Bonaparte and Metternich in 1812, the creation of the famous Neptune fountain by Longuelune and Matielli and two outstanding physicians of the 19 th  century, the surgeon Eduard Zeis, who coined the medical term "plastic surgery", and Maximilian Nitze, inventor of the first "modern" cystoscope and the father of urology.

  12. Power system health analysis

    International Nuclear Information System (INIS)

    Billinton, Roy; Fotuhi-Firuzabad, Mahmud; Aboreshaid, Saleh

    1997-01-01

    This paper presents a technique which combines both probabilistic indices and deterministic criteria to reflect the well-being of a power system. This technique permits power system planners, engineers and operators to maximize the probability of healthy operation as well as minimizing the probability of risky operation. The concept of system well-being is illustrated in this paper by application to the areas of operating reserve assessment and composite power system security evaluation

  13. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    Energy Technology Data Exchange (ETDEWEB)

    Huertas-Hernando, Daniel [Department of Energy Systems, SINTEF, Trondheim Norway; Farahmand, Hossein [Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim Norway; Holttinen, Hannele [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Kiviluoma, Juha [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Rinne, Erkka [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Söder, Lennart [Department of Electrical Engineering, KTH University, Stockholm Sweden; Milligan, Michael [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Ibanez, Eduardo [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Martínez, Sergio Martín [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Gomez-Lazaro, Emilio [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Estanqueiro, Ana [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Rodrigues, Luis [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Carr, Luis [Research Association for Energy Economics (FfE GmbH), Munich Germany; van Roon, Serafin [Research Association for Energy Economics (FfE GmbH), Munich Germany; Orths, Antje Gesa [Energinet.dk, Fredericia Denmark; Eriksen, Peter Børre [Energinet.dk, Fredericia Denmark; Forcione, Alain [Hydro Quebec, Montréal Canada; Menemenlis, Nickie [Hydro Quebec, Montréal Canada

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as well as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.

  14. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  15. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  16. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  17. Some matters relating to the documentary evidence of the discovery of Neptune

    Science.gov (United States)

    Foster, N.

    2014-04-01

    The discovery of the planet Neptune was regarded as one of the greatest discoveries of the nineteenth century. Its existence was first detected, not by eye or with telescope, but by the mathematical analysis of the orbit of the planet Uranus. The perturbations of Uranus were under investigation by John Couch Adams (1819-92) in Cambridge, and Urban Le Verrier (1811-77) in Paris. Both these astronomers believed that the irregularities in the motion of Uranus could only be attributed to the action of an unknown planet of the Solar System. However, the circumstances of the discovery have once again become a matter of dispute and contention by some recent historians. My aim is to review the essential facts and the interpretation placed on them and to examine the conspiracy theories that have arisen from an examination of the documentary evidence. These conspiracy theories have detracted from Adams, the true merit of his early researches and his place in the history of the discovery. There has also been speculative allegations made of the character of Adams based on selected documentary evidence, which I believe is not necessarily a true representation of the facts. In presenting a fair portrayal of Adams's researches, I have reconstructed his 1845 October solution in a way that has not been done before.

  18. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  19. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  20. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  1. A Distant Mirror: Solar Oscillations Observed on Neptune by the Kepler K2 Mission

    Science.gov (United States)

    Gaulme, P.; Rowe, J. F.; Bedding, T. R.; Benomar, O.; Corsaro, E.; Davies, G. R.; Hale, S. J.; Howe, R.; Garcia, R. A.; Huber, D.; hide

    2016-01-01

    Starting in 2014 December, Kepler (K2) observed Neptune continuously for 49 days at a 1-minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude max velocity and the mean frequency separation between mode overtones delta velocity, is surprising as the max velocity measured from Neptune photometry is larger than the accepted value. Compared to the usual reference max velocity of the sun equal to 3100 microhertz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 plus or minus 5.8 percent and 4.3 plus or minus 1.9 percent, respectively. The higher max velocity is caused by a combination of the value of max velocity of the sun, being larger at the time of observations than the usual reference from SOHO/VIRGO/SPM (Variability of solar IRradiance and Gravity Oscillations / on board SOHO (Solar and Heliospheric Observatory) / Sun PhotoMeters) data (3160 plus or minus 10 microhertz), and the noise level of the K2 time series, being 10 times larger than VIRGO's. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees iota equal 0, 1, 2. We compare the K2 data with simultaneous SOHO/VIRGO/SPM photometry and Bison (Birmingham Solar-Oscillations Network) velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 sigma, except for the few peaks with the lowest S/N.

  2. A DISTANT MIRROR: SOLAR OSCILLATIONS OBSERVED ON NEPTUNE BY THE KEPLER K 2 MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; Jackiewicz, J. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Rowe, J. F. [Institut de recherche sur les exoplanètes, iREx, Département de physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Bedding, T. R.; Huber, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Benomar, O. [Center for Space Science, NYUAD Institute, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Corsaro, E.; Garcia, R. A. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Davies, G. R. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Hale, S. J.; Howe, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Jiménez, A. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Mathur, S. [Center for Extrasolar Planetary Systems, Space Science Institute, 4750 Walnut Street, Suite #205, Boulder, CO 80301 (United States); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Appourchaux, T.; Boumier, P.; Leibacher, J., E-mail: gaulme@nmsu.edu [Institut d’Astrophysique Spatiale, Université Paris-Sud and CNRS (UMR 8617), Bâtiment 121, F-91405 Orsay cedex (France); and others

    2016-12-10

    Starting in 2014 December, Kepler K 2 observed Neptune continuously for 49 days at a 1 minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude ν {sub max} and the mean frequency separation between mode overtones Δ ν , is surprising as the ν {sub max} measured from Neptune photometry is larger than the accepted value. Compared to the usual reference ν {sub max,⊙} = 3100 μ Hz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 ± 5.8% and 4.3 ± 1.9%, respectively. The higher ν {sub max} is caused by a combination of the value of ν {sub max,⊙}, being larger at the time of observations than the usual reference from SOHO /VIRGO/SPM data (3160 ± 10 μ Hz), and the noise level of the K 2 time series, being 10 times larger than VIRGO’s. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees ℓ = 0, 1, 2. We compare the K 2 data with simultaneous SOHO /VIRGO/SPM photometry and BiSON velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 σ, except for the few peaks with the lowest S/N.

  3. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  4. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  5. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  6. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  7. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  8. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  9. Skylab technology electrical power system

    Science.gov (United States)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  10. The armenian power system operation stability investigation accounting putting new power systems into operation

    International Nuclear Information System (INIS)

    Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.

    2010-01-01

    The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined

  11. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  12. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  13. 14 CFR 27.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  14. 14 CFR 29.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  16. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power penetrat...

  17. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  18. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  19. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  20. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  1. Wide Area Measurement Based Security Assessment & Monitoring of Modern Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Power System security has become a major concern across the global power system community. This paper presents wide area measurement system (WAMS) based security assessment and monitoring of modern power system. A new three dimensional security index (TDSI) has been proposed for online security...... monitoring of modern power system with large scale renewable energy penetration. Phasor measurement unit (PMU) based WAMS has been implemented in western Danish Power System to realize online security monitoring and assessment in power system control center. The proposed security monitoring system has been...

  2. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  3. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  4. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  5. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  6. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  7. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  8. Power control and management of the grid containing largescale wind power systems

    Science.gov (United States)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two

  9. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  10. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  11. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  12. Power system protection

    International Nuclear Information System (INIS)

    Venkata, S.S.; Damborg, M.J.; Jampala, A.K.

    1991-01-01

    Power systems of the 21st century will be more modern, and complex, utilizing the latest available technologies. At the same time, generating plants will have to operate with minimal spinning margins and energy transportation has to take place at critical levels due to environmental and economical constraints. These factors dictate that the power systems be protected with optimum sensitivity, selectivity and time of operation to assure maximum reliability, and security at minimal cost. With an increasing role played by digital computers in every aspect of protection, it is important to take a critical and fresh look at the art and science of relaying and protection. The main objective of this paper is to review the past, present and future of power system protection from a software point of view

  13. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  14. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  15. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  16. Limits to power system growth

    International Nuclear Information System (INIS)

    Slater, S.M.; Klein, A.C.; Webb, B.J.; Pauley, K.A.

    1993-01-01

    In the design of space nuclear power systems a variety of conversion techniques may be used, each with its own advantages and disadvantages. A study was performed which analyzed over 120 proposed system designs. The designs were compared to identify the optimum conversion system as a function of power level and find limits to specific mass (kg/kWe) for each power cycle. Furthermore, the component masses were studied to determine which component of the overall design contributes the most to total system mass over a variety of power levels. The results can provide a focus for future research efforts by selecting the best conversion technology for the desired power range, and optimizing the system component which contributes most to the total mass

  17. Investigating power control in autonomous power systems with increasing wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Hansen, Anca D.; Sorensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Hatziargyriou, Nikos D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Public Power Corporation S.A., Athens (Greece)

    2009-07-01

    Increasing levels of wind penetration in autonomous power systems has set intensively high standards with respect to wind turbine technology during the last years. Special features of non-interconnected power systems make security issues rather critical, as the operation of large wind farms like conventional power plants is becoming a necessity. This paper includes the study case of Rhodos island, in Greece, where rapidly increasing wind penetration has started to impose serious security issues for the immediate future. The scenarios studied here correspond to reference year of study 2012 and include wind farms with three different wind turbine technologies - namely Doubly Fed Induction Generator (DFIG), Permanent Magnet Synchronous Generator (PMSG) and Active Stall Induction Generator (ASIG) based wind turbines. Aggregated models of the wind farms are being used and results for different load cases are being analyzed and discussed. The ability of wind farms to assist in some of the power system control services traditionally carried out by conventional synchronous generation is being investigated and discussed. The power grid of the island, including speed governors and automatic voltage regulators, is simulated in the dedicated power system simulation program Power Factory from DIgSILENT. (orig.)

  18. Power system protection 3 application

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  19. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  20. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  1. Concept for a power system controller for large space electrical power systems

    Science.gov (United States)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  2. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  3. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  4. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  5. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  6. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  7. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  8. Power generation and power system development for the period after 2000

    International Nuclear Information System (INIS)

    Fushtikj, Vangel

    1998-01-01

    The paper presents an overview of the power generation and power system development worldwide in terms of forecast power and energy production. The conditions of power system ability to meet the changes, caused by the new technologies development and regulatory policy, in the next intensive energy period are also considered. Identified key issues are used to emphasize the guided concepts and principles in power system evolution. (Author)

  9. System Study: Emergency Power System 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. An extremely statistically significant increasing trend was observed for EPS system unreliability for an 8-hour mission. A statistically significant increasing trend was observed for EPS system start-only unreliability.

  10. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  11. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  12. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  13. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  14. Handbook of power systems I

    CERN Document Server

    Pardalos, P M; Pereira, Mario V; Iliadis, Niko A

    2010-01-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy-related issues. The Handbook of Power Systems contains state-of-the-art contributions on power systems modeling. In particular, it covers topics like operation planning, expansion planning, transmission and distribution modelling, computing technologies in energy systems, energy auctions, risk management, market regulation, stochastic programming in energy, and forecasting in energy. The book is separated into nine sections, which cover the most important areas of energy systems. The con

  15. Requirements for the support power systems of CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    This Standard covers principal criteria and requirements for design, fabrication, installation, qualification, inspection, and documentation for assurance that support power will be available as required. The minimum requirements for support power are determined by the special safety systems and other safety-related systems that must function to ensure that the public health risk is acceptably low. Support power systems of a CANDU nuclear power plant include those parts of the electrical systems and instrument air systems that are necessary for the operation of safety-related systems

  16. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  17. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  18. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... to calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  19. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    between different wind turbines.Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suit-able to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power systemquality and stability...... integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting largeamount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small varia...

  20. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  1. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  2. Neutral Beam Power System for TPX

    International Nuclear Information System (INIS)

    Ramakrishnan, S.; Bowen, O.N.; O'Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-01-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements

  3. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  4. Power processing systems for ion thrusters.

    Science.gov (United States)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  5. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  6. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  7. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Fang, Jingyang; Li, Hongchang; Tang, Yi

    2018-01-01

    Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...

  8. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  9. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  10. UNISAT-3 Power System

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Bulgarelli, Fabio; Graziani, Filippo

    2005-05-01

    An overview of the UNISAT-3 microsatellite power subsystem is given. This is an educational, low weight and low cost microsatellite designed, built, launched and operated in space by students and professors of Scuola di Ingegneria Aerospaziale, at University of Rome "La Sapienza". The satellite power system is based on terrestrial technology solar arrays and NiCd batteries. The microsatellite hosts other solar arrays, including multi-junction solar cells and mono- crystalline silicon high efficiency solar cells, in order to compare their behaviour in orbit. Moreover a MPPT (Maximum Power Point Tracking ) system has been designed and tested, and it is a technological payload of UNISAT-3. The MPPT design follows the studies performed in the field of solar powered racing cars, with modifications to make the system suitable for use in space. The system design, numerical simulation and hardware ground testing are described in the paper. The experiment and the performance evaluation criterion are described, together with the preliminary results of the first eight months of operation in orbit.

  11. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  12. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  13. Power monitors: A framework for system-level power estimation using heterogeneous power models

    NARCIS (Netherlands)

    Bansal, N.; Lahiri, K.; Raghunathan, A.; Chakradhar, S.T.

    2005-01-01

    Paper analysis early in the design cycle is critical for the design of low-power systems. With the move to system-level specifications and design methodologies, there has been significant research interest in system-level power estimation. However, as demonstrated in this paper, the addition of

  14. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    Science.gov (United States)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  15. Evolution of Onsite and Offsite Power Systems in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mathew, Roy K.

    2015-01-01

    The AC electric power system is the source of power for station auxiliaries during normal operation and for the reactor protection system and emergency safety features during abnormal and accident conditions. Since the construction of early plants in US, the functional adequacy and requirements of the offsite power systems, safety and non safety related onsite electric power systems have changed considerably to ensure that these systems have adequate redundancy, independence, quality, maintenance and testability to support safe shutdown of the nuclear plant. The design of AC systems has evolved from a single train to multiple (up to four) redundant trains in the current evolutionary designs coupled with other auxiliary AC systems. The early plants were designed to cope with a Loss of Offsite Power (LOOP) event through the use of onsite power supplies only. However operating experience has indicated that onsite and offsite power AC power systems can fail due to natural phenomena (earthquakes, lightning strikes, fires, geomagnetic storms, tsunamis, etc.) or operational abnormalities such as loss of a single phase, switching surges or human error. The onsite DC systems may not be adequately sized to support plant safe shutdown over an extended period if AC power cannot be restored within a reasonable time. This paper will discuss the requirements to improve availability and reliability of offsite and onsite alternating current (AC) power sources to U.S. Nuclear Power Plants. In addition, the paper will discuss the requirements and guidance beyond design basis events. (author)

  16. Energy efficiency comparison between geothermal power systems

    Directory of Open Access Journals (Sweden)

    Luo Chao

    2017-01-01

    Full Text Available The geothermal water which can be considered for generating electricity with the temperature ranging from 80℃ to 150℃ in China because of shortage of electricity and fossil energy. There are four basic types of geothermal power systems: single flash, double flash, binary cycle, and flash-binary system, which can be adapted to geothermal energy utilization in China. The paper discussed the performance indices and applicable conditions of different power system. Based on physical and mathematical models, simulation result shows that, when geofluid temperature ranges from 100℃ to 130℃, the net power output of double flash power is bigger than flash-binary system. When the geothermal resource temperature is between 130℃ and 150℃, the net power output of flash-binary geothermal power system is higher than double flash system by the maximum value 5.5%. However, the sum water steam amount of double flash power system is 2 to 3 times larger than flash-binary power system, which will cause the bigger volume of equipment of power system. Based on the economy and power capacity, it is better to use flash-binary power system when the geofluid temperature is between 100℃ and 150℃.

  17. Incipient fault detection and power system protection for spaceborne systems

    Science.gov (United States)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  18. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  19. Super-Earths, Warm-Neptunes, and Hot-Jupiters: Transmission Spectroscopy for Comparative Planetology

    Science.gov (United States)

    Fraine, Jonathan D.; Deming, Drake; Knutson, Heather; Jordán, Andrés

    2014-11-01

    We used the Kepler, Hubble, and Spitzer Space Telescopes to probe the diversity of exoplanetary atmospheres with transmission spectroscopy, constraining atomic and molecular absorption in Jupiter- and Neptune-sized exoplanets. The detections and non-detections of molecular species such as water, methane, and carbon monoxide lead to greater understanding of planet formation and evolution. Recent significant advances in both theoretical and observational discoveries from planets like HD189733b, HD209458b, GJ436, as well as our own work with HAT-P-11b and GJ1214b, have shown that the range of measurable atmospheric properties spans from clear, molecular absorption dominated worlds to opaque worlds, with cloudy, hazy, or high mean molecular weight atmospheres. Characterization of these significant non-detections allows us to infer the existence of cloud compositions at high altitudes, or mean molecular weights upwards of ~1000x solar. Neither scenario was expected from extrapolations of solar system analogs. We present here our published results from GJ1214b and HAT-P-11b, as well as our recent work on HAT-P-7b and HAT-P-13b. We search for evidence of atmospheric hazes and clouds, and place constraints on the relative abundance of water vapor, methane, and carbon monoxide-- in the case of cloud-free atmospheres. We conclude by discussing how our results compare to transmission spectra obtained for other similar planets, and use these combined data to develop a better understanding for the nature of these distant and alien worlds.

  20. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  1. Electric power of residential photovoltaic power system; Jutakuyo taiyoko hatsuden system no hatsudenryo

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Kawamura, H.; Yamanaka, S.; Kawamura, H.; Ono, H.; Hayashi, K.; Naganawa, H. [Meijo University, Nagoya (Japan); Asai, H.

    1996-10-27

    Measurement was done on the annual power generation of a residential photovoltaic power system that was most suitable for the present situation in utilizing solar energy; and an examination was made on the basis of the data of a module in which an optimal operation load control was separately installed in order to operate the system more effectively. As a result, it was found that the introduction of a 3kW class system was currently most desirable as a residential photovoltaic power system, and that the problem of the optimal operation load control was crucial for the more efficient power generation. The resistance value of the optimal operation load was stable between 6 and 8 ohm in the daytime in fine weather. However, it was observed that, where no sufficient insolation was expected, the optimal operation load was ten times as much as in fine weather, being easily influenced by the environmental elements. In addition, it was revealed that, if the operation load was fixed at a specific value (6 ohm) in a clear day, the power generation was only about 85% compared with the case of controlling the optimal operation load. This figure was obtained under comparatively favorable conditions, however. 8 refs., 7 figs.

  2. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  3. Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant

    OpenAIRE

    T. Hussein

    2011-01-01

    The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The obj...

  4. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  5. Middle Eastern power systems

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Middle Eastern Power systems have evolved independently of each other over many decades. The region covers a wide geographical area of over 4 million square kilometers with an estimated population in 1990 of over 120 million people. This paper discusses the present status and future power system developments in the Middle East with emphasis on the Mashrequ Arab Countries (MAC). MAC consists of Egypt, Iraq, Jordan, Lebanon, Syria, Yemen, and the six Gulf Cooperation Council (GCC) countries, namely, Bahrain, Kuwait, Qatar, Saudi Arabia, Oman, and the United Arab Emirates (UAE). Interconnections within MAC and possible extensions to Turkey, Europe, and Central Africa are discussed. A common characteristic of the MAC power systems is that they are all operated by government or semi-government bodies. The energy resources in the region are varied. Countries such as Iraq, Egypt, and Syria have significant hydro power resources. On the other hand, the GCC countries and Iraq have abundant fossil fuel reserves

  6. Communication Systems and Study Method for Active Distribution Power systems

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...

  7. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  8. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...

  9. Designing control of a power system

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, A.; Nemeth, A.

    1980-01-01

    With the development of Hungary's electric power system (EES) the problems of the EROTERV Institute in designing mode regulation systems grew. These systems determine the balance between the production and demand for electric power, which supports not only the maintenance of the frequency and level of voltage in the electrical grid, but also determines the stability of the operation of the electric power system as a whole. A review is cited of the design solutions to control systems in a chronological order. Certain characteristic problems in contemporary control of operational modes of the electric power system are examined and their the trends in their future improvement are determined. The structural layout of mode control systems are cited.

  10. Power System Operation with Large-Scale Wind Power in Liberalised Environments

    International Nuclear Information System (INIS)

    Ummels, B.C.

    2009-01-01

    The disadvantages of producing electricity from fossil fuels are that their supply is finite and unevenly distributed across the earth. Conventional power stations also emit greenhouse gases. Therefore, sustainable alternatives must be developed, such as wind power. The disadvantages of wind are that it may or may not blow and that it is unpredictable. Th generation of electricity must however always equal the consumption. This makes the integration of wind power in the electricity system more difficult. This thesis investigates the integration of wind power into the existing power system. Simulation models are developed and used to explore the operation of power systems with a lot of wind power. The simulations provide a picture of the reliability, cost and emission of CO2 of the generation of electricity, with and without wind power. The research also takes into account electricity exchange on international markets. Possible solutions for integrating wind power, such as flexible power plants and energy storage, are investigated as well

  11. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  12. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  13. Synthesizing modeling of power generation and power limits in energy systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2015-01-01

    Applying the common mathematical procedure of thermodynamic optimization the paper offers a synthesizing or generalizing modeling of power production in various energy generators, such as thermal, solar and electrochemical engines (fuel cells). Static and dynamical power systems are investigated. Dynamical models take into account the gradual downgrading of a resource, caused by power delivery. Analytical modeling includes conversion efficiencies expressed in terms of driving fluxes. Products of efficiencies and driving fluxes determine the power yield and power maxima. While optimization of static systems requires using of differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting mixtures balances of mass and energy serve to derive power yield in terms of an active part of chemical affinity. Power maximization approach is also applied to fuel cells treated as flow engines driven by heat flux and fluxes of chemical reagents. The results of power maxima provide limiting indicators for thermal, solar and SOFC generators. They are more exact than classical reversible limits of energy transformation. - Highlights: • Systematic evaluation of power limits by optimization. • Common thermodynamic methodology for engine systems. • Original, in-depth study of power maxima. • Inclusion of fuel cells to a class of thermodynamic power systems

  14. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  15. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  16. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  17. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  18. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  19. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  20. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  1. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  2. 33 CFR 127.107 - Electrical power systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical power system must have a power source and a separate emergency power source, so that failure of one...

  3. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  4. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  5. Optimized dispatch of wind farms with power control capability for power system restoration

    DEFF Research Database (Denmark)

    Xie, Yunyun; Liu, Changsheng; Wu, Qiuwei

    2017-01-01

    As the power control technology of wind farms develops, the output power of wind farms can be constant, which makes it possible for wind farms to participate in power system restoration. However, due to the uncertainty of wind energy, the actual output power can’t reach a constant dispatch power...... in all time intervals, resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits. Therefore, it is necessary to optimize the dispatch of wind farms participating in power system restoration. Considering that the probability...... distribution function (PDF) of transient power sags is hard to obtain, a robust optimization model is proposed in this paper, which can maximize the output power of wind farms participating in power system restoration. Simulation results demonstrate that the security constraints of the restored system can...

  6. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    (Ferranti effect) would limit the power transfer and the transmission range in the absence of any compensation measures. Journal of EAEA, Vol 14, 1997. In this paper, the management of the reactive power is explored with the aim of improving the quality and the reliability of the supply in the EELPA's interconnected system ...

  7. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  8. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  9. Estimating the impacts of wind power on power systems-summary of IEA Wind collaboration

    International Nuclear Information System (INIS)

    Holttinen, Hannele

    2008-01-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power

  10. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  11. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  12. Impact of Wind Power on the Angular Stability of a Power System

    Directory of Open Access Journals (Sweden)

    Djemai NAIMI

    2008-06-01

    Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.

  13. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  14. Diversification criteria for power systems

    International Nuclear Information System (INIS)

    Kharbach, Mohammed

    2016-01-01

    Growing power demand, fuel availability and prices, technology changes, the environmental impacts of energy consumption, the changing regulatory environments and the uncertainties around such elements make the planning for optimal power mix a challenging task. The diversity approach is advocated as a most appropriate planning methodology for the optimal energy mix (Hickey et al., 2010). Shannon Wiener Index (SWI), which is the most cited diversity metric has been used to assess power systems diversity mainly from an energy perspective. To our best knowledge, there is no rigorous justification why energy has been the main variable used in diversification exercises rather than other variables such as capacity. We use a stylized power generation framework to show that diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. We also introduce a Shannon Wiener Index ratio (SWIR) that we believe captures better the diversity of a power system compared to the standard SWI. - Highlights: • Ranking power systems, from a diversity perspective, based on one criteria has many shortcomings. • Diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. • A Shannon Wiener Index ratio (SWIR) captures better the diversity of a power system compared to the standard SWI.

  15. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  16. Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model

    International Nuclear Information System (INIS)

    Fichter, Tobias; Soria, Rafael; Szklo, Alexandre; Schaeffer, Roberto; Lucena, Andre F.P.

    2017-01-01

    One of the technologies that stand out as an alternative to provide additional flexibility to power systems with large penetration of variable renewable energy (VRE), especially for regions with high direct normal irradiation (DNI), is concentrated solar power (CSP) plants coupled to thermal energy storage (TES) and back-up (BUS) systems. Brazil can develop this technology domestically, especially in its Northeast region, where most of VRE capacity is being deployed and where lies most of the CSP potential of the country. This work applies the Capacity Expansion Model REMix-CEM, which allows considering dispatch constraints of thermal power plants in long-term capacity expansion optimization. REMix-CEM calculates the optimal CSP plant configuration and its dispatch strategy from a central planning perspective. Results showed that the hybridization of CSP plants with jurema-preta biomass (CSP-BIO) becomes a least-cost option for Brazil by 2040. CSP-BIO contributes to the Northeast power system by regularizing the energy imbalance that results from the large-scale VRE expansion along with conventional inflexible power plants. CSP-BIO plants are able to increase frequency response and operational reserve services and can provide the required additional flexibility that the Northeast power system of Brazil will require into the future. - Highlights: • Concentrating solar power (CSP) plants provide flexibility to power systems. • CSP configuration is optimized endogenously during capacity expansion optimization. • CSP hybridized with biomass supports grid-integration of variable renewable energy. • CSP become the least-cost option for the Northeast power system of Brazil by 2040.

  17. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  18. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  19. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    Science.gov (United States)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  20. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  1. Large autonomous spacecraft electrical power system (LASEPS)

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  2. Optimization in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.

  3. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  4. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  5. Power system SCADA and smart grids

    CERN Document Server

    Thomas, Mini S

    2015-01-01

    Power System SCADA and Smart Grids brings together in one concise volume the fundamentals and possible application functions of power system supervisory control and data acquisition (SCADA). The text begins by providing an overview of SCADA systems, evolution, and use in power systems and the data acquisition process. It then describes the components of SCADA systems, from the legacy remote terminal units (RTUs) to the latest intelligent electronic devices (IEDs), data concentrators, and master stations, as well as:Examines the building and practical implementation of different SCADA systemsOf

  6. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  7. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  8. Power system optimization

    International Nuclear Information System (INIS)

    Bogdan, Zeljko; Cehil, Mislav

    2007-01-01

    Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)

  9. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  10. Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems

    Science.gov (United States)

    Lu, Haiyang; Tang, Xisheng

    2017-05-01

    Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.

  11. Economic/Environmental power dispatch for power systems including wind farms

    Directory of Open Access Journals (Sweden)

    Imen BEN JAOUED

    2015-05-01

    Full Text Available This paper presents the problem of the Economic/Environmental power Dispatching (EED of hybrid power system including wind energies. The power flow model for a stall regulated fixed speed wind generator (SR-FSWG system is discussed to assess the steady-state condition of power systems with wind farms. Modified Newton-Raphson algorithm including SR-FSWG is used to solve the load flow equations in which the state variables of the wind generators are combined with the nodal voltage magnitudes and angles of the entire network. The EED problem is a nonlinear constrained multi-objective optimization problem, two competing fuel cost and pollutant emission objectives should be minimized simultaneously while satisfying certain system constraints. In this paper, the resolution is done by the algorithm multi-objective particle swarm optimization (MOPSO. The effectiveness of the proposed method has been verified on IEEE 6-generator 30-bus test system and using MATLAB software package.

  12. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  13. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  14. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  15. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  16. Protection of industrial power systems

    CERN Document Server

    DAVIES, T

    2006-01-01

    The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary.Vital aspects such as the modern cartridge fuse, types of relays, and the role of the current transformer are covered and the widely used inverse definite-minimum time overcurrent relay, the theory of the M

  17. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  18. Wind power systems. Applications of computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingfeng [Toledo Univ., OH (United States). Dept. of Electrical Engineering and Computer Science; Singh, Chanan [Texas A and M Univ., College Station, TX (United States). Electrical and Computer Engineering Dept.; Kusiak, Andrew (eds.) [Iowa Univ., Iowa City, IA (United States). Mechanical and Industrial Engineering Dept.

    2010-07-01

    Renewable energy sources such as wind power have attracted much attention because they are environmentally friendly, do not produce carbon dioxide and other emissions, and can enhance a nation's energy security. For example, recently more significant amounts of wind power are being integrated into conventional power grids. Therefore, it is necessary to address various important and challenging issues related to wind power systems, which are significantly different from the traditional generation systems. This book is a resource for engineers, practitioners, and decision-makers interested in studying or using the power of computational intelligence based algorithms in handling various important problems in wind power systems at the levels of power generation, transmission, and distribution. Researchers have been developing biologically-inspired algorithms in a wide variety of complex large-scale engineering domains. Distinguished from the traditional analytical methods, the new methods usually accomplish the task through their computationally efficient mechanisms. Computational intelligence methods such as evolutionary computation, neural networks, and fuzzy systems have attracted much attention in electric power systems. Meanwhile, modern electric power systems are becoming more and more complex in order to meet the growing electricity market. In particular, the grid complexity is continuously enhanced by the integration of intermittent wind power as well as the current restructuring efforts in electricity industry. Quite often, the traditional analytical methods become less efficient or even unable to handle this increased complexity. As a result, it is natural to apply computational intelligence as a powerful tool to deal with various important and pressing problems in the current wind power systems. This book presents the state-of-the-art development in the field of computational intelligence applied to wind power systems by reviewing the most up

  19. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  20. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  1. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  2. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration

    DEFF Research Database (Denmark)

    Liu, Leo; Chen, Zhe; Bak, Claus Leth

    2012-01-01

    Recently, the security and stability of power system with large amount of wind power are the concerned issues, especially the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection...... methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms are modeled in detail in order to assess the transient stability of western Danish power system. Further, the computation of critical clearing time (CCT...... plants, load consumption level and high voltage direct current (HVDC) transmission links are taken into account. The results presented in this paper are able to provide an early awareness of power system security condition of the western Danish power system....

  3. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  4. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  5. Graphical analysis of power systems for mobile robotics

    Science.gov (United States)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  6. New architectures for space power systems

    International Nuclear Information System (INIS)

    Ehsani, M.; Patton, A.D.; Biglic, O.

    1992-01-01

    Electric power generation and conditioning have experienced revolutionary development over the past two decades. Furthermore, new materials such as high energy magnets and high temperature superconductors are either available or on the horizon. The authors' work is based on the promise that new technologies are an important driver of new power system concepts and architectures. This observation is born out by the historical evolution of power systems both in terrestrial and aerospace applications. This paper will introduce new approaches to designing space power systems by using several new technologies

  7. Economic and Power System Modeling and Analysis | Water Power | NREL

    Science.gov (United States)

    Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects

  8. Design of Simulation Product for Stability of Electric Power System Using Power System Stabilizer and Optimal Control

    Science.gov (United States)

    Junaidi, Agus; Hamid, K. Abdul

    2018-03-01

    This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.

  9. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  10. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  11. First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration

    Directory of Open Access Journals (Sweden)

    A Merzic

    2012-11-01

    Full Text Available Most power systems in underdeveloped and developing countries are based on conventional power plants, mainly "slow-response" thermal power plants and a certain number of hydro power plants; characterized by inflexible generating portfolios and traditionally designed to meet own electricity needs. Taking into account operational capabilities of conventional power systems, their development planning will face problems with integration of notable amounts of installed capacities in wind power plants (WPP. This is what highlights the purpose of this work and in that sense, here, possible variations of simulated output power from WPP in the 10 minute and hourly time interval, which need to be balanced, are investigated, presented and discussed. Comparative calculations for the amount of installed power in WPP that can be integrated into a certain power system, according to available secondary balancing power amounts, in case of concentrated and dispersed future WPP are given. The stated has been done using a part of the power system of Bosnia and Herzegovina. In the considered example, by planned geographically distributed WPP construction, even up to cca. 74% more in installed power of WPP can be integrated into the power system than in case of geographically concentrated WPP construction, for the same available amount of (secondary balancing power. These calculations have shown a significant benefit of planned, geographically distributed WPP construction, as an important recommendation for the development planning of conventional power systems, with limited balancing options. Keywords: balancing reserves,  geographical dispersion, output power  variations

  12. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  13. An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks

    International Nuclear Information System (INIS)

    Mohagheghi Fard, Soheil; Khajepour, Amir

    2016-01-01

    Highlights: • A new anti-idling system for refrigerator trucks is proposed. • This system enables regenerative braking. • An innovative two-level controller is proposed for the power management system. • A fast dynamic programming technique to find real-time SOC trajectory is proposed. • In addition to idling elimination, this system reduces fuel consumption. - Abstract: Engine idling of refrigerator trucks during loading and unloading contributes to greenhouse gas emissions due to their increased fuel consumption. This paper proposes a new anti-idling system that uses two sources of power, battery and engine-driven generator, to run the compressor of the refrigeration system. Therefore, idling can be eliminated because the engine is turned OFF and the battery supplies auxiliary power when the vehicle is stopped for loading or unloading. This system also takes advantage of regenerative braking for increased fuel savings. The power management of this system needs to satisfy two requirements: it must minimize fuel consumption in the whole cycle and must ensure that the battery has enough energy for powering the refrigeration system when the engine is OFF. To meet these objectives, a two-level controller is proposed. In the higher level of this controller, a fast dynamic programming technique that utilizes extracted statistical features of drive and duty cycles of a refrigerator truck is used to find suboptimal values of the initial and final SOC of any two consecutive loading/unloading stops. The lower level of the controller employs an adaptive equivalent fuel consumption minimization (A-ECMS) to determine the split ratio of auxiliary power between the generator and battery for each segment with initial and final SOC obtained by the high-level controller. The simulation results confirm that this new system can eliminate idling of refrigerator trucks and reduce their fuel consumption noticeably such that the cost of replacing components is recouped in a

  14. A method and system for power management

    NARCIS (Netherlands)

    Burchard, Arthur Tadeusz; Goossens, Koos Gerard Willen; Milutinovic, A.; Molnos, Anca Mariana; Steffens, Elisabeth Francisca Maria

    2009-01-01

    A method and system for power management is provided. To control power supplied to a second electronic device (106), an electronic system (100) comprises a power management subsystem (110), a first electronic device (102); The power management subsystem (110) monitors the power consumed by the first

  15. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  16. TPX power systems design overview

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1993-01-01

    The power systems for the Tokamak Physics Experiment (TPX) supply the Toroidal Field (TF). Poloidal Field (PF), Field Error Correction (FEC), and Fast Vertical Position Control (FVPC) coil systems, the Neutral Beam (NB), Ion Cyclotron (IC), Lower Hybrid (LH) and Electron Cyclotron (EC) heating and current drive systems, and all balance of plant loads. Existing equipment from the Tokamak Fusion Test Reactor (TFTR), including the motor-generator (MG) sets and the rectifiers, can be adapted for the supply of the TPX PF systems. A new TF power supply is required. A new substation is required for the heating and current drive systems (NB, IC, LH, and EC). The baseline TPX load can be taken directly from the grid without special provision, whereas if all upgrade options are undertaken, a modest amount of reactive compensation will be required. This paper describes the conceptual design of the power systems, with emphasis on the AC, TF, and PF Systems, and the quench protection of the superconducting coils

  17. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  18. Impact of Wind Power Plants on Voltage Control of Power System

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Altin, Müfit; Hansen, Anca Daniela

    High penetration of renewable energy sources poses numerous challenges on stability and security of power systems. Wind power plants (WPPs) of considerable size when connected to a weak grid by long transmission line results in low short circuit ratio at the point of connection. This may result...... control, during transient voltage dips. Steady-state analysis is performed for stressed system conditions. Results are validated through simulation in a detailed power system model....

  19. Power system studies of new ancillary services

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  20. Power quality in electric distribution systems

    International Nuclear Information System (INIS)

    Mohamed, A.A.S.

    2005-01-01

    the power quality of the electric system is defined by the constant values of the voltage and frequency, the good value of the power factor close to unity, and balanced three phase voltages and currents. capacitors are widely installed in distribution systems for reactive power compensation to achieve power and energy loss reduction, voltage regulation and system capacity release. the extent of these benefits depends greatly on low the capacitors are placed on the system . the problem of how to place capacitors on the system such that these benefits are achieved and / or maximized against the cost associated with the capacitor placement is termed the general capacitor placement problem.the presented mathematical model has been developed to determine the size, number, and location of fixed capacitor banks that will maximize the saving derived from reduction in peak power and energy loss, and that will minimize the capital and installation costs of capacitors

  1. Needs and Possibility of Involving Nuclear Power Plant in the Macedonian Power System

    International Nuclear Information System (INIS)

    Bosevski, T.; Causevski, A.

    1998-01-01

    The Macedonian Power System (MPS) used to be a part of the former Yugoslav Power System, and it was connected to the European system by 400 kV transmission lines. At the present time, the MPS works isolated from the UCPTE, only connected to the Yugoslav and Greek power systems. The connections with the Bulgarian and Albanian power systems are on a lower voltage level. The reliability and stability of the MPS needs to be improved. Macedonia is located in the central area of the Balkan, where the transmission systems from other Balkan countries are crossing. in the near future, the Macedonian Power System needs to be linked to the European system. To prepare for the energy demand at the beginning of the 21-st century, when the local coal reserves get exhausted, Macedonia needs to start with activities for substitution of the existing coal-fired thermal power plants with nuclear plants. This paper discusses the activities for global development solutions in the area of power generation. (author)

  2. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    International Nuclear Information System (INIS)

    Zhao, X.; Ramakrishnan, S.; Lawson, J.; Neumeyer, C.; Marsala, R.; Schneider, H.

    2009-01-01

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  3. Fault Diagnosis of Power Systems Using Intelligent Systems

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  4. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  5. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  6. Adequacy of operating reserves for power systems in future european wind power scenarios

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2015-01-01

    operating reserves. To study the effects of these imbalances, anticipated wind scenarios for European power systems are modelled for 2020 and 2030. Wind power forecasts for different time scales and real-time available wind power are modelled. Based on these studies, this paper qualitatively analyzes......Wind power generation is expected to increase in Europe by large extent in future. This will increase variability and uncertainty in power systems. Imbalances caused due to uncertainty in wind power forecast can trigger frequency instability in the system. These imbalances are handled using...... the adequacy of primary and secondary reserves requirements for future European power systems. This paper also discusses the challenges due to the uncertainty in wind power forecasts and their possible solutions for wind installation scenarios for 2020 and 2030....

  7. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  8. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  9. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  10. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  11. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  12. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  13. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  14. Handbook of co₂ in power systems

    CERN Document Server

    Rebennack, Steffen; Pardalos, Panos; Pereira, Mario; Iliadis, Niko

    2012-01-01

    The Handbook of CO₂in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂emission into account. The book includes power systems operation modeling with CO₂emissions considerations, CO₂market mechanism modeling, CO₂regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.

  15. Task 3.0 - Advanced power systems. Subtask 3.18 - Ash behavior in power systems

    International Nuclear Information System (INIS)

    Zygarlicke, Christopher J.; Mccollor, Donald P.; Kay, John P.; Swanson, Michael L.

    1998-01-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (T cv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems

  16. System Study: Emergency Power System 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-02-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the EPS results.

  17. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  18. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  19. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  20. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  1. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  2. System-level power optimization for real-time distributed embedded systems

    Science.gov (United States)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as

  3. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  4. System Frequency as Information Carrier in AC Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Heussen, Kai; You, Shi

    2015-01-01

    Power generators contain control systems able to regulate system frequency, but the frequency setpoint values are only rarely modified from nominal values. This paper describes design considerations for a communication system from generators to frequency sensitive distributed energy resourc es (FS......-DER) using changes to frequency setpoint values of genera- tors. Signaling discrete system states by generating off-nominal system frequency values can be used as a novel narrowband unidirectional broadcast communications channel. This paper describes two protocols for utilizing off-nominal frequencies...... to carry information: First, a protocol for dispatching blocks of FS- DER that is suitable for systems restricted to relatively slow rates of change of frequency (ROCOF). Second, for systems that allow higher ROCOF values, the feasibility of using power generation resources as a power line communication...

  5. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  6. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  7. Multi-megawatt power system trade study

    Science.gov (United States)

    Longhurst, Glen R.; Schnitzler, Bruce G.; Parks, Benjamin T.

    2002-01-01

    A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of reaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass and volume efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. The gas-Brayton system showed a specific mass advantage (3.17 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used and eliminated the need to deal with two-phase working fluid flows in the microgravity environment of space. .

  8. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  9. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  10. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  11. Design of dynamic power quality monitoring and fault diagnosis system of ship-power system based on Ethernet

    Directory of Open Access Journals (Sweden)

    HU Hongqian

    2018-02-01

    Full Text Available [Objectives] According to situation that the ship power information exchange system based on the traditional field bus has been unable to meet the needs of modern ship power system for informatization, automation, intelligent and safe operation. [Methods] This paper proposes the use of industrial Ethernet Modbus/TCP to make up for lack of field-bus. Then, the data center is established by collecting the inherent data of the field bus of the combined ship power system and collecting the real-time data from the online measurement device based on the Modbus/TCP. Correlation theory and neural network intelligent algorithm are used to analyze big data to complete the dynamic power quality monitoring and fault diagnosis of ship power system. [Results] Finally, the man-machine interface is designed with LabVIEW. [Conclusions] The feasibility of the software and hardware implementation of the scheme is verified by the laboratory platform.

  12. Multimegawatt nuclear systems for space power

    International Nuclear Information System (INIS)

    Dearien, J.A.; Whitbeck, J.F.

    1987-01-01

    The conceptual design and performance capability requirements of multi-MW nuclear powerplants for SDI systems are considered. The candidate powerplant configurations encompass Rankine, Brayton, and thermionic cycles; these respectively provide the lightest to heaviest system masses, since reactor and shield masses represent only 10-30 percent of total closed power system weight for the Rankine and Brayton systems. Many of the gas reactor concepts entertained may be operated in dual mode, thereby furnishing both long term low power and high power for short periods. Heat rejection is identified as the most important technology, since about 50 percent of the total closed mass is constituted by the heat rejection system. 9 references

  13. Mix of power system flexibility means providing 50 % wind power penetration in the Danish power system in 2030

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Lund, H.; Mathiesen, B.V.

    2008-01-01

    Time series simulations of an example of a realistic modified energy system in Denmark 2030, assuming no internal power transmission bottlenecks, indicates that it is both technical possible and economic feasible to maintain the energy balance on hourly basis, even with a wind power penetration...

  14. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  15. Systems approach to design of power supply to mines

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, Yu I; Voloshko, A V

    1986-09-01

    Optimization of power supplies to underground coal mines in the USSR is evaluated. Systems analysis of power systems is discussed. Power system of a coal mine is treated as an element of the branch power system which forms a subsystem of the local and national power system. Design of a system for computerized control of power supplies to underground coal mines is evaluated. Elements of the system, control equipment, types of information stored and processed by the system as well as economic efficiency of using computerized control for power supply in underground mining are discussed. Recommendations for computer-aided design of power systems and use of computerized control systems for power supply in underground coal mining in the USSR are made.

  16. 21 CFR 890.3710 - Powered communication system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered communication system. 890.3710 Section 890.3710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... communication system. (a) Identification. A powered communication system is an AC- or battery-powered device...

  17. Dynamic security issues in autonomous power systems with increasing wind power penetration

    DEFF Research Database (Denmark)

    Margaris, I.D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2011-01-01

    Asynchronous Generator (DFAG) and Permanent Magnet Synchronous Generator (PMSG) – are applied and issues regarding interaction with the power system are investigated. This paper provides conclusions about the dynamic security of non-interconnected power systems with high wind power penetration based...... on a complete model representation of the individual components of the system; three different types of conventional generators are included in the model, while the protection system is also incorporated. The load shedding following faults is finally discussed....

  18. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  19. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  20. 10- to 30-kWe space power system using the uranium-zirconium hydride reactor and organic Rankine power conversion system

    International Nuclear Information System (INIS)

    Determan, W.R.; Bost, D.S.

    1987-01-01

    The UZrH reactor-ORC power system has been reviewed to determine its feasibility issues and characterize the system size, mass, and efficiency in the 10- to 30-kWe power range. The major component technologies required for this concept were reviewed to determine their technology status rating for early deployment of the system on near-term missions. Dynamic Isotope Power System (DIPS) technology is directly applicable to the UZrH reactor-ORC concept in the areas of power system reliability and survivability. The UZrH reactor-ORC concept provides a truly state-of-the-art system for use in future military and civilian space power programs. 9 references

  1. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  2. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  3. Power system reliability memento; Memento de la surete du systeme electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The reliability memento of the French power system (national power transmission grid) is an educational document which purpose is to point out the role of each one as regards power system operating reliability. This memento was first published in 1999. Extensive changes have taken place since then. The new 2002 edition shows that system operating reliability is as an important subject as ever: 1 - foreword; 2 - system reliability: the basics; 3 - equipment measures taken in order to guarantee the reliability of the system; 4 - organisational and human measures taken to guarantee the reliability of the system; appendix 1 - system operation: basic concepts; appendix 2 - guiding principles governing the reliability of the power system; appendix 3 - international associations of transmission system operators; appendix 4 - description of major incidents.

  4. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  5. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  6. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    electronics based power device, which provides an adjustable damping capability to the power system where the voltage harmonic instability is measured. It can stabilize by adjusting the equivalent node impedance with its plug and play feature. This feature gives many degrees of freedom of its installation......Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...

  7. Power system protection 1 principles and components

    CERN Document Server

    Association, Electricity Training

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  8. FROM DOCUMENTATION IMAGES TO RESTAURATION SUPPORT TOOLS: A PATH FOLLOWING THE NEPTUNE FOUNTAIN IN BOLOGNA DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    F. I. Apollonio

    2017-05-01

    Full Text Available The sixteenth-century Fountain of Neptune is one of Bologna’s most renowned landmarks. During the recent restoration activities of the monumental sculpture group, consisting in precious marbles and highly refined bronzes with water jets, a photographic campaign has been carried out exclusively for documentation purposes of the current state of preservation of the complex. Nevertheless, the highquality imagery was used for a different use, namely to create a 3D digital model accurate in shape and color by means of automated photogrammetric techniques and a robust customized pipeline. This 3D model was used as basic tool to support many and different activities of the restoration site. The paper describes the 3D model construction technique used and the most important applications in which it was used as support tool for restoration: (i reliable documentation of the actual state; (ii surface cleaning analysis; (iii new water system and jets; (iv new lighting design simulation; (v support for preliminary analysis and projectual studies related to hardly accessible areas; (vi structural analysis; (vii base for filling gaps or missing elements through 3D printing; (viii high-quality visualization and rendering and (ix support for data modelling and semantic-based diagrams.

  9. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power sys...

  10. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    Science.gov (United States)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  11. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2010-01-01

    This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....

  12. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  13. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  14. Long-Term Planning in Restructured Power Systems

    International Nuclear Information System (INIS)

    Botterud, Audun

    2003-01-01

    This thesis describes the development of three decision support models for long-term investment planning in restructured power systems. The model concepts address the changing conditions for the electric power industry, with the introduction of more competitive markets, higher uncertainty and less centralised planning. Under these circumstances there is an emerging need for new planning models, also for analyses of the power system in a long-term perspective. The thesis focuses particularly on how dynamic and stochastic modelling can contribute to the improvement of decision making in a restructured power industry. We argue that the use of such modelling approaches has become more important after the introduction of competitive power markets, due to the participants' increased exposure to price fluctuations and economic risk. Our models can be applied by individual participants in the power system to evaluate investment projects for new power generation capacity. The models can also serve as a decision support tool on a regulatory level, providing analyses of the long-term performance of the power system under different regulations and market designs. In Chapter 1, we give a brief introduction to the ongoing development towards restructuring and liberalisation of the electrical power system. A discussion of the operation and organisation of restructured power systems is also provided. In Chapter 2, we look more specifically at different modelling approaches for expansion planning in electrical power systems. We also discuss how the contributions in this thesis compare to previous work in the field of decision support models for long-term planning in both regulated and competitive power systems. In Chapter 3, we develop a power market simulation model based on system dynamics. The advantages and limitations of using descriptive system dynamics models for long-term planning purposes in this context are also discussed. Chapter 4 is devoted to a novel optimisation

  15. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  16. Microwave transmission system for space power

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R M [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-09-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wave-length microwaves.

  17. Power quality improvement of a stand-alone power system subjected to various disturbances

    Science.gov (United States)

    Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din

    In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.

  18. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  19. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  20. Reliability of the emergency AC power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1983-01-01

    The reliability of the emergency ac power systems typical of most nuclear power plants was estimated, and the cost and increase in reliability for several improvements were estimated. Fault trees were constructed based on a detailed design review of the emergency ac power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. No one or two improvements can be made at all plants to significantly increase the industry-average emergency ac power system reliability; rather the most beneficial improvements are varied and plant specific. Improvements in reliability and the associated costs are estimated using plant specific designs and failure probabilities

  1. An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    Science.gov (United States)

    Lothringer, Joshua D.; Benneke, Björn; Crossfield, Ian J. M.; Henry, Gregory W.; Morley, Caroline; Dragomir, Diana; Barman, Travis; Knutson, Heather; Kempton, Eliza; Fortney, Jonathan; McCullough, Peter; Howard, Andrew W.

    2018-02-01

    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 μm. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 μm. The spectrum is indicative of moderate to high metallicity (∼100–1000× solar), while moderate-metallicity scenarios (∼100× solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 μm in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b’s atmosphere.

  2. Unbalance on power systems: a general review

    Energy Technology Data Exchange (ETDEWEB)

    Reineri, Claudio A.; Gomez Targarona, Juan C.

    2009-07-01

    A general revision of different aspects in relation to the voltage unbalance in electric power systems is presented, that should necessarily be deeply known by technical operators and designers of facilities, installations, and electric equipment. Dissimilar unbalance definitions, unbalance measurement methods, their quantification and the interpretation of such magnitudes are revised. The causes of the unbalances in electric power systems were described and analyzed. The effects on power systems are also studied, specially those that have influence on: system operability, lost of efficiency of the three phase system and their impact in the definitions of traditional power. Similarly is studied the unbalance effect on certain loads, in particular: three-phase motors, power electronics and ASD's. Also methods to locate the origin of these problems, as well as the different normative or standards, and possible methods to mitigate their effects are deeply detailed. It is concluded in the necessity to deepen the study of the power system unbalance, because numerous non resolved aspects still exist whose solution requires of a deep knowledge on the part of the involved professionals. (author)

  3. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  4. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2014-01-01

    Owing to the intermittent characteristic of solar radiation, power system reliability may be affected with high photovoltaic (PV) power penetration. To reduce large variation of PV power, additional system balancing reserve would be needed. In deregulated power systems, deployment of reserves...... and customer reliability requirements are correlated with energy and reserve prices. Therefore a new method should be developed to evaluate the impacts of PV power on customer reliability and system reserve deployment in the new environment. In this study, a method based on the pseudo-sequential Monte Carlo...... simulation technique has been proposed to evaluate the reserve deployment and customers' nodal reliability with high PV power penetration. The proposed method can effectively model the chronological aspects and stochastic characteristics of PV power and system operation with high computation efficiency...

  5. Ultracapacitor-Based Uninterrupted Power Supply System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  6. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  7. 76 FR 48159 - Integrated System Power Rates

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power Rates AGENCY... American Electric Reliability Corporation and to cover increased investments and replacements in..., prepared a Current Power Repayment Study using existing system rates. The Study indicates that Southwestern...

  8. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  9. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  10. Bus Participation Factor Analysis for Harmonic Instability in Power Electronics Based Power Systems

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2018-01-01

    Compared with the conventional power systems, large-scale power electronics based power systems present a more complex situation, where harmonic instability may be induced by the mutual interactions between the inner control loops of the converters. This paper presents an approach to locate which...... power converters and buses are more sensitive and have significant contribution to the harmonic instability. In the approach, a power electronics based system is introduced as a Multi-Input Multi-Output (MIMO) dynamic system by means of a dynamic admittance matrix. Bus Participation Factors (PFs......) are calculated by the oscillatory mode sensitivity analysis versus the elements of the MIMO transfer function matrix. The PF analysis detects which power electronic converters or buses have a higher participation in harmonic instability excitation than others or at which buses such instability problems have...

  11. PowerFilm PowerShade Fixed Site Solar System Cost Reduction Plan

    Science.gov (United States)

    2014-07-31

    system was designed which adds capability of grid tie connection to the standalone function. This battery operating system has built-in intelligence...goal concerning alternative conductive grid inks was to reduce the cost of the silver ink layer without a reduction in PV power with experimentation... system . To overcome this loss, a new BOS unit with higher power transfer efficiency has been developed. This system also has grid tie

  12. Reliability/Cost Evaluation on Power System connected with Wind Power for the Reserve Estimation

    DEFF Research Database (Denmark)

    Lee, Go-Eun; Cha, Seung-Tae; Shin, Je-Seok

    2012-01-01

    Wind power is ideally a renewable energy with no fuel cost, but has a risk to reduce reliability of the whole system because of uncertainty of the output. If the reserve of the system is increased, the reliability of the system may be improved. However, the cost would be increased. Therefore...... the reserve needs to be estimated considering the trade-off between reliability and economic aspects. This paper suggests a methodology to estimate the appropriate reserve, when wind power is connected to the power system. As a case study, when wind power is connected to power system of Korea, the effects...

  13. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  14. Communications for Coordinative Control of Wind Power Systems

    DEFF Research Database (Denmark)

    Wei, Mu

    . The performances of FSWT and DFIG connected DGS are compared and analysed. At last, the cyber security study is presented, due to the important place of security in power system communications. A security domain model is proposed to guide the implementation of the security technologies. Cyber security related...... simulation results reveal the important impact of the security configuration on improving the performance of the associated electric power system data communication systems. This PhD study explores a new aspect of the investigations of wind power system components characteristics, from communication......Due to the rapid development of wind energy and the smart grid requirement on modern power systems, data communication technologies in wind power system play an increasingly important role. The objective of the project is to investigate communication system attributes and develop advanced power...

  15. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  16. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  17. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  18. Analysis of power system collapse risk

    International Nuclear Information System (INIS)

    Eleschova, Z.; Belan, A.; Cintula, B.; Smitkova, M.

    2012-01-01

    In this paper are analysed the initialization events with considering different scenarios and their impact on the power system transient stability. As an initialization event is considered a short circuit at various places of power line. In each scenario are considered protection failures (backup protection), circuit-breaker failures (breaker failure relay activation). The individual states are analysed and the power system collapse risk assessed based on the simulation experiments results (Authors)

  19. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  20. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  1. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  2. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  3. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  4. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  5. Nova pulse power system description and status

    International Nuclear Information System (INIS)

    Holloway, R.W.; Whitham, K.; Merritt, B.T.; Gritton, D.G.; Oicles, J.A.

    1981-01-01

    The Nova laser system is designed to produce critical data in the nation's inertial confinement fusion effort. It is the world's largest peak power laser and presents various unique pulse power problems. In this paper, pulse power systems for this laser are described, the evolutionary points from prior systems are pointed out, and the current status of the hardware is given

  6. Military space power systems technology trends and issues

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Massie, L.D.

    1985-01-01

    This paper assesses baseload and above-baseload (alert, active, pulsed and burst mode) power system options, places them in logical perspective relative to power level and operating time, discusses power systems technology state-of-the-art and trends and finally attempts to project future (post 2000) space power system capabilities

  7. Reliability of the emergency ac-power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1982-01-01

    The reliability of the emergency ac-power systems typical of several nuclear power plants was estimated, the costs of several possible improvements was estimated. Fault trees were constructed based on a detailed design review of the emergency ac-power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. It was found that there are not one or two improvements that can be made at all plants to significantly increase the industry-average emergency ac-power-system reliability, but the improvements are varied and plant-specific. Estimates of the improvements in reliability and the associated cost are estimated using plant-specific designs and failure probabilities

  8. Status Report on Power System Transformation: A 21st Century Power Partnership Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mackay [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinot, Eric [Beijing Inst. of Technology (China); Cox, Sadie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Speer, Bethany [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Booth, Sam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zissler, Romain [Japan Renewable Energy Foundation (Japan); Cochran, Jaquelin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Soonee, S. K. [Power System Operation Corporation, Ltd (India); Audinet, Pierre [World Bank Energy Sector Management Assistance Program, Washington, DC (United States); Munuera, Luis [International Energy Agency, Paris (France); Arent, Doug [Joint Inst. for Strategic Energy Analysis, Washington, DC (United States)

    2015-05-27

    This report has three primary goals: (1) to articulate the concept of power system transformation; (2) to explore the current global landscape of ‘innovations’ that constitute power system transformation and provide evidence of how these innovations are emerging; and (3) to suggest an analytical framework for assessing the status of power system transformation on an on-going basis.

  9. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  10. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  11. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    2004-01-01

    The paper examines and discusses conflicts between the development of distributed power and centralized power system.......The paper examines and discusses conflicts between the development of distributed power and centralized power system....

  12. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  13. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  14. Critical Clearing Time and Wind Power in Small Isolated Power Systems Considering Inertia Emulation

    Directory of Open Access Journals (Sweden)

    Elías Jesús Medina-Domínguez

    2015-11-01

    Full Text Available The stability and security of small and isolated power systems can be compromised when large amounts of wind power enter them. Wind power integration depends on such factors as power generation capacity, conventional generation technology or grid topology. Another issue that can be considered is critical clearing time (CCT. In this paper, wind power and CCT are studied in a small isolated power system. Two types of wind turbines are considered: a squirrel cage induction generator (SCIG and a full converter. Moreover, the full converter wind turbine’s inertia emulation capability is considered, and its impact on CCT is discussed. Voltage is taken into account because of its importance in power systems of this kind. The study focuses on the small, isolated Lanzarote-Fuerteventura power system, which is expected to be in operation by 2020.

  15. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.

    2006-01-01

    Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable

  16. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    Science.gov (United States)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  17. Modeling Control Situations in Power System Operations

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Singh, Sri Niwas

    2010-01-01

    for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system......Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...

  18. Proceedings of the 2009 CIGRE Canada conference on power systems : innovation and renewal : building the new power system

    International Nuclear Information System (INIS)

    2009-01-01

    The Conseil International des Grands Reseaux Electriques (CIGRE) is the International Council on Large Electric Systems. It promotes technical, economic and environmental developments in electricity transmission and generation. CIGRE Canada is the Canadian National Committee which fosters the participation of Canadian members in CIGRE activities. CIGRE Canada organizes an annual conference that provides a forum for power system engineers, decision makers,economists, and academics to discuss technological developments in electrical power systems. The presentations at this conference addressed issues regarding the use of renewable energy sources in power transmission and distribution systems, with particular reference to control and protection; HVDC and MVDC; modelling tools; interface technologies; and reduced carbon generation and sustainability. The use of active distribution systems was also discussed in terms of future trends; the role of information technology and communications; and the role of energy storage. The session on smart grids addressed issues such as power utility perspectives; sensing, measurements and controls; advanced interfaces and decision support systems; open-architecture; distributed energy resources; and regulatory issues. Issues concerning the interconnection of non traditional energy sources to the power systems were also discussed along with recent research initiatives related to renewable energy source development. The sessions were entitled: smart grids; distributed energy resources; wind and solar PV; AC systems and HV lines; wide area measurements; power system operation and control; modelling and analysis; substation automation; and HVDC and facts. The conference featured 66 presentations, of which 35 have been catalogued separately for inclusion in this database

  19. Expert system for nuclear power plant feedwater system diagnosis

    International Nuclear Information System (INIS)

    Meguro, R.; Kinoshita, Y.; Sato, T.; Yokota, Y.; Yokota, M.

    1987-01-01

    The Expert System for Nuclear Power Plant Feedwater System Diagnosis has been developed to assist maintenance engineers in nuclear power plants. This system adopts the latest process computer TOSBAC G8050 and the expert system developing tool TDES2, and has a large scale knowledge base which consists of the expert knowledge and experience of engineers in many fields. The man-machine system, which has been developed exclusively for diagnosis, improves the man-machine interface and realizes the graphic displays of diagnostic process and path, stores diagnostic results and searches past reference

  20. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  1. Development of Dual Power Multirotor System

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2017-01-01

    Full Text Available Vertical take-off and landing (VTOL aircraft has good flight characteristics and system performance without runway. The multirotor system has been tried to expand into larger size for longer endurance or higher payload. But the motor power to endurance ratio has been limited. Due to the specific energy of gasoline being much higher than battery, introducing gasoline engine into multirotor system can be considered. This paper proposes a dual power multirotor system to combine a quadrotor using gasoline engines to provide major lift in shorter arm with another quadrotor using brushless DC motors to offer most controllable force with longer arm. System design, fabrication, and verification of the proposed dual power multirotor system development are presented. Preliminary flights have achieved 16 kg payload for long endurance flight. This is useful for various applications with advanced improvements.

  2. A summary of impacts of wind power integration on power system small-signal stability

    Science.gov (United States)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  3. Non-Cooled Power System for Venus Lander

    Science.gov (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  4. Conceptual design and systems analysis of photovoltaic power systems. Volume III(1). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. Subsystem technology presented here includes: insolation, concentration, silicon solar cell modules, CdS solar cell module, array structure, battery energy storage, power conditioning, residential power system architectural designs, intermediate power system structural design, and central power system facilities and site survey.

  5. Performance test of uninterruptible power system of PIEF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Chae; Kim, Eun Ka; Chun, Yong Bum; Park, Dea Gyu; Chu, Yong Sun; Bae, Sang Min; Koo, Dae Seo

    1998-02-01

    Because of the special features of post-irradiation examination (PIE) facility to handle very high radioactive materials like spent nuclear fuels, the electric system of the facility was designed and constructed according to a very strict requirement which is applied to nuclear power plant. A safety grade of Class 1E was adopted in the power utility system of PIEF to guarantee stable power supply to the facility without any expected interruption. In order cope with a emergency condition like a power interruption of KEPCO, a emergency power supplying system consisting of a diesel generator (3-phase, 6600/440, 1,000 kW) and uninterruptibel power supply (UPS) system was installed in PIEF. UPS power is connected to the radiation monitoring system and several other main safety devices to assure of normal operations of them for not less than 30 minutes. According to the recommendations and regulations in nuclear law, a monthly and yearly regular inspection for the UPS and emergency power supplying system are performed. In this report, a brief description to establish self-inspection technology and procedures for the above mentioned electric power supplying system at PIEF, including a principle of operation, inspection scheme, trouble shooting, and performance test techniques were made. (author). 8 refs., 3 tabs., 4 figs.

  6. Reactor power system deployment and startup

    International Nuclear Information System (INIS)

    Wetch, J.R.; Nelin, C.J.; Britt, E.J.; Klein, G.; Rasor Associates, Inc., Sunnyvale, CA; California Institute of Technology, Pasadena)

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems. 5 references

  7. Multi-port power router and its impact on resilient power grid systems

    Science.gov (United States)

    Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji

    2016-02-01

    We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.

  8. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  9. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  10. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  11. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  12. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  13. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil [' ' Dunarea de Jos' ' University of Galati, 47, Domneasca, 800008-Galati (Romania)

    2010-02-15

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results. (author)

  14. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    International Nuclear Information System (INIS)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil

    2010-01-01

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results.

  15. The BPX electrical power system

    International Nuclear Information System (INIS)

    Huttar, D.; Bronnev, G.; Fromm, N.

    1992-01-01

    This paper reports on the Burning Plasma Experiment (BPX) which when operating at a toroidal field of 8.1 tesla and a plasma current of 10.6 megamps, requires peak power of 1235 megawatts and total pulse energy of over 21 gigajoules. These requirements are twice and over four times the corresponding figures for the Tokamak Fusion Test Reactor (TFTR), respectively. The design of the BPX power system has evolved, along with the tokamak, over a period of several years and has included studies of several alternative approaches. The reapplication of the existing TFTR power and energy facilities has been basic to all approaches. Among the new sources of pulse power and energy that have been considered are: direct utility grid pulsing, new flywheel units, and lead-acid storage batteries. The toroidal field power requirements are the greatest of the BPX subsystems and, fortunately, are sufficiently free of dynamics to allow the consideration of all approaches. Additional design challenges were presented by the multiplicity of plasma control scenarios incorporated in the BPX physics planning and the power response demanded of the plasma position control system

  16. Development of management systems for nuclear power plant of Hokuriku Electric Power Company

    International Nuclear Information System (INIS)

    Nakamura, Tatsuaki; Hasunuma, Junichi; Suzuki, Shintaro

    2009-01-01

    Hokuriku Electric Power Company has been operating the Shika Nuclear Power Station that it constructed in Shika city, Ishikawa prefecture, for over 15 years since bringing Unit 1 of this plant online in July 1993. In addition to electricity generation, maintenance and inspection tasks constitute a big part of operating a large-scale nuclear power plant, and in recent years, problems at power stations in the nuclear power industry have led to several revisions of nationally regulated maintenance and inspection systems. This paper describes the background, objectives, development method, and features of the Maintenance Management System and Maintenance History Management System that make effective use of information technology to promote safer and more efficient maintenance work at large-scale nuclear power plants. (author)

  17. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  18. High-power microwave diplexers for advanced ECRH systems

    International Nuclear Information System (INIS)

    Kasparek, W.; Petelin, M.; Erckmann, V.; Bruschi, A.; Noke, F.; Purps, F.; Hollmann, F.; Koshurinov, Y.; Lubyako, L.; Plaum, B.; Wubie, W.

    2009-01-01

    In electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.

  19. An energy management system for off-grid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Zelazo, Daniel [Universitaet Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart (Germany); Dai, Ran; Mesbahi, Mehran [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2012-06-15

    Next generation power management at all scales will rely on the efficient scheduling and operation of both generating units and loads to maximize efficiency and utility. The ability to schedule and modulate the demand levels of a subset of loads within a power system can lead to more efficient use of the generating units. These methods become increasingly important for systems that operate independently of the main utility, such as microgrid and off-grid systems. This work extends the principles of unit commitment and economic dispatch problems to off-grid power systems where the loads are also schedulable. We propose a general optimization framework for solving the energy management problem in these systems. An important contribution is the description of how a wide range of sources and loads, including those with discrete states, non-convex, and nonlinear cost or utility functions, can be reformulated as a convex optimization problem using, for example, a shortest path description. Once cast in this way, solution are obtainable using a sub-gradient algorithm that also lends itself to a distributed implementation. The methods are demonstrated by a simulation of an off-grid solar powered community. (orig.)

  20. Modeling real-time balancing power demands in wind power systems using stochastic differential equations

    International Nuclear Information System (INIS)

    Olsson, Magnus; Perninge, Magnus; Soeder, Lennart

    2010-01-01

    The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)

  1. Centralized vs decentralized lunar power system study

    Science.gov (United States)

    Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.

    1991-09-01

    Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.

  2. Modeling and analysis of harmonic resonance in a power electronics based AC power system

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance...... stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented....

  3. Power systems for the Doublet III 2-MW ECH system

    International Nuclear Information System (INIS)

    Remsen, D.B. Jr.

    1981-10-01

    A system providing 5 second pulses at 60 GHz from ten 200 kW gyrotrons is being prepared for electron cyclotron heating experiments on Doublet III. The power supply for the gyrotron system is a power supply currently under construction by Universal Voltronics Corporation for the Doublet III neutral beam power supply, and is to have the option of reverse polarity (negative) to fill the needs of the system of ten gyrotons operating in parallel. The output of this power supply is 80 kV at 100A for 5 second pulses with good regulation. The output pulse rise and fall times and fault protection response time are all compatible with the gyrotron requirements

  4. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  5. NOKIA - nuclear power plant monitoring system

    International Nuclear Information System (INIS)

    Anon.

    The monitoring system is described developed specially for the LOVIISA-1 and -2 nuclear power plants with two WWER-440 units. The multiprocessor system of the WWER-440 contains 3 identical main computers. The in core instrumentation is based on stationary self-powered neutron detectors and on thermocouples for measuring the coolant temperature. The system has equipment for the automatic control of the insulation resistance of the self-powered detectors. It is also equipped with a wide range of standard and special programmes. The standard programmes permit the recording of analog and digital data at different frequencies depending on the pre-set requirements. These data are processed and form data files which are accessible from all programmes. The heart of the special programme is a code for the determination of the power distribution in the core of the WWER-440 reactor. The main part of the programme is the algorithm for computing measured neutron fluxes derived from the signals of the self-powered detectors and the algorithm for deriving the global distribution of the neutron flux in the core. The computed power distribution is used for the determination of instantaneous thermal loads and the distribution of burnup in the core. The production programme of the FINNATOM company for nuclear power plants is listed. (B.S.)

  6. Flexibility in 21st Century Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O' Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  7. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  8. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  9. Heavy Vehicle Essential Power Systems Workshop

    International Nuclear Information System (INIS)

    Susan Rogers

    2001-01-01

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road

  10. An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets

    Science.gov (United States)

    Bose, Subhonmesh

    Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

  11. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  12. Knowledge-based systems for power management

    Science.gov (United States)

    Lollar, L. F.

    1992-01-01

    NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.

  13. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  14. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  15. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  16. Operational flexibility and economics of power plants in future low-carbon power systems

    NARCIS (Netherlands)

    Brouwer, Anne Sjoerd; van den Broek, Machteld; Seebregts, Ad; Faaij, André

    2015-01-01

    Future power systems will require large shares of low-carbon generators such as renewables and power plants with Carbon Capture and Storage (CCS) to keep global warming below 2. °C. Intermittent renewables increase the system-wide demand for flexibility and affect the operation of thermal power

  17. FUNDAMENTALS OF RELIABILITY OF ELECTRIC POWER SYSTEM AND EQUIPMENT

    OpenAIRE

    Engr. Anumaka; Michael Chukwukadibia

    2011-01-01

    Today, the electric power system consists of complex interconnected network which are prone to different problems that militates against the reliability of the power system. Inadequate reliability in the power system causes problems such as high failure rate of power system installations and consumer equipment, transient and intransient faults, symmetrical faults etc. This paper provides an extensive review of the powers system and equipment reliability and related failure patterns in equipment.

  18. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  19. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  20. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)