WorldWideScience

Sample records for neoproterozoic alkaline magmatism

  1. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism

    Science.gov (United States)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.

    2001-05-01

    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  2. The evolution of Neoproterozoic magmatism in Southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in post-collisional basins

    Directory of Open Access Journals (Sweden)

    Sommer Carlos A.

    2006-01-01

    Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.

  3. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    Science.gov (United States)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  4. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    Science.gov (United States)

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily

  5. Genesis of Neoproterozoic granitoid magmatism in the Eastern Aracuai Fold Belt, eastern Brazil: field, geochemical and Sr-Nd isotopic evidence

    International Nuclear Information System (INIS)

    Celino, Joil Jose; Botelho, Nilson Francisquini; Pimentel, Marcio Martins

    2000-01-01

    The Neoproterozoic granitoid magmatism of the Aracuai Fold Belt (AFB) is an important element for the discussion of the evolution of this belt and its relationships with the African counterpart, the West Congo Belt. In the eastern part of the AFB, four different granitoid suites were recognized. The Nanuque Suite (NQS) comprises syn-tectonic peraluminous cordierite-bearing monzogranites. The Sao Paulinho Suite (SPS) consists of Th-rich peraluminous two mica or biotite-only granitoids. Calc-alkalic granitoids with magmatic epidote were grouped into the Itagimirim Suite (ITS) and post-tectonic charnockitic rocks were grouped into the Salomao Suite (SLS). Sm-Nd mineral isochron and Rb- isochron yielded ages of yielded ages of respectively 761 Ma and 714 Ma for the Nanuque and Sao Paulino suites. The general Sr-Nd isotopic characteristics of the granitoid suites and some country rocks indicate that the parental magmas were mostly the product of melting of the Paraiba do Sul metasediments. The chronological and genetic evolution the Neoproterozoic plutonism can be envisaged in a model of est-dipping subduction zone, followed by a continental collision between the Brasiliano/Pan-African (Brazil) and Congo (Africa cratons and final episodes of uplift and collapse. (author)

  6. Millennia of magmatism recorded in crustal xenoliths from alkaline provinces in Southwest Greenland

    DEFF Research Database (Denmark)

    Smit, Matthijs; Waight, Tod Earle; Nielsen, Troels

    2016-01-01

    Neoproterozoic alkaline provinces in West Greenland: 1)Sarfartôq, which overlies Archean ultra-depleted SCLM and yielded ultra-deep mineral indicators, and 2)Sisimiut, where the SCLM is refertilized and deep xenoliths (>120km) are lacking. We focused on the rare and understudied crustal xenoliths, which preserve...

  7. Neoproterozoic alkaline magmatism in Ilha do Cardoso, southeastern coast of Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Weber, Werner; Basei, Miguel A.S.; Siga Junior, Oswaldo; Sato, Kei

    2001-01-01

    This work focuses on the geology and geochronology of rocks cropping out on Cardoso Island, on the southeastern coast of Sao Paulo State, close to the boundary with Parana State. The island, with an area of about 151 km 2 is a protected area administered by the Forest Institute of the Secretariat for the Environment of the State of Sao Paulo. It is mountainous, with a peak at 814 m, and is covered by dense Atlantic Forest vegetation. The island is made up mainly of an igneous complex with light grey leucocratic, inequigranular, medium to coarse-grained syenites. The Tres Irmaos Syenite (STI), composed of pyroxene, hornblende, and perthitic to mesoperthitic microcline, predominates has magmatic flow structures, and it cut by the pinkish grey, leucocratic medium-grained Cambriu alkali-feldspar granites (GC). Geochemical analysis of STI and GC demonstrate their metaluminous alkaline nature and late orogenic to anorogenic character. The bodies formed between 620 and 570 Ma according to U-Pb dating of zircons and cooled between 597 and 531 Ma (K-Ar in amphiboles). Whole rock Sm-Nd analyses yield Meso- and Paleoproterozoic TDM ages (1,500 - 2,200 Ma). A belt of low-grade metasedimentary rocks occurs in the northern part of the island. Quartz schist, quartz-mica schist and mica-quartz schist, often-containing andalusite and cordierite, predominate. Geochemical and geochronological data suggest that the sources of the metasediments were continental arc andesites of whose protoliths separated from the mantle between 1,800 and 2,200 Ma during the Paleoproterozoic. These metasediments probably continue on the continent in the Taquari region and extend southwards in narrow strips between the granitoids of the Paranagua Domain. (author)

  8. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications

    Science.gov (United States)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min

    2018-03-01

    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  9. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton

    Science.gov (United States)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane

    2017-03-01

    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  10. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  11. Unravelling the sulphur isotope systematics of an alkaline magmatic province: implications for REE mineralization and exploration

    Science.gov (United States)

    Hutchison, W.; Finch, A.; Boyce, A.; Friis, H.; Borst, A. M.; Horsburgh, N. J.

    2017-12-01

    Some of the world's best alkaline rare earth element (REE) deposits are formed in magmatic systems that are sealed (i.e., those that are autometasomatised and maintain reducing conditions). Conversely, in open systems where oxidizing fluids infiltrate, it is commonly assumed that REE are redistributed over a wider (less concentrated) zone. Sulphur isotope fractionation is sensitive to variations in temperature and redox, and, although sulphide minerals are relatively abundant in alkaline systems, there have been few attempts to test these hypotheses and develop a sulphur isotope proxy for alkaline metasomatism and formation of associated REE deposits. The Gardar Rift Province in southern Greenland was volcanically active in two periods between 1300 and 1100 Ma and is an ideal natural laboratory to explore sulphur isotope systematics because a near-complete alkaline magmatic lineage is exposed. We present new δ34S from across the province with a particular focus on three alkaline systems (Ilímaussaq, Motzfeldt and Ivigtût) that also host major REE deposits. Primitive mafic rocks from regional Gardar dykes and lavas have a restricted range of δ34S between 0 and 3 ‰ and fractional crystallization imparts no observable change in δ34S. In a few cases high-δ34S rocks (>15 ‰) occur when intrusive units have assimilated local sedimentary crust (δ34S = 25 ‰). Most δ34S variation takes place in the roof zones of alkaline intrusions during late-magmatic and hydrothermal stages, and we identify clear differences between the complexes. At Ilímaussaq, where the magmatic series is exceptionally reduced (below QFM buffer), roof zone δ34S remains narrow (0-3 ‰). At Motzfeldt, a more open oxidizing roof zone (MH buffer), δ34S ranges from -12 ‰ in late-stage fluorite veins to +12 ‰ where local crust has been assimilated. Ivigtût is intermediate between these end-members varying between -5 to +5 ‰. The δ34S variations primarily relate to temperature and

  12. The neoproterozoic Goias magmatic arc, central Brazil: a review and new Sm-Nd isotopic data

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Gioia, Simone Maria Costa Lima

    2000-01-01

    In this study we review the main characteristics and geochronological/isotopic data of metaigneous rocks of the juvenile Neoproterozoic Goias Magmatic Arc in central Brazil. Some new Sm-Nd isotopic data are also presented for both the southern (Arenopolis) and northern (Mara Rosa) sections of the arc. In the south, granitoids of the Choupana-Turvania area yielded a Sm-Nd whole-rock isochron age of 863± 97 Ma and e Nd (T) of +4.1 T D M model ages vary between 0.94 and 1.13 Ga. Metavolcanic rocks in the Pontalina region have a Sm-Nd whole rock isochron age of 762 ± 77 Ma and e Nd (T) of +2.9. T DM values are between 0.96 and 1.10 Ga. In the northern section of the Goias Arc, mylonitic gneisses of the Serra Azul ridge, an important N30E shear zone, were investigated and have a Sm-Nd isochron age of 3058 ± 120 Ma and initial e Nd value of ca.+ 2.1. This data suggests that the Serra Azul ridge might represent either a mylonitized fragment of the Archaen terranes exposed just to the south, or the sialic basement of the Araguaia Belt supracrustal, along the eastern margin of the Amazon Craton. The geochronological data available so far indicate a long history of arc formation and amalgamation on the western margin of the Sao Francisco-Congo continent during the Neoproterozoic. The history of convergence of continental masses is partially coeval with the fragmentation of Rodinia, indicating that the western margin (present geographic reference) of that continent occupied a peripheral setting in the Rodinia super continent. (author)

  13. The neoproterozoic Goias magmatic arc, central Brazil: a review and new Sm-Nd isotopic data

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Gioia, Simone Maria Costa Lima [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: marcio@unb.br

    2000-03-01

    In this study we review the main characteristics and geochronological/isotopic data of metaigneous rocks of the juvenile Neoproterozoic Goias Magmatic Arc in central Brazil. Some new Sm-Nd isotopic data are also presented for both the southern (Arenopolis) and northern (Mara Rosa) sections of the arc. In the south, granitoids of the Choupana-Turvania area yielded a Sm-Nd whole-rock isochron age of 863{+-} 97 Ma and e{sub Nd} (T) of +4.1 T{sub D}M model ages vary between 0.94 and 1.13 Ga. Metavolcanic rocks in the Pontalina region have a Sm-Nd whole rock isochron age of 762 {+-} 77 Ma and e{sub Nd} (T) of +2.9. T {sub DM} values are between 0.96 and 1.10 Ga. In the northern section of the Goias Arc, mylonitic gneisses of the Serra Azul ridge, an important N30E shear zone, were investigated and have a Sm-Nd isochron age of 3058 {+-} 120 Ma and initial e{sub Nd} value of ca.+ 2.1. This data suggests that the Serra Azul ridge might represent either a mylonitized fragment of the Archaen terranes exposed just to the south, or the sialic basement of the Araguaia Belt supracrustal, along the eastern margin of the Amazon Craton. The geochronological data available so far indicate a long history of arc formation and amalgamation on the western margin of the Sao Francisco-Congo continent during the Neoproterozoic. The history of convergence of continental masses is partially coeval with the fragmentation of Rodinia, indicating that the western margin (present geographic reference) of that continent occupied a peripheral setting in the Rodinia super continent. (author)

  14. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    Science.gov (United States)

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  15. Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar

    Science.gov (United States)

    Thomas, Ronald J.; De Waele, B.; Schofield, D.I.; Goodenough, K.M.; Horstwood, M.; Tucker, R.; Bauer, W.; Annells, R.; Howard, K. J.; Walsh, G.; Rabarimanana, M.; Rafahatelo, J.-M.; Ralison, A.V.; Randriamananjara, T.

    2009-01-01

    show characteristics of arc-related magmatism, but include both calc-alkaline and tholeiitic compositions. It is not certain when the two Bemarivo terranes were juxtaposed, but ages from metamorphic rims on zircon suggest that both the northern and southern terranes were accreted to the northern cratonic margin of Madagascar at about 540-530 Ma. Terrane accretion included the assembly of the Archaean Antongil and Antananarivo cratons and the high-grade Neoproterozoic Anaboriana Belt. Late- to post-tectonic granitoids of the Maevarano Suite, the youngest plutons of which gave ca. 520 Ma ages, intrude all terranes in northern Madagascar showing that terrane accretion was completed by this time. ?? 2009 Natural Environment Research Council (NERC).

  16. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  17. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa

    Science.gov (United States)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter

    2013-01-01

    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  18. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes

    Science.gov (United States)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.

    2014-11-01

    The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction-accretion-collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U-Pb and Lu-Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206Pb/238U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206Pb/238U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530

  19. U-Pb (LA-ICPMS) zircon ages and Nd isotopes for granitoids of the Tamboril-Santa Quiteria Complex, Ceara Central Domain: implication for neoproterozoic syncollisional magmatism in north Borborema Province, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Felipe Grandjean da; Araujo, Carlos Eduardo Ganade de; Vasconcelos, Antonio Maurilio, E-mail: felipe.costa@cprm.gov.br, E-mail: caegeo@gmail.com, E-mail: maurilio.vasconcelos@cprm.gov.br [Servico Geologico do Brasil (CPRM), Fortaleza, CE (Brazil); Amaral, Wagner da Silva, E-mail: wamaral@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Geologia; Rodrigues, Joseneusa Brilhante, E-mail: joseneusa.rodrigues@cprm.gov.br [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil)

    2013-06-15

    The Tamboril-Santa Quiteria Complex (TSQC) is one of the largest Neoproterozoic plutonic manifestations in the north Borborema Province (NE Brazil). It represents an anatectic/igneous association characterized by a number of magmatic pulses that occurred in the 650-610 Ma interval. In this paper, we present U-Pb (LA-MC-ICP-MS) zircon ages and Nd isotopes for quartz monzonite and quartz diorites of the southern part of TSQC. The quartz monzonite belong to a hybrid granitoid association, including monzonite, syenites and quartz syenites, all with abundant mafic magmatic enclaves. A quartz monzonite sample yielded a U-Pb zircon age of 634 {+-} 10 Ma and a TDM age of 2.69 Ga. The quartz diorites are much more homogeneous in composition and yielded a U-Pb zircon age of 618 {+-} 23 Ma and a TDM age of 2.19 Ga. The presence of coeval mantle-derived magmatism and diatexites (crustal anatexis) post-dating high-pressure metamorphism (ca. 650 Ma), and together with high-temperature metamorphism (ca. 630-610 Ma), suggests that this large magmatic manifestation evolved in a collisional setting, probably related to slab break off during the Western Gondwana amalgamation. (author)

  20. Hf isotope study of Palaeozoic metaigneous rocks of La pampa province and implications for the occurrence of juvenile early Neoproterozoic (Tonian) magmatism in south-central Argentina

    Science.gov (United States)

    Chernicoff, C. J.; Zappettini, E. O.; Santos, J. O. S.; Belousova, E.; McNaughton, N. J.

    2011-12-01

    On a global scale, juvenile Tonian (Early Neoproterozoic) magmatic rocks are associated with the extensional events that lead to the breakup of the Rodinia supercontinent. In Argentina, no geological record is available for this time interval, lasting from 1000 to 850 Ma. We present indirect evidence for the existence of Tonian extension in Argentina, as supported by Hf and Nd isotope determinations on Phanerozoic magmatic and sedimentary rocks. We mainly focus on our own Hf isotope determinations carried out on U-Pb SHRIMP dated zircons from Palaeozoic metaigneous rocks of La Pampa province, south-central Argentina, i.e. metagabbros of Valle Daza, dioritic orthogneiss of Estancia Lote 8, and metadiorite of Estancia El Carancho, having found that these rocks were derived from sources of ca. 920 to ca 880 Ma, with ɛHf values between +6.83 and + 9.59. Inherited zircons of this age and character identified in these rocks also point to the same source. We also compile additional Hf and Nd studies from previous work on Phanerozoic magmatic and sedimentary rocks. We preliminarily compare the age of the juvenile Tonian sources referred to in our work with that of two extensional events identified in the São Francisco craton, Brazil.

  1. Is the Neoproterozoic oxygen burst a supercontinent legacy?

    Directory of Open Access Journals (Sweden)

    Melina eMacouin

    2015-09-01

    Full Text Available The Neoproterozoic (1000–542 Myr ago witnessed the dawn of Earth as we know it with modern-style plate tectonics, high levels of O2 in atmosphere and oceans and a thriving fauna. Yet, the processes leading to the fully oxygenation of the external envelopes, its exact timing and its link with the inner workings of the planet remain poorly understood. In some ways, it is a chicken and egg question: did the Neoproterozoic Oxygenation Event (NOE cause life blooming, low-latitudes glaciations and perturbations in geochemical cycles or is it a consequence of these phenomena? Here, we suggest that the NOE may have been triggered by multi-million years oxic volcanic emissions along a protracted period at the end of the Neoproterozoic when continents were assembled in the Rodinia supercontinent. We report a very oxidized magma source at the upper mantle beneath a ring of subducting margins around Rodinia, and detail here the evidence at the margin of the Arabian shield. We investigate the 780 Ma Biotite and Pink granites and associated rocks of the Socotra Island with rock magnetic and petrographic methods. Magnetic susceptibility and isothermal remanent magnetization acquisitions show that, in these granites, both magnetite and hematite are present. Hematite subdivides magnetite grains into small grains. Magnetite and hematite are found to be primary, and formed at the early magmatic evolution of the granite at very high oxygen fugacity. Massive degassing of these oxidized magmas would reduce the sink for oxygen, and consequently contribute to its rise in the atmosphere with a net O2 flux of at least 2.25 x 107 Tmol. Our conceptual model provides a deep Earth link to the NOE and implies the oxygenation burst has occurred earlier than previously envisaged, paving the way for later changes in the outer envelopes of the planet epitomized on the extreme Neoproterozoic glaciations and the appearance of the first animals.

  2. Age and geochemistry of Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and tectonic implications

    Science.gov (United States)

    Luan, Jin-Peng; Xu, Wen-Liang; Wang, Feng; Wang, Zhi-Wei; Guo, Peng

    2017-10-01

    This study presents new zircon U-Pb ages and geochemical data for Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif (SZRM) of NE China. This dataset provides insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent. The zircon U-Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages: (1) a ∼917-911 Ma suite of syenogranites and monzogranites, and (2) an ∼841 Ma suite of granodiorites. The 917-911 Ma granitoids contain high concentrations of SiO2 (67.89-71.18 wt.%), K2O (4.24-6.91 wt.%), and Al2O3 (14.89-16.14 wt.%), and low concentrations of TFe2O3 (1.63-3.70 wt.%) and MgO (0.53-0.88 wt.%). They are enriched in the light rare earth elements (LREE) and the large ion lithophile elements (LILE), are depleted in the heavy REE (HREE) and the high field strength elements (HFSE; e.g., Nb, Ta, and Ti), and have slightly positive Eu anomalies, indicating that they are geochemically similar to high-K adakitic rocks. They have zircon εHf (t) values and TDM2 ages from -4.4 to +1.5 and 1915 Ma to 1592 Ma, respectively, suggesting that they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material. In comparison, the 841 Ma granodiorites contain relatively low concentrations of Al2O3 (14.50-14.58 wt.%) and K2O (3.27-3.29 wt.%), relatively high concentrations of TFe2O3 (3.78-3.81 wt.%) and the HREE, have negative Eu anomalies, and have zircon εHf (t) values and TDM2 ages from -4.7 to +1.0 and 1875 to 1559 Ma, respectively. These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material. The ∼917-911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting, whereas the ∼841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic

  3. Sr-Nd-Pb isotopes of the post-paleozoic magmatism from eastern Paraguay

    International Nuclear Information System (INIS)

    Comin-Chiaramonti, P; Gasparon, M; Gomes, C.B; Antonini, P

    2001-01-01

    The Parana Angola-Namibia igneous province (PAN) is characterized by Early Cretaceous flood tholeiites and tholeiitic dyke swarms associated with alkaline rocks of Early and Late Cretaceous ages, respectively, and with scarce post-Mesozoic magmatic rocks (Comin-Chiaramonti et al., 1997; 1999; Marques et al., 1999). The Eastern Paraguay, at the westernmost side of the Parana Basin, is of special interest because: (1) it is located between two main cratonic blocks, i.e. the southernmost tip of the Amazon Craton, and the northermost exposure of the Rio de La Plata Craton; (2) it was the site of repeated Na-K-alkaline magmatism since Late-Permian-Triassic times (i.e.: 250-240 Ma, Na-alkaline; c. 145 Ma, K-alkaline; 128-126 Ma, K-alkaline; 120-90 Ma, Na-alkaline; 61-33 Ma, Na-alkaline; cf. Comin-Chiaramonti and Gomes, 1996; Comin-Chiaramonti et al., 1999), and of Early Cretaceous tholeiitic magmatism, both low- and high-Ti variants, L-Ti and H-Ti, respectively (133-131 Ma; cf. Marzoli et al., 1999); (3) the younger sodic magmatic rocks are closely associated in space to the potassic analogues (Comin- Chiaramonti et al., 1999). The paper aims discussing the most important Sr- Nd-Pb isotope features of the alkaline and tholeiitic magmas from Eastern Paraguay in comparison with the PAN analogues (au)

  4. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    Science.gov (United States)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  5. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China

    Science.gov (United States)

    Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping

    2018-02-01

    Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.

  6. Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt

    Science.gov (United States)

    Abdelfadil, Khaled M.; Obeid, Mohamed A.; Azer, Mokhles K.; Asimow, Paul D.

    2018-06-01

    The Sahiya and Khashabi volcano-sedimentary successions are exposed near the southern tip of the Sinai Peninsula, the northernmost segment of the Arabian-Nubian Shield (ANS). These Neoproterozoic successions include a series of intermediate to acidic lavas and associated pyroclastic deposits. Field observations and geochemical data reveal two distinct eruptive phases. The lavas representing each phase are intercalated with volcaniclastic greywackes and siltstones. The first eruptive phase, well exposed at Wadi Sahiya, includes basaltic andesite, andesite and dacite with minor rhyolite. The rocks of this sequence are at most weakly deformed and slightly metamorphosed. The second eruptive phase, well exposed at Wadi Khashabi, includes only undeformed and unmetamorphosed dacite and rhyolite. The two volcano-sedimentary successions were separated and dismembered during intrusion of post-collisional calc-alkaline and alkaline granites. Geochemical compositions of the Sahiya and Khashabi volcanic rocks confirm the field data indicating discrete phases of magmatism, however all the compositions observed might plausibly be derived from a common source and be related to one another dominantly through fractional crystallization. The low and variable Mg# values (55-33) measured in the basaltic andesites and andesites preclude their equilibration with a mantle source. Rather, even the most primitive observed lavas are already the products of significant fractional crystallization, dominated by removal of amphibole and plagioclase. Continued fractionation eventually produced dacite and rhyolite marked by significant depletion in Y and HREE. The gradual appearance of negative Nb-Ta anomalies with increasing SiO2 through both suites suggests at least some component of progressive crustal contamination. The medium- to high-K calc-alkaline character of the Sahiya and Khashabi volcanics could be explained either by their formation at an active continental margin or by a two

  7. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    Science.gov (United States)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  8. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications

    Science.gov (United States)

    Zhou, Jiu-Long; Li, Xian-Hua; Tang, Guo-Qiang; Gao, Bing-Yu; Bao, Zhi-An; Ling, Xiao-Xiao; Wu, Li-Guang; Lu, Kai; Zhu, Yu-Sheng; Liao, Xin

    2018-01-01

    Early Neoproterozoic tectonics of the Yangtze block remains poorly understood because very limited igneous records are available from the time interval of ∼1000-870 Ma. In this paper, our new SIMS U-Pb dating results demonstrate that the Liushudian mafic intrusion and Pinghe alkaline complex in the northwest Yangtze block were emplaced at 888 ± 6 Ma and 891 ± 7 Ma, respectively, representing the products of a ∼890 Ma igneous event. Gabbros from the Liushudian intrusion have rather depleted zircon ɛHf(t) (mean = 10.4) and normal mantle-like zircon δ18O (mean = 5.97‰). Their parental magma was thus probably derived from asthenospheric mantle. Geochemically, these mafic rocks have an affinity to continental flood tholeiitic basalts rather than ocean island basalts, as previously thought. In contrast, an ijolite sample from the Pinghe complex has less depleted zircon ɛHf(t) (mean = 5.7) and anomalously high zircon and apatite δ18O (mean = 13.76‰ and 13.80‰, respectively). Such a characteristic δ18O signal, among the highest yet known for igneous zircons, could be either inherited from a magma source in metasomatized lithospheric mantle or acquired by assimilation of high-δ18O supracrustal materials (e.g., limestone, chert) during magma evolution. An intra-plate extensional environment is suggested for the ∼890 Ma igneous event in the northwest Yangtze block, although it is as yet unclear whether this igneous event is related to a mantle plume or not. It could be concluded that magmatism on the western periphery of the Yangtze block was not shut down between ∼1000 and ∼870 Ma, and the ∼890 Ma intra-plate igneous event may mark either the onset of Neoproterozoic continental rifting or the ending of Late Mesoproterozoic to Early Neoproterozoic lithospheric extension.

  9. The Mesoproterozoic to early Neoproterozoic passive margin Lajeado Group and Apiaí Gabbro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    G.A.C. Campanha

    2016-07-01

    Full Text Available The Lajeado Group in the Ribeira Belt, southeastern Brazil, corresponds to an open-sea carbonate platform, comprised of seven overlapping siliciclastic and carbonatic formations, intruded in its upper portion by the Apiaí Gabbro. These rocks have a Neoproterozoic tectonometamorphic overprint related to arc magmatism and the Brasiliano collisional orogeny. Geochronological constraints are given by new U-Pb SHRIMP and LA-ICP-MS data for Lajeado Group detrital zircons and for magmatic zircons from the Apiaí Gabbro. The youngest detrital zircons in the Lajeado Group are 1400–1200 Ma, and constrain its maximum age of deposition to be <1200 Ma, whereas the 877 ± 8 Ma age for magmatic zircons in the Apiaí Gabbro give the minimum age. Detritus source areas are mainly Paleoproterozoic (2200–1800 Ma with some Archean and Mesoproterozoic contribution (1500–1200 Ma, with distal or tectonic stable cratonic character. The Lajeado Group should be a Stenian–Tonian carbonate platform passive margin of a continent at this time, namely the Columbia/Nuna or the Rodinia. The Apiaí Gabbro displays similar age to other intrusive basic rocks in the Lajeado and Itaiacoca groups and represents tholeiitic MORB-like magmatism that we relate to the initial break-up of a Mesoproterozoic continent and the formation of the Brasiliano oceans.

  10. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments

    Science.gov (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu

    2018-05-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  11. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America

    Directory of Open Access Journals (Sweden)

    Benjamim Bley de Brito Neves

    Full Text Available ABSTRACT: Magmatic arcs are an essential part of crust-forming events in planet Earth evolution. The aim of this work was to describe an early Ediacaran magmatic arc (ca. 635-580 Ma exposed in the northernmost portion of the Transversal Zone, central subprovince of Borborema Province, northeast Brazil. Our research took advantage of several syntheses by different authors, including theses and dissertations, carried out on magmatic rocks of the study area for the last 30 years. The ca. 750 km long and up to 140 km wide arc, trending ENE-WSW, is preserved to the south of the Patos Lineament, between 35º15' and 42º30'W and 7º15' and 8ºS. About 90 different stocks and batholiths of I-type granitic rocks were mapped along this orogenic zone, preferentially intruding low-grade schists of the Cryogenian-Ediacaran Piancó-Alto Brígida (SPAB belt. Three igneous supersuites are recognized: a epidote-bearing granodiorites and tonalites ("Conceição" type; b high-K calc-alkaline granites ("Itaporanga" type; c biotite granodiorites of trondhjemite affinity ("Serrita" type. A fourth group of peralkalic and shoshonitic rocks occurs to the south of the previous ones, reflecting special tectonic conditions. NNE-SSW trending Paleoproterozoic fold belts, surrounding Archean nuclei, characterize the continental part of the northern lower plate. The oceanic fraction of this lower plate was recycled by subduction and scarce remnants of which may be seen either within the enclosing low-grade schists or as xenoliths within the arc intrusions. The upper continental plate presents WSW-ENE structural trends and is composed of Neoproterozoic fold belts and Paleoproterozoic reworked basement inliers. Available data bear clear evidence of an Ediacaran magmatic arc built at the northern portion of the Transversal Zone in the Borborema Province, northeast Brazil.

  12. The Alto Ribeira magmatic arc (Parana State-Southern Brazil): Geochemical and isotopic evidence of magmatic focus migration and its tectonic implications

    International Nuclear Information System (INIS)

    Prazeres Fihlo, H.J.; Baei, M.A.S.; Harara, O.M.M.; Passarelli, C.R.; Siga Jr, O; Reis Neto, J.M; Sato, K

    2001-01-01

    The present location of the geological units which comprise the Precambrian of the south-southeastern part of the Ribeira fold belt in Parana State, Brazil, is the result of a series of superposed tectono-metamorphic events. During this evolution, and especially at the end of the Neoproterozoic, between 640 and 550 Ma, an important crustal accretion event within the Brasiliano Megacycle was responsible for the generation of the Alto Ribeira magmatic arc (ARMA). This arc is now represented by a large volume of granitic rocks amongst which the Cunhaporanga (CPB) and Tres Corregos (TCB) granitic batholiths stand out. The SSE part of the Ribeira belt forms an long, NE strip with a mainly NE trend, formed by deformed middle to upper crustal rocks, metamorphosed in greenschist to amphibolite facies (Basei et.al.1992; Fiori, 1993; Hackspacher et.al. 1997; Campanha and Sadowski 1999). These rocks are intruded by the Neoproterozoic CPB, TCB and the Agudos Grandes batholith, and many granite stocks. The CPB and TCB are elongated bodies with NE-SW major axes which occur north and south, respectively, of the Itaiacoca metavolcano-sedimentary sequence. Together, they occupy about 6,500 km 2 . The southeastern contact between the CPB and the Itaiacoca country rocks is intrusive, while the northwestern contact of the BCT with this group is tectonic, represented by the Itapirapua shear zone. Its contact with rocks of the Agua Clara Formation of the Acungui Group is intrusive. The mineral assemblages in the rocks of the two main batholiths are typically calc-alkaline. The CPB is more homogeneous, being mainly composed of porphyritic to inequigranular, isotropic monzogranite which are accompanied by rare granodiorite. The TCB is more heterogeneous, and includes undeformed or deformed quartz monzonite, granodiorite and monzogranite, as well as rare tonalite and syenogranite. The rocks of the CPB (with 65 - 73% SiO 2 ) and the TCB (60-76% SiO 2 ) are meta- to weakly per-aluminous in

  13. Devonian to Early Carboniferous magmatic alkaline activity in the Tafilalt Province, Eastearn Morocco: An Eovariscan episode in the Gondwana margin, north of the West African Craton

    Science.gov (United States)

    Pouclet, André; El Hadi, Hassan; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah

    2017-05-01

    To the eastern edge of the Moroccan Anti-Atlas, the Tafilalt Province is the repository of a Lower Palaeozoic platform and basin sedimentation constrained by a W-E and NW-SE fault network. During the mid-late Devonian, an extensional tectonic activity, demonstrated by sharp changes in sediment thickness and development of syn-sedimentary faults, was contemporaneous with a significant magmatic activity. A great number of doleritic dykes, sills, and laccoliths intruded sedimentary Silurian to Lower Visean strata. The intrusions were linked to sub-water volcanic activities with spilitic lava flows and pyroclastites during two main pulses in the Famennian-Tournaisian and in the Early Visean. The rocks consist of basaltic dolerites, lamprophyric dolerites and analcite-bearing camptonites, sharing a sodic alkaline magma composition. The magma derived from low partial melting degree of the metasome layer of the lithospheric subcontinental mantle, below the spinel-garnet transition zone. This Tafilalt tectono-magmatic activity was coeval with the Eovariscan phase in the Moroccan Meseta, which was responsible for the opening of Western Meseta basins and their transitional to alkaline volcanic activities in the Late Devonian to Early Carboniferous time.

  14. Petrology, geochemistry and LA-ICP-MS U-Pb geochronology of Paleoproterozoic basement rocks in Bangladesh: An evaluation of calc-alkaline magmatism and implication for Columbia supercontinent amalgamation

    Science.gov (United States)

    Hossain, Ismail; Tsunogae, Toshiaki; Tsutsumi, Yukiyasu; Takahashi, Kazuki

    2018-05-01

    The Paleoproterozoic (1.7 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations (e.g. SiO2 = 50.7-74.7%) and include diorite, quartz diorite, monzodiorite, quartz monzonite and granite. The pluton overall displays metaluminous, calc-alkaline orogenic suite; mostly I-type suites formed within subduction-related magmatism. The observed major elements show general trends for fractional crystallization. Trace element contents also indicate the possibility of a fractionation or assimilation; explain the entire variation from diorite to monzonite, even granite. The pluton may have evolved the unique chemical features by a process that included partial melting of calc-alkaline lithologies and mixing of mantle-derived magmas, followed by fractional crystallization, and by assimilation of country rocks. The pluton shows evidence of crystal fractionation involving largely plagioclase, amphibole and possibly biotite. Some of the fractionated magmas may have mixed with more potassic melts from distinct parts of the continental lithosphere to produce granites and/or pegmatites. New geochronological results of granitic pegmatite (1722 ± 10 Ma) are indisputably consistent with diorite and tonalite and those data showing credible geochronological sequence (i.e., diorite - tonalite - granitic pegmatite). Identical Paleoproterozoic age (1.7 Ga) with distinctive magmatism of the Maddhapara basement rocks have agreeable relationship with the CITZ, India. The consistent magmatism is also common in the Transamazonian of South America, Trans-Hudson orogeny in North America, Bohemian Massif and the Svecofennian, Poland, have identified the sequential growth of the continent through the amalgamation of juvenile terrains, succeeded by a major collisional orogeny. Such Paleoproterozoic subduction-related orogens in Australia have similar counterparts in Antarctica and other part of the world. These types of Paleoproterozoic magmatism dominantly contributed

  15. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria

    2012-01-01

    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  16. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance

    Science.gov (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro

    2017-07-01

    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  17. Pan African Collisional Tectonics Along the Moroccan West African Craton Continued to Ediacaran-Cambrian Boundary

    Science.gov (United States)

    Hefferan, K. P.; Samson, S. D.; Rice, K.; Soulaimani, A.

    2016-12-01

    Precision geochronologic dating and field mapping in the Anti-Atlas Mountains of Morocco document a Neoproterozoic Pan African orogenic cycle consisting of three distinct orogenic events: Iriri-Tichibanine orogeny (760-700 Ma), Bou Azzer orogeny (680-640 Ma) and the WACadomian orogeny (620 Ma to either 555 or 544 Ma). The Iriri-Tichibanine and Bou Azzer orogenies involved northward directed subduction beneath island arc volcanic terranes. These orogenic events generated calc-alkaline magmatism and supra-subduction zone ophiolites exposed in the Bou Azzer and Siroua erosional inliers. The WACadomian orogeny involved subduction and collision of the Cadomia arc complex with the West African Craton and generation of clastic sedimentary basins. The termination of the WACadomian orogeny has been the subject of debate as calc-alkaline to high K magmatism and folding continued to 544 Ma: Was 620-544 Ma calc-alkaline to high K magmatism and clastic basin development due to a) continental rift basin tectonics or b) southward directed subduction and collisional tectonics with associated back arc basin tectonism? We present field and geochemical data supporting the continuation of subduction-collisional tectonics to the Ediacaran-Cambrian boundary 544 Ma. Field mapping in the Central Anti-Atlas (Agadir Melloul) clearly documents an angular unconformity between Ouarzazate Group and Adoudounian limestones (N 30°31'28.91", W07°48'29.12"). Volcaniclastic rocks of Ouarzazate Group (615-545 Ma) are clearly folded and unconformably overlain by Adoudou Formation (541-529 Ma) limestones to the north. Geochemical discrimination diagrams on Latest Neoproterozoic calc-alkaline to high K igneous rocks throughout the Anti-Atlas plot in subduction and collisional arc magma domains. Back arc basin tectonism is likely responsible for localized extensional basins but continental rift tectonics and passive margin sedimentation did not begin in the Anti-Atlas Mountains until Early

  18. Magmatism and polymetallic mineralization in southwestern Qinzhou-Hangzhou metallogenic belt, South China

    Science.gov (United States)

    Huang, Xudong; Lu, Jianjun; Wang, Rucheng; Ma, Dongsheng

    2016-04-01

    As Neoproterozoic suture zone between the Yangtze Block and Cathaysia Block, Qinzhou-Hangzhou metallogenic belt is one of the 21 key metallogenic belts in China. Intensive multiple-aged felsic magmatism and related polymetallic mineralization take place in this belt. Although Neoproterozoic, Paleozoic, Triassic granites and associated deposits have been found in southwestern Qinzhou-Hangzhou metallogenic belt, Middle-Late Jurassic (150-165 Ma) magmatism and related mineralization is of the most importance. Three major kinds of Middle-Late Jurassic granitoids have been distinguished. (Cu)-Pb-Zn-bearing granitoids are slightly differentiated, calc-alkaline and metaluminous dioritic to granodioritic rocks. Sn-(W)-bearing granites contain dark microgranular enclaves and have high contents of REE and HFSE, suggesting affinities of aluminous A-type (A2) granites. W-bearing granites are highly differentiated and peraluminous rocks. (Cu)-Pb-Zn-bearing granitoids have ɛNd(t) values of -11 ˜ -4 and ɛHf(t) values of -12 ˜ -7, corresponding to TDMC(Nd) from 1.4 to 1.8 Ga and TDMC(Hf) from 1.6 to 2.0 Ga, respectively. The ɛNd(t) values of W-bearing granites vary from -11 to -8 with TDMC(Nd) of 1.6 ˜ 1.9 Ga and ɛHf(t) values change from -16 to -7 with TDMC(Hf) of 1.5 ˜ 2.0 Ga. Compared with (Cu)-Pb-Zn-bearing granitoids and W-bearing granites, the Sn-(W)-bearing granites have higher ɛNd(t) (-8 ˜ -2) and ɛHf(t) (-8 ˜ -2) values and younger TDMC(Nd) (1.1 ˜ 1.6 Ga) and TDMC(Hf) (1.2 ˜ 1.8 Ga) values, showing a more juvenile isotopic character. Sn-(W)-bearing granites originate from partial melting of granulitized lower crust involved with some mantle-derived materials. W-bearing granites are derived from partial melting of crust. (Cu)-Pb-Zn-bearing granitoids are also derived from crust but may be influenced by more mantle-derived materials. For (Cu)-Pb-Zn deposits, skarn and carbonate replacement are the most important mineralization types. Cu ore bodies mainly

  19. 3D modeling of magnetotelluric data unraveling the tectonic setting and sources of magmatism in the northeastern corner of Borborema Province, NE Brazil

    Science.gov (United States)

    Padilha, A. L.; Vitorello, I.; Padua, M. B.; Batista, J. C.; Fuck, R. A.

    2017-12-01

    The Borborema Province in northeast Brazil is a complex orogenic system formed by crustal blocks of different ages, origin and evolution amalgamated during the West Gondwana convergence in late Neoproterozoic-early Phanerozoic Brasiliano Orogeny. We discuss here new magnetotelluric (MT) data collected along four linear profiles crisscrossing the northeastern corner of the province to assess its deep electrical resistivity structure. Dimensionality analysis showed that a 3D electrical structure predominates in the subsurface and thus the data were modeled by a 3D MT data inversion scheme. The modeling revealed several subvertical discontinuities, with significant lateral contrast in the overall geoelectric structure, down to upper mantle depths. A major conductivity anomaly is registered in the crust beneath Neoproterozoic supracrustal rocks (Serido Group) and this anomaly deepens to upper mantle depths in the northwest direction below a zone of Paleoproterozoic plutons (Caico Complex). It has been suggested that the Serido Group was originally initiated as a sedimentary basin developed upon a Paleoproterozoic basement during a Neoproterozoic extension event related to a collisional foredeep of a south-dipping subduction slab, contrary to our northwest-dipping conductivity vergence. In case of the Caico Complex, because of the petrogenesis of its orthogneisses that indicates partial melting of a metasomatically enriched spinel-to garnet-bearing lherzolite with adakitic features, we also propose a subduction zone environment for its original magmatism. Considering the tenuous evidence indicating that this conductive anomaly could extend down into the upper mantle in the same region where teleseismic tomography register an attenuation of P waves, it can be concluded that this zone could also be the source of the metasomatic fluids and minerals observed along north-south Mesozoic volcanic plugs and flows of alkaline rocks and alkali basalts (Macau-Queimadas belt). In

  20. Magmatic evolution of the Jbel Boho alkaline complex in the Bou Azzer inlier (Anti-Atlas/Morocco) and its relation to REE mineralization

    Science.gov (United States)

    Benaouda, Rachid; Holzheid, Astrid; Schenk, Volker; Badra, Lakhlifi; Ennaciri, Aomar

    2017-05-01

    The Jbel Boho complex (Anti-Atlas/Morocco) is an alkaline magmatic complex that was formed during the Precambrian-Cambrian transition, contemporaneous with the lower early Cambrian dolomite sequence. The complex consists of a volcanic sequence comprising basanites, trachyandesites, trachytes and rhyolites that is intruded by a syenitic pluton. Both the volcanic suite and the pluton are cut by later microsyenitic and rhyolitic dykes. Although all Jbel Boho magmas were probably ultimately derived from the same, intraplate or plume-like source, new geochemical evidence supports the concept of a minimum three principal magma generations having formed the complex. Whereas all volcanic rocks (first generation) are LREE enriched and appear to be formed by fractional crystallization of a mantle-derived magma, resulting in strong negative Eu anomalies in the more evolved rocks associated with low Zr/Hf and Nb/Ta values, the younger syenitic pluton displays almost no negative Eu anomaly and very high Zr/Hf and Nb/Ta. The syenite is considered to be formed by a second generation of melt and likely formed through partial melting of underplated mafic rocks. The syenitic pluton consists of two types of syenitic rocks; olivine syenite and quartz syenite. The presence of quartz and a strong positive Pb anomaly in the quartz syenite contrasts strongly with the negative Pb anomaly in the olivine syenite and suggests the latter results from crustal contamination of the former. The late dyke swarm (third generation of melt) comprises microsyenitic and subalkaline rhyolitic compositions. The strong decrease of the alkali elements, Zr/Hf and Nb/Ta and the high SiO2 contents in the rhyolitic dykes might be the result of mineral fractionation and addition of mineralizing fluids, allowing inter-element fractionation of even highly incompatible HFSE due to the presence of fluorine. The occurrence of fluorite in some volcanic rocks and the Ca-REE-F carbonate mineral synchysite in the dykes

  1. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R

    2001-01-01

    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  2. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism

    Science.gov (United States)

    Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.

    2013-12-01

    Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.

  3. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya

    2013-04-01

    Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic

  4. Mesozoic to Cenozoic magmatic history of the Pamir

    Science.gov (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  5. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    Science.gov (United States)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  6. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel

    2014-01-01

    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  7. Chronology of neoproterozoic-cambrian granitic magmatism in the Aracuai Belt, Eastern Brazil, based on single zircon evaporating dating

    International Nuclear Information System (INIS)

    Noce, Carlos Mauricio; Soares, Antonio Carlos Pedrosa; Macambira, Moacir Jose Buenano

    2000-01-01

    Granitic magmatism related to the orogenic stages of the Aracuai Belt took place at 595-575 Ma, and are represented by two distinct suites. One is composed of I-type granitoids and includes the following plutons: Brasilandia (595±3 Ma), Sao Vitor (576±4 Ma) and Guarataia (574± 2 Ma). The other suite comprises S-type granites like the Ataleia (591±5 Ma) and Wolf (582±5 Ma) plutons. After a long period of magnetic quiescence, a batholith composed of the Caladao granite and Padre Paraiso charnockite intruded at 519±2 Ma. This magmatic episode is probably associated to the collapse of the orogen. (author)

  8. Rb-Sr geochronology of neoproterozoic syenites in parts of northern Tamil Nadu: implication on Pan-African magmatism

    International Nuclear Information System (INIS)

    Pandey, U.K.; Prasad, R.N.; Krishna, Veena; Paneer Selvam, A.; Chabria, Tikam

    1996-01-01

    This paper presents Rb-Sr whole rock isochron age data on two syenite plutons viz. Elagiri and Rasimalai, and results of this study may constrain the timing of magmatic event and crystal evolution in northern granulite segment

  9. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  10. Ordovician A-type granitoid magmatism on the Ceará Central Domain, Borborema Province, NE-Brazil

    Science.gov (United States)

    Castro, Neivaldo A.; Ganade de Araujo, Carlos E.; Basei, Miguel A. S.; Osako, Liliane S.; Nutman, Alan A.; Liu, Dunyi

    2012-07-01

    We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceará Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) × Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A2-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaíba intracratonic basin, attesting also to a purely anorogenic character (A1-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A2-type granitoid, it provides interesting constraints about how long can last A2-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community.

  11. Devonian alkaline magmatism in the northern North China Craton: Geochemistry, SHRIMP zircon U-Pb geochronology and Sr-Nd-Hf isotopes

    Directory of Open Access Journals (Sweden)

    Dingling Huang

    2017-01-01

    Full Text Available The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton (NCC. The intrusion is mainly composed of quartz-monzonite. Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca. 381.5 Ma. The rock is metaluminous with high (Na2O + K2O values ranging from 8.46 to 9.66 wt.%. The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies. The Wulanhada rocks exhibit high initial values of (87Sr/86Srt = 0.70762–0.70809, low ɛNd(t = −12.76 to −12.15 values and negative values of ɛHf(t = −23.49 to −17.02 with small variations in (176Hf/177Hft (0.281873–0.282049. These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC. The Wulanhada rocks, together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions, constitute a post-collisional magmatic belt along the northern NCC.

  12. Les granitoïdes hercyniens post-collisionnels du Maroc oriental : une province magmatique calco-alcaline à shoshonitiqueThe post-collisional Hercynian granitoids from eastern Morocco: a calc-alkaline to shoshonitic magmatic province

    Science.gov (United States)

    El Hadi, Hassan; Tahiri, Abdelfatah; Reddad, Aicha

    2003-11-01

    The post-collisional Hercynian granitoids crop out in the easternmost part of the Moroccan Hercynian belt. Petrographical and geochemical studies show a composition similarity in the various granitoids. The granitoids belong to per-aluminous and metaluminous magmatic associations. They have evolved according to a scheme similar to high-K calc-alkaline to shoshonitic associations. To cite this article: H. El Hadi et al., C. R. Geoscience 335 (2003).

  13. Alkaline / peralkaline gneisses near the northern margin of the Natal structural and metamorphic province

    International Nuclear Information System (INIS)

    Scogings, A.J.

    1990-01-01

    Alkaline / peralkaline gneisses occur within three granitoid complexes at Ngoye, Bull's Run and Wangu, near the northern margin of the Natal Structural and Metamorphic Province. A wide range of rock types is present, from nepheline syenite gneisses through to peralkaline granite gneisses, with minor carbonatite and monzodiorite gneiss intrusive phases noted within two of the bodies. It is suggested that the three alkaline gneiss occurences so far mapped constitute the remnants of a metamorphosed alkaline magmatic province, and that such magmatism occured either in a post-collisional or anorogenic post-D1, pre-D2 tectonic setting. The three complexes are described with respect to mineralogy and chemistry, followed by a brief overview of the possible tectonic setting at the time of their intrusion. 1 tab., 3 refs

  14. U-Pb and origen of the Uruana quartz syenite and Itapuranga alkali granite in Goias, central Brazil: Late Braziliano alkali-rich magmatism in the Anapolis-Itaucu complex

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Dantas, Elton Luis; Fuck, Reinhardt Adolfo

    2001-01-01

    The Brasilia Belt is part of a Brasiliano/Pan African orogen developed between the Amazon and Sao Francisco cratons (for a review see Pimentel et al. 2000 and Dardenne 2000). The stabilization of the belt occurred after the last metamorphic event at ca. 620±20 Ma. Until recently, important late- to post-orogenic Neoproterozoic granitic magmatism was recognized mostly within the limits of the Goias Magmatic Arc, in the western part of the orogen. Recent studies by Pimentel et al. (1999) and Fischel et al (1999), as well as some unpublished U-Pb SHRIMP geochronological data, have also shown that Neoproterozoic granites represent an important component of the Anapolis- Itaucu Complex, a high grade terrain exposed in the central part of the Brasilia Belt, in between metasediments (Araxa Group) of the internal part of the belt. In the northern part of this granulitic complex, two alkali rich intrusions, the Uruana quartz syenite and the Itapuranga alkali suite (Lacerda Filho and Oliveira 1995) form large bodies elongated in the E-W direction. Their age and tectonic significance has been the matter of continuous debate. In this study we present new conventional and SHRIMP U-Pb results as well as whole-rock Sm-Nd data for samples of these intrusions (au)

  15. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil): U-Pb and Lu-Hf provenance data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gabriel Lamounier de F. [Servico Geologico do Estado do Rio de Janeiro (DRM-RJ), Niteroi, RJ (Brazil); Schmitt, Renata; Bongiolo, Everton M.; Mendes, Julio [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Basei, Miguel S. [Universidade de Sao Paulo (USP), SP (Brazil)

    2015-07-01

    Full text: The Neoproterozoic-Ordovician Central Ribeira Orogen, in SE Brazil, presents two contrasting tectonic domains in its southern portion: (a) The Arc Domain constituted of Neoproterozoic to Paleozoic magmatic rocks and low P-high T metamorphic para (Sao Fidelis Group) - and ortho- derived units (in Oriental Terrane); and (b) The Basement Domain, constituted of a Paleoproterozoic and Neoproterozoic medium P-high T metamorphic para (Palmital-Buzios Succession)- and ortho-derived units (in Cabo Frio Tectonic Domain). Our work focuses on paraderived rocks sequences from both domains. The provenance analysis using U-Pb and Lu-Hf in zircon grains is presented here as an effective tool to unravel the paleogeography and nature of the pre-collisional sedimentary basins. We performed 505 analyses (U-Pb) on detrital zircon grains and some metamorphic overgrowths from six paragneiss samples. Besides, 141 analyses (Lu-Hf) in six samples only on the detrital zircon grains domains. All samples present a main peak from Neoproterozoic sources (750-570 Ma) and the other minor peak in the Stenian/Tonian periods (1200-850Ma), this indicate an orogenic contribution for this basin. Scarce register from the Mesoproterozoic and two peaks in the Archean/Paleoproterozoic (2.6 and 1.9 Ga) are recognized as a contribution from an ancient continent. The Lu-Hf data reveals a juvenile source for the detrital zircon grains from Buzios Succession while Palmital and Sao Fidelis Group units show a main crustal signature for their detrital zircon population. Based on the U-Pb and Lu-Hf data presented here, plus petrological data, geological correlations, and compilation of data from literature, we propose a tectonic model for the origin of para-derived rocks from the eastern part of the Ribeira Orogen. Starting with an extensional environment of ca. 600 Ma in a back-arc basin (Buzios succession deposition) and continuing as an active margin between 570 and 550 Ma in the fore-arc and prism

  16. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    Science.gov (United States)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  17. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    Science.gov (United States)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  18. Late Cambrian magmatic arc activity in peri-Gondwana: geochemical evidence from the Basal Allochthonous Units of NW Iberia

    Energy Technology Data Exchange (ETDEWEB)

    Andonaegui, P.; Abati, J.; Díez-Fernández, R.

    2017-07-01

    The North African section of the Gondwana margin was the site of voluminous, arc-related magmatism during the Late Neoproterozoic (Avalonian–Cadomian orogen). The lower (and older) metasedimentary sequence that constitutes the Basal Units of the Allochthonous Complexes of NW Iberia was deposited in that setting. In these units, sedimentation was followed by the intrusion of tonalites and granodiorites in the late Cambrian (ca. 493–489Ma). In the Late Paleozoic, the collision of Gondwana and Laurussia (Variscan orogeny) deformed and metamorphosed the whole ensemble. New whole rock geochemical analysis performed in seven samples of metatonalites and fourteen samples of metagranodiorites are characterized by: i) slight enrichment in incompatible elements (Rb, Ba, Th, U), ii) negative anomalies in Nb, Ta, P, and Ti, and iii) negative anomalies in Eu. These chemical features are in agreement with a subduction-related setting for the genesis of both types of magma, which is also supported by chemical discrimination using tectonic setting diagrams. Positive anomalies of Pb suggest a crustal component. The new geochemical data reveal that the convergent orogen that ruled the paleogeography of the Gondwana periphery during the Neoproterozoic (Cadomian orogen) remained active bey.

  19. Alkaline intrusion in a granulite ensemble in the Eastern Ghats belt

    Indian Academy of Sciences (India)

    Alkaline magmatism; Eastern Ghats belt; pull-apart structure; plume tectonics. ... is one of several bodies in the high-grade Eastern Ghats belt, but this one is an ... Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 ...

  20. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume

    Science.gov (United States)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.

    2013-08-01

    The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the

  1. Geology of the Baskil (Elazığ Area and the Petrology of Baskil Magmatics

    Directory of Open Access Journals (Sweden)

    H. Jerf ASUTAY

    1986-06-01

    Full Text Available The study area which covers the region around Baskil on Eastern Taurus Range comprises of Keban metamorphics and Baskil magmatics overlain by a Tertiary sedimentary cover. The Keban metamorphics are represented by regional and contact metamorphic rocks in the study area. Calc schist and marble associations are widespread on the regional scale. Between Baskil granite and Keban metamorphics exomorphism and endomorphism zones have been developed. Metasomatic effects are observed in the contact metamorphic rocks which reflect the pyroxene-hornfels facies. The sedimentary sequence begins with Middle Paleocene (Thanetian aged rocks in the study area. The same sequence, however, has been deposited starting in Santonian-Campanian in the surrounding area. The sedimentary rock sequence which is composed of Kuşçular conglomerate, Seske formation, Kırkgeçit formation (Paleocene-Plio-Quaternary are represented by conglomerate, carbonates and flysch kind of sedimentary rocks. Baskil magmatics are an association of plutonic, hypabyssal and volcanic rocks. Of this association, Baskil granite contains dioritic, monzonitic and tonalitic kind of magmatic rocks which are mostly observed as transitional. Baskil granite, in the study area, is frequently cut across by basic and acidic dykes which locally intrudes between the granite and the basaltic, andesitic rocks overlying the granite and are transitional with the volcanics. Chemically, Baskil granite is of calc-alkaline type. It is rich in silica and alkaline. Trace element distribution is quite regular. Baskil granite which is determined as of type 'I' is generally rich in hornblende but poor in muscovite and biotite. It shows the features of continental margin magmatism and is an example of systematic differentiation. Considering their features and under the light of plate tectonics concept, Baskil magmatics may be said to be a product of continental margin magmatism. They are, presumably, the products of an

  2. Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana

    Science.gov (United States)

    Yellappa, T.; Rao, J. Mallikharjuna

    2018-03-01

    Granitoid intrusions occur widely in the Southern Granulite Terrain (SGT) of India, particularly within the Cauvery Suture Zone (CSZ), which is considered as the trace of the Neoproterozoic Mozambique ocean closure. Here we present the petrological and geochemical features of 19 granite plutons across the three major tectonic blocks of the terrain. Our data show a wide variation in the compositions of these intrusions from alkali feldspathic syenite to granite. The whole rock geochemistry of these intrusions displays higher concentrations of SiO2, FeO*, K2O, Ba, Zr, Th, LREE and low MgO, Na2O, Ti, P, Nb, Y and HREE's. The granitoids are metaluminous to slightly peraluminous in nature revealing both I-type and A-type origin. In tectonic discrimination plots, the plutons dominantly show volcanic arc and syn-collisional as well as post-collisional affinity. Based on the available age data together with geochemical constrains, we demonstrate that the granitic magmatism in the centre and south of the terrain is mostly associated with the Neoproterozoic subduction-collision-accretion-orogeny, followed by extensional mechanism of Gondwana tectonics events. Similar widespread granitic activity has also been documented in the Arabian Nubian shield, Madagascar, Sri Lanka and Antarctica, providing similarities for the reconstruction of the crustal fragments of Gondwana supercontinent followed by Pan-African orogeny.

  3. An overview on the origin of post-collisional Miocene magmatism in the Kabylies (northern Algeria): Evidence for crustal stacking, delamination and slab detachment

    Science.gov (United States)

    Chazot, Gilles; Abbassene, Fatiha; Maury, René C.; Déverchère, Jacques; Bellon, Hervé; Ouabadi, Aziouz; Bosch, Delphine

    2017-01-01

    Miocene (17-11 Ma) magmatic activity in the Kabylies emplaced K-rich (and minor medium-K) calc-alkaline plutonic and volcanic rocks in five zones, delineating a ∼450 km long EW trending strip located along the northern coast of Algeria, between Annaba and Algiers. Their most likely source is the Kabylian subcontinental lithospheric mantle previously metasomatized during the Paleogene subduction of the Tethys oceanic lithosphere. Our preferred tectono-magmatic model involves a Tethyan slab detachment combined with African mantle delamination and crustal stacking, leading to the superimposition of the African continental crust over the Kabylian metasomatized lithospheric mantle. At ca. 17 Ma, the asthenospheric upwelling arising from lithospheric delamination and Tethyan slab tear triggered the thermal erosion of the latter mantle, inducing its partial melting. The corresponding mafic medium-K calc-alkaline magmas interacted with the African basement units during their ascent, generating intermediate to felsic K-rich calc-alkaline melts that display a characteristic trace element and isotopic crustal signature. Later on, slab tears propagated eastward and westward, promoting slab rollback perpendicular to plate convergence and inducing the emplacement of magmatic rocks of decreasing ages from central-eastern Algeria towards Tunisia and Morocco.

  4. Neoproterozoic marine carbonates and their paleoceanographic significance

    Science.gov (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William

    2018-01-01

    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  5. Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: An AMS and U-Pb zircon age study

    Science.gov (United States)

    Henry, B.; Liégeois, J. P.; Nouar, O.; Derder, M. E. M.; Bayou, B.; Bruguier, O.; Ouabadi, A.; Belhai, D.; Amenna, M.; Hemmi, A.; Ayache, M.

    2009-09-01

    The N-S oriented Raghane shear zone (8°30') delineates the western boundary of the Saharan metacraton and is, with the 4°50' shear zone, the most important shear zone in the Tuareg shield. It can be followed on 1000 km in the basement from southern Aïr, Niger to NE Hoggar, Algeria. Large subhorizontal movements have occurred during the Pan-African orogeny and several groups of granitoids intruded during the Neoproterozoic. We report U-Pb zircon datings (laser ICP-MS) showing that three magmatic suites of granitoids emplaced close to the Raghane shear zone at c. 790 Ma, c. 590 and c. 550 Ma. A comprehensive and detailed (158 sites, more than 1000 cores) magnetic fabric study was performed on 8 plutons belonging to the three magmatic suites and distributed on 200 km along the Raghane shear zone. The main minerals in all the target plutons do not show visible preferential magmatic orientation except in narrow shear zones. The AMS study shows that all plutons have a magnetic lineation and foliation compatible with the deformed zones that are zones deformed lately in post-solidus conditions. These structures are related to the nearby mega-shear zones, the Raghane shear zone for most of them. The old c. 793 Ma Touffok granite preserved locally its original structures. The magnetic structures of the c. 593 Ma Ohergehem pluton, intruded in the Aouzegueur terrane, are related to thrust structures generated by the Raghane shear zone while it is not the case of the contemporaneous plutons in the Assodé-Issalane terrane whose structures are only related to the subvertical shear zones. Finally, the c. 550 Ma granite group has magnetic structure related to the N-S oriented Raghane shear zone and its associated NNE-SSW structures when close to them, but NW-SE oriented when further. These NW-SE oriented structures appear to be characteristic of the late Neoproterozoic evolution of the Saharan metacraton and are in relation to the convergence with the Murzuq craton. This

  6. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten; Waight, Tod Earle; Scott, James

    2017-01-01

    –100Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i)=18.6, 207Pb/204Pb(i)=15.62, 208Pb/204Pb(i)=38.6, 87Sr/86Sr(i)=0.7063–0.7074, εNd(i)=−2.1 −+0.1 and εHf(i)=−0.2 −+2.3) and are interpreted as melts originating from subduction-modified lithosphere....... Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92–84Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i)=18.7 to 19.4, 207Pb/204Pb(i)=15.60 to 15.65, 208Pb/204Pb(i)=38.6 to 39.4, 87Sr/86Sr(i)=0.7031 to 0.7068, εNd(i)=+4.5 to +8.0 and εHf(i)=+5.1 to +8...... from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98–82Ma) occurred outboard of Gondwana’s former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i)≈20.5, 207Pb...

  7. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania

    Science.gov (United States)

    Batki, Anikó; Pál-Molnár, Elemér; Jankovics, M. Éva; Kerr, Andrew C.; Kiss, Balázs; Markl, Gregor; Heincz, Adrián; Harangi, Szabolcs

    2018-02-01

    Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished based on mineral zoning patterns and geochemical characteristics. Major and trace element compositions of clinopyroxenes reflect three dominant pyroxene types including primitive high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution trends. The primitive diopside population is derived from an early camptonitic magma related to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic system. This magma fractionated towards ijolitic and later phonolitic compositions. Field observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. Repeated recharge events of the two principal magmas resulted in multiple interactions between more primitive and more fractionated co-existing magma batches. Magma mingling occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also described for the first time in Ditrău, is a significant process during magma recharge and demonstrates that incorporated crystals can crucially affect the host magma composition and so whole-rock chemical data should be interpreted with great care.

  8. Provenance and depositional age of the neoproterozoic volcanometasedimentary sequence in the Santa Terezinha region, Goias based on U-Pb single zircon and Sm-Nd isotope data

    International Nuclear Information System (INIS)

    Dantas, Elton Luiz; Jost, Hardy; Fuck, Reinhardt A.; Pimentel, Marcio Martins; Brod, Jose Affonso

    2001-01-01

    Some of the volcano-sedimentary sequences of the Tocantins Province have been considered to be formed during the evolution of a Neoproterozoic intra oceanic island arc system (Pimentel et al., 2000). However, the interpretation of supra crustal rocks of some areas of the central portions of the Goias Massif, such as the region of Santa Terezinha de Goias, is still controversial. These rocks have been considered either as part of the Archean greenstone belts or as Paleoproterozoic sequences (Ribeiro Filho 1981, Souza and Le Neto 1981, Machado et al.1981, Ribeiro Filho and Lacerda Filho 1985, Biondi and Pidevin 1994, Arantes et al. 1991) rather than an extension of the Neoproterozoic Mara Rosa magmatic arc (Viana et al.1995, Pimentel et al. 1997). An area of about 800 km 2 near the town of Santa Terezinha de Goias was recently mapped on a 1:25.000 scale (Jost et al. 2001). Its northern part consists of Proterozoic supra crustal rocks in tectonic contact with Archean rocks in the south. We present new Sm-Nd and U-Pb zircon data for the supra crustal rocks that crop out in the northern part of the area and discuss their provenance and depositional age (au)

  9. The inception of a Paleotethyan magmatic arc in Iberia

    Directory of Open Access Journals (Sweden)

    M.F. Pereira

    2015-03-01

    Full Text Available This paper presents a compilation of recent U-Pb (zircon ages of late Carboniferous–early Permian (LC–EP calc-alkaline batholiths from Iberia, together with a petrogenetic interpretation of magma generation based on comparisons with Mesozoic and Tertiary Cordilleran batholiths and experimental melts. Zircon U-Pb ages distributed over the range ca. 315–280 Ma, indicate a linkage between calc-alkaline magmatism, Iberian orocline generation and Paleotethys subduction. It is also shown that Iberian LC–EP calc-alkaline batholiths present unequivocal subduction-related features comparable with typical Cordilleran batholiths of the Pacific Americas active margin, although geochemical features were partially obscured by local modifications of magmas at the level of emplacement by country rock assimilation. When and how LC–EP calc-alkaline batholiths formed in Iberia is then discussed, and a new and somewhat controversial interpretation for their sources and tectonic setting (plume-assisted relamination is suggested. The batholiths are proposed to have formed during the subduction of the Paleotethys oceanic plate (Pangaea self-subduction and, consequently, they are unrelated to Variscan collision. The origin of the Iberian batholiths is related to the Eurasian active margin and probably represents the inception of a Paleotethyan arc in the core of Pangaea.

  10. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    Science.gov (United States)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  11. Expansion of the granitic post-orogenic magmatism in the formation of Serrinha (Northeastern Bahia, B R), Sao Francisco craton

    International Nuclear Information System (INIS)

    Rios, Debora Correia; Conceicao, Herbet; Rosa, Maria de Lourdes da Silva; Marinho, Moacyr Moura; Davis, Donaldo Wayne

    2005-01-01

    The Pedra Vermelha Granitic Massif, located at the North area of Serrinha Nucleus, presents a circular shape, being intrusive at the Archaean geoscience-magmatic basement rocks and the Paleoproterozoic volcano sedimentary sequences. The single zircon U-Pb dating yield a crystallization age of 2080 ± 8 Ma. The geological, petrographic al and litogeochemical characteristics of the studied rocks are similar to those of the Morro do Lopes granitic magmatism (2076 ± 6 a 2071 ± 6 Ma), which is located at the South area of this nucleus. These allow us to infer that those post-orogenic alkaline bodies are widespread throughout the Serrinha Nucleus and constitute its last Paleoproterozoic magmatic expression. (author)

  12. Rb-Sr age of the Sivamalai alkaline complex, Tamil Nadu

    International Nuclear Information System (INIS)

    Subba Rao, T.V.; Narayana, B.L.; Gopalan, K.

    1994-01-01

    The Sivamalai alkaline complex comprises ferro-, pyroxene- hornblende-and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ± 21 Ma (2σ) and initial Sr ratio of 0.70376 ± 14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of peninsular India. (author). 26 refs., 4 figs., 4 tabs

  13. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Science.gov (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst

    2017-12-01

    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  14. Southern Brasilia Belt (SE Brazil): tectonic discontinuities, K-Ar data and evolution during the Neoproterozoic Brasiliano orogeny

    International Nuclear Information System (INIS)

    Valeriano, Claudio Morrison de; Teixeira, Wilson; Simoes, Luiz Sergio Amarante; Heilbron, Monica

    2000-01-01

    This paper focuses the tectonic evolution of the southern brasilia belt, with emphasis on the Furnas segment, along the 21 deg C S parallel. The uppermost structural unit (Passos Nappe - PN) comprises a highly deformed metasedimentary succession interpreted as a fragment of the Neoproterozoic passive margin of western Sao francisco craton. An inverted metamorphic gradient ranging from greensvhits to lower granulite facies of medium to high-pressure regime characterizes the PN as relict of a subduction zone. The External Domain display a complex imbrication of basement rocks (Archean Piumhi greenstones, a turbiditic gaywacke succession and a calc-alkaline granitoid suite) with undated siliciclast low-grade metasedimentary rocks. The Sao Francisco Craton (SFC) comprises pre-1.8 Ga basement rocks covered by anchimetamorphic Neoproterozoic carbonatic shallow marine platform deposits of the Bambui group. The Brasiliano thrust stacking generated a coarse clastic influx of molassic character on the foreland zone of Sao Francisco Craton, coeval with the exhumation of the External Domain thrust sheets. New K-Ar determinations on mineral separates are presented an interpreted among previous data. The SFC basement rocks display Paleo-to Meesoproterozoic cooling ages. The allochthonous units, in contrast, display K-Ar ages within the 560-675 Ma range. Brasiliano thrust stacking is therefore interpreted to have taken place onto a cold Sao Francisco craton foreland, in a thin-skinned style, as basement rocks were not heated enough to have their-K-ar systems reset during the allochthony. (author)

  15. From Rodinia to Gondwana : supercontinent evolution in the Transantarctic Mountains

    International Nuclear Information System (INIS)

    Goodge, J.W.

    2002-01-01

    The Transantarctic Mountains provide a cryptic but important record of Proterozoic and Early Paleozoic supercontinent history, including Rodinian assembly, Rodinian breakup, transition from a drifting to subducting margin, and active plate-margin activity during Gondwanan assembly. A linkage between Laurentia and East Antarctica as part of Neoproterozoic Rodinia is plausible, based on isotopic data from rare exposures of crystalline basement in the Transantarctic Mountains. However, testing of paleogeographic details is difficult because the crustal structure of the East Antarctic shield is poorly known along much of its perimeter and because we lack well-dated Proterozoic paleomagnetic poles. The timing of Rodinian breakup is poorly constrained globally, yet local mafic magmatism of 800-650 Ma age provides the best evidence in the Transantarctic Mountains for Late Neoproterozoic crustal extension and possible rifting. Still uncertain are the position of the rift margin, the geometry of rifting, the extent of crustal thinning, the extent of rift-margin sedimentation, the location of possible transform offset, and the influence of these structural patterns on later orogenesis. A transformation from drifting to active subducting mode is inferred for the Late Neoproterozoic, but the nature and specific timing of this event are unknown. The Vendian-Early Paleozoic Ross Orogen reflects convergent-margin activity associated temporally, if not causally, with the consolidation of Gondwana. Inception of a convergent Gondwana margin is signalled by the earliest Ross granitoids at c. 560 Ma and may be reflected in early structural inversion of craton-margin sedimentary succession. Protracted Ross tectonism between 560 and 480 Ma involved episodic deformation, calc-alkaline magmatism, and syn-orogenic deposition of arc-derived detritus in a sinistral-transpressive, continental-margin arc setting. Sedimentary provenance in siliciclastic rocks appears to have shifted by late

  16. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    Directory of Open Access Journals (Sweden)

    Leite Renato J.

    2006-01-01

    Full Text Available The Piedade Granite (~600 Ma was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit and core (metaluminous titanite-bearing biotite monzogranite BmgT unit and felsic pink inequigranular granite (Bmg unit between them. Bmg has high LaN/YbN (up to 100, Th/U (>10 and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45, Ba and Sr, fractionated REE patterns (LaN/YbN= 45, 87Sr/86Sr(t~ 0.710, epsilonNd(t ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta. The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t = 0.713-0.714; epsilonNd(t= -14 to -16, similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  17. Neoproterozoic tectonics of the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.

    2006-01-01

    The Neoproterozoic tectonic development of the Arabian-Nubian Shield (ANS) can be divided in three parts: 1) the oceanic stage; 2) the arc-accretion stage; 3) the extensional stage. Three key-areas in the Arabian-Nubian Shield, namely the Bi'r Umq Complex, The Tabalah and Tarj Complex and the Wadi

  18. Kimberlite emplacement time and duration of kimberlite magmatism in the Zimnii Bereg diamond-diferrous district, Arkhangelsk Region: Rb-Sr age of kimberlite sills, Mela River

    International Nuclear Information System (INIS)

    Pervov, V.A.; Larchenko, V.A.; Minchenko, G.V.; Stepanov, V.P.; Bogomolov, E.S.; Levskij, L.K.; Sergeev, S.A.

    2006-01-01

    The Rb-Sr isotope data for kimberlites and carbonate-rich sills of the Mela River were obtained for identifying the age and duration of magmatism in the Zimnii Bereg district of the Archangelsk region. It is shown that estimated age of the kimberlite (366.4 mln. years) falls in the age range corresponding to the main phase of alkaline magmatism in the Kola Peninsula (410-362 mln. years) [ru

  19. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny

    Science.gov (United States)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.

    2013-04-01

    juxtaposition of hot asthenosphere and lower crust. This is a plausible explanation for the UTH event, in contrast to simple crustal thickening and radiogenic self-heating that are generally considered unable to produce such PT conditions. 3) long-lived (990-920 Ma) ferroan magmatism, temporally associated with high-grade metamorphism and large-scale deformation, probably reflecting formation inboard of an alternating compressional/extensional continental margin. We have no known record of events after ca. 920 Ma, but it is conceivable that the active margin persisted well into the Neoproterozoic, possibly indicated by metamorphic and magmatic activity recorded in Grenville/Sveconorwegian orogen-derived sedimentary rocks.

  20. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  1. Uranium and thorium in rocks and minerals of Zaangarsk alkaline massif

    International Nuclear Information System (INIS)

    Zhmodin, S.M.; Gofman, A.M.; Ksenzova, V.I.; Malmova, Z.V.; Nemirovskaya, N.A.

    1981-01-01

    U and Th distribution in rocks of the massif of alkaline-granitoid formation is studied using the methods of γ-spectrometry and neutron- fragment radiography. Predominant accumulation of U and Th in final products of magmatic differentiation - foyaites - is established. U and Th concentrations increased sharply during postmagmatic stage of alkaline massif formation - in permatites and metasomatically alterated rocks (Th/U and U/K ratios can serve as criteria for identification of such formations). The increase of U part, connected with accessory minerals in pegmatites and metasomatically alterated rocks, is pointed out. For U in postmagmatically alterated rocks high concentrations due to microcracks are characteristic [ru

  2. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.

    2014-01-01

    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  3. Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region

    NARCIS (Netherlands)

    Seghedi, I.; Maţenco, L.; Downes, H.; Mason, P.R.D.; Szakács, A.; Pécskay, Z.

    2011-01-01

    The south-eastern part of the Carpathian–Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza–Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the ‘Vrancea zone’, shows a shift from normal calc-alkaline to

  4. Study of the magmatism related to the rifting of the central and southern Atlantic: 40Ar/39Ar geochronology and geochemistry of Jurassic intrusives of Guinea and French Guyana/Surinam, and Cretaceous intrusives of Brazil

    International Nuclear Information System (INIS)

    Deckart, K.

    1996-01-01

    The initial stage of continental rifting in the Central and South Atlantic has been accompanied by tholeiitic magmatism, which is mainly represented by sills, dykes, layered intrusions and lava flows. During the rifting progression, the syn-rift stage in the South Atlantic has been accompanied by abundant alkaline magmatism. A geochronological and geochemical study has been performed on these formations with the aim to contribute to the understanding of the early continental rifting processes and their evolution. 40 Ar/ 39 Ar analyses have been done on tholeiitic intrusives of Guinea and French Guyana/Surinam, tholeiitic dykes, associated with the Parana volcanism (Brazil), and alkaline dykes in the region of Rio de Janeiro (Brazil). The geochemical and isotopic study has been focused on the tholeiitic intrusions from Guinea and French Guyana/Surinam. These three arms may represent the three branches of a triple junction which was active between 134 to 129 Ma, and which was at the origin of at least the northern Parana traps. Even if the principal magmatic activity can be related to the thermal anomaly due to the Tristan da Cunha hotspot, which favours an active rifting, the tectonic system of the triple junction is not compatible in time and space with this hotspot and therefore with this geodynamic model. It is possible that the Parana traps (133-130 Ma) are only partly contemporaneous and therefore, they might be not related to the same mode of geodynamic initiation. Biotites from the alkaline magmatics of the dyke swarm (NE-SW) near Rio de Janeiro display plateau ages between 82 and 70 Ma; this intense alkaline magmatism was related to vertical movements characterising the syn-rift stage not only in SE-Brazil but also in equatorial Africa. (author)

  5. Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late palaeoproterozoic extension-related magmatism

    International Nuclear Information System (INIS)

    Kaur, Parampreet; Chaudhri, Naveen; Biju-Sekhar, S.; Yokoyama, K.

    2006-01-01

    A number of granitoid plutons were emplaced in the northernmost entity of the Aravalli craton, the Khetri Copper Belt (KCB). We report here Th-U-Pb electron probe micro analyser chemical ages for zircon and monazite from two granitoid plutons of the north KCB, the Biharipur and Dabla. Zircons occurring in the granitoids depict well-developed magmatic zoning and are chronologically unzoned. Both the plutons and their diverse granitoid facies are coeval and provide ages around 1765-1710 Ma. Geochemical attributes of the studied plutons are typical of A-type within-plate granites and consistent with an extensional tectonic environment. Our new age data are comparable to the petrologically similar A-type granitoids of the Alwar region, which have provided zircon chemical ages around 1780-1710 Ma. These analogous ages imply a widespread late palaeoproterozoic extension-related plutonism in the northern part of the Aravalli craton. The monazites, which were recovered only from the mafic magmatic rocks of the Biharipur pluton, yielded an isochron age of 910 ±10 Ma, signifying an over- print of a younger neoproterozoic thermal event in the region. (author)

  6. Carbonatite magmatism in northeast India

    Science.gov (United States)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  7. The tectono-magmatic evolution of the occidental terrane and the Paraiba do Sul Klippe within the Neoproterozoic Ribeira orogenic Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Valladares, Claudia Sayao; Duarte, Beatriz Paschoal; Heilbron, Monica; Ragatky, Diana

    2000-01-01

    The occidental Terrane is envisaged as the eastern/southeastern reworked margin of the Sao Francisco/Rio de la Plata plate associated with and E-trending subduction under the Congo plate. The Paraiba do Sul Klippe is part of the Oriental Terrane, envisaged as a portion of the Congo plate. A collisional-stage resulted in intense westward deformation of the Occidental Terrane under intermediate pressure metamorphism (syn-D1+D2 events). A late-collisional stage resulted in subvertical folding and steep shear zones (D3 event). Both stages were associated with voluminous crustal-derived granites. U-Pb and Sm-Nd geochronology as well as geochemical and structural data point to three magmatic episodes: a syn-collisional stage 1; a syn-collisional stage 2; and a late-collisional stage. This paper presents a magmatic evolutionary model for this crustal segment of the Ribeira orogenic belt based on new geological data of Brasiliano granites and data available in the literature. (author)

  8. Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina

    Science.gov (United States)

    Zappettini, Eduardo O.; Chernicoff, Carlos J.; Santos, Joao O. S.; Dalponte, Marcelo; Belousova, Elena; McNaughton, Neal

    2012-11-01

    The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U-Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374 Ma (Upper Devonian) for the Guaraco Norte Formation and 389 Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406 ± 4 Ma to 369 ± 5 Ma), indicative of active magmatism at that time range. The ɛHf values of this population range between -2.84 and -0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted

  9. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  10. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    Science.gov (United States)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  11. The Neoproterozoic Drift History of Laurentia: a Critical Evaluation and new Palaeomagnetic Data from Northern and Eastern Greenland

    DEFF Research Database (Denmark)

    Christiansen, Jørgen Løye

    Laurentia occupies a critical position in palaeogeographic models for the Neoproterozoic, forming the core of Rodinia Supercontinent. The breakup of Rodinia in the late Neoproterozic was marked by the dispersal of its various constituent continental fragments, concomitant with major episodes...... of the available poles. We present new palaeomagnetic data from the Neoproterozoic sucessions of northern and eastern Greenland that confirm that Laurentia drifted into high latitudes during the late Neoproterozoic. Detailed investigation of the uppermost Eleonore Bay Supergroup (Sturtian?), yields a stable...

  12. Biomarkers of a Low-Latitude Neoproterozoic Glaciation

    Science.gov (United States)

    Olcott, A. N.; Sessions, A. L.; Corsetti, F. A.; Kaufman, A. J.

    2005-12-01

    Neoproterozoic low-latitude glaciations are often considered times of great biologic limitation because of the hypothesized presence of thick, global sea ice. Alternatively, climate models have suggested that tropical oceans could have remained ice-free, or covered by only thin sea ice, allowing life to continue unimpeded throughout the glaciations. The analysis of organic remains from synglacial sediments provides an approach to address the debate. Here we describe molecular, isotopic, and petrographic analyses of organic rich strata (up to 3.0 percent TOC) deposited in southeastern Brazil during Neoproterozoic low-latitude glaciation ca. 700 Ma. These strata contain extractable biomarkers, including 2-α-methyl hopanes, 2,3,6-trimethylarylisoprenoids, C29-C31 hopanes, and C27-C29 steranes. The preserved biomarkers reflect the presence of a complex and productive ecosystem comprised of both aerobic and anaerobic phototrophs, heterotrophs, and eukaryotes. The biomarker data indicate euxinia extending into the photic zone, providing evidence that the oceans were strongly stratified. Significantly, the occurrence of photosynthetic cyanobacteria and green sulfur bacteria at this time indicates that sea-ice cover at this location was thin to nonexistent, and is incompatible with models for snowball Earth that envision kilometers of ice thickness.

  13. Palaeomagnetism of neoproterozoic formations in the volta basin ...

    African Journals Online (AJOL)

    The Volta basin lies on the southern part of the West African craton, more precisely on the Leo (or Man) craton. The Dahomeyides chain is thrust onto its eastern fringe. The Volta basin is filled with Neoproterozoic to Cambro- Ordovician sediments. From bottom to top they are: the Boumbouaka Supergroup made of ...

  14. Palaeomagnetism of neoproterozoic formations in the volta basin ...

    African Journals Online (AJOL)

    The palaeolatitudes of the older formations about 44.9° S and that of the younger sites about 9.1° S show a migration of the West African craton from medium to low latitude during the Neoproterozoic, in conformity with the Snowball Earth hypothesis. KEYWORDS: West African craton, Volta basin, Virtual Geomagnetic Pole, ...

  15. U-Pb SHRIMP and Sm-Nd geochronology of the Anapolis-Itaucu complex, Araxa group and associated granites: Neoproterozoic high grade metamorphism and magmatism in the Central part of the Brasilia Belt, Goias

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R

    2001-01-01

    The Tocantins Province (Almeida et al. 1981) in central Brazil is a Neoproterozoic orogenic zone developed between the Amazon and Sao Francisco cratons and possibly a third continental block, known as Parapanema Block, hidden below the sedimentary rocks of the Parana Basin. The Tocantins Province comprises the eastward vergent Brasilia Belt, adjacent to the Sao Francisco Craton (Marini et al. 1984), and the westward vergent Paraguay and Araguaia belts, developed on the eastern margin of the Amazon Craton. According to Trompette (1997), the Brasilia and Araguaia belts had sedimentation starting at around 1.1-1.0 Ga and final closure at 0.6 Ga. In the northern part of the Brasilia Belt occur the Barro Alto, Canabrava and Niquelandia maficultramafic layered complexes. Inconclusive U-Pb isotopic data indicate ages between ca. 1600 and 2000 Ma for these intrusions that were affected by highgrade metamorphism ca. 740-790 Ma ago, during the Neoproterozoic (Ferreira Filho et al. 1994; Suita et al. 1994; Correia et al. 1997). In the southern part of the Brasilia Belt, in central Goias , is the Anapolis-Itaucu granulite complex. It consists of a large complex of high-grade rocks, volcano-sedimentary sequences and granites, exposed in between metasediments of the Araxa Group, the main constituent of the internal zone of the Neoproterozoic Brasilia Belt (Fuck et al. 1994). These granulites have traditionally been interpreted as the exposure of Archean sialic basement to the sediments of the Brasilia Belt (Danni et al. 1982, Marini et al. 1984; Lacerda Filho and Oliveira 1995). This work reports the results of a regional Sm- Nd isotopic investigation and U-Pb SHRIMP data in order to assess (i) the nature of the protoliths of the Araxa Group in this area; (ii) the nature and the high grade metamorphism of rocks from Anapolis-Itaucu Complex; (iii) the crystallization and metamorphism of aluminous granites (au)

  16. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria

    Science.gov (United States)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.

    2012-12-01

    Ca) parental melts, produced from partial remelting of amphibole clinopyroxenites upon interaction with subduction-modified mantle wedge melts, according to earlier petrological studies. This peak of dominantly extrusive activity in the Yambol-Burgas region extended into the Strandzha region further south, in the form of numerous tholeiitic, calc-alkaline and high-K intrusions emplaced in the same time period between 81 and 78 Ma. Granitic rocks from exposed basement of Eastern Srednogorie zone are dated as Permian/Carboniferous (~ 275-300 Ma). Zircons with similar ages occur in Upper Cretaceous rocks from the East Balkan and Strandzha regions, indicating local incorporation as xenocrysts. In contrast, magmatic rocks from the intermediate Yambol-Burgas region contain mostly Ordovician (~ 460 Ma) or older inherited zircons, suggesting a either a different basement history or, more likely, a different level of magma storage and crustal assimilation. Integrating these geochronological results with a synthesis of the regional geology, we propose a two-stage geodynamic evolution for the Eastern Srednogorie segment of the Tethyan arc. The earlier stage of normal arc magmatism was driven by a southward slab retreat, which formed the ~ 92 Ma calc-alkaline to high-K shallow intrusions and volcanics in the north (East Balkan), 87-86 Ma old tholeiitic and calc-alkaline intrusions in the south (Strandzha), and the voluminous 81-78 Ma old gabbroic to granitic intrusions with predominantly calc-alkaline to high-K composition throughout the Strandzha region. This stage continued westward into the Central Srednogorie zone, where the southward younging of calc-alkaline magmatism correlates well with an increased input of primitive mantle melts, indicating asthenospheric incursion into a widening mantle wedge as a result of slab roll-back. The second stage proceeded in the Eastern Srednogorie zone only, where more extreme extension associated with the opening of the Black Sea back

  17. The magmatic model for the origin of Archean Au-quartz vein ore systems: an assessment of the evidence

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1991-01-01

    The magmatic model for the origin of Archean Au-quartz vein ore systems suggests that Au was derived by partition between silicate (± sulphide) melts of certain compositions and H 2 O-CO 2 -NaCl magmatic fluids. Supporting evidence includes partial/structural geological relationships, timing relationships, H and C isotope geochemistry, probable primary Au enrichment in the Lamaque stocks, and fluid inclusion volatile geochemistry. Evidence is currently negative with respect to various within- and sub-greenstone belt metamorphic/deep crustal fluid models for primary Au mineralization; however a U-Pb age for vein stage 3 sphene from the Camflo deposit, Quebec which is ∼ 55-60 Ma younger than the host stock at 2685-2680 Ma indicates dissolution/reprecipitation of Au by late, (?) upper crustal saline fluids. Evidence is accumulating that epithermal-meso thermal Au-Ag mineralization in island arc and cordilleran settings may also have been magmatically derived ± high level fluid mixing from calc-alkaline, shoshonitic and other igneous compositions. (author)

  18. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  19. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    Science.gov (United States)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  20. Neogene magmatism and its possible causal relationship with hydrocarbon generation in SW Colombia

    Science.gov (United States)

    Vásquez, Mónica; Altenberger, Uwe; Romer, Rolf L.

    2009-07-01

    The Cretaceous oil-bearing source and reservoir sedimentary succession in the Putumayo Basin, SW Colombia, was intruded by gabbroic dykes and sills. The petrological and geochemical character of the magmatic rocks shows calc-alkaline tendency, pointing to a subduction-related magmatic event. K/Ar dating of amphibole indicates a Late Miocene to Pliocene age (6.1 ± 0.7 Ma) for the igneous episode in the basin. Therefore, we assume the intrusions to be part of the Andean magmatism of the Northern Volcanic Zone (NVZ). The age of the intrusions has significant tectonic and economic implications because it coincides with two regional events: (1) the late Miocene/Pliocene Andean orogenic uplift of most of the sub-Andean regions in Peru, Ecuador and Colombia and (2) a pulse of hydrocarbon generation and expulsion that has reached the gas window. High La/Yb, K/Nb and La/Nb ratios, and the obtained Sr-Nd-Pb isotopic compositions suggest the involvement of subducted sediments and/or the assimilation of oceanic crust of the subducting slab. We discuss the possibility that magma chamber(s) west of the basin, below the Cordillera, did increase the heat flow in the basin causing generation and expulsion of hydrocarbons and CO2.

  1. THE NEOPROTEROZOIC ISLAND-ARC ASSOCIATION OF THE MUKODEK GOLD-ORE FIELD, NORTHERN BAIKAL AREA

    Directory of Open Access Journals (Sweden)

    V. A. Vanin

    2014-01-01

    Full Text Available Metamorphosed volcanic rocks of the Ushmukan suite were studied in the Mukodek gold-ore field located in the Baikal-Muya belt in the Northern Baikal area, Russia. The Ushmukan suite shows interleaving of ortoschists which compositions are widely variable. Basalt-andesite-dacite series of normal alkalinity are the substrate of the studied metavolcanic rocks. Based on the set of geochemical characteristics, it is concluded that the rocks were formed in suprasubduction geodynamic conditions corresponding to a mature island arc. The proximity of the geological locations and the similarity of the geochemical characteristics of the volcanic rocks of the Ushmukan suite and rocks of the Kelyan suite (Neoproterozoic, 823 Ma, which have similar compositions, give grounds to consider these two rock suites as age peers. Specific features of gold distribution through the Mukodek gold-ore field are analyzed. Industrial gold contents are recorded only in berezite-listvenite metasomatic rocks of the gold-quartz-sulfide formation which were formed on metavolcanic rocks of the Ushmukan suite. It is concluded that the volcanic rocks, which are specific of the island-arc setting, could be a source of gold for deposits in the Mukodek gold-ore field. 

  2. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees

    Science.gov (United States)

    Martinez, F.J.; Iriondo, A.; Dietsch, C.; Aleinikoff, J.N.; Peucat, J.J.; Cires, J.; Reche, J.; Capdevila, R.

    2011-01-01

    The ages of orthogneisses exposed in massifs of the Variscan chain can determine whether they are part of a pre-Neoproterozoic basement, a Neoproterozoic, Panafrican arc, or are, in fact, lower Paleozoic, and their isotopic compositions can be used to probe the nature of their source rocks, adding to the understanding of the types, distribution, and tectonic evolution of peri-Gondwanan crystalline basement. Using SHRIMP U-Pb zircon geochronology and Nd isotopic analysis, pre-Variscan metaigneous rocks from the N??ria massif in the Eastern Pyrenean axial zone and the Guilleries massif, 70km to the south, have been dated and their Nd signatures characterized. All dated orthogneisses from the N??ria massif have the same age within error, ~457Ma, including the Ribes granophyre, interpreted as a subvolcanic unit within Caradocian sediments contemporaneous with granitic magmas intruded into Cambro-Ordovician sediments at deeper levels. Orthogneisses in the Guilleries massif record essentially continuous magmatic activity during the Ordovician, beginning at the Cambro-Ordovician boundary (488??3Ma) and reaching a peak in the volume of magma in the early Late Ordovician (~460Ma). Metavolcanic rocks in the Guilleries massif were extruded at 452??4Ma and appear to have their intrusive equivalent in thin, deformed veins of granitic gneiss (451??7Ma) within metasedimentary rocks. In orthogneisses from both massifs, the cores of some zircons yield Neoproterozoic ages between ~520 and 900Ma. The age of deposition of a pre-Late Ordovician metapelite in the Guilleries massif is bracketed by the weighted average age of the youngest detrital zircon population, 582??11Ma, and the age of cross-cutting granitic veins, 451??7Ma. Older detrital zircons populations in this metapelite include Neoproterozoic (749-610Ma; n=10), Neo- to Mesoproterozoic (1.04-0.86Ga; n=7), Paleoproterozoic (2.02-1.59Ga; n=5), and Neoarchean (2.74-2.58Ga; n=3). Nd isotopic analyses of the N??ria and Guilleries

  3. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    Science.gov (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  4. The Atuba complex: a paleoproterozoic belt intensively reworked in the neoproterozoic era

    International Nuclear Information System (INIS)

    Siga Junior, O.; Basei, M.A.S.; Machiavelli, A.; Harara, O.M.; Reis Neto, J.M.

    1996-01-01

    Studies of terranes between the northern Ribeira and southern Dom Feliciano Belts allow the characterization of three geotectonic domains with different evolutions: the Luis Alves, Curitiba and Paranagua terranes. The Atuba complex occurs in Curitiba Domain, which has a northwestern limit with metasediments of the Acungui and Setuva Groups and a southwestern limit with the granulitic gneisses of the Luis Alves domains. The contacts are expressive shear zones. The predominant rocks of the Curitiba Domain are banded, migmatitic gneisses in amphibolite grade with biotite-amphibolite gneissic mesosomes and tonalitic/graodioritic leucosomes, here called the Atuba complex. The migmatites are Paleoproterozoic (2.000±200 Ma) and remigmatized in Neoproterozoic (600±20 Ma). During the latter period temperatures reached more than 500 0 C. The structural pattern indicated shear-controlled tectonics with an important lateral component, and low-angle, south-southeastward transport direction. The terranes of the Atuba complex appear to represent deep-level rocks which were migmatized, granitized and then added to the border of the Luis Alves Microplate during the Neoproterozoic. This late Neoproterozoic tectonic scheme which continued to the Cambro-Ordoviciano seems to be the result of larger scale processes of continental agglutination which ended with the formation of western Gondwanaland. (author). 17 figs., 2 tabs

  5. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province

    Science.gov (United States)

    Larsen, Rune B.; Grant, Thomas; Sørensen, Bjørn E.; Tegner, Christian; McEnroe, Suzanne; Pastore, Zeudia; Fichler, Christine; Nikolaisen, Even; Grannes, Kim R.; Church, Nathan; ter Maat, Geertje W.; Michels, Alexander

    2018-01-01

    The Seiland Igneous Province (SIP), Northern Norway, contains > 5000 km2 of mafic and ultramafic intrusions with minor alkaline, carbonatite and felsic rocks that were intruded into the lower continental crust at a depth of 25 to as much as 35 km. The SIP can be geochemically and temporally correlated to numerous dyke swarms throughout Scandinavia at 560-610 Ma, and is linked to magmatic provinces in W-Greenland and NE-America that are collectively known as the Central Iapetus Magmatic Province (CIMP). Revised mapping show that the SIP exposes 85-90% layered tholeiitic- alkaline- and syeno-gabbros, 8-10% peridotitic complexes, 2-5% carbonatite, syenite and diorite that formed within a narrow (mela-gabbro over pyroxenites that grades in to an olivine-clinopyroxenite zone, which is followed by a wehrlite zone and, finally, the centre of the complexes comprises pure dunite. From pyroxenite to dunite, olivine changes from Fo72 to Fo85 and clinopyroxene from Di80 to Di92 i.e. the complexes observe a reverse fractional crystallisation sequence with time. Parental melt compositions modelled from early dykes indicate komatiitic to picritic melts with 16-22 wt% MgO, Cr of 1594 ppm and Ni of 611 ppm, which were emplaced at 1450-1500 °C. Melt compositions calculated from clinopyroxene compositions from Reinfjord are OIB-like with LREE enriched over HREE. The high abundance of carbonatites and lamproites demonstrates the volatile-rich nature of the mantle source region and is further corroborated by the unusually high abundance of magmatic sulphides (0.5-1%) and carbonated and hydrous assemblages (c. 1%) throughout the region. In Reinfjord, they are also closely associated with PGE-Cu-Ni reef deposits. Essentially, the ultramafic complexes in the SIP comprises deep-seated transient magma chambers that facilitated mixing and homogenisation of a rich diversity of fertile asthenospheric melts en route to the upper parts of the continental crust.

  6. Geological, geochemical and isotope diversity of 134 Ma dykes from the Florianópolis Dyke Swarm, Paraná Magmatic Province: Geodynamic controls on petrogenesis

    Science.gov (United States)

    Florisbal, L. M.; Janasi, V. A.; Bitencourt, M. F.; Nardi, L. V. S.; Marteleto, N. S.

    2018-04-01

    The Florianópolis Dyke Swarm (FDS), one of the major dyke swarms belonging to the Early cretaceous (135-131 Ma) Paraná Magmatic Province, is largely dominated by high Sr-Ti-P basalts that are confirmed here as feeders of the unique Urubici (= Khumib) lavas of the Paraná and Edendeka lava piles on the basis of their age and geochemistry. Our study integrates field, petrographic, whole-rock geochemistry, and Sr-Nd-Pb isotope geochemistry of representative samples from three main areas of exposition (Santa Catarina Island, Garopaba and Pinheira beaches), thus encompassing the whole extension of the FDS. Compared to the Urubici lavas, the dykes have usually higher contents of LILE and LREE, more radiogenic Sr and Pb, and more unradiogenic Nd, features attributed to a more pronounced interaction with melts derived from the country rocks registered in the basic magmas that remained in the conduits. Some of these dykes show strongly interactive contacts that must be part of a wider zone of crustal melting, probably more developed at greater depths. Small volumes of intermediate to acidic rocks form the cores of some composite dykes, and correspond to products of fractional crystallization from Urubici basalts contaminated with high Rb/Sr, and U/Th crustal melts (probably derived from Neoproterozoic granites), as indicated by geochemical and Sr-Nd-Pb isotope data. The chemical and isotope signatures of the less contaminated FDS basalts and related Urubici lavas do not show clear evidence of inputs from primitive mantle, and seem heavily influenced by enriched mantle. This suggests that the mantle wedge that was affected by subduction during the Neoproterozoic may have been frozen and coupled to the base of the lithospheric plate where the Early cretaceous magmatism occurred. A control of previous tectonic limits on the sources of the Urubici basalts seems evident, since they seem to be related to the younger lithosphere from the South Domain, related to the Florian

  7. Application of geophysics in the aerial mapping of magmatic complexes of the Sierra de Famatina in La Rioja, Argentina

    International Nuclear Information System (INIS)

    Candiani, J.

    2010-01-01

    The mountain range of Famatina is characterized by a group of prominent elevations above the base level of the surrounding area. Geologically it is a complex region that is located in the Andean fore land. Carboniferous extensional tectonics favored per alkaline leucocranitos intrusion. In an area of extreme geo morphological features, the magnetometry and radiometry r methodology has facilitated regional mapping of magmatic units

  8. Emplacement and deformation of the Cerro Durazno Pluton delineates stages of the lower Paleozoic tectono-magmatic evolution in NW-Argentina

    Science.gov (United States)

    Hongn, F.; Riller, U.

    2003-04-01

    Regional-scale transpression and transtension are considered to be important in the lower Paleozoic tectono-magmatic evolution of metamorphic and granitoid basement rocks of the southern central Andes. In order to test whether such kinematic changes affected Paleozoic basement rocks on the local scale, i.e. in the Eastern Cordillera of NW-Argentina, we performed a detailed field-based structural analysis of the 456 Ma granitoid Cerro Durazno pluton (CDP). The results of our analysis point to the following stages in the geodynamic evolution of this area: (1) Metamorphism and deformation of Neoproterozoic-Paleozoic basement rocks occurred at high T and low to medium P prior to emplacement of the CDP. This lead to the formation of schists and migmatites characterized by pervasive planar and linear mineral shape fabrics and the growth of andalusite, cordierite and fibrolite. (2) Magmatic foliation in the CDP is defined by the shape-preferred orientation of euhedral feldspar phenocrysts and microgranitoid enclaves. These fabrics are concordant to the NE-SW striking intrusive contact with migmatitic host rocks. The lack of submagmatic or high-T solid-state fabrics in the CDP may indicate that cooling and solidification of granitoid magma was not accompanied by regional deformation. Alternatively, emplacement of granitoid magma may have been facilitated by the creation of open space at mid-crustal level induced by regional deformation. (3) Ductile deformation under greenschist metamorphic conditions overprinted magmatic fabrics of the CDP. This is evident by NW-SE striking metamorphic foliation surfaces transecting magmatic shape fabrics at high angles. During this deformation, the pluton was thrust on a SW-dipping shear zone toward the NE over low-grade metamorphic host rocks which lead to a condensation of metamorphic isograds in the host rocks. Ages of strained pegmatitic dikes indicate that this deformation occurred at about 430 Ma. In summary, the difference in age

  9. Towards a quantitative understanding of the late Neoproterozoic carbon cycle

    DEFF Research Database (Denmark)

    Bjerrum, Christian J.; Canfield, Donald Eugene

    2011-01-01

    Neoproterozoic Eon, the time when animals first evolved, experienced wild isotope fluctuations which do not conform to our normal understanding of the carbon cycle and carbon-oxygen coupling. We interpret these fluctuations with a new carbon cycle model and demonstrate that all of the main features...

  10. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    Science.gov (United States)

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  11. Isotopic evidence for two neoproterozoic high-grade metamorphic events in the Brazilia belt

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Piuzanna, Danielle; Moraes, Renato de; Gioia, Simone Maria C.L

    2001-01-01

    The Brasilia Belt is part of a Brasiliano/Pan African orogen developed between the Amazon and Sao Francisco cratons. The stabilization of the belt occurred after the last metamorphic event at ca. 620 Ma. There has been increasing geochronological evidence, however, for an older Neoproterozoic metamorphic event at ca. 780 Ma, observed mainly in high grade rocks of three large mafic-ultramafic complexes in the northern part of the belt. In this study we present: (i) new U-Pb and Sm-Nd geochronological data, (ii) a review of the existing metamorphic ages in the Brasilia Belt, and (iii) a discussion on the tectonic model to explain the two Neoproterozoic metamorphic ages (au)

  12. Stratigraphy of neoproterozoic sedimentary and volcano sedimentary successions of Uruguay

    International Nuclear Information System (INIS)

    Pecoits, E.; Aubet, N.; Oyhantcabal, P.; Sanchez Bettucci, L.

    2004-01-01

    Based on the new data the different characteristics of the Neoproterozoic (volcano) sedimentary succesions of Uruguay are described and discussed. Their stratigraphic tectonics and palaeoclimatic implications are analyzed.The results of the present investigations also allow to define the Maldonado Group which would beintegrated by the Playa Hermosa and Las Ventanas formations.

  13. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    Science.gov (United States)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  14. Slab break-off triggered lithosphere - asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India

    Science.gov (United States)

    Wang, Wei; Pandit, Manoj K.; Zhao, Jun-Hong; Chen, Wei-Terry; Zheng, Jian-Ping

    2018-01-01

    The Neoproterozoic Malani Igneous Suite (MIS) is described as the largest felsic igneous province in India. The linearly distributed Sindreth and Punagarh basins located along eastern margin of this province represent the only site of bimodal volcanism and associated clastic sediments within the MIS. The in-situ zircon U-Pb dating by LA-ICPMS reveals that the Sindreth rhyolites were erupted at 769-762 Ma. Basaltic rocks from both the basins show distinct geochemical signatures that suggest an E-MORB source for Punagarh basalts (low Ti/V ratios of 40.9-28.2) and an OIB source (high Ti/V ratios of 285-47.6) for Sindreth basalts. In the absence of any evidence of notable crustal contamination, these features indicate heterogeneous mantle sources for them. The low (La/Yb)CN (9.34-2.10) and Sm/Yb (2.88-1.08) ratios of Punagarh basalts suggest a spinel facies, relatively shallow level mantle source as compared to a deeper source for Sindreth basalts, as suggested by high (La/Yb)CN (7.24-5.24) and Sm/Yb (2.79-2.13) ratios. Decompression melting of an upwelling sub-slab asthenosphere through slab window seems to be the most plausible mechanism to explain the geochemical characteristics. Besides, the associated felsic volcanics show A2-type granite signatures, such as high Y/Nb (5.97-1.55) and Yb/Ta (9.36-2.57) ratios, consistent with magma derived from continental crust that has been through a cycle of continent-continent collision or an island-arc setting. A localized extension within an overall convergent scenario is interpreted for Sindreth and Punagarh volcanics. This general convergent setting is consistent with the previously proposed Andean-type continental margin for NW Indian block, the Seychelles and Madagascar, all of which lay either at the periphery of Rodinia supercontinent or slightly off the Supercontinent.

  15. Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region

    Science.gov (United States)

    Seghedi, Ioan; Maţenco, Liviu; Downes, Hilary; Mason, Paul R. D.; Szakács, Alexandru; Pécskay, Zoltán

    2011-04-01

    The south-eastern part of the Carpathian-Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza-Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the 'Vrancea zone', shows a shift from normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K-alkalic, mafic Na-alkalic and ultrapotassic), suggesting a significant change in geodynamic processes at approximately 3 Ma. We review the tectonic setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the role of orogenic building processes such as subduction or collision on melt production and migration. The calc-alkaline volcanism (5.3-3.9 Ma) marks the end of normal subduction-related magmatism along the post-collisional Călimani-Gurghiu-Harghita volcanic chain in front of the European convergent plate margin. At ca. 3 Ma in South Harghita magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma) interrupted at 1.6-1.2 Ma by generation of Na and K-alkalic magmas, signifying changes in the source and melting mechanism. We attribute the changes in magma composition in front of the Moesian platform to two main geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like calc-alkaline magmas) and (2) renewed contraction associated with deep mantle processes such as slab steepening during post-collisional times (Na and K-alkalic magmas). Contemporaneous post-collisional volcanism at the eastern edge of the Pannonian Basin at 2.6-1.3 Ma was dominated by Na-alkalic and ultrapotassic magmas, suggesting a close relationship with thermal asthenospheric doming and strain partitioning related to the Adriatic indentation. Similar timing, magma chamber processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains (1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a

  16. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan

    Science.gov (United States)

    Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.

    2018-03-01

    We present geochemical and Sr-Nd-Pb-Hf isotope data as well as the results of single grain U-Pb zircon dating for ten granitoid and alkaline intrusions of the Alai segment of Kyrgyz South Tien Shan (STS). The intrusions comprise four geochemically contrasting series or suites, including (1) I-type and (2) shoshonitic granitoids, (3) peraluminous granitoids including S-type leucogranites and (4) alkaline rocks and carbonatites, closely associated in space. New geochronological data indicate that these diverse magmatic series of the Alai segment formed in a post-collisional setting. Five single grain U-Pb zircon ages in the range 287-281 Ma, in combination with published ages, define the main post-collisional magmatic pulse at 290-280 Ma, which is similar to ages of post-collisional intrusions elsewhere in the STS. An age of 287 ± 4 Ma, obtained for peraluminous graniodiorite of the Liayliak massif, emplaced in amphibolite-facies metamorphic rocks of the Zeravshan-Alai block, is indistinguishable from ca. 290 Ma age of peraluminous granitoids emplaced coevally with Barrovian-type metamorphism in the Garm block, located ca. 40 km south-west of the research area. The Sr-Nd-Pb-Hf isotopic compositions of the studied intrusions are consistent with the reworking of crustal material with 1.6-1.1 Ga average crustal residence times, indicating the formation of the Alai segment on a continental basement with Mesoproterozoic or older crust. The pattern of post-collisional magmatism in the Alai segment, characterized by emplacement of I-type and shoshoninitic granitoids in combination with coeval Barrovian-type metamorphism, is markedly different from the pattern of post-collisional magmatism in the adjacent Kokshaal segment of the STS with predominant A-type granitoids that formed on a former passive margin of the Tarim Craton. We suggest that during the middle-late Carboniferous the Alai segment probably comprised a microcontinent with Precambrian basement located between

  17. Post-Hercynian subvolcanic magmatism in the Serre Massif (Central-Southern Calabria, Italy)

    Science.gov (United States)

    Romano, V.; Cirrincione, R.; Fiannacca, P.; Mazzoleni, P.; Tranchina, A.

    2009-04-01

    In the Serre Massif (Central-Southern Calabria, Italy) dykes and subvolcanic bodies intrude diffusively both Hercynian metamorphic rocks and late-Hercynian granitoids. They range in composition from basaltic andesites to dacite-rhyodacites and can be ascribed to the extensive magmatic activity that affects the entire Hercynian orogenic belt in late Paleozoic - early Mesozoic time. The geodinamic framework of the magmatic activity is still matter of debate, nevertheless most authors agree in correlating magmatism both to the late-orogenic collapse of the Hercynian belt and to the lithosphere thinning responsible for the subsequent continental rifting. In this work, we propose a petrogenetic model for acidic to basic hypabissal bodies from southern Calabria in order to define the nature of sources, discriminate magmatic processes and supply a contribution in the geodynamic reconstruction of the Late Palaeozoic in the Calabria-Peloritani Orogen. In relation to their geochemical affinity, studied dykes have been divided in two groups: a medium- to high-K calc-alkaline and a tholeiitic one. Dykes belonging to the former group, andesitic and dacitic-rhyodacitic in composition, show typical features of subduction-related magmatism, such as LILE and LREE enrichments, depletions in HFSE, peaks in Rb, Th and Ce, accentuated troughs in Ba, Nb-Ta, P and Ti (White and Dupré, 1986; McCulloch and Gamble, 1991), contrasting with the late Hercynian collisional context. On the other side, features typical of intra-plate magmatic activity, such as a moderate enrichment in Ta, Nb, Ce, P, Zr, Hf and Sm relative to MORB composition are also present in studied rocks (Shimizu & Arculus, 1975; Pearce, 1982). REE-patterns are strongly to weakly fractionated for the andesitic rocks (Lan/Ybn = 10.03-13.98) and the dacitic-rhyodacitic ones (Lan/Ybn = 6.00 to 2.82), respectively. The latter rocks exhibit a very slight negative Eu anomaly, whereas no Eu anomaly is recognizable in the andesite

  18. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    Science.gov (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  19. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  20. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    Science.gov (United States)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  1. Magmatism at different crustal levels in the ancient North Cascades magmatic arc

    Science.gov (United States)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.

    2013-12-01

    The mechanisms of magma ascent and emplacement inferred from study of intrusive complexes have long been the subject of intense debate. Current models favor incremental construction based on integration of field, geochemical, geochronologic, and modeling studies. Much of this work has been focused on a single crustal level. However, study of magmatism throughout the crust is critical for understanding how magma ascends through and intrudes surrounding crustal material. Here, we present new geochronologic and geochemical work from intrusive complexes emplaced at a range of crustal depths in the Cretaceous North Cascades magmatic arc. These complexes were intruded between 92 and 87 Ma at depths of at ≤5 -10 km, ~20 km, and ~25 km during this time. U-Pb CA-TIMS geochronology in zircon can resolve Jack-Entiat intrusive complex, a highly elongate amalgamation of intrusions recording two episodes of magmatism between~92-88 Ma and ~80-77 Ma. Each of these complexes provides a window into crustal processes that occur at different depths. Our data suggest assembly of the Black Peak intrusive complex occurred via a series of small (0.5-2 km2) magmatic increments from ~92 Ma to ~87 Ma. Field relations and zircon trace element geochemistry indicate each of these increments were emplaced and crystallized as closed systems-we find no evidence for mixing between magmas in the complex. However, zircon inheritance becomes more common in younger intrusions, indicating assimilation of older plutonic material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed

  2. The Dom Feliciano belt (Brazil-Uruguay)and its fore land (Rio de la Plata Craton): framework, tectonic evolution and correlations with similar terranes of southwestern Africa

    International Nuclear Information System (INIS)

    Basei, M.; Siga, O.; Masquelin, H.; Harara, O.; Reis Neto, J.; Preciozzi, F.

    2000-01-01

    The Dom Feliciano Belt (DFB) stretches for ca. 1,200 km along southeastern Brazil and eastern Uruguay, with an average width of 150 km. From its northern limit in Santa Catarina to its termination m Uruguay, DFB is internally organized according three crustal segments characterized, from southeast to northwest, by a Granitoid belt (calci-alkaline to alkaline granitoid rocks deformed to different degrees); a Schist belt (volcano-sedimentary rocks metamorphosed from green schist to amphibolite facies), and a Fore land belt (sedimentary and anchimetamorphic volcanic rocks), the latter situated between the Schist belt and the old western terranes. Despite discontinuously covered by younger sediments, the continuity of these three segments is suggested by the similar lithotypes and structural characteristics, as well as by the gravimetric geophysical signature.In this work, DBF is interpreted as the product of successive subduction s and collisions related to the agglutination of different terranes generated or intensely reworked from the Neoproterozoic to the Cambrian, during the Brasiliano and Rio Doce orogenesis, with maximum time starting at 900 Ma (opening of the Adamastor Ocean) and ending at 530 Ma (deformation of the fore land basins) related to the tecto no-magmatic events associated with the formation of the Western Gondwana.Besides the Neoproterozoic DFB and its fore land, the Rio de la Plata Craton and the Luis Alves Microplate, constituted by Paleoproterozoic gneissic-migmatitic rocks, two other tectonic units can be recognized in southeastern Brazil and eastern Uruguay: the Sao Gabriel Block (RS) where Neoproterozoic juvenile material can be characterized in regional scale (in great part associated with an island are), and the Punta del Este Terrane, which presents, in southern Uruguay, an ortho gneiss basement with ages around 1,000 Ma and a meta sedimentary cover (Rocha Group), which can correspond in the South-American portion, to the Namaqua and Gariep

  3. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    Science.gov (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  4. Lead isotope evolution across the Neoproterozoic boundary between craton and juvenile crust, Bayuda Desert, Sudan

    Science.gov (United States)

    Evuk, David; Lucassen, Friedrich; Franz, Gerhard

    2017-11-01

    Metaigneous mafic and ultramafic rocks from the juvenile Neoproterozoic Arabian Nubian Shield (ANS) and the Proterozoic, reworked Saharan Metacraton (SMC) have been analysed for major- and trace elements and Sr, Nd, and Pb isotopes. Most of the rocks are amphibolites metamorphosed at amphibolite facies conditions, some with relicts of a granulite facies stage. The other rocks are metapyroxenites, metagabbros, and some ultramafic rocks. Trace element compositions of the metabasaltic (dominantly tholeiitic) rocks resemble the patterns of island arcs and primitive lavas from continental arcs. Variable Sr and Nd isotope ratios indicate depleted mantle dominance for most of the samples. 207Pb/204Pb signatures distinguish between the influence of high 207Pb/204Pb old SMC crust and depleted mantle signatures of the juvenile ANS crust. The Pb isotope signatures for most metabasaltic rocks, metapyroxenites and metagabbros from SMC indicate an autochthonous formation. The interpretation of the new data together with published evidence from mafic xenoliths on SMC and ophiolite from ANS allows an extrapolation of mantle evolution in time. There are two lines of evolution in the regional mantle, one, which incorporates potential upper crust material during Neoproterozoic, and a second one with a depleted mantle signature since pre-Neoproterozoic that still is present in the Red Sea and Gulf of Aden spreading centres.

  5. Scent of a supercontinent: Gondwana's ores as chemical tracers—tin, tungsten and the Neoproterozoic Laurentia-Gondwana connection

    Science.gov (United States)

    De Wit, Maarten J.; Thiart, Christien; Doucouré, Moctar; Wilsher, Wendy

    The birth of Gondwana is inextricably linked to the break-up of the earlier Neoproterozoic supercontinent Rodinia. In detail, the Neoproterozoic reconstructions of Rodinia are unsolved and without them a detailed kinematic history of the birth of Gondwana cannot be constructed. This paper shows that Gondwana's ore deposits provide chemical "scents" that can be effectively used to trace the tectonic history of Gondwana; and the heterogenous distribution of Gondwana's ore deposits are used to evaluate Late Neoproterozoic reconstructions, which place Laurentia against West Gondwana along a common belt of Grenville age rocks. West Gondwana (including its Grenville-like rocks) is anomalously enriched in Sn and W relative to the rest of Gondwana. The Grenville Province of Laurentia and its immediate hinterland are devoid of Sn-W deposits and even occurrences of any significance. Therefore, Rodinia reconstructions which juxtapose East Laurentia against the west coast of South America result in juxtaposition of distinctly different metalliferous crustal blocks. These reconstructions may not be correct, and other models should be (re-)explored.

  6. Geochemistry and petrogenesis of the Dehe Bala calc-alkaline granodiorites, south west of Boein Zahra

    Directory of Open Access Journals (Sweden)

    Zeynab Gharamohammadi

    2016-09-01

    Full Text Available The Dehe Bala pluton is exposed approximately 45 km south-west of Boein Zahra town, Qazvin province. This Pluton which intruded the Eocene volcano-sedimentary rocks of the Urumieh-Dokhtar Magmatic assemblage (UDMA, is mainly composed of granodiorite and produced narrow thermal metamorphic contact aureoles surrounding the intrusion. The body is characterized by SiO2 content ranging from 64.2 to 66.9 wt%, high-k calc-alkaline nature and metaluminous character (A/CNK

  7. New paleomagnetic poles from Arctic Siberia support Indian Ocean option for the Neoproterozoic APWP of the Siberian craton.

    Science.gov (United States)

    Pasenko, A.; Malyshev, S. V.

    2017-12-01

    Quantity and quality of paleomagnetic poles obtained so far for Neoproterozoic of Siberia are still insufficient even to outline the general trend of APWP of Siberia for this huge and very interesting time interval. Meanwhile, the solution of this problem is crucial for choice of polarity option for Siberian proterozoic paleomagnetic directions, for construction and testing of world paleotectonic and paleogeographic reconstructions. For example, whether or not the Siberian craton could be connected with Laurentia within the supercontinent Rodinia depends directly on paleomagnetic polarity option choice, which , in its turn, is determined by either we choose for neoproterozoic drift of Siberian paleomagnetic poles Pacific ocean trend [Smethurst et al., 1998] or Indian ocean [Pavlov et al., 2015] trend. To advance in solution of this problem we have carried out the paleomagnetic investigations of several sedimentary sections and sills of Arctic Siberia considered to be meso-neoproterozoic in age. In particular we have studied the terrigenous Udza and Unguohtah Formations and basic sills of the Udzha Uplift; the carbonate Khaipakh Formation of the Olenek Uplift; the carbonate Burovaya Formation of the Turukhansk Uplift; basic sills of the Kparaulakh Mountains.In this report we present the paleomagnetic poles obtained, discuss their bearing on construction of the adequate Siberian neoproterozoic APWP and show that our new data rather support the Indian ocean option.This research were supported by Grant from RF President #MK-739.2017.5

  8. Provenance analysis and tectonic setting of the Neoproterozoic sediments within the Taoudeni Basin, Northern Mauritania

    Science.gov (United States)

    Nicoll, Graeme; Straathof, Gijs; Tait, Jenny; Lo, Khalidou; Ousmane, N'diaye; El Moctar Dahmada, Mohamed; Berndt, Jasper; Key, Roger

    2010-05-01

    We have dated over 800 detrital zircon grains from the Neoproterozoic sediments within the Taoudeni Basin of Mauritania on the West African craton. This sequence of sediments preserves a relatively condensed mixed continental and marine succession as well as Neoproterozoic glacial and glacially influenced deposits. The underlying Archaean and Birimian basement of the West African craton is exposed on the Reguibat shield in the north, and on the Leo shield in the south although smaller inliers occur scattered along the Bassaride and Mauritanide belts, as well as in the core of the Anti-Atlas belt. The large West African craton is totally surrounded by Pan-African fold belts. Sedimentation within the Taoudeni basin started around 1000Ma and lasted until the end of the Carboniferous. The basin is 1000-1500 km in diameter and the sedimentary pile is on average 3000 m thick. All dated zircons in the stratigraphically lowest Char and Atar Groups are older than ~1800Ma. These groups show a strong input of 2950 and 2075Ma ages, indicating sourcing from the local underlying granitic and gneissic basement. These basal sediments also include a large input from a rare 2475Ma source. Samples from the upper Assebet El Hassiane Group contain numerous zircons of 2000-900Ma. While the Neoproterozoic Marinoan glaciogenic "Triad" Jbeliat Group and stratigraphically above formations show a large range of 3200-595Ma ages. We have also undertaken a detailed Carbon isotope profile study through the carbonates which cap the Glacial Jbeliat Group. The upper part of the Jbeliat cap carbonate displays a distinct and pronounced rise from -4.3 to +3.8 13C, followed by the final demise of carbonate productivity. This positive trend is consistent with the upper part of the globally extensive Ghaub/Nantuo/Marinoan cap carbonate sequences. This world-wide sequence is characterized by composite negative-to-positive trends up section and so this isotope stratigraphy along with the zircon data helps

  9. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    Science.gov (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120-130 million years of oceanic magmatism in geological history of the Northern Neotethys.

  10. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    Science.gov (United States)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  11. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    Science.gov (United States)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  12. Precise U-Pb Zircon Dating of the Syenite Phase from the Ditrau Alkaline Igneous Complex

    Directory of Open Access Journals (Sweden)

    Pană Dinu

    2000-04-01

    Full Text Available The Ditrău igneous complex represents the largest alkaline intrusion in the Carpathian-Pannonian region consisting of a plethora of rock types formed by complicated magmatic and metasomatic processes. A detailed U-Pb zircon age study is currently underway and the results for the syenite intrusion phase is reported herein. The U-Pb zircon emplacement age of the syenite of 229.6 +1.7/-1.2 Ma documents the quasi-contemporaneous production and emplacement of the gabbro and syenite magmas. We suggest that the syenite and associated granite formed by crustal melting during the emplacement of the mantle derived gabbroic magma around 230 Ma. The thermal contact aureole produced by the Ditrău alkaline igneous complex constrains the main tectonism recorded by surrounding metamorphic lithotectonic assemblages to be pre-Ladinian.

  13. Banatitic magmatic and metallogenetic belt: metallogeny of the Romanian Carpathians segment

    Directory of Open Access Journals (Sweden)

    S̡erban-Nicolae Vlad

    2003-04-01

    Full Text Available The Romanian Carpathians sector of the Late Cretaceous Banatitic Magmatic and Metallogenetic belt (BMMB contains 1 plutons and volcano-plutonic complexes, i. e. calc-alkaline, I-type granitoids, with related ores; 2 shoshonitic plutons that lack economic interest. Two provinces have been delineated: the Apuseni Mts. Province in the North and the Western South Carpathians in the South. Apuseni Mts. Province is a non-porphyry environment related to more evolved (granodioritic-granitic magmatism. It is subdivided into three zones: Vlădeasa (Pb-Zn ores of restricted metallogenetic potential; Gilău-Bihor (Fe, Bi, Mo, Cu, W, Au, Ni, Co, Pb, Zn, Ag, U, B ores / conspicuous peri-batholitic arrangement and South Apuseni (only one minor Fe-skarn occurrence. Western South Carpathians Province occurs in Romania and extends in Eastern Serbia. It is subdivided into South Banat Mts.–Timok Zone (SBTZ and Poiana Ruscă Mts.– North Banat Mts.– Ridanj-Krepoljin Zone (PR-NB-RKZ. SBTZ is a typical porphyry environment of high metallogenetic potential (Cu, Au, Pb, Zn, while PR-NB-RKZ is a non-porphyry environment with small to medium size Pb, Zn, Fe, Cu deposits/prospects exhibiting commonly a peri-plutonic zoning. The metallogenetic model of the Romanian Carpathians segment of BMMB is conceived based on correlating magma composition/level of emplacement and ore types.

  14. Melt Origin Across a Rifted Continental Margin: A Case for Subduction-related Metasomatic Agents in the Lithospheric Source of Alkaline Basalt, Northwest Ross Sea, Antarctica

    Science.gov (United States)

    Panter, K. S.; Castillo, P.; Krans, S. R.; Deering, C. D.; McIntosh, W. C.; Valley, J. W.; Kitajima, K.; Kyle, P. R.; Hart, S. R.; Blusztajn, J.

    2017-12-01

    Alkaline magmatism within the West Antarctic rift system in the NW Ross Sea (NWRS) includes a chain of shield volcanoes extending 260 km along the coast, numerous seamounts located on the continental shelf and hundreds more within the oceanic Adare Basin. Dating and geochemistry confirm that the seamounts are Pliocene‒Pleistocene in age and petrogenetically akin to the mostly Miocene volcanism on the continent as well as to a much broader region of alkaline volcanism that altogether encompasses areas of West Antarctica, Zealandia and Australia. All of these regions were contiguous prior to Gondwana breakup at 100 Ma, suggesting that the magmatism is interrelated. Mafic alkaline magmas (> 6 wt.% MgO) erupted across the transition from continent to ocean in the NWRS show a remarkable systematic increase in Si-undersaturation, P2O5, Sr, Zr, Nb and light rare earth element (LREE) concentrations, LREE/HREE and Nb/Y ratios. Radiogenic isotopes also vary with Nd and Pb ratios increasing and Sr ratios decreasing ocean-ward. The variations are not explained by crustal contamination or by changes in degree of mantle partial melting but are likely a function of the thickness and age of mantle lithosphere. The isotopic signature of the most Si-undersaturated and incompatible element enriched basalts best represent the composition of the sub-lithospheric source with low 87Sr/86Sr (≤ 0.7030) and δ18Oolivine (≤ 5.0 ‰), high 143Nd/144Nd ( 0.5130) and 206Pb/204Pb (≥ 20) ratios. The isotopic `endmember' is derived from recycled material and was transferred to the lithospheric mantle by small degree melts to form amphibole-rich metasomes. Later melting of the metasomes produced silica-undersaturated liquids that reacted with the surrounding peridotite. This reaction occurred to a greater extent as the melt traversed through thicker and older lithosphere continent-ward. Ancient or more recent ( 550‒100 Ma) subduction along the margin of Gondwana supplied the recycled

  15. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt

    Science.gov (United States)

    Ciobanu, Cristiana L.; Cook, Nigel J.; Stein, Holly

    2002-08-01

    The 1,500-km-long Banatitic Magmatic and Metallogenetic Belt (BMMB) of Romania, Serbia and Bulgaria is a complex calc-alkaline magmatic arc of Late Cretaceous age. It hosts a variety of magmatic-hydrothermal Cu, Au, Mo, Zn, Pb and Fe deposits, including Europe's only world-class porphyry-copper deposits. Regional metallogeny can be linked to subduction of the Vardar Ocean during the Late Cretaceous, as part of the closure of the Neotethys Ocean that had separated Europe and Africa in the Mesozoic. Porphyry Cu-(Au)-(Mo) and intimately associated epithermal massive sulphides dominate in the central segments of the belt in southernmost Banat (Romania), Serbia and north-west Bulgaria. These districts are the economically most important today, including major active Cu-Au mines at Moldova Nouă in Romania, Majdanpek, Veliki Krivelj and Bor in Serbia, and Elatsite, Assarel and Chelopech in Bulgaria. More numerous (and mostly mined in the past) are Fe, Cu and Zn-Pb skarns, which occur mainly at the two ends of the belt, in Eastern Bulgaria and in Romania. This paper summarises some of the deposit characteristics within the geodynamic framework of terminal Vardar subduction. Heterogeneous terranes of the belt, including the Apuseni Mountains at the western end, are aligned parallel to the Vardar front following continental collision of the Dacia and Tisza blocks. All available geochronological data (numerous K-Ar and some U-Pb and Re-Os ages) are compiled, and are complemented by a new high-precision Re-Os date for the Dognecea skarn deposit, south-west Romania (76.6±0.3 Ma). These data indicate that magmatism extended over at least 25 million years, from about 90 to 65 Ma in each segment of the belt. Within Apuseni Mountains and Banat, where magma emplacement was related to syn-collisional extension in the orogenic belt of Carpathians, ore formation seems to be restricted in time and maybe constrained by a shared tectonic event.

  16. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey

    Science.gov (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2014-02-01

    Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.

  17. The Alto Paraguay Alkaline Province: petrographic, geochemical and geochronological characteristics

    International Nuclear Information System (INIS)

    Velazquez Fernandez, Victor

    1996-01-01

    The Alto Paraguay Province is located at the border of the State of Mato Grosso do Sul and Paraguay, between the coordinates 21 deg 10 ' to 23 deg 25 ' of Southern latitude and 57 deg 10 ' to 58 deg 00 ' , having the city of Porto Murtinho as the main reference point. The geotectonic domain of the area is governed by the precambric units of the Southern extreme of the Amazonic craton which developed a long and accentuated activity, giving rise to folds and important faults, that in several cases seem to have exerted an effective control of the magmatic manifestations. Radiometric data indicate that the emplacement of the syenitic bodies took place in the Permo-Triassic period, with a major incidence in the interval 260-240 Ma, representing thus, an important phase of alkaline magmatic affinity associated to the Parana Basin which is believed is to be unique, since the other known areas (Central, Amambay and Rio Apa Provinces, Paraguay, Velasco Province, Bolivia) are considerably younger (140-120 Ma). Syenitic rocks from the Alto Paraguay Province show wide variation in the ratio 87 Sr/ 86 Sr (0.703361 - 0.707734). Excluding the Cerro Boggiani rocks (0.703837-0.707734), values for the nepheline syenites (0.703361-0.703672) general lower than those of the other syenites types. Alkaline syenites cover the interval 0.703510- 0.703872, while quartz syenites and syenogranites are 0.704562 and 0.707076, respectively. geologic evidence, in addition to petrographic, geochemical and isotopic (Sr) data, suggest that the syenitic rocks have been derived from an unique mantelic parental liquid, by fractional crystallization and assimilation processes, which are assumed to be occurred during the emplacement of the magma in the crust. (author)

  18. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland

    DEFF Research Database (Denmark)

    Tegner, Christian; Storey, Michael; Holm, Paul Martin

    2011-01-01

    The High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and has been suggested to include an initial tholeiitic phase (130–80 Ma) and a second alkaline phase (85–60 Ma); second, it was subsequently deformed during the Eurekan Orogeny. New 40Ar–39Ar dating...... of alkaline volcanics from Kap Kane, part of the Kap Washington Group volcanics at the northern tip of Greenland, provides an emplacement age of 71.2±0.5 Ma obtained from amphibole in lapilli tuffs, and a thermal resetting age of 49–47 Ma obtained in feldspar and whole-rocks from trachyte flows. Patch...... in the Labrador Sea and the Baffin Bay, and to eastwards displacement of Greenland relative to North America. The alkaline suite, therefore, may be unrelated to the main tholeiitic phase of the High Arctic Large Igneous Province. The subsequent initiation of continental rifting and ensuing seafloor spreading...

  19. Paleomagnetic Results of the 925 Ma Mafic Dykes From the North China Craton: Implications for the Neoproterozoic Paleogeography of Rodinia

    Science.gov (United States)

    Zhao, X.; Peng, P.

    2017-12-01

    Precambrian mafic dyke swarms are useful geologic records for Neoproterozoic paleogeographic reconstruction. We present a paleomagnetic study of the 925 Ma Dashigou dyke swarm from 3 widely separated locations in the central and northern parts of the North China Craton, which are previously unsampled regions. Stepwise thermal and alternating field demagnetizations were successful in isolating two magnetic components. The lower unblocking temperature component represents the recent Earth magnetic field. The higher unblocking temperature component is the characteristic remanent magnetization and yields positive baked contact test. Results from detailed rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier in these rocks. There was no regional event that has reset the remanent magnetization of all the dyke sites, as indicated by the magnetization directions of both overlying and underlying strata. The similarity of the virtual paleomagnetic poles for the 3 sampled regions also argues that the characteristic remanent magnetizations are primary magnetization when the dykes were emplaced. The paleomagnetic poles from the Dashigou dyke swarm of the North China Craton are not similar to those of the identical aged Bahia dykes from the São Francisco Craton, Brazil, indicating that these mafic dykes may be not parts of a common regional magmatic event that affected North China Craton and NE Brazil at about 925 Ma.

  20. The Jurassic-Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications

    Science.gov (United States)

    Bensalah, Mohamed Khalil; Youbi, Nasrrddine; Mata, João; Madeira, José; Martins, Línia; El Hachimi, Hind; Bertrand, Hervé; Marzoli, Andrea; Bellieni, Giuliano; Doblas, Miguel; Font, Eric; Medina, Fida; Mahmoudi, Abdelkader; Beraâouz, El Hassane; Miranda, Rui; Verati, Chrystèle; De Min, Angelo; Ben Abbou, Mohamed; Zayane, Rachid

    2013-05-01

    Basaltic lava flows, dykes and sills, interbedded within red clastic continental sedimentary sequences (the so called "Couches Rouges") are widespread in the Oued El-Abid syncline. They represent the best candidates to study the Jurassic-Cretaceous magmatism in the Moroccan High Atlas. The volcanic successions were formed during two pulses of volcanic activity, represented by the Middle to Upper Jurassic basaltic sequence B1 (1-4 eruptions) and the Lower Cretaceous basaltic sequence B2 (three eruptions). Whether belonging to the B1 or B2, the lava flows present morphology and internal structures typical of inflated pahoehoe. Our geochemical data show that, at least for Jurassic magmatism, the dykes, and sills cannot be considered as strictly representing the feeders of the sampled lava flows. The Middle to Upper Jurassic pulse is moderately alkaline in character, while the Lower Cretaceous one is transitional. Crustal contamination plays a minor role in the petrogenesis of these magmas, which were generated by variable partial melting degrees of a garnet-bearing mantle source. Magmatism location was controlled by pre-existing Hercynian fault systems reactivated during a Middle to Upper Jurassic-Cretaceous rifting event. The associated lithospheric stretching induced melting, by adiabatic decompression, of enriched low-solidus infra-lithospheric domains.

  1. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)

    jsray

    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  2. Peridotitic lithosphere metasomatised by volatile-bearing melts, and its association with intraplate alkaline HIMU-like magmatism

    DEFF Research Database (Denmark)

    Scott, James; Brenna, Marco; Crase, Jordan

    2016-01-01

    The role of lithospheric mantle metasomatized by CO2-bearing melts in the genesis of HIMU-like alkaline intraplate basalts is investigated using a suite of peridotite xenoliths from New Zealand. The xenoliths have Sr–Nd–Pb–Hf isotope compositions (87Sr/86Sr =0.7029, eNd = +5 to +6, 206Pb/204Pb = ...

  3. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.

    2000-01-01

    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  4. Efficient cooling of rocky planets by intrusive magmatism

    Science.gov (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  5. Geology, geochemistry and 40K-40Ar geochronometry of Miocene magmatism in Algiers area, Northern Algeria

    International Nuclear Information System (INIS)

    Belanteur, O.; Ouabadi, A.; Semroud, B.; Megartsi, M.H.; Fourcade, S.

    1995-01-01

    Miocene magmatic rocks outcrop within a narrow coastal strip east of Algiers. They include basaltic and andesitic lava flows and intrusions (Dellys, Cap Djinet), the Thenia granodioritic plug and the dacitic to rhyolitic lavas and pyroclastic flows from Zemmouri El Bahri and El Kerma. Despite the effects of hydrothermal alteration, 40 K- 40 Ar ages coupled with micropalaeontological data lead to recognition of two emplacement events at 16-15 and 14-12 Ma, respectively. All the studied calc-alkaline to potassic calc-alkaline rocks are enriched in highly incompatible elements and display negative Nb anomalies. Acid magmas have a pronounced crustal imprint ( 87 Sr 86 Sr i =3D 0.7082 to 0.7155; δ 18 O =3D +9 to +13 per mill) which together with La/Nb ratios argues for the occurrence of upper crustal contamination processes. However, the Nb-depletion of the associated basalts suggest that the studied magmas derive from a mantle source which underwent subduction-related metasomatic enrichments prior to their Miocene emplacement. (authors). 13 refs., 3 figs., 2 tabs

  6. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet)

    Science.gov (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang

    2017-09-01

    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  7. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean)

    Science.gov (United States)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.

    2014-07-01

    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  8. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  9. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  10. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  11. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco)

    Science.gov (United States)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara

    2016-04-01

    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U volcanic to subvolcanic massifs. Second event occurred around 700 My and results from mafic products intruding previous arc. A last event also dated at 660-650 My in the Sirwa window marks the emplacement of hot hornblenditic arc-magmas into older arc massifs during the tectonic extrusion of the arc section. This late event is also related to intense melt production at different level of the arc contributing to differentiation of the whole arc complex. We thus interpreted the Asmlil complex as the final

  12. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    Science.gov (United States)

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-02-14

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  13. Petrogenesis and U-Pb and Sm-Nd geochronology of the Taquaral granite: record of an orosirian continental magmatic arc in the region of Corumba - MS

    Directory of Open Access Journals (Sweden)

    Letícia Alexandre Redes

    Full Text Available The Taquaral Granite is located on southern Amazon Craton in the region of Corumbá, westernmost part of the Brazilian state of Mato Grosso do Sul (MS, near Brazil-Bolivia frontier. This intrusion of batholitic dimensions is partially covered by sedimentary rocks of the Urucum, Tamengo Bocaina and Pantanal formations and Alluvial Deposits. The rock types are classified as quartz-monzodiorites, granodiorites, quartz-monzonites, monzo and syenogranites. There are two groups of enclaves genetically and compositionally different: one corresponds to mafic xenoliths and the second is identified as felsic microgranular enclave. Two deformation phases are observed: one ductile (F1 and the other brittle (F2. Geochemical data indicate intermediate to acidic composition for these rocks and a medium to high-K, metaluminous to peraluminous calk-alkaline magmatism, suggesting also their emplacement into magmatic arc settings. SHRIMP zircon U-Pb geochronological data of these granites reveals a crystallization age of 1861 ± 5.3 Ma. Whole rock Sm-Nd analyses provided εNd(1,86 Ga values of -1.48 and -1.28 and TDM model ages of 2.32 and 2.25 Ga, likely indicating a Ryacian crustal source. Here we conclude that Taquaral Granite represents a magmatic episode generated at the end of the Orosirian, as a part of the Amoguija Magmatic Arc.

  14. The Neoproterozoic Malani magmatism of the northwestern Indian ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    against a plate subduction setting for their genesis. After the closure of ... ing the Thar desert (as described by Tod 1909), but its geological ..... (b) The Punagarh and Sindreth rocks occur in ..... ginal sea subduction, collision of the Mewar cra-.

  15. Calymmian magmatism in the basement of the Jauru Terrain (Rondonian - San Ignacio Province), Amazon Craton: U-Pb and Sm-Nd geochemistry and geochronology

    Energy Technology Data Exchange (ETDEWEB)

    Fachetti, Frankie James Serrano; Costa, Ana Claudia Dantas da; Silva, Carlos Humberto da, E-mail: frankiefachetti@hotmail.com, E-mail: acdcosta@ufmt.br, E-mail: chsilva@ufmt.br [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Instituto de Ciencias Exatas e da Terra

    2016-11-01

    The Taquarussu Orthogneiss and the Guadalupe Granodiorite, part of the Rondonian-San Ignacio Province basement, southwest of the Amazonian Craton, correspond to oriented bodies with a NW trend. The rocks show granodiorite composition with minor occurrences of coarse grained monzogranites consisting essentially of plagioclase, quartz, microcline, orthoclase and biotite. The accessory minerals are amphibole, titanite, garnet, apatite, epidote, zircon and opaque. The geochemical data indicate that the rocks are classified as granodiorites and monzogranites, with an intermediate to acid magmatism, sub-alkaline character, from the calc-alkaline to the high-K calc-alkaline series, with alumina ratios ranging from metaluminous to lightly peraluminous. The rocks were classified as generated in volcanic islands arc environment and the U-Pb data (SHRIMP zircon) show a concord age 1575 ± 6 Ma. The Sm-Nd model age (T{sub DM}) is 1.63 Ga with εNd (t = 1.57 Ga) ranging from -1.52 to +0.78. These data indicate that these rocks are probably a juvenile crust with a possible contamination of crustal rocks. (author)

  16. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli

    2017-08-01

    samples and full matrix correction, the sum of all major oxides was equal to about 100 wt.%. The concentration of trace elements in the selected samples has been performed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. The uncertainty is <10% for trace element contents higher than 2 ppm (except for Pb, <15% and <15% for all the other trace elements. Results The microstructures observed in thin sections in this study were grouped into three types: (i magmatic microstructures; (ii submagmatic microstructures and (iii mylonitic microstructures. Magmatic and submagmatic microstructures occurred simultaneously with the emplacement of granitoid complex and mylonitic microstructures that occurred after emplacement of granitoid complex. The magma nature of these rocks is sub-alkaline-(calc-alkaline, which fall into calc-alkaline series with high potassium in SiO2-K2O plots. The geochemical variation diagrams of major oxides, the continuous spectrum of rock compositions has been carried out which indicates the crystallization of magmatic differentiation and extensive appendices. Field observations, petrographic and geochemical studies suggest that the rocks in this area have type I and CAG subsections. Studying the geochemical diagrams of the rocks in the studied area indicates that these rocks have been formed in active continental margin tectononic settings. It seems that the Jebale-Barez granitoid Complex is located within a shear zone. Magma has been percolated through Mijan caldera and emplacement Forms of Sill along the shear zone during various periods and the structural setting of granitoid complex in the Jebale-Barez is extensional-shear fractures which are the product of transpression tectonic regime. Discussion The JBPC is calc-alkaline, high-K, subalkaline, and mostly metaluminous except granite and alkali-granite units which are slightly peraluminous and I type in character. These geochemical properties of the studied granitoids suggest subduction

  17. The Achkal Oligocene ring complex: Sr, Nd, Pb evidence for transition between tholeiitic and alkali cenozoic magmatism in Central Hoggar (South Algeria)

    International Nuclear Information System (INIS)

    Maza, M.; Dautria, J.M.; Briqueu, L.; Bosch, D.

    1998-01-01

    The Achkal Oligocene ring complex-cuts the Upper Eocene tholeiitic traps located on the top of the Hoggar swell. The plutonic rocks range from tholeiitic gabbros to alkali essexites, monzonites and syenites, whereas the volcanites are restricted to late per-alkaline rhyolites. The affinity change linked to the large isotopic heterogeneities (from EM1 to HIMU) suggests that the parental magmas are issued from two district mantle sources, first lithospheric then deeper. The Achkal has recorded the magmatic evolution of the Hoggar hot spot, between Eocene and Miocene. (authors)

  18. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    Directory of Open Access Journals (Sweden)

    Pekka Janhunen

    Full Text Available Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma. While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  19. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2014-04-01

    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  20. Mid–Late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available Early Cambrian and Mid–Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercontinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two major magma types: HT (Ti/Y > 500 and LT (Ti/Y  0.85 and HT2 (Nb/La ≤ 0.85, and LT1 (Nb/La > 0.85 and LT2 (Nb/La ≤ 0.85 subtypes, respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere- (or plume- derived magmas, whereas the parental magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric contamination. These volcanics exhibit at least three characteristics: (1 most have a compositional bimodality; (2 they were formed in an intracontinental rift setting; and (3 they are genetically linked with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mid–Neoproterozoic and Early Cambrian coincided temporally with the separation between Australia–East Antarctica, South China and Laurentia and between Australia and Tarim, respectively. The Mid–Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.

  1. Paleomagnetism of the Neoproterozoic Mount Harper Volcanic Complex, Canada

    Science.gov (United States)

    Eyster, A. E.; Macdonald, F. A.; O'Connell, R. J.

    2012-12-01

    Paleomagnetism can be used to identify apparent polar wander, which involves contributions from plate tectonics and true polar wander. True polar wander events have been suggested to have played an important role throughout Earth's history. The Neoproterozoic Mount Harper Volcanic Complex (MHVC) provides paleomagnetic data that bears on this issue. The MHVC is located in the southern Ogilvie Mountains in the Yukon Territory, on the north-west corner of the Laurentian craton. The MHVC involves up to 1200 m of basaltic and andesitic flows. The MHVC reflects the propagating rifting event involved in the breakup of the supercontinent Rodinia. The MHVC is well dated with an age of 717.43± 0.14Ma from the top (Macdonald et al., Science, 2010). Below the MHVC are alluvial fan conglomerate and sandstone from Proterozoic normal faulting. Above the MHVC is a glacial diamictite dated to 716.47± 0.24 Ma and related to Snowball Earth glaciation (Macdonald et al., Science, 2010). Both block and core samples were collected from different members of the MHVC for paleomagnetic study. Included in the sampling were several stratigraphic sections. Alternating field and thermal stepwise demagnetization methods were used to analyze specimens. Magnetic components were determined using principal component analysis and Fisher statistical procedures were used to calculate mean directions. The stratigraphically sampled basalt flows yielded two components. One was a common secondary overprint, and the other was a high stability component which yielded two different directions. One pole is the same as the accepted Neoproterozoic Laurentian grand mean pole and the other is ˜50 degrees away from this grand mean pole. Several possible interpretations are explored- tectonic rotation, true polar wander or the presence of a non-dipolar geomagnetic field.

  2. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the northeastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.

    2017-03-01

    The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.

  3. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    Science.gov (United States)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a

  4. Origin of the Squantum 'Tillite', Massachusetts, USA: Modern Analogs and Implications for Neoproterozoic Climate Models

    Science.gov (United States)

    Carto, S. L.; Eyles, N.

    2009-05-01

    A central challenge to the 'Snowball Earth' hypothesis is whether the sedimentary rocks deposited during the Neoproterozoic (c. 750-570 Ma) are glacial tillites that accumulated under global ice sheets during this era. This uncertainty stems from the fact that diamictites are not uniquely glacial in origin, as the slumping and mixing of sediment downslope can also produce diamictites. A key deposit in this debate is the Squantum 'tillite' (ca. 595-570 Ma) preserved in the Boston Basin in Massachusetts, USA, which originated as an arc- related basin within the Avalon island arc terrane during the Neoproterozoic. Detailed field examinations of the Squantum by the author suggest that it owes its origin to the downslope transport of large volumes of unstable volcanic and sedimentary debris from steep basin margin slopes. No evidence of a glacial environment was identified. Thin-section analysis of this deposit has revealed a significant volcanic influence on sedimentation in the form of hitherto unrecognized volcanic lapilli tuff horizons and turbidites consisting of reworked ash in strata associated with Squantum diamictite. These results point to deposition related to tectonic activity and basin development rather than severe global glacial conditions. In light of these results, the Squantum diamictite was compared to the volcaniclastic mass flows deposits exposed along the active Lesser Antilles Arc in the Caribbean. Many of these flows are transported into the adjacent Grenada back-arc Basin by debris flows and turbidity currents resulting in the deposition of volcaniclastic conglomerates, diamictites and thin ash turbidites. Gross stratigraphic and sedimentological similarities of the mass flow facies in the Caribbean can be identified with the Squantum deposits, suggesting that appropriate depositional analogs for the Squantum can be found along the Lesser Antilles Arc. The significance of these results is that they emphasize the importance of detailed field

  5. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  6. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    Science.gov (United States)

    Yakubchuk, Alexander

    2004-09-01

    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  7. Sedimentary and tectonic history of the Holowilena Ironstone, a Neoproterozoic iron formation in South Australia

    Science.gov (United States)

    Lechte, Maxwell Alexander; Wallace, Malcolm William

    2015-11-01

    The Holowilena Ironstone is a Neoproterozoic iron formation in South Australia associated with glacial deposits of the Sturtian glaciation. Through a comprehensive field study coupled with optical and scanning electron microscopy, X-ray fluorescence, and X-ray diffraction, a detailed description of the stratigraphy, sedimentology, mineralogy, and structure of the Holowilena Ironstone was obtained. The Holowilena Ironstone comprises ferruginous shales, siltstones, diamictites, and is largely made up of hematite and jasper, early diagenetic replacement minerals of precursor iron oxyhydroxides, and silica. These chemical precipitates are variably influenced by turbidites and debris flows contributing clastic detritus to the depositional system. Structural and stratigraphic evidence suggests deposition within a synsedimentary half-graben. A model for the Holowilena Ironstone is proposed, in which dense oxic fluids expelled during sea ice formation in the Cryogenian pool in the depression of the half-graben, allowing for long-lived mixing with the ferruginous seawater and the deposition of iron oxides. This combination of glacial dynamics, tectonism, and ocean chemistry may explain the return of iron formations in the Neoproterozoic.

  8. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block.

    Science.gov (United States)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio

    2017-04-01

    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit

  9. Neoproterozoic diamictite-cap carbonate succession and δ13C chemostratigraphy from eastern Sonora, Mexico

    Science.gov (United States)

    Corsetti, Frank A.; Stewart, John H.; Hagadorn, James W.

    2007-01-01

    Despite the occurrence of Neoproterozoic strata throughout the southwestern U.S. and Sonora, Mexico, glacial units overlain by enigmatic cap carbonates have not been well-documented south of Death Valley, California. Here, we describe in detail the first glaciogenic diamictite and cap carbonate succession from Mexico, found in the Cerro Las Bolas Group. The diamictite is exposed near Sahuaripa, Sonora, and is overlain by a 5 m thick very finely-laminated dolostone with soft sediment folds. Carbon isotopic chemostratigraphy of the finely-laminated dolostone reveals a negative δ13C anomaly (down to − 3.2‰ PDB) characteristic of cap carbonates worldwide. Carbon isotopic values rise to + 10‰ across ∼ 400 m of section in overlying carbonates of the Mina el Mezquite and Monteso Formations. The pattern recorded here is mostly characteristic of post-Sturtian (ca. ≤ 700 Ma), but pre-Marinoan (ca. ≥ 635 Ma) time. However, the Cerro Las Bolas Group shares ambiguity common to most Neoproterozoic successions: it lacks useful radiometric age constraints and biostratigraphically useful fossils, and its δ13C signature is oscillatory and therefore somewhat equivocal.

  10. Arachania, A neo proterozoic magmatic arc and its fragments in south America and Africa

    International Nuclear Information System (INIS)

    Gaucher, C.; Bossi, J.; Frimmel, H.

    2010-01-01

    The name Arachania has been recently proposed for the block that comprises the Cuchilla Dionisio-Pelotas, Marmora, Tygerberg and correlative terranes at both sides of the south Atlantic, which is considered a fragment of the Kalahari Craton that a later stage (660-550 Ma) evolved into an active margin. The block played a key role in the amalgamation of southwestern Gondwana, which has been only recently recognized. Arachania is composed of three different lithotectonic elements: (1) a high-grade metamorphic basement of Namaquan age with evidence of older, Eburnean components that crop out mainly in southern Uruguay; (2) a voluminous calc alkaline granitic batholith s mostly within the 660-550 Ma age range, representing the roots of a Neo proterozoic magmatic arc; and (3) deep-water, turbiditic, Ediacaran sedimentary successions marking the eastern border of Arachania, often associated with mafic to ultramafic rocks

  11. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    Science.gov (United States)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  12. Intraplate mafic magmatism: New insights from Africa and N. America

    Science.gov (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  13. Neoproterozoic sulfur-isotope variation in Australia

    International Nuclear Information System (INIS)

    Gorjan, P.; Walter, M.R.

    2000-01-01

    A number of stages are apparent in sulfur-isotope geochemistry throughout the Neoproterozoic. Prior to the Sturtian glaciation (840-700 Ma) δ 34 S sulfate varied little (19 to 17.5 per mil), and δ 34 S sulfide ranged from -20 to +23 per mil. In the Bitter Springs Formation δ 34 S sulfide is greater in the non-marine portion compared to the marine portion. This can be explained by a paucity of sulfate in the non-marine waters, and is consistent with mineralogical evidence (Southgate, 1991). In the Sturtian glacial sediments δ 34 S sulfide starts below 0 per mil and rises to >30 per mil at the top of the glacial sediments. After the Sturtian glaciation δ 34 S sulfide averages ∼30 per mil (and 34 per mil for δ 34 S organic ) for the extent of silt deposition. This increase in δ 34 S sulfide also appears in China, Canada and Namibia (Gorjan et al., 2000). δ 34 S sulfate also rises but is lower than the average δ 34 S sulfate (5 sulfate nodules in the Tapley Hill Formation average 26 per mil). However, the sulfate nodules may not be preserving the original seawater δ 34 S sulfate 34 S enrichment in sulfides usually occurs in freshwater or euxinic settings, but all evidence points to a sulfate-rich and non-euxinic environment in the Sturtian post-glacial deposits (linear %C vs. %S plots; high FeS 2 :FeS ratios; low degree of pyritisation; Gorjan et al. 2000, Gorjan, 1998). Such a situation points to sulfides being formed from extremely 34 S enriched sulfate (perhaps up to 45 per mil). This global rise in δ 34 S of both sulfur fractions in the Sturtian postglacial has led us to speculate that 34 S enriched sulfate was formed beneath a stagnant, ice-covered ocean, an environment postulated by Hoffman (1998), during the Sturtian glaciation and was brought to shallower waters in an ocean-upwelling event. Sulfide depleted in 34 S may have been deposited on abyssal plains. δ 34 S sulfide and δ 34 S sulfate falls sharply at the conclusion of siltstone deposition

  14. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile

    Science.gov (United States)

    Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.

    1999-03-01

    Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under Pcorrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE

  15. The Fontaine Pluton : an early Ross Orogeny calc-alkaline gabbro from southern Victoria Land, Antarctica

    International Nuclear Information System (INIS)

    Cottle, J.M.; Cooper, A.F.

    2006-01-01

    The Fontaine Pluton is a previously undescribed mafic intrusion outcropping at Fontaine Bluff on the south side of the Carlyon Glacier in southern Victoria Land, Antarctica. It is the southern-most member of a laterally extensive mafic suite emplaced at mid-crustal depths during the initial stages of the Ross Orogeny. The pluton comprises recrystallised hornblende-biotite gabbro, which in places shows well-defined centimetre to metre scale primary igneous layering. Recrystallised ultramafic enclaves composed of amphibole-chlorite-talc are inferred to be remnants of a chemically and mineralogically distinct cumulate fraction. The intrusion has a 87 Sr/ 86 Sr (i) ratio of 0.70679 and a 143 Nd/ 144 Nd (i) ratio of 0.51187 (εNd (i) = -1.2). This, coupled with other geochemical data, implies that the Fontaine Pluton was formed by c. 15% partial melting of a depleted mantle source that was subsequently contaminated by continental crust. Preliminary U-Pb geochronology on zircon suggests an emplacement age for the pluton of 546 ± 10 Ma. These new data indicate that Ross Orogeny magmatism in this area of southern Victoria Land was initiated in the late Neoproterozoic along a subducting plate margin. (author). 55 refs., 10 figs., 3 tabs

  16. Modulation of magmatic processes by CO2 flushing

    Science.gov (United States)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon

    2018-06-01

    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  17. Oxigen isotope compositions as indicators of epidote granite genesis in the Borborema Provinces, NE Brazil

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Valley, J.W; Sial, A.N; Spicuzza, M.J

    2001-01-01

    Neoproterozoic magmatic epidote-bearing granitoids intrude low-grade metapelites in the Cachoeirinha-Salgueiro terrane (CST), and gneisses and migmatites in the Serido terrane (ST), in the Borborema structural province, northeastern Brazil. Granitoids in both terranes contain biotite and hornblende, and are metaluminous, calc-alkalic, and oxidized I-type granites according to White's (1992) classification. However, in spite of these similarities, this work shows that mineral oxygen isotope data from plutons of the two terranes indicate different magma sources, and that magmatic epidote besides crystallizing at different pressure conditions, can have variable isotopic composition (au)

  18. U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia

    Science.gov (United States)

    Hauser, N.; Cabaleri, N. G.; Gallego, O. F.; Monferran, M. D.; Silva Nieto, D.; Armella, C.; Matteini, M.; Aparicio González, P. A.; Pimentel, M. M.; Volkheimer, W.; Reimold, W. U.

    2017-10-01

    The Cañadón Asfalto basin, central Chubut, Argentina, comprises a volcano-sedimentary sequence related to the opening of the Atlantic Ocean during Mesozoic times. The Lonco Trapial, Cañadón Asfalto and Cañadón Calcáreo formations are the main units related to the evolution of this basin. The Las Chacritas and Puesto Almada members are distinguished in the Cañadón Asfalto Formation. LA-HR-ICP-MS U-Pb and Lu-Hf data on zircon were obtained on these units. The Lonco Trapial Formation gave a weighted average age of 172.3 ± 1.8 Ma. A pyroclastic level from the Las Chacritas Member gave a weighted average age of 168.2 ± 2.2 Ma. Two U-Pb concordant ages of 160.3 ± 1.7 Ma on a laminated tuffite and 158.3 ± 1.3 Ma on a pyroclastic level were obtained for the Puesto Almada Member. Two maximum depositional ages constrain the sedimentary provenance areas for the basin: 1) A sample from the Sierra de la Manea range, where a controversial unit related either to the Cañadón Asfalto or to the Cañadón Calcáreo formation occurs, gave an age of 176.6 ± 1.0 Ma. Two younger zircon crystals indicate that this unit may be related to the Cañadón Calcáreo Formation. 2) A sandstone with cross-stratification from the Puesto Almada Member gave a maximum depositional age of 173.6 ± 6.4 Ma. In terms of U-Pb and Lu-Hf isotopes, two magmatic events are identified in central Patagonia: the Mamil Choique magmatic event characterized by negative εHf values around -5.0 and representing recycling during Permian times of Mesoproterozoic crust (TDM of ∼1.5 Ga), and the Cañadón Asfalto magmatic event with negative (-8.2) to positive (+4) εHf values and Meso- to Neoproterozoic TDM between 1.5 and 0.8 Ga. The younger event is characterized by three main cycles: C1 related to the Lonco Trapial magmatism, C2 to the Las Chacritas volcanism, and C3 to the Puesto Almada volcanism. These cycles are related with Marifil, Chon Aike and El Quemado formations volcanics events of

  19. MESOZOIC MAGMATISM IN EAST URUGUAY: PETROLOGICAL CONSTRAINTS RELATED TO THE SIERRA SAN MIGUEL REGION

    Directory of Open Access Journals (Sweden)

    Conti Bruno

    2009-07-01

    Full Text Available This work presents new results of a detailed geological and structural investigation focusing the easternmost Uruguayan Mesozoic magmatic occurrences related to the south Atlantic opening. Lithological descriptions, their stratigraphic relationships and complimentary lithochemical characterizations carried out in the San Miguel region (East Uruguay are presented. Three volcanic/sub-volcanic units have been recognized. The felsic volcanic association is composed by rhyolitic - dacitic flows, mainly with porphyritic textures and sub-alkalinenature and related pyroclastic rocks. The felsic sub-volcanic association is characterized by granophyres of about 25 km2 of exposed area, cross- cut by mafic and felsic dykes. Finally, a mafic association has been identified characterized by dykes and a small intrusion of gabbroic composition.All these units are Mesozoic in age (130 - 127 Ma and according to their chemical nature they correspond tosub-alkaline to weak peralkaline magmas.

  20. The Magmatic Budget of Rifted Margins: is it Related to Inheritance?

    Science.gov (United States)

    Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.

    2017-12-01

    High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of magmatism. These observations suggest that simple relations between magmatic and extensional systems are inappropriate to describe the magmatic history of rifted margins. Moreover, the study of magmatic additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the magmatic budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and magmatic evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the magmatic budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).

  1. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas

    Science.gov (United States)

    Luffi, P. I.; Lee, C.

    2012-12-01

    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  2. The hydrothermal alteration in the context of geologic evolution from Pocos de Caldas Alkaline Massif, MG-SP

    International Nuclear Information System (INIS)

    Garda, G.M.

    1990-01-01

    The Pocos de Caldas Alkaline Massif covers 800 km 2 , a quarter of which is hydrothermally altered. Such proportion is uncommon, when compared to the know alkaline massifs of the world. The hydrothermal alteration is associated with Zr, U and Mo mineralizations which are predominantly located in the central-southern portion of the massif, in the central-eastern circular structure. The colour of the altered rock (and its soil) in that area is typically whitish beige to yellowish white and is regionally called potassic rock. The Osamu Utsumi Mine, also referred to as the uranium ore of Campo do Cercado, is located 25 Km to the south of Pocos de Caldas City and was explored, from 1977 to 1989, through the open pit method. A sequence of alteration minerals adapted to lowering temperatures should be expected; however, only illite and alkaline feldspar are observed in the hydrothermally altered portions of the massif, and their formation must have been controlled mainly by kinetic, other than thermal factors. The irrestrict circulation of relatively hotter hydrothermal fluids must have happened at the beginning of the process, diminishing immediately after the cooling of the brecciated areas (and the subjacent magmatic body), leading the system to kinetics levels that made subsequent hydrothermal alteration impossible. (author)

  3. Timing and sources of pre-collisional Neoproterozoic sedimentation along the SW margin of the Congo Craton (Kaoko Belt, NWNamibia)

    Czech Academy of Sciences Publication Activity Database

    Konopásek, J.; Košler, J.; Sláma, Jiří; Janoušek, V.

    2014-01-01

    Roč. 26, č. 1 (2014), s. 386-401 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : detrital zircons * protolith ages * geochronology * Neoproterozoic Kaoko Belt * geochronology (Namibia) Subject RIV: DB - Geology ; Mineralogy Impact factor: 8.235, year: 2014

  4. The role of water in generating Fe-depletion and the calc-alkaline trend

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.

    2006-12-01

    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally- and

  5. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    Science.gov (United States)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  6. Micro-analysis by U-Pb method using LAM-ICPMS and its applications for the evolution of sedimentary basins: the example from Brasilia Belt

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Matteini, Massimo; Junges, Sergio Luiz; Giustina, Maria Emilia Schutesky Della; Dantas, Elton Luiz; Buhn, Bernhard

    2015-01-01

    The U-Pb geochronological method using LAM-MC-ICPMS represents an important tool to investigate the geological evolution of sedimentary basins, as well as its geochronology, through the determination of upper limits for the depositional ages of detrital sedimentary rocks. The method has been applied in the Geochronology Laboratory of the Universidade de Brasilia, and in this study, a brief review of the provenance data for the sediments of the Neoproterozoic Brasilia Belt is presented and their significance for the evolution of the orogen is discussed. The results indicate that the Paranoa and Canastra Groups represent passive margin sequences formed along the western margin of the Sao Francisco-Congo continent. The Vazante Group presents similar provenance patterns, although Sm-Nd isotopic results suggest that its upper portions had contributions from younger (Neoproterozoic) sources, possibly from the Neoproterozoic Goias Magmatic Arc. On the other hand, metasediments of the Araxa and Ibia groups contain an important proportion of material derived from Neoproterozoic sources, demonstrating that they represent syn-orogenic basins. The provenance pattern of the Bambui Group is marked by an important Neoproterozoic component, showing that it constitutes a sedimentary sequence which is younger than 600 Ma, representing a foreland basin to the Brasilia Belt. (author)

  7. Micro-analysis by U-Pb method using LAM-ICPMS and its applications for the evolution of sedimentary basins: the example from Brasilia Belt; Micro-analise pelo metodo U-Pb usando LAM-CIPMS e suas aplicacoes para a evolucao de bacias sedimentares: o exemplo da faixa Brasilia

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Matteini, Massimo; Junges, Sergio Luiz; Giustina, Maria Emilia Schutesky Della; Dantas, Elton Luiz; Buhn, Bernhard, E-mail: marcio@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias; Rodrigues, Joseneusa Brilhante [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil)

    2015-07-01

    The U-Pb geochronological method using LAM-MC-ICPMS represents an important tool to investigate the geological evolution of sedimentary basins, as well as its geochronology, through the determination of upper limits for the depositional ages of detrital sedimentary rocks. The method has been applied in the Geochronology Laboratory of the Universidade de Brasilia, and in this study, a brief review of the provenance data for the sediments of the Neoproterozoic Brasilia Belt is presented and their significance for the evolution of the orogen is discussed. The results indicate that the Paranoa and Canastra Groups represent passive margin sequences formed along the western margin of the Sao Francisco-Congo continent. The Vazante Group presents similar provenance patterns, although Sm-Nd isotopic results suggest that its upper portions had contributions from younger (Neoproterozoic) sources, possibly from the Neoproterozoic Goias Magmatic Arc. On the other hand, metasediments of the Araxa and Ibia groups contain an important proportion of material derived from Neoproterozoic sources, demonstrating that they represent syn-orogenic basins. The provenance pattern of the Bambui Group is marked by an important Neoproterozoic component, showing that it constitutes a sedimentary sequence which is younger than 600 Ma, representing a foreland basin to the Brasilia Belt. (author)

  8. The Atuba complex: a paleoproterozoic belt intensively reworked in the neoproterozoic era; O complexo Atuba: um cinturao paleoproterozoico intensamente retrabalhado no neoproterozoico

    Energy Technology Data Exchange (ETDEWEB)

    Siga Junior, O.; Basei, M.A.S.; Machiavelli, A.; Harara, O.M. [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias; Reis Neto, J.M. [Parana Univ., Curitiba, PR (Brazil). Dept. de Geologia

    1996-11-01

    Studies of terranes between the northern Ribeira and southern Dom Feliciano Belts allow the characterization of three geotectonic domains with different evolutions: the Luis Alves, Curitiba and Paranagua terranes. The Atuba complex occurs in Curitiba Domain, which has a northwestern limit with metasediments of the Acungui and Setuva Groups and a southwestern limit with the granulitic gneisses of the Luis Alves domains. The contacts are expressive shear zones. The predominant rocks of the Curitiba Domain are banded, migmatitic gneisses in amphibolite grade with biotite-amphibolite gneissic mesosomes and tonalitic/graodioritic leucosomes, here called the Atuba complex. The migmatites are Paleoproterozoic (2.000{+-}200 Ma) and remigmatized in Neoproterozoic (600{+-}20 Ma). During the latter period temperatures reached more than 500{sup 0} C. The structural pattern indicated shear-controlled tectonics with an important lateral component, and low-angle, south-southeastward transport direction. The terranes of the Atuba complex appear to represent deep-level rocks which were migmatized, granitized and then added to the border of the Luis Alves Microplate during the Neoproterozoic. This late Neoproterozoic tectonic scheme which continued to the Cambro-Ordoviciano seems to be the result of larger scale processes of continental agglutination which ended with the formation of western Gondwanaland. (author). 17 figs., 2 tabs.

  9. 1.88 Ga São Gabriel AMCG association in the southernmost Uatumã-Anauá Domain: Petrological implications for post-collisional A-type magmatism in the Amazonian Craton

    Science.gov (United States)

    Valério, Cristóvão da Silva; Macambira, Moacir José Buenano; Souza, Valmir da Silva; Dantas, Elton Luiz; Nardi, Lauro Valentim Stoll

    2018-02-01

    In the southernmost Uatumã-Anauá Domain, central Amazonian craton (Brazil), crop out 1.98 Ga basement inliers represented by (meta)leucosyenogranites and amphibolites (Igarapé Canoas Suite), 1.90-1.89 Ga high-K calc-alkaline granitoids (Água Branca Suite), a 1.88-1.87 Ga alkali-calcic A-type volcano-plutonic system (Iricoumé-Mapuera), Tonian SiO2-satured alkaline granitoids, 1.45-1.25 Ga orthoderived metamorphic rocks (Jauaperi Complex) and Orosirian-Upper Triassic mafic intrusions. New data on petrography, multielementar geochemistry, in situ zircon U-Pb ages and Nd and Hf isotopes of alkali-calcic A-type granites (São Gabriel Granite, Mapuera Suite) and related rocks are indicative of a 1.89-1.87 Ga volcano-plutonic system integrated to the São Gabriel AMCG association. Its magmatic evolution was controlled by the fractional crystallization combined with magma mixing and cumulation processes. Nd isotope values (εNdt values = - 3.71 to + 0.51 and Nd TDM model age = 2.44 to 2.12 Ga) and U-Pb inherited zircon crystals (2115 ± 22 Ma; 2206 ± 21 Ma; 2377 ± 17 Ma, 2385 ± 17 Ma) of the São Gabriel system indicate a large participation of Siderian-Rhyacian crust (granite-greenstones and granulites) and small contribution of Rhyacian mantelic magma. εHft values (+ 5.2 to - 5.8) and Hf TDM ages (3.27-2.14 Ga) also point to contribution of Paleoarchean-Rhyacian crustal melts and small participation of Siderian-Rhyacian mantle melts. Residual melts from the lower crust have been mixed with basaltic melts generated by partial melting of the subcontinental lithospheric mantle (peridotite) in a post-collisional setting at 1.89-1.87 Ga. The mafic melts of such a mixture could have been originated through partial melting of residual ocean plate fragments (eclogites) which ascended onto a residual mantle wedge (hornblende peridotite) and melted it, resulting in modified basaltic magma which, by underplating, led heat to the anatexis of the lower continental crust

  10. Du cycle orogénique hercynien au pré-rifting de l'Atlantique central au Maroc occidental : les microdiorites des Jbilet sont-elles des marqueurs magmatiques de ce passage ?From the Hercynian orogenic cycle towards the central Atlantic prerifting in central Morocco: are the Jbilet microdiorites possible magmatic markers for this transition?

    Science.gov (United States)

    Youbi, Nasrreddine; Bellon, Hervé; Marzin, Arnaud; Piqué, Alain; Cotten, Joseph; Cabanis, Bruno

    2001-09-01

    Microdioritic intrusives crosscut the Hercynian structures of the Jbilet massif in the western Morocco. Their mineralogical, petrological and geochemical compositions display the main characteristics of calc-alkaline magmas and any of the alkaline ones. This magmatic event occurred at ca 255 Ma, as indicated by the 40K- 40Ar age of fresh kaersutite crystals, but seven ages for whole-rock samples, scattered between 231 and 180 Ma, reflect the general rejuvenation of the ages linked to a latter penetrative alteration event of their feldspars and groundmass.

  11. Datation U_Pb : âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). Implications géodynamiquesU_Pb dating: emplacement age of the bimodal magmatism of central Jebilet (Variscan Belt, Morocco). Geodynamic implications

    Science.gov (United States)

    Essaifi, Abderrahim; Potrel, Alain; Capdevila, Ramon; Lagarde, Jean-Louis

    2003-01-01

    The bimodal magmatism of central Jebilet is dated to 330.5 +0.68-0.83 Ma by UPb dating on zircons. This age, similar to that of the syntectonic Jebilet cordierite-bearing granitoids, corresponds to the age of the local major tectonometamorphic event. The syntectonic plutonism of the Jebilet massif, composed of tholeiitic, alkaline, and peraluminous calc-alkaline series, is variegated. Magmas emplacement was favoured by the local extension induced by the motion along the western boundary of the Carboniferous basins of the Moroccan Meseta. The Jebilet massif exemplifies the activation of various magmas sources during an episode of continental convergence and crustal wrenching.

  12. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    Science.gov (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ...

  14. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    Science.gov (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  15. Evidence for Mojave-Sonora megashear-Systematic left-lateral offset of Neoproterozoic to Lower Jurassic strata and facies, western United States and northwestern Mexico

    Science.gov (United States)

    Stewart, John H.

    2005-01-01

    Major successions as well as individual units of Neoproterozoic to Lower Jurassic strata and facies appear to be systematically offset left laterally from eastern California and western Nevada in the western United States to Sonora, Mexico. This pattern is most evident in units such as the "Johnnie oolite," a 1- to 2-m-thick oolite of the Neoproterozoic Rainstorm Member of the Johnnie Formation in the western United States and of the Clemente Formation in Sonora. The pattern is also evident in the Lower Cambrian Zabriskie Quartzite of the western United States and the correlative Proveedora Quartzite in Sonora. Matching of isopach lines of the Zabriskie Quartzite and Proveedora Quartzite suggests ???700-800 km of left-lateral offset. The offset pattern is also apparent in the distribution of distinctive lithologic types, unconformities, and fossil assemblages in other rocks ranging in age from Neoproterozoic to Early Jurassic. In the western United States, the distribution of facies in Neoproterozoic and Paleozoic strata indicates that the Cordilleran miogeocline trends north-south. A north-south trend is also suggested in Sonora, and if so is compatible with offset of the miogeocline but not with the ideas that the miogeocline wrapped around the continental margin and trends east-west in Sonora. An imperfect stratigraphic match of supposed offset segments along the megashear is apparent. Some units, such as the "Johnnie oolite" and Zabriskie-Proveedora, show almost perfect correspondence, but other units are significantly different. The differences seem to indicate that the indigenous succession of the western United States and offset segments in Mexico were not precisely side by side before offset but were separated by an area-now buried, eroded, or destroyed-that contained strata of intermediate facies. ?? 2005 Geological Society of America.

  16. Petrography and geochemistry of magmatic units from the western cordillera of Ecuador (0 deg. 30'S): tectonic implications

    International Nuclear Information System (INIS)

    Cosma, L.; Mamberti, M.; Gabriele, P.; Desmet, A.

    1998-01-01

    The cost and western Cordillera of Ecuador are made of accreted oceanic terranes, separated from from the continental margin by a suture zone containing tectonic slices of mafic rocks. The western Cordillera contains three distinct magmatic units. Ultramafic and mafic cumulates from the suture zone (San Juan slice) represent likely the plutonic roots of oceanic plateau basalts. The mafic cumulates are LREE(depleted and Ta and Pb enriched (primitive mantle). Their Nd and Pb isotopic compositions suggest that they derived from an enriched OIB type mantle source. Pre-Coniacian arc-tholeiites present flat REE patterns, low Pb and Th contents, and high ξ Nd(T=100Ma) (+7.5 to + 7.9) which are indicative of their derivation from a mantle source. These arc-tholeiites developed likely in an intra-oceanic setting. The Eocene calc-alkaline lavas differ from the arc-tholeiites because they are LREE-enriched and have lower ξ Nd(T=50Ma) ratios. Their high Pb and Th contents are probably related to crustal assimilation during the magmas ascent. Their Pb isotopic compositions support involvement of subducted pelagic sediments in their genesis. These lavas represent likely the remnants of a continental calc-alkaline magmatic arc. The continental-arc setting of the Eocene lavas demonstrates that these volcanic rocks postdate the accretion of the western Cordillera, upon which they rest unconformably. Therefore, the accretion of the western Cordillera may have occurred in late Paleocene times, as for part of the oceanic terranes of coastal Ecuador. Nevertheless, the occurrence of a collisional event during late Santonian-early Campanian times is strongly suggested by: the arrival of detrital quartz on oceanic series of the western Cordillera by Campanian-Maastrichtian times, a regional unconformity locally dates early Campanian, the arc-jump observed on coastal Ecuador in Santonian times, and finally a thermal event recognised in the eastern Cordillera around 85-80 Ma. (authors)

  17. What Can Earth Paleoclimates Reveal About the Resiliency of Habitable States? An Example from the Neoproterozoic Snowball Earth

    Science.gov (United States)

    Sohl, L.

    2014-04-01

    The Neoproterozoic "Snowball Earth" glaciations ( 750-635 Ma) have been a special focus for outer habitable zone investigations, owing in large part to a captivating and controversial hypothesis suggesting that Earth may have only narrowly escaped a runaway icehouse state on multiple occasions (a.k.a. "the hard snowball"; Hoffman and Schrag 2001). A review of climate simulations exploring snowball inception (Godderis et al. 2011) reveals that a broad range of models (EBMs, EMICs and AGCMs) tend to yield hard snowball solutions, whereas models with greater 3-D dynamic response capabilities (AOGCMs) typically do not, unless some of their climate feedback responses (e.g., wind-driven ocean circulation, cloud forcings) are disabled (Poulsen and Jacobs 2004). This finding raises the likelihood that models incorporating dynamic climate feedbacks are essential to understanding how much flexibility there may be in the definition of a planet's habitable zone boundaries for a given point in its history. In the first of a series of new Snowball Earth simulations, we use the NASA/GISS ModelE2 Global Climate Model - a 3-D coupled atmosphere/ocean model with dynamic sea ice response - to explore the impacts of wind-driven ocean circulation, clouds and deep ocean circulation on the sea ice front when solar luminosity and atmospheric carbon dioxide are reduced to Neoproterozoic levels (solar = 94%, CO2 = 40 ppmv). The simulation includes a realistic Neoproterozoic land mass distribution, which is concentrated at mid- to tropical latitudes. After 300 years, the sea ice front is established near 30 degrees latitude, and after 600 years it remains stable. As with earlier coupled model simulations we conclude that runaway glacial states would have been difficult to achieve during the Neoproterozoic, and would be more likely to have occurred during earlier times in Earth history when solar luminosity was less. Inclusion of dynamic climate feedback capabilities in habitable zone

  18. Magmatism and deformation during continental breakup

    Science.gov (United States)

    Keir, Derek

    2013-04-01

    The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive magmatism. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and magmatism because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and magmatism during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on magmatism and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.

  19. Correlations of some Neoproterozoic carbonate-dominated successions in South America based on high-resolution chemostratigraphy

    Directory of Open Access Journals (Sweden)

    Alcides Nobrega Sial

    Full Text Available ABSTRACT: This report reviews and incorporates new elemental and isotope chemostratigraphic data for correlation of Neoproterozoic carbonate-dominated successions in South America (Argentina, Bolivia, Brazil, Paraguay and Uruguay. These thick mixed carbonate/siliciclastic successions were largely deposited in epicontinental basins or accumulated on passive margins on the edges of cratons (e.g. São Francisco, Amazonia, Rio Apa Block, Pampia and Río de la Plata paleocontinents during extensional events related to the rifting of the Rodinia Supercontinent. From the stratigraphic point of view, these successions occur as three mega-sequences: glaciogenic, marine carbonate platform (above glaciomarine diamictites or rift successions, and dominantly continental to transitional siliciclastics. In the orogenic belts surrounding cratons, carbonate-dominated successions with important volcanoclastic/siliciclastic contribution have been, in most cases, strongly deformed. The precise ages of these successions remain a matter of debate, but recently new paleontological and geochronological data have considerably constrained depositional intervals. Here, we report high-resolution C, O, Sr, and S isotope trends measured in well-preserved sample sets and mainly use Sr and C isotopes in concert with lithostratigraphic/biostratigraphic observations to provide detailed correlations of these successions. The establishing of a high-level and definite chemostratigraphic correlation between Neoproterozoic basins in South America is the main goal of this work.

  20. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations

    Science.gov (United States)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.

    2014-09-01

    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  1. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia

    Science.gov (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk

    2018-04-01

    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  2. Deeply concealed half-graben at the SW margin of the East European Craton (SE Poland — Evidence for Neoproterozoic rifting prior to the break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    P. Krzywiec

    2018-01-01

    Full Text Available Baltica was one of continents formed as a result of Rodinia break-up 850–550 Ma. It was separated from Amazonia(? by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and kinematics of continental rifting that led to break-up of Rodinia. Rifting was associated with Neoproterozoic syn-rift subsidence accompanied by deposition of continental coarse-grained sediments and emplacement of continental basalts. Transition from a syn-rift to post-rift phase in the latest Ediacaran to earliest early Cambrian was concomitant with deposition of continental conglomerates and arkoses, laterally passing into mudstones. An extensional scenario of the break-up of Rodinia along the Tornquist Rift is based on the character of tectonic subsidence curves, evolution of syn-rift and post-rift depocenters in time, as well as geochemistry and geochronology of the syn-rift volcanics. It is additionally reinforced by the high-quality deep seismic reflection data from SE Poland, located above the SW edge of the East European Craton. The seismic data allowed for identification of a deeply buried (11–18 km, well-preserved extensional half-graben, developed in the Palaeoproterozoic crystalline basement and filled with a Neoproterozoic syn-rift volcano-sedimentary succession. The results of depth-to-basement study based on integration of seismic and gravity data show the distribution of local NE–SW elongated Neoproterozoic depocenters within the SW slope of the East European Craton. Furthermore, they document the rapid south-eastwards thickness increase of the Neoproterozoic succession towards the NW–SE oriented craton margin. This provides evidence

  3. Towards a quantitative understanding of the late Neoproterozoic carbon cycle

    DEFF Research Database (Denmark)

    Bjerrum, Christian Jannik; Canfield, Donald Eugene

    2011-01-01

    The cycles of carbon and oxygen at the Earth surface are intimately linked, where the burial of organic carbon into sediments represents a source of oxygen to the surface environment. This coupling is typically quantified through the isotope records of organic and inorganic carbon. Yet, the late...... Neoproterozoic Eon, the time when animals first evolved, experienced wild isotope fluctuations which do not conform to our normal understanding of the carbon cycle and carbon-oxygen coupling. We interpret these fluctuations with a new carbon cycle model and demonstrate that all of the main features...... of the carbonate and organic carbon isotope record can be explained by the release of methane hydrates from an anoxic dissolved organic carbon-rich ocean into an atmosphere containing oxygen levels considerably less than today....

  4. Phase equilibria constraints on models of subduction zone magmatism

    Science.gov (United States)

    Myers, James D.; Johnston, Dana A.

    Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc-alkaline

  5. A review of the compositional variation of amphiboles in alkaline plutonic complexes

    Science.gov (United States)

    Mitchell, Roger H.

    1990-12-01

    Compositional data for amphiboles occurring in alkaline plutonic complexes are reviewed and a standard procedure for plotting these data in an isometric prism is proposed. The main compositional trend found in both oversaturated and undersaturated complexes of either miascitic or peralkaline affinity is referred to as the primary magmatic trend. Amphiboles range in composition from magnesian hastingsitic hornblende and ferro-edenitic hornblende through katophorite to ferro-richterite and arfvedsonite. Individual complexes differ with respect to the amphibole {Mg}/{Fe} and {Si}/{Al} ratio and the extent of Na-enrichment. Extensive or limited ranges in the composition of amphiboles may occur in a given complex. A subtrend found only in oversaturated complexes is from ferro-edenitic hornblende to ferro-actinolite. This trend termed the ferro-actinolitic subtrend is found only in low temperature non-peralkaline residua. Some aluminous nepheline syenites and associated alkali gabbros contain amphiboles which range in composition from kaersutite through ferroan pargasitic hornblende to hastingsite. This trend termed the primary miascitic magmatic trend is is one of decreasing {Mg}/{Fe}, at essentially constant {Si}/{Al} and Ca content. Na-enrichment does not occur. Amphiboles formed by reactions of preexisting phases with hydrothermal or deuteric fluids are termed the late stage reaction assemblage. Amphibole compositional trends from calcic through sodic-calcic to sodic amphiboles reflect decreasing temperature and oxygen fugacity at or below the QFM oxygen buffer. The compositional trends are of use in determining petrogenetic relationships between apparently consanguineous syenites.

  6. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei

    2017-08-01

    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  7. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola)

    Science.gov (United States)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.

    2017-12-01

    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  8. Provenance and tectonic significance of the Palaeoproterozoic metasedimentary successions of central and nothern Madagascar

    Science.gov (United States)

    De Waele, B.; Thomas, Ronald J.; Macey, P.H.; Horstwood, M.S.A.; Tucker, R.D.; Pitfield, P.E.J.; Schofield, D.I.; Goodenough, K.M.; Bauer, W.; Key, R.M.; Potter, C.J.; Armstrong, R.A.; Miller, J.A.; Randriamananjara, T.; Ralison, V.; Rafahatelo, J.-M.; Rabarimanana, M.; Bejoma, M.

    2011-01-01

    New detrital zircon U–Pb age data obtained from various quartzite units of three spatially separated supracrustal packages in central and northern Madagascar, show that these units were deposited between 1.8 and 0.8 Ga and have similar aged provenances. The distribution of detrital zircon ages indicates an overwhelming contribution of sources with ages between 2.5 and 1.8 Ga. Possible source rocks with an age of 2.5 Ga are present in abundance in the crustal segments (Antananarivo, Antongil and Masora Domains) either side of a purported Neoproterozoic suture ("Betsimisaraka Suture Zone"). Recently, possible source rocks for the 1.8 Ga age peak have been recognised in southern Madagascar. All three supracrustal successions, as well as the Archaean blocks onto which they were emplaced, are intruded by mid-Neoproterozoic magmatic suites placing a minimum age on their deposition. The similarities in detrital pattern, maximum and minimum age of deposition in the three successions, lend some support to a model in which all of Madagascar's Archaean blocks form a coherent crustal entity (the Greater Dharwar Craton), rather than an amalgamate of disparate crustal blocks brought together only during Neoproterozoic convergence. However, potential source terranes exist outside Madagascar and on either side of the Neoproterozoic sutures, so that a model including a Neoproterozoic suture in Madagascar cannot be dispelled outright.

  9. Re-evaluating Gondwana breakup: Magmatism, movement and microplates

    Science.gov (United States)

    Ferraccioli, F.; Jordan, T. A.

    2017-12-01

    Gondwana breakup is thought to have initiated in the Early- to Mid-Jurassic between South Africa and East Antarctica. The critical stages of continental extension and magmatism which preceded breakup remain controversial. It is agreed that extensive magmatism struck this region 180 Ma, and that significant extension occurred in the Weddell Sea Rift System (WSRS) and around the Falkland Plateau. However, the timing and volume of magmatism, extent and mechanism of continental extension, and the links with the wider plate circuit are poorly constrained. Jordan et al (Gondwana Research 2017) recently proposed a two-stage model for the formation of the WSRS: initial extension and movement of the Ellsworth Whitmore Mountains microplate along the margin of the East Antarctic continent on a sinistral strike slip fault zone, followed by transtensional extension closer to the continental margin. Here we identify some key questions raised by the two-stage model, and identify regions where these can be tested. Firstly, is the magmatism inferred to have facilitated extension in the WSRS directly linked to the onshore Dufek Intrusion? This question relates to both the uncertainty in the volume of magmatism and potentially the timing of extension, and requires improved resolution of aeromagnetic data in the eastern WSRS. Secondly, did extension in the WSRS terminate against a single strike slip fault zone or into a distributed fault system? By integrating new and existing aeromagnetic data along the margin of East Antarctica we evaluate the possibility of a distributed shear zone penetrating the East Antarctic continent, and identify critical remaining data gaps. Finally we question how extension within the WSRS could fit into the wider plate circuit. By integrating the two-stage model into Gplates reconstructions we identify regions of overlap and areas where tracers of past plate motion could be identified.

  10. Beating the Heat: Magmatism in the Low-Temperature Thermochronologic Record

    Science.gov (United States)

    Murray, K. E.; Reiners, P. W.; Braun, J.; Karlstrom, L.; Morriss, M. C.

    2017-12-01

    The low-temperature thermochronology community was quick to recognize upper-crustal complexities in the geotherm that reflect landscape evolution, but the complex effects of crustal magmatism on thermochronometers can be difficult to independently document and remain underexplored. Because magmatism is common in many regions central to our understanding of tectonics, this is a significant gap in our ability to robustly interpret rock cooling. Here, we use several different numerical approaches to examine how local and regional crustal magmatism affects cooling age patterns and present examples from the western US that demonstrate the importance—and utility—of considering these effects. We modified the finite-element code Pecube to calculate how thermochronometers document the emplacement of simple hot bodies at different crustal levels. Results demonstrate the potential for mid-crustal plutons, emplaced at 10-15 km depth, to reset cooling ages in the overlying rocks at partial-retention depths at the time of magmatism. Permo-Triassic sandstones from the Colorado Plateau's Canyonlands region have apatite cooling ages that exemplify the resulting ambiguity: Oligocene rock cooling can be attributed to either 1 km of erosion or relaxation of a geothermal gradient transiently doubled by mid-crustal magmatism. Despite these complexities, there are compelling reasons to target rocks with magmatic histories. Shallowly emplaced plutons can usefully reset cooling ages in country rocks with protracted near-surface histories, as we have demonstrated in the Colorado Plateau's Henry Mountains. Cooling age patterns are also useful for quantifying magmatic processes themselves. In an ongoing project, we use the pattern of thermochronometer resetting around individual dikes that fed the Columbia River flood basalts, which are exposed in the Wallowa Mountains, to identify long-lived feeder dikes and model their thermal aureoles to further constrain eruptive dynamics. The pattern

  11. Age of the granitic magmatism and the W-Mo mineralization in skarns of the Seridó belt (NE Brazil) based on zircon U-Pb (SHRIMP) and molybdenite Re-Os dating

    Science.gov (United States)

    Hollanda, Maria Helena B. M. de; Souza Neto, João A.; Archanjo, Carlos J.; Stein, Holly; Maia, Ana C. S.

    2017-11-01

    Over five hundred W-Mo skarns have been reported in the Neoproterozoic Seridó belt in the northeastern Brazil. The origin of these mineralizations has been attributed to metasomatic reactions occuring after the infiltration of hydrothermal fluids that are mostly derived from the plutonic magmatic activity that ranged between approximately 600 and 525 Ma. Here we date molybdenite using N-TIMS on Re-Os analysis of three major scheelite deposits (Brejuí, Bonfim and Bodó) hosted in the skarn horizons of the metasedimentary sequence. Molybdenite is an integral part of the mineralizations that include scheelite in skarns and, in the Bonfim deposit, gold concentrate in late brittle faults. The Re-Os ages are 554 ± 2 Ma (Brejuí), 524 ± 2 Ma (Bonfim) and 510 ± 2 Ma (Bodó). The age of the Brejuí molybdenite, however, appears to be anomalous based on the local geology of the deposit, which is located next to the contact of a batholith dated ca. 575 Ma. In turn, the Bonfim molybdenite yields similar ages in replicated samples with variable high Re contents. New U-Pb SHRIMP ages of four biotite (leuco)granite plutons vary from 577 ± 5 Ma to 526 ± 8 Ma, which overlap with molybdenite crystallization. These results indicate a close connection between the W-Mo mineralizations and the plutonic activity that intruded the belt after the peak HT/LP metamorphism. The latest pulses of felsic magmatism, which were contemporaneous with the emplacement of Be-Ta-Nb-Li pegmatites, therefore constitute a potential guide in the Seridó belt for prospective W-Mo deposits.

  12. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle

    Science.gov (United States)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.

    2018-02-01

    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  13. Genesis and petrology of Late Neoproterozoic pegmatites and aplites associated with the Taba metamorphic complex in southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdelfadil, K.M.; Asimow, P.D.; Azer, M.K.; Gahlan, H.A.

    2016-07-01

    We present new field, petrographical, mineralogical and geochemical data from late Neoproterozoic pegmatites and aplites in southern Sinai, Egypt, at the northernmost limit of the Arabian-Nubian Shield. The pegmatites cross-cut host rocks in the Taba Metamorphic Complex (TMC) with sharp contacts and are divided into massive and zoned pegmatites. Massive pegmatites are the most common and form veins, dykes and masses of variable dimensions; strikes range mainly from E-W through NW-SE to N-S. Mineralogically, the massive pegmatites are divided into K-feldspar-rich and albite-rich groups. Zoned pegmatites occur as lenses of variable dimensions, featuring a quartz core, an intermediate zone rich in K-feldspars and an outer finer-grained zone rich in albite. All compositions are highly evolved and display geochemical characteristics of post-collisional A-type granites: high SiO2, Na2O+K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga and Y alongside low CaO, MgO, Ba and Sr. They are rich in Rare Earth Elements (REE) and have extreme negative Eu anomalies (Eu/Eu*= 0.03–0.09). A genetic linkage between the pegmatites, aplites and alkali granite is confirmed by their common mild alkaline affinity and many other geochemical characteristics. These pegmatites and aplites represent the last small fraction of liquid remaining after extensive crystallization of granitic magma, injected along the foliation and into fractures of the host metamorphic rocks. The extensional tectonic regime and shallow depth of emplacement are consistent with a post-collisional environment. (Author)

  14. Characterization of potassic materials of Pocos de Caldas alkaline massif, Southeastern Brazil

    International Nuclear Information System (INIS)

    Goncalves, P.; Navarro, F.C.; Roveri, C.D.; Bergerman, M.G.

    2016-01-01

    Potassium, which has featured in Brazil's agricultural sector and in the world's in the application of fertilizers, is present in magmatic rocks, such as nepheline syenite and phonolite, found in the Alkaline Massif of Pocos de Caldas (AMPC). The rare earth elements (REE), in turn, also occur in this region and have important uses in various industrial fields. The aim of this study was to investigate the potential of potassic rocks of AMPC in the fertilizer and rare earths industry. Five samples were collected and characterized. It was observed that there was no preferential concentration by granulometric range of potassium oxide, alumina, silica and iron oxide. Feldspathic mass, potash feldspar, and muscovite were found in all samples. The samples show REE with amounts greater than those found in the earth's crust, except for lutetium and scandium and possessed average content of potassium oxide from 8.70 to 14.40%. (author)

  15. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  16. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  17. The Alto Paraguay Alkaline Province: petrographic, geochemical and geochronological characteristics; Provincia alcalina Alto Paraguai: caracteristicas petrograficas, geoquimicas e geocronologicas

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez Fernandez, Victor

    1996-12-31

    The Alto Paraguay Province is located at the border of the State of Mato Grosso do Sul and Paraguay, between the coordinates 21 deg 10{sup `}to 23 deg 25{sup `}of Southern latitude and 57 deg 10{sup `} to 58 deg 00{sup `}, having the city of Porto Murtinho as the main reference point. The geotectonic domain of the area is governed by the precambric units of the Southern extreme of the Amazonic craton which developed a long and accentuated activity, giving rise to folds and important faults, that in several cases seem to have exerted an effective control of the magmatic manifestations. Radiometric data indicate that the emplacement of the syenitic bodies took place in the Permo-Triassic period, with a major incidence in the interval 260-240 Ma, representing thus, an important phase of alkaline magmatic affinity associated to the Parana Basin which is believed is to be unique, since the other known areas (Central, Amambay and Rio Apa Provinces, Paraguay, Velasco Province, Bolivia) are considerably younger (140-120 Ma). Syenitic rocks from the Alto Paraguay Province show wide variation in the ratio {sup 87} Sr/{sup 86} Sr (0.703361 - 0.707734). Excluding the Cerro Boggiani rocks (0.703837-0.707734), values for the nepheline syenites (0.703361-0.703672) general lower than those of the other syenites types. Alkaline syenites cover the interval 0.703510- 0.703872, while quartz syenites and syenogranites are 0.704562 and 0.707076, respectively. geologic evidence, in addition to petrographic, geochemical and isotopic (Sr) data, suggest that the syenitic rocks have been derived from an unique mantelic parental liquid, by fractional crystallization and assimilation processes, which are assumed to be occurred during the emplacement of the magma in the crust. (author) 124 refs., 52 figs., 7 tabs.

  18. The Alto Paraguay Alkaline Province: petrographic, geochemical and geochronological characteristics; Provincia alcalina Alto Paraguai: caracteristicas petrograficas, geoquimicas e geocronologicas

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez Fernandez, Victor

    1997-12-31

    The Alto Paraguay Province is located at the border of the State of Mato Grosso do Sul and Paraguay, between the coordinates 21 deg 10{sup `}to 23 deg 25{sup `}of Southern latitude and 57 deg 10{sup `} to 58 deg 00{sup `}, having the city of Porto Murtinho as the main reference point. The geotectonic domain of the area is governed by the precambric units of the Southern extreme of the Amazonic craton which developed a long and accentuated activity, giving rise to folds and important faults, that in several cases seem to have exerted an effective control of the magmatic manifestations. Radiometric data indicate that the emplacement of the syenitic bodies took place in the Permo-Triassic period, with a major incidence in the interval 260-240 Ma, representing thus, an important phase of alkaline magmatic affinity associated to the Parana Basin which is believed is to be unique, since the other known areas (Central, Amambay and Rio Apa Provinces, Paraguay, Velasco Province, Bolivia) are considerably younger (140-120 Ma). Syenitic rocks from the Alto Paraguay Province show wide variation in the ratio {sup 87} Sr/{sup 86} Sr (0.703361 - 0.707734). Excluding the Cerro Boggiani rocks (0.703837-0.707734), values for the nepheline syenites (0.703361-0.703672) general lower than those of the other syenites types. Alkaline syenites cover the interval 0.703510- 0.703872, while quartz syenites and syenogranites are 0.704562 and 0.707076, respectively. geologic evidence, in addition to petrographic, geochemical and isotopic (Sr) data, suggest that the syenitic rocks have been derived from an unique mantelic parental liquid, by fractional crystallization and assimilation processes, which are assumed to be occurred during the emplacement of the magma in the crust. (author) 124 refs., 52 figs., 7 tabs.

  19. Drilling to investigate processes in active tectonics and magmatism

    OpenAIRE

    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger

    2014-01-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  20. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    Science.gov (United States)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  1. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer - El Graara inliers, eastern and central Anti-Atlas, Morocco

    Science.gov (United States)

    Walsh, Gregory J.; Aleinikoff, John N.; Harrison, Richard W.; Burton, William C.; Quick, James E.; Benziane, Foudad; Yazidi, Abdelaziz; Saadane, Abderrahim

    2012-01-01

    New mapping, geochemistry, and 17 U–Pb SHRIMP zircon ages from rocks of the Sirwa, Bou Azzer–El Graara, and Jebel Saghro inliers constrain the Neoproterozoic evolution of the eastern Anti-Atlas during Pan-African orogenesis. In the Sirwa inlier, Tonian quartzite from the pre Pan-African passive margin deposits of the Mimount Formation contains detrital zircon derived entirely from the West African Craton (WAC), with most grains yielding Eburnean Paleoproterozoic ages of about 2050 Ma. Cryogenian Pan-African orogenic activity (PA1) from about 760 to 660 Ma included northward-dipping subduction to produce a volcanic arc, followed by ophiolite obduction onto the WAC. In the Bou Azzer–El Graara inlier, calc-alkaline granodiorite and quartz diorite, dated at 650–646 Ma, are syn- to post-tectonic with respect to the second period of Pan-African orogenesis (PA2), arc-continent accretion, and related greenschist facies metamorphism. Slab break-off and lithospheric delimination may have provided the source for the supra-subduction calc-alkaline plutons. At about 646 Ma, quartz diorite intruded the Tiddiline formation placing an upper limit on molassic deposition. Widespread Ediacaran high-K calc-alkaline to shoshonitic plutonism and volcanism during the final stage of Pan-African orogenesis (PA3) occurred in a setting related to either modification of the margin of the WAC or formation of a continental volcanic arc above a short-lived southward-dipping subduction zone. In the Saghro inlier, eight plutonic rocks yield ages ranging from about 588 to 556 Ma. Sampled plutonic rocks previously considered to be Cryogenian yielded Ediacaran ages. Peraluminous rhyolitic volcanic rocks in the lower part of the Ouarzazate Supergroup, including ash-flow tuffs of the Oued Dar’a caldera, yield ages between about 574 and 571 Ma. The Oued Dar’a caldera developed in a pull-apart graben produced by a left-step in a northeast-trending, left-lateral strike-slip fault zone, and

  2. Facies analysis and sequence stratigraphy of neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni basin, West Africa

    Science.gov (United States)

    Benan, C. A. A.; Deynoux, M.

    The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive-regressive depositional sequences (S1-S5). Changes in the nature of the deposits forming the transgressive-regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800-700 m.y. ago.

  3. Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana

    DEFF Research Database (Denmark)

    Kalsbeek, F.; Frei, Robert

    2010-01-01

    The Neoproterozoic Volta basin of Ghana (not, vert, similar115,000 km2; depth up to 5–7 km) consists of flat-lying sedimentary rocks, mainly sandstones that unconformably overlie the crystalline basement of the West-African craton. The stratigraphical column has been subdivided into three main...... and Obosum Groups is used to solve one of the outstanding controversies regarding the stratigraphy of the Volta basin....

  4. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    Science.gov (United States)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  5. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  6. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    Science.gov (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  7. Rift magmatism on the Eurasia basin margin: U–Pb baddeleyite ages of alkaline dyke swarms in North Greenland

    DEFF Research Database (Denmark)

    Thórarinsson, Sigurjón B.; Söderlund, Ulf; Døssing, Arne

    2015-01-01

    The opening of the Arctic Ocean involved multiple stages of continental rifting and intrusion of extensive dyke swarms. To trace tectonomagmatic processes of the High Arctic, we present the first U–Pb ages for alkaline dyke swarms of North Greenland. Concordia ages of 80.8 ± 0.6 and 82.1 ± 1.5 Ma...... indicate that north–south and east–west dykes are coeval. The north–south dykes reflect initial east–west rifting that led to break-up along the Gakkel Ridge and formation of the Eurasia Basin. The east–west dykes reflect local variations in the stress field associated with reactivated Palaeozoic faults...

  8. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  9. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems

    Science.gov (United States)

    Nimis, Paolo

    The crystal structures of 212 experimentally synthesized, igneous clinopyroxenes were modeled from electronprobe chemical data. The coexisting melts span a wide range of petrologically relevant, dry and hydrous compositions, characterized by variable enrichment in silica and alkalis. Experimental conditions pertain to Earth's crust and uppermost mantle (P=0-24kbar garnet absent) and a variety of fO2 values (from CCO-buffered to air-buffered) and mineral assemblages (Cpx+/-Opx+/-Pig+/-Ol+/-Plag+/-Spl +/-Mt+/-Amp+/-Ilm). Unit-cell volume (Vcell) versus M1-polyhedron volume (VM1) relations were investigated over a range of pressures and temperatures using data derived from structure modeling and corrected for thermal expansivity and compressibility. The relationships between pressure and clinopyroxene structural parameters were found to be dependent on the nature of the coexisting melt. To reduce compositional effects, only clinopyroxenes belonging to mildly alkaline (MA) and tholeiitic (TH) series were considered. Pressure was modeled as a linear function of Vcell, VM1, and Mg/(Mg+Fe2+)Cpx ratio. A calibration based on the whole data set (MA+TH) reproduced the experimental pressures within 1.4kbar at the 1-σ level. The maximum residuals were 3.5kbar and 3.9kbar for MA- and TH-clinopyroxenes, respectively. Better statistics were obtained by considering MA- and TH-clinopyroxenes separately. A calibration based on the 69 MA-clinopyroxenes reproduced the experimental pressures within 1.1kbar (1σ) and with a maximum residual of 2.7kbar. A calibration based on the 143 TH-clinopyroxenes reproduced the experimental pressures within 1.0kbar (1σ) and with a maximum residual of 3.4kbar. When these geobarometers are applied to natural samples for which P is unknown, the correction for compressibility is necessarily made through a trial-and-error procedure. This expedient propagates an additional error that increases the above uncertainties and residuals by a factor of about 2

  10. Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran

    Directory of Open Access Journals (Sweden)

    Mollai Habib

    2014-06-01

    Full Text Available Paleocene to Oligocene tectonic processes in northwest Iran resulted in extensive I-type calc-alkaline and alkaline magmatic activity in the Ahar region. Numerous skarn deposits formed in the contact between Upper Cretaceous impure carbonate rocks and Oligocene-Miocene plutonic rocks. This study presents new field observations of skarns in the western Alborz range and is based on geochemistry of igneous rocks, mineralogy of the important skarn deposits, and electron microprobe analyses of skarn minerals. These data are used to interpret the metasomatism during sequential skarn formation and the geotectonic setting of the skarn ore deposit related igneous rocks. The skarns were classified into exoskarn, endoskarn and ore skarn. Andraditic garnet is the main skarn mineral; the pyroxene belongs to the diopside-hedenbergite series. The skarnification started with pluton emplacement and metamorphism of carbonate rocks followed by prograde metasomatism and the formation of anhydrous minerals like garnet and pyroxene. The next stage resulted in retro gradation of anhydrous minerals along with the formation of oxide minerals (magnetite and hematite followed by the formation of hydrosilicate minerals like epidote, actinolite, chlorite, quartz, sericite and sulfide mineralization. In addition to Fe, Si and Mg, substantial amounts of Cu, along with volatile components such as H2S and CO2 were added to the skarn system. Skarn mineralogy and geochemistry of the igneous rocks indicate an island arc or subduction-related origin of the Fe-Cu skarn deposit.

  11. Japan-U. S. seminar on magmatic contributions to hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L. (U. S. Geological Survey, CA (United States)); Hedenquist, J. (Geological Survey of Japan, Tsukuba (Japan)); Kesler, S. (University of Michigan, MI (United States)); Izawa, E. (Kyushu University, Fukuoka (Japan). Faculty of Engineering)

    1992-08-31

    A multidisciplinary Seminar on Magmatic Contributions to Hydrothermal Systems'' was held at Ebino and Kagoshima at Kyushu, November, 1991. The principal purpose of the Ebino/Kagoshima Seminar was to bring together a small group of individuals which have been conducting active research on magmatic contributions to hydrothermal systems. The Seminar focussed on the porphyry and epithermal ore environments because of the potential to relate these environments to active volcanic and geothermal systems. Disciplines included valcanology, volcanic gas geochemistry, water geochemistry, isotope geochemistry, geochemical modeling, experimental geochemistry, igneous petrology, geothermal geology, economic geology, fluid-inclusion study, geophysics, and physical modeling. This paper summarizes the outline and significance of the Seminar. It was pointed out that understanding magmatic contributions to hydrothermal systems would require augmented experimental investigations, numerical modeling, field studies, and drilling.

  12. Oman's low latitude "Snowball Earth" pole revisited: Late Cretaceous remagnetisation of Late Neoproterozoic carbonates in Northern Oman

    Science.gov (United States)

    Rowan, C. J.; Tait, J.

    2010-12-01

    Glaciogenic diamictites and associated ‘cap’ carbonates within the Neoproterozoic Huqf Supergroup of Oman record a period of extreme, possibly global, glaciations between 750-635 Ma (the "Snowball Earth"). We have performed high-resolution paleomagnetic sampling of two sections through ~635 Ma cap carbonates in the Jebel Akhdar region of northern Oman. Stepwise thermal demagnetisation reveals a low temperature component carried by goethite, and a high temperature component carried by haematite, that are both aligned with the modern dipole field direction. Occasional reversed polarity directions antipodal to the present day field indicate pervasive weathering of these outcrops over timescales of at least 1 Ma. Between these two overprints an intermediate component with typical unblocking temperatures of 300-550 C, probably carried by magnetite, can also be isolated in most samples. A robust fold test clearly demonstrates that this component was acquired after Paleozoic folding of the carbonates, and was most likely acquired during exhumation associated with emplacement of the Semail ophiolite during the Late Cretaceous (95-68 Ma). In geographic co-ordinates, the intermediate component has an almost horizontal NNW or SSE direction, similar to directions previously reported from outcrops of the ophiolite close to the Jebel Akhdar region, and from thermally altered basement rocks in the the Saih Hatat window further to the east [Feinberg et al. 1999]. Hints of an older, Permian, remagnetisation of the carbonates, which is also observed in the Saih Hatat basement rocks, have also produced a false polarity stratigraphy in one of the sampled sections. Our results contrast with the previously reported low latitude pole from the Huqf Supergroup [Kilner et al., 2005], which was considered to be amongst the more reliable paleomagnetic data supporting glaciations extending to low latitudes during the late Neoproterozoic. However, this interpretation was made on the basis

  13. Understanding and modelling Neo-proterozoic glaciations and their associated phenomena

    International Nuclear Information System (INIS)

    Le Hir, Guillaume

    2007-01-01

    The objective of this research thesis is to provide a consistent image of extreme glaciations which occurred during the Neo-proterozoic era. By using climate and carbon cycle models (or model of bio-geochemical cycles), the author aims at answering various scientific questions raised by the Snowball Earth hypothesis. After a description of the main geological features which characterize the Proterozoic, scientific problems are presented. The author then reports the study of carbon cycle during glaciation in order to understand its operation. Based on this constraint, a consistent scenario of exit from glaciation is defined. The physical-chemical evolution of the ocean during and after a global glaciation is then quantified in order to assess its potential effects on the environment and on the Precambrian biosphere. The last part focuses on the post-glacial evolution to establish the delay for a return to equilibrium of climate after such an extreme event [fr

  14. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    Science.gov (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  15. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  16. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  17. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  18. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    Science.gov (United States)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  19. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    Science.gov (United States)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  20. History of the Magmatic Feeding System of the Campi Flegrei Caldera

    Science.gov (United States)

    Orsi, G.; Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.

    2007-12-01

    The definition of the magmatic feeding system of active volcanoes, in terms of composition, time-scale of crystallization, relation between composition of the erupted magma and structural position of vents, magma chamber processes and architecture, is of extreme importance for the hazard evaluation. The studies that are carried out for the definition of the magmatic systems include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb). The Campi Flegrei caldera magmatic structure is characterized by deep and shallow magma chambers. In the deep reservoir (20-10 km depth) mantle derived magmas differentiate and are contaminated with continental crust. In the shallow reservoirs isotopically distinct magmas further differentiate, mix and mingle before the eruptions. These processes generated isotopically distinct components that were variably involved along different structures of the Campi Flegrei caldera during time. At Campi Flegrei caldera the relation between the structural position of the eruptive vent, for the last 14 ka of activity, and the isotopic composition of the emitted magma allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition, and the magma chamber location and processes, of the future eruption, according to the position of the vent

  1. Magmatic and non-magmatic history of the Tyrrhenain backarc Basin: new constraints from geophysical and geological data

    Science.gov (United States)

    Prada, Manel; Sallares, Valenti; Ranero, Cesar R.; Zitellini, Nevio; Grevemeyer, Ingo

    2016-04-01

    The Western Mediterranean region is represented by a system of backarc basins associated to slab rollback and retreat of subduction fronts. The onset of formation of these basins took place in the Oligocene with the opening of the Valencia Through, the Liguro-Provençal and the Algero-Balearic basins, and subsequently, by the formation of the Alboran and Tyrrhenian basins during the early Tortonian. The opening of these basins involved rifting that in some regions evolved until continental break up, that is the case of the Liguro-Provençal, Algero-Balearic, and Tyrrhenian basins. Previous geophysical works in the first two basins revealed a rifted continental crust that transitions to oceanic crust along a region where the basement nature is not clearly defined. In contrast, in the Tyrrhenian Basin, recent analysis of new geophysical and geological data shows a rifted continental crust that transitions along a magmatic-type crust to a region where the mantle is exhumed and locally intruded by basalts. This basement configuration is at odds with current knowledge of rift systems and implies rapid variations of strain and magma production. To understand these processes and their implications on lithospheric backarc extension we first need to constrain in space and time these observations by further analysis of geophysical and geological data. Here we present two analyses; the first one is focused on the spatial variability of magmatism along the Cornaglia Terrace axis, where magmatic-type crust has been previously interpreted. The comparison of three different seismic refraction transects, acquired across the basin axis from North to South, allows to infer that the highest magmatic activity occurred beneath the central and most extended region of the terrace; while it was less important in the North and almost non-existent in the South. The second analysis focuses on the presence of exhumed mantle in the deepest region of the Tyrrhenian, previously interpreted by

  2. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  3. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V

    2016-01-01

    -slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic

  4. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    Science.gov (United States)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean

  5. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean

    Science.gov (United States)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei

    2018-01-01

    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing

  6. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt

    Science.gov (United States)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui

    2018-05-01

    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2

  7. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    Science.gov (United States)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  8. Red-Sea rift magmatism near Al Lith, Kingdom of Saudi Arabia

    Science.gov (United States)

    Pallister, J.S.

    1986-01-01

    A newly recognized Tertiary dike complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain record early stages of magmatism related to Red Sea rifting. Intrusive and stratigraphic relationships, and new potassium-argon dating indicate episodic magmatism from about 30 Ma to the present. Additional stratigraphic and radiometric evidence suggests that limited rift-related magmatism may have began as early as about 50 Ma ago. An early phase of crustal extension in the region was accompanied by faulting and graben formation and by dike-swarm intrusion. The style of extension and intrusion changed approximately 20 Ma ago. Localized volcanism and sheeted dike injection ceased and were replaced by the intrusion of thick gabbro dikes. This change may mark the onset of sea-floor spreading in the central Red Sea.

  9. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic-ultramafic complex of Gaositai, North China Craton

    Science.gov (United States)

    Yang, Fan; Santosh, M.; Tsunogae, T.; Tang, Li; Teng, Xueming

    2017-07-01

    The suprasubduction zone mantle wedge of active convergent margins is impregnated by melts and fluids leading to the formation of a variety of magmatic and metasomatic rock suites. Here we investigate a composite mafic-ultramafic intrusion at Gaositai, in the northern margin of the North China Craton (NCC). The hornblende gabbro-serpentinite-dunite-pyroxenite-gabbro-diorite suite surrounded by hornblendites of this complex has long been considered to represent an "Alaskan-type" zoned pluton. We present petrologic, mineral chemical, geochemical and zircon U-Pb and Lu-Hf data from the various rock types from Gaositai including hornblende gabbro, serpentinite, dunite, pyroxenite, diorite and the basement hornblendite which reveal the case of multiple melt generation and melt-peridotite interaction. Our new mineral chemical data from the mafic-ultramafic suite exclude an "Alaskan-type" affinity, and the bulk geochemical features are consistent with subduction-related magmatism with enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. Zircon U-Pb geochronology reveals that the hornblendites surrounding the Gaositai complex are nearly 2 billion years older than the intrusive complex and yield early Paleoproterozoic emplacement ages (2433-2460 Ma), followed by late Paleoproterozoic metamorphism (1897 Ma). The serpentinites trace the history of a long-lived and replenished ancient sub-continental lithospheric mantle with the oldest zircon population dated as 2479 Ma and 1896 Ma, closely corresponding with the ages obtained from the basement rock, followed by Neoproterozoic and Phanerozoic zircon growth. The oldest member in the Gaositai composite intrusion is the dunite that yields emplacement age of 755 Ma, followed by pyroxenite formed through the interaction of slab melt and wedge mantle peridotite at 401 Ma. All the rock suites also carry multiple population of younger zircons ranging in age from Paleozoic to

  10. Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data.

    Science.gov (United States)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Murai, Y.; Flueh, E. R.

    2014-12-01

    The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the

  11. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, Luigina; Di Lorenzo, Riccardo; De Rosa, Rosanna; Acocella, Valerio

    2015-01-01

    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  12. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel

    2015-04-01

    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  13. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    Science.gov (United States)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  14. Isotopic strontium, carbon and oxygen study on neoproterozoic marbles from Sierra de Umango, Andean Foreland, Argentina

    International Nuclear Information System (INIS)

    Varela, R; Valencio, S.; Ramos, A; Sato, K; Gonzalez, P; Panarello, H; Roverano, D

    2001-01-01

    The Umango Hill (La Rioja Province, 29 o 00'S-68 o 40'W) is one of the mountain blocks of Sierras Pampeanas Occidentales (Caminos, 1979), bounded by thrust faults and surrounded by Upper Devonian to Tertiary marine and continental sedimentites. The exposed crystalline basement is composed of basic igneous rocks and a siliciclastic-limestone sequence, both affected by amphibolite facies metamorphic peak. In the southern area (Juchi creek), the metamorphic complex carries relics of granitic orthogneisses, with Rb/Sr and U/Pb dates of ∼1000 Ma (Varela et al., 1996). These ancient inliers were asigned to a Mesoproterozoic Grenville Orogenic Cycle. Granitic bodies, intrusives at different ages in the Metamorphic Complex, have also been distinguished. The most ancient is El Penon Granite, with 469±9 Ma Rb/Sr age (Varela et al., 2000) and 523±26 Ma U/Pb zircon age (unpublished data). In this way it is possible to point out broadly that the siliciclastic-limestone sequence belongs to the Neoproterozoic-Early Palaeozoic times. It was a platform cover over grenvillian cratonic basement. The metamorphism and deformation, we understand, took place in the Early Palaeozoic, related to the Pampean-Famatinian Orogenic Cycle. In this work, compositional and isotopic data of Strontium ( 87 Sr/ 86 Sr), Carbon (δ 13 Cv PDB ) and Oxygen (δ 18 Ov PDB ) of the marbles derived from the siliciclastic-limestone sequence are presented. The results are interpreted and correlated with the temporal variation curves of 87 Sr/ 86 Sr and δ 13 C from Neoproterozoic marine carbonates (Jacobsen and Kaufman, 1999) (au)

  15. Amphibole stability using new thermobarometric formulations on calc-alkaline magmas of Volcán Doña Inés, Chile

    Science.gov (United States)

    Hines, R. A.; Walker, J. A.

    2012-12-01

    Moulds (1989) using 2-pyroxene and Fe-Ti oxide geothermometers which ranged from 872-941 ± 40 *C. Not surprisingly the central vent displays the largest variation in crystallizing conditions for amphibole, consistent with a more complex magmatic plumbing system. The pressure-temperature estimates for this Miocene calc-alkaline volcano are similar to those from more recent andesite-dacite systems as compiled by Ridolfi et al. (2010), and demonstrate the consistency of the thermobarometer for subduction-related volcanoes.

  16. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella

    2005-06-01

    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  17. The Magmatic Plumbing System of the Campi Flegrei Caldera.

    Science.gov (United States)

    Lucia, C.; Ilenia, A.; Massimo, D.; Valeria, D.; Mauro, D.; Giovanni, O.

    2006-12-01

    The Campi Flegrei caldera is a nested and resurgent structure generated by at least two major collapses. Large sectors of the structural boundary of both calderas resulted from partial reactivation of pre-existing faults generated by regional tectonism. Its magmatic system is still active with the last eruption occurring in 1538 A.D. (Monte Nuovo), widespread fumaroles and hot springs activity, and the unrest episodes in the last 35 years, with a maximum net uplift of about 3.5 m in the Pozzuoli area. The definition of the history of the magmatic feeding system of this caldera, in terms of composition, time- scale and depth of crystallization, relation between composition of the erupted magma and structural position of the vent, and magma chamber processes, is of extreme importance for a better understanding of the dynamic conditions of the present day magma chamber and for evaluating of the extent to which the behavior of the magmatic system can be predicted. The Campi Flegrei caldera magmatic plumbing system is characterized by deep and shallow reservoirs. Campi Flegrei magmas originated in a subduction modified mantle source, stagnate at mid crustal level (20- 10 km depth), where they differentiated and are contaminated with the continental crust. From the "deep reservoir" shoshonitic to latitic magmas rise towards the surface along the NE aligned regional fault reactivated during the caldera collapse, whereas trachytic magmas rise mostly along faults and fractures bordering the resurgent block and the southern part of the Campi Flegrei caldera. Repeated arrival of trachytic to phonolitic magmas form shallow reservoirs at 4-3 km depth, in which differentiation and mixing processes occur before and during the eruption.

  18. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  19. Late Neoproterozoic to holocene thermal history of the precambrian Georgetown inlier, northeast Australia

    International Nuclear Information System (INIS)

    Spikings, R.A.; Foster, D.A.; University of Melbourne, VIC; Kohn, B.P.; O'Sullivan, P.B.

    2001-01-01

    Carboniferous-Permian volcanic complexes and isolated patches of Upper Jurassic - Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40 Ar/ 39 Ar and apatite fission track data from the inlier record a protracted and non-linear cooling history since ca 750 Ma. 40 Ar/ 39 Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 mm. These results record up to four periods of localised accelerated cooling within the temperature range of ∼ 320-60 deg C and up to ∼ 14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19-0.05 km/10 6 years) are observed to have occurred during the Devonian, late Carboniferous - Permian and mid-Cretaceous - Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian-age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid-Cretaceous exhumation may be a far-field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present-day erosion surface suggests small-scale fault-bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ∼2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid-Cretaceous times. Copyright (2001) Geological Society of Australia

  20. Multiproxy isotope constraints on ocean compositional changes across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Frei, Robert; Gaucher, C.

    2017-01-01

    records typical late Neoproterozoic seawater 87Sr/86Sr ratios. The carbonate δ53Cr signatures at the base of the postglacial sequence are characterized by values even below the range of bulk silicate Earth (BSE). We hypothesize that this is due to (i) redox cycling of Cr in seawater, e.g. by (partial......) reduction of Cr(VI) during microbial-mediated cap dolostone deposition and/or at the redox boundary of redox-stratified seawater and/or due to (ii) increased contribution of negatively fractionated Cr associated with an enhanced input of detrital-derived Cr from postglacial weathering and/or subaqueous...

  1. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts – evidence from a reconnaissance provenance study •

    International Nuclear Information System (INIS)

    Basei, M.; Frimmel, H.; Nutman, A.; Preciozzi, F.; Jacob, J.

    2005-01-01

    A provenance study of Neoproterozoic siliciclastic successions in the stratigraphically and tectonically lowermost and uppermost parts of the Pan-African Gariep Belt (Stinkfontein Subgroup and Oranjemund Group, respectively) in southwestern Africa, as well as in the Rocha Group of the Punta del Este Terrane (Dom Feliciano Belt) in Uruguay, revealed that the Oranjemund and Rocha Groups can be correlated and most likely formed in the same basin. Thus the Rocha Group is considered to represent the fill of the westernmost part of a re-activated Vendian Gariep Basin. The lower parts of the Oranjemund and Rocha Groups reflect erosion of mafic rocks, whereas the upper parts are derived from a predominantly felsic source area. Oceanic islands of within-plate geochemistry in the immediate vicinity were the most likely source of the mafic input into the lower part of the Oranjemund Group, with most of the other sediments derived from a passive continental margin, i.e. the western margin of the Kalahari Craton. Age spectra obtained by U-Pb SHRIMP analyses of detrital zircon grains from the Stinkfontein Subgroup (Port Nolloth Group), the Oranjemund Group and the Rocha Group are very similar, except for a lack of the youngest age group around 600 Ma in the Stinkfontein Subgroup. In all three units, zircon grains of 1000 – 1200 Ma dominate, with a further peak in the age distribution between 1700 and 2000 Ma. These ages compare well with the pre-Gariep basement geology in southwestern Africa, where the former age range corresponds to magmatic and high-grade metamorphic activity in the Mesoproterozoic Namaqua-Natal Belt and the latter to an extensive Palaeoproterozoic Andean-type volcanic arc (Richtersveld Terrane). Comparable ages are conspicuously absent in the basement of the Rio de la Plata Craton in South America. Derivation of the Rocha Group sediments from a similar source as the contemporaneous Oranjemund Group sediments is therefore suggested. The most likely source of

  2. Geochemistry of tephra from Bed I, Olduvai Gorge, Tanzania: Stratigraphic correlations and implications for magmatic evolution

    Science.gov (United States)

    McHenry, L.

    2003-04-01

    At least 10 predominantly trachytic and rhyolitic tuffs are preserved interbedded in volcaniclastic sediments of Plio-Pleistocene Bed I, Olduvai Gorge, Tanzania. Physical correlation of the tuffs is complicated by faulting and variation in preservation and lithofacies. Differences in the degree and type of tephra alteration (clay, zeolitic, none) and preservation of glass shards within the various depositional environments (saline-alkaline lake, lake margin, wetlands, alluvial fan) make correlation by conventional glass chemistry methods impossible. However, variations in overall mineralogy and chemical compositions of co-magmatic phenocrysts (feldspar, augite, titanomagnetite, amphibole) have proven useful to uniquely characterize the tuffs for correlation purposes. Samples of 10 major tuffs in the Olduvai Bed I sequence were collected from various depostional and preservational environments situated up to 15 km apart. Thin sections and mineral separates (10-60 grains of each type of phenocryst/ sample, 2-3 samples/ tuff) were analyzed by electron microprobe for major and minor elements. The lower Bed I tuffs are rhyolitic and easily distinguished from the upper tuffs by the presence of quartz and high-Fe augite. Feldspar composition has been previously found to separate all of the upper tuffs (1B-1F) except the two trachyandesitic tuffs (1D and the "unnamed" tuff between 1E and 1F). Mn and Ti concentrations in the titanomagnetites separate the upper tuffs (MnO%: 1B=1.5-2, 1C=1.3-1.6, 1D=1.1-1.4, 1E=1.5-1.7, unnamed= 0.9-1.2, 1F=1.6-2; TiO2%: 1B, 1E=23-26, 1C=18-22, 1D=25-27, unnamed=20-21, 1F= 12-20). Tuffs 1B, unnamed, and 1F contain abundant amphibole, 1D contains none. Mn and Fe concentrations in the augites also separate the tuffs (MnO%: 1B=1.2-1.5, 1C=0.9-1.2, 1D=0.6-0.9, 1E=0.9-1.1, unnamed=0.5-0.7, 1F=variable; FeO%: 1B=19-21, 1C=15-19, 1D=12-16, 1E=13-16, unnamed=11-14, 1F=variable). Results of these findings provide new widespread markers in the Olduvai

  3. Sr-isotope stratigraphy and dating of Neo-proterozoic carbonates and glacials from the northern and western parts of the Congo Craton

    International Nuclear Information System (INIS)

    Poidevin, J.L.

    2007-01-01

    Numerous occurrences of Neo-proterozoic carbonate platforms and glacigenic litho-facies are present around the Congo craton. They are especially well developed on its western and northern borders, i.e. in the fore-lands of the West Congo and Oubanguides belts. Sr isotopic stratigraphy enables us to characterize the deposition age of some carbonate units from these two domains. The 87 Sr/ 86 Sr isotopic ratios of limestones from the late 'Haut Shiloango' (0.7068) and the 'Schisto-calcaire' (0.7075) of the West-Congo domain are of post-Sturtian and post-Marinoan ages, respectively. The Lenda carbonates (0.7066) from the Northeast of the Democratic Republic of Congo and the limestones (0.7076) from the Bangui Basin, both in the Oubanguides fore-land, are of pre-Sturtian and post-Marinoan ages, respectively. These data associated with lithostratigraphic correlations allow us to ascribe the 'Bas Congo' lower mixtite (tillite) and the Akwokwo tillite (Lindian) to the Sturtian ice age. In the same way, the 'Bas Congo' upper mixtite (tillite) and the Bondo tillite (Bakouma Basin) are likely Marinoan in age. A new synthetic stratigraphy for these Neo-proterozoic domains is developed. (author)

  4. The Pan-African Kekem gabbro-norite (West-Cameroon), U-Pb zircon age, geochemistry and Sr-Nd isotopes: Geodynamical implication for the evolution of the Central African fold belt

    Science.gov (United States)

    Kwékam, Maurice; Affaton, Pascal; Bruguier, Olivier; Liégeois, Jean-Paul; Hartmann, Gerald; Njonfang, Emmanuel

    2013-08-01

    The Kekem shoshonitic gabbro-norite association is part of the high-K calc-alkaline (HKCA) post-collisional magmatism, a major feature of the Pan-African Belt in Cameroon. LA-ICP-MS U-Pb zircon analyses provide an age of 576 ± 4 Ma for the Kekem complex. This age is interpreted as dating the emplacement of the massif during the waning stage of the Pan-African orogeny. The latter is related to dextral movements along the Central Cameroon Shear Zone (CCSZ). The REE patterns display enriched LREE (LaN/YbN = 14.2-23.5) while HREE present a nearly flat profile (DyN/YbN = 1.3-1.7), and the La/Sm and Sm/Yb ratios led to propose that the Kekem gabbro-norites have been derived from the partial melting of a garnet-spinel lherzolite mantle source. The negative Nb-Ta and Ti anomalies and the positive Pb anomalies indicate that this mantle source was modified by contribution of a subduction-related material. The low Ce/Pb (2.6-10.4) and Th/Yb ratios associated to high Ba/La ratios, indicate that source enrichment could be related to slab derived fluids. As a whole, the Kekem geochemical features suggest that primary gabbro-noritic magmas derived from a subduction-modified mantle source (metasomatised lithospheric mantle). Moderately high 86Sr/87Sr initial ratios (0.7068-0.7082), low ɛNd (-5 to -9) and old Nd TDM model ages (1.6-1.8 Ga) are interpreted to result from contamination of Neoproterozoic mantle by the Paleoproterozoic crust. The ca. 576 Ma movements along the CCSZ are related to a Neoproterozoic metacratonization of the northern margin of the Congo craton during the Pan-African orogeny. This metacratonization led to vertical planar lithospheric delamination along lithospheric transcurrent faults, asthenospheric uprise and partial melting of the Paleoproterozoic lithospheric mantle.

  5. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    Science.gov (United States)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-10-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  6. History of the magmatic feeding system of the Campi Flegrei caldera (Italy)

    Science.gov (United States)

    Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Orsi, G.

    2007-05-01

    The definition of the magmatic feeding system of active volcanoes in terms of architecture, composition, crystallization time-scale, relationships between composition of the erupted magmas and structural position of the vents, and magma processes, is of paramount importance for volcanic hazards evaluation. Investigations aimed at defining the Campi Flegeri magmatic system, include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb, Th,U). The magmatic feeding system of the Campi Flegrei caldera is characterized by deep and shallow magma reservoirs. In the deep reservoirs (20-10 km depth) mantle- derived magmas differentiated and were contaminated by continental crust. In the shallow reservoirs isotopically distinct magmas, further differentiated, contaminated, and mixed and mingled before eruptions. These processes generated isotopically distinct components, variably interacting with the different structural elements of the Campi Flegrei caldera through time. The relationships between the structural position of the eruption vents, during the last 15 ka of activity, and the isotopic composition of the magmas erupted at the Campi Flegrei caldera allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition of the magma feeding a future eruption, according to vent position.

  7. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    Science.gov (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  8. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma

    Science.gov (United States)

    Yeung, Laurence Y.

    2017-12-01

    The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso

  9. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    Science.gov (United States)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  10. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  11. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  12. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  13. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    Schwalfenberg, G.K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  14. Modulation of magmatic processes by carbon dioxide

    Science.gov (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.

    2017-12-01

    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  15. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  16. Tibetan Magmatism Database

    Science.gov (United States)

    Chapman, James B.; Kapp, Paul

    2017-11-01

    A database containing previously published geochronologic, geochemical, and isotopic data on Mesozoic to Quaternary igneous rocks in the Himalayan-Tibetan orogenic system are presented. The database is intended to serve as a repository for new and existing igneous rock data and is publicly accessible through a web-based platform that includes an interactive map and data table interface with search, filtering, and download options. To illustrate the utility of the database, the age, location, and ɛHft composition of magmatism from the central Gangdese batholith in the southern Lhasa terrane are compared. The data identify three high-flux events, which peak at 93, 50, and 15 Ma. They are characterized by inboard arc migration and a temporal and spatial shift to more evolved isotopic compositions.

  17. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    OpenAIRE

    Afonso, Jhon Willy Lopes; Nogueira, Afonso César Rodrigues

    2018-01-01

    ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma) cap carbonate. The Cacoal Formation is subdivided here in ...

  18. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    Science.gov (United States)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  19. Observational Constraints on the Identification of Shallow Lunar Magmatism: Insights from Floor-Fractured Craters

    Science.gov (United States)

    Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.

    2016-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.

  20. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  1. Pluton emplacement and magmatic arc construction: A model from the Patagonian batholith

    Science.gov (United States)

    Bruce, Robert; Nelson, Eric; Weaver, Stephen

    1988-01-01

    A model of batholithic construction in Andean arcs and its applicability to possibly similar environments in the past is described. Age and compositional data from the Patagonian batholith of southern Chile show a long history of magmatism in any given area (total age range is 15 to 157 Ma), but different regions appear to have different magmatic starting ages. Furthermore, mafic rocks seem to be the oldest components of any given region. An assembly line model involving semicontinuous magmatism and uplift was outlined, which has implications for other terranes: uplift rates will be proportional to observed ranges in age, and total uplift will be proportional to the age of the oldest pluton in any given area. It is suggested that misleading results would be obtained if only small areas of similar terranes in the Archean were available for study.

  2. Continental extension, magmatism and elevation; formal relations and rules of thumb

    Science.gov (United States)

    Lachenbruch, A.H.; Morgan, P.

    1990-01-01

    To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a

  3. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  4. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    Jhon Willy Lopes Afonso

    2018-02-01

    Full Text Available ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma cap carbonate. The Cacoal Formation is subdivided here in two units separate by sharp contact found exclusively overlying Mesoproterozoic crystalline basement rocks: 1 a homonymous formation characterized by diamictites, sandstones and siltstones with dropstones interpreted as glacio-marine deposits; and 2 the Espigão d’Oeste Formation that consists of dolostone, dolomitic stromatolites, dolostone-siltstone rhythmite and siltstone interpreted as shallow to moderately deep platform deposits. The Ordovician to Silurian Pimenta Bueno Formation is a filling of Pimenta Bueno graben and overlies locally the Meso and Neoproterozoic rocks. This unit consists in diamictites, sandstones, siltstones and pelites interpreted as glacial-marine and tide- to storm-influenced platform deposits, recording a glacio-eustatic regressive-transgressive event. This new stratigraphic proposal modify the current stratigraphy for the Parecis Basin and suggest, at least, two levels of glaciation exposed in the sothwesternmost Amazon Craton related to the Marinoan and Late Ordovician-Early Silurian events.

  5. Alkalinity of the Mediterranean Sea

    OpenAIRE

    Schneider, Anke; Wallace, Douglas W.R.; Körtzinger, Arne

    2007-01-01

    Total alkalinity (AT) was measured during the Meteor 51/2 cruise, crossing the Mediterranean Sea from west to east. AT concentrations were high (∼2600 μmol kg−1) and alkalinity-salinity-correlations had negative intercepts. These results are explained by evaporation coupled with high freshwater AT inputs into coastal areas. Salinity adjustment of AT revealed excess alkalinity throughout the water column compared to mid-basin surface waters. Since Mediterranean waters are supersaturated with r...

  6. ALPINE MAGMATIC-METALLOGENIC FORMATIONS OF THE NORTHWESTERN AND CENTRAL DINARIDES

    Directory of Open Access Journals (Sweden)

    Jakob Pamić

    1997-12-01

    Full Text Available In the paper are presented basic geological, petrologieca1, geochemi-cal and mineral deposit data for five main magmatic-metallogenic formations of the northwestern and central Dinarides: (lThe Permo Triassic rifting related andesite-diorite formations; (2 The Jurassic-Lower Cretaceous accretionary (ophiolite formations; (3 The Upper Cretaceous-Paleogene subduction related basalt-rhyohite formations; (4 The Paleogene collisional granite formations, and (5 The Oligo-cene-Neogene postsubduction andesite formations. All these magmatic-metallogenic formations originated in different geotectonic settings during the Alpine evolution of the Dinaridic parts of thc Tethys and the postorogenic evolution of the Paratethys and the Pannonian Basin, respectively.

  7. Mid amphibolite facies metamorphism of harzburgites in the Neoproterozoic Cerro Mantiqueiras Ophiolite, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    HARTMANN LÉO A.

    2003-01-01

    Full Text Available Valuable information is retrieved from the integrated investigation of the field relationships, microstructure and mineral compositions of harzburgites from the Neoproterozoic Cerro Mantiqueiras Ophiolite. This important tectonic marker of the geological evolution of southernmost Brazilian Shield was thoroughly serpentinized during progressive metamorphism, because the oldest mineral assemblage is: olivine + orthopyroxene + tremolite + chlorite + chromite. This M1 was stabilized in mid amphibolite facies - 550-600ºC as calculated from mineral equilibria. No microstructural (e.g. ductile deformation of olivine or chromite or compositional (e.g. mantle spinel remnant of mantle history was identified. A metamorphic event M2 occurred in the low amphibolite facies along 100 m-wide shear zones, followed by intense serpentinization (M3 and narrow 1-3 m-wide shear zones (M4 containing asbestos.

  8. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    Science.gov (United States)

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An evaluation of the residence duration of megacrysts in alkaline magma chambers

    Directory of Open Access Journals (Sweden)

    Berrahma, M.

    1999-08-01

    Full Text Available The integration of the differential equation of the second law of Fick applied to the diffusion of chemical elements in a semi-infinite solid made it easier to estimate the time of stay of olivine megacrysts horted into alkaline lava. The results of this research show the existence of two groups of olivine. The first remained in contact with the magmatic liquid during 30 to 34 days, while the second remained so during only 4 to 7 days only. This distinction is correlative to that based on the qualitative observation.La integración de la ecuación diferencial de la segunda ley de Fick aplicada a la difusión en un sólido semi-infinito, permitió estimar el tiempo de la residencia de los megacristales de olivino incluidos en lavas alcalinas. Los resultados muestran que existen dos grupos de olivino: el primero persiste entre 30 a 34 días, en contacto con el líquido magmático, mientras que, el segundo, solamente lo hace entre 4 a 7 días. Esta distinción está de acuerdo con la observación petrográfica.

  10. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  11. The age, nature and likely genesis of the Cambrian Khantaishir arc, Lake Zone, Mongolia

    Science.gov (United States)

    Janoušek, Vojtěch; Jiang, Yingde; Schulmann, Karel; Buriánek, David; Hanžl, Pavel; Lexa, Ondrej; Ganchuluun, Turbat; Battushig, Altanbaatar

    2014-05-01

    Recent discovery of the huge Cambrian arc in the Khantaishir Mountain Range (SE Mongolian Altai) suggests that the principal Neoproterozoic and Devonian-Carboniferous episodes of crustal growth in the Central Asian Orogenic Belt (CAOB) (Sengör et al. 1993) have to be revised. This probably the largest arc system known in the Mongolian tract of the CAOB is seemingly intrusive into the Neoproterozoic accretionary wedge (the Lake Zone) in the N and underthrust southwards below the Palaeozoic volcanosedimentary prism (Gobi Altai Zone). The arc shows a section from deep, ultramafic cumulates to shallower crustal levels of the magmatic system and thus provides an excellent opportunity to study this important period of crustal growth in the Mongolian CAOB. The magmatic rocks are intermediate to ultrabasic (SiO2 = 39.2-61.8 wt. %), rather primitive (mg# = 45-60) Amp-Bt tonalites to coarse-grained Amp gabbros and hornblendites. They are Na-rich (Na2O/K2O = 1.3-9.7 by wt.), exclusively metaluminous and mostly subalkaline, except for the ultrabasic types that enter the alkaline domain due to accumulation of Amp crystals. The P-T conditions calculated using the Amp thermobarometer of Ridolfi et al. (2010) show that the gabbro crystallized at 930-950 ° C and 0.36-0.43 GPa. The (normal-) calc-alkaline chemistry and characteristic trace-element enrichment in hydrous-fluid mobile large-ion lithophile elements (LILE: Rb, Ba, Th, U, K and Pb) over high-field strength elements (HFSE: Nb and Ta) confirm an origin within an igneous arc. The newly obtained LA ICP-MS zircon ages for three tonalites-diorites range between 516 ± 2 Ma and 494 ± 3 Ma. While zircons in two of them give high initial ɛHf values (+8 to +14), implying a derivation by (near) closed-system fractionation from little modified, depleted-mantle derived magmas, the third contains significantly different component (ɛHf = +3 to +6). The latter component may have come from a distinct, less depleted

  12. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.

    2001-01-01

    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  13. The Rhyacian El Cortijo suture zone: Aeromagnetic signature and insights for the geodynamic evolution of the southwestern Rio de la Plata craton, Argentina

    Directory of Open Access Journals (Sweden)

    Carlos J. Chernicoff

    2014-01-01

    We envisage the pre-Neoproterozoic evolution of the Tandilia belt to have been initiated by the extension of Neoarchean (∼2650 Ma crust occurred during Siderian times (2500–2300 Ma, causing the separation between the Balcarce, Tandilia and Buenos Aires terranes, and the development of narrow oceans at both north and south sides of the Tandilia terrane, accompanied by ∼2300–2200 Ma sedimentation over transitional –continental to oceanic– crust, and arc magmatism developed in the Tandilia terrane. The island arc represented by the El Cortijo Formation was also developed at this time. At late Rhyacian times, it occurred in both the closure of the narrow oceans developed previously, the entrapment of the El Cortijo island arc, as well as anatectic magmatism in the Balcarce terrane.

  14. Geology, geochemistry and {sup 40}K-{sup 40}Ar geochronometry of Miocene magmatism in Algiers area, Northern Algeria; La magmatisme miocene de l`Est Algerois, geologie, geochimie et geochronologie {sup 40}K-{sup 40}Ar

    Energy Technology Data Exchange (ETDEWEB)

    Belanteur, O; Ouabadi, A; Semroud, B; Megartsi, M H [Algiers Univ. (Algeria). Faculte des Sciences; Bellon, H; Maury, R C; Coutelle, A [Brest Univ., 29 (France); Fourcade, S [Rennes-1 Univ., 35 (France)

    1996-12-31

    Miocene magmatic rocks outcrop within a narrow coastal strip east of Algiers. They include basaltic and andesitic lava flows and intrusions (Dellys, Cap Djinet), the Thenia granodioritic plug and the dacitic to rhyolitic lavas and pyroclastic flows from Zemmouri El Bahri and El Kerma. Despite the effects of hydrothermal alteration, {sup 40}K-{sup 40}Ar ages coupled with micropalaeontological data lead to recognition of two emplacement events at 16-15 and 14-12 Ma, respectively. All the studied calc-alkaline to potassic calc-alkaline rocks are enriched in highly incompatible elements and display negative Nb anomalies. Acid magmas have a pronounced crustal imprint ({sup 87}Sr{sup 86}Sr{sub i} =3D 0.7082 to 0.7155; {delta}{sup 18}O =3D +9 to +13 per mill) which together with La/Nb ratios argues for the occurrence of upper crustal contamination processes. However, the Nb-depletion of the associated basalts suggest that the studied magmas derive from a mantle source which underwent subduction-related metasomatic enrichments prior to their Miocene emplacement. (authors). 13 refs., 3 figs., 2 tabs.

  15. Determination of Acidity and Alkalinity of Food Materials

    OpenAIRE

    三浦,芳助; 福永,祐子; 瀧川,裕里子; 津田,真美; 渡辺,陽子; 瀨山,一正

    2006-01-01

    The acidity and alkalinity of food materials in various menus was determined to clarify the influence of food on physiological functions. Menus mainly containing alkaline food materials (alkaline menu) and acid ones (acid menu) were compared. Determination of acidity and alkalinity was performed for each food material in the alkaline menu and acid menu, and acidity and alkalinity of one meal and a day's one were estimated. 1. Most of food materials in acid menu were assessed to be...

  16. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control

    Science.gov (United States)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.

    2017-12-01

    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  17. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  18. Magmatic formations in the Okhotsk--Chukotka volcanogenic belt

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, A.P.

    1976-05-01

    The relationship between the Okhotsk-Chukotka volcanogenic belt of Northeast USSR and the stage of evolution of magnetism and tectonic development of the region are examined. Recognizing the associations of effusive and intrusive rocks that are typical of the southern part of the volcanogenic belt and that are joined together by some characteristic features, a basic plan is presented for examination of the problem of magnetic formations. On the basis of the distinctive characteristics of epigeosynclinal tectonic development of the territory and the sequence of formation of the magmatic rocks within it, three main groups: volcanic, coleanoplutonic, and plutonic, can be distinguished; and a general scheme of development of these types in space and time within the volcanogenic belt can be developed. According to this scheme, four main stages can be recognized in the Mesozoic and Cenozoic magmatic evolution of the Okhotsk-Chukotka belt. This scheme of classification takes into consideration the factor of the structural development of this tectonomagmatic element.

  19. Characteristics of mesozoic magmatic rocks in western Zhejiang and their relation with uranium mineralization

    International Nuclear Information System (INIS)

    Zhou Jiazhi

    2000-01-01

    The author summarizes characteristics of Mesozoic (Yangshanian Period) acid-intermediate volcanics, sub-volcanics and basic intrusive from aspects of formation time of rock series, petrogenic sequence, chemical composition, rock -controlling factors and petrogenic environments. It is suggested that these rocks were originated from different source areas of crust and mantle. Based on the time-space relation between different types uranium deposits and magmatic rocks, the author proposes that: the earlier stage (Earlier Cretaceous) U-hematite ores were originated from acid volcanic magmatism of crustal source, but the later stage (Late Cretaceous) pitchblende-polymetallic sulfide and pitchblende-purple fluorite rich ores were derived from basic magmatism of mantle source. Finally, the author proposes prospecting criteria of the above two types of uranium deposits

  20. Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications [rapid communication

    Science.gov (United States)

    Avigad, D.; Sandler, A.; Kolodner, K.; Stern, R. J.; McWilliams, M.; Miller, N.; Beyth, M.

    2005-12-01

    A vast sheet of mature quartz sand blanketed north Africa and Arabia from the Atlantic coast to the Persian Gulf in Cambro-Ordovician times. U-Pb geochronology of a representative section of Cambrian sandstone in southern Israel shows that these sediments are dominated by 550-650 Ma detrital zircons derived from Neoproterozoic Pan-African basement. The short time lag between magmatic consolidation of a Pan-African source and deposition of its erosional products indicates that, despite their significant mineralogical maturity, the voluminous quartz-rich sandstones on the northern margin of Gondwana are essentially first-cycle sediments. Mass production of these voluminous first-cycle quartz-rich sandstones resulted from widespread chemical weathering of the Pan-African continental basement. We suggest that conditions favoring silicate weathering, particularly a warm and humid climate, low relief and low sedimentation rates prevailed over large tracts of Gondwana in the aftermath of the Pan-African orogeny. An unusually corrosive Cambro-Ordovician atmosphere and humid climate enhanced chemical weathering on the vegetation-free landscape. We infer that late Neoproterozoic-Cambro-Ordovician atmospheric pCO 2 rose as a consequence of widespread late Neoproterozoic volcanism, followed by an uptake of CO 2 by chemical weathering to produce the Cambro-Ordovician sandstone as a negative feedback.

  1. Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica

    Science.gov (United States)

    Finn, Carol A.; Goodge, John W.

    2010-01-01

    Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.

  2. Magmatic development of the outer Vøring Margin

    Science.gov (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2013-04-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  3. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil

    Science.gov (United States)

    Brasilino, R. G.; Sial, A. N.; Ferreira, V. P.; Pimentel, M. M.

    2011-12-01

    A manifestation of the Pan-African-Brasiliano orogeny (700-550 Ma) in northeastern Brazil was the emplacement of widespread Neoproterozoic granitoids in diverse tectonic terranes. Among these plutons are the magmatic epidote-bearing Conceição das Creoulas, Caldeirão Encantado, Murici, and Boqueirão plutons, located close to the boundary between the Alto Pajeú and Cachoeirinha-Salgueiro terranes. The plutons are high-K calc-alkalic granodiorites to monzogranites, with tabular K-feldspar megacrysts. Pistacite [atomic Fe+ 3/(Fe3++ Al)] in epidote in these granitoids ranges from 21 to 27%. High oxygen fugacity (log fO2 - 19 to - 13) and the preservation of epidote suggest that the magma was oxidized. Al-in-hornblende barometry indicates hornblende solidification between 6 and 8 kbar, at 620 to 780 °C according to the hornblende-plagioclase thermometer. Zircon saturation thermometry attests to a near-liquidus temperature range from 794 to 853 °C. Partial corrosion of magmatic epidote in these four plutons occurred during an interval of no more than 10-30 years, which corresponds to maximum magma ascent rates of 650-1000 m/year. Diking, associated with regional shearing, probably facilitated rapid transport of granitic magma through hot continental crust at peak metamorphism, and permitted survival of epidote that was out of equilibrium at the low pressure of final emplacement. Similarities between mineralogical composition, chemistry, and isotopic compositions (εNd(0.60Ga) between - 2 and - 5,TDM from 1.2 to 1.3 Ga, δ18O values > 10‰, V-SMOW) of these four plutons and Neoproterozoic magmatic epidote-bearing plutons elsewhere in northeastern Brazil, argue for similar metabasaltic/mafic sources that had previously experienced low-temperature alteration.

  4. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  5. Remote detection of magmatic water in Bullialdus crater on the Moon

    Science.gov (United States)

    Klima, Rachel L.; Cahill, John; Hagerty, Justin J.; Lawrence, David

    2013-01-01

    Once considered dry compared with Earth, laboratory analyses of igneous components of lunar samples have suggested that the Moon’s interior is not entirely anhydrous. Water and hydroxyl have also been detected from orbit on the lunar surface, but these have been attributed to nonindigenous sources, such as interactions with the solar wind. Magmatic lunar volatiles—evidence for water indigenous to the lunar interior—have not previously been detected remotely. Here we analyse spectroscopic data from the Moon Mineralogy Mapper (M3) and report that the central peak of Bullialdus Crater is significantly enhanced in hydroxyl relative to its surroundings. We suggest that the strong and localized hydroxyl absorption features are inconsistent with a surficial origin. Instead, they are consistent with hydroxyl bound to magmatic minerals that were excavated from depth by the impact that formed Bullialdus Crater. Furthermore, estimates of thorium concentration in the central peak using data from the Lunar Prospector orbiter indicate an enhancement in incompatible elements, in contrast to the compositions of water-bearing lunar samples. We suggest that the hydroxyl-bearing material was excavated from a magmatic source that is distinct from that of samples analysed thus far.

  6. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics

    Science.gov (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.

    2018-03-01

    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  7. Mantle dynamics and Cretaceous magmatism in east-central China: Insight from teleseismic tomograms

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Zhao, Dapeng; Lü, Qingtian; Li, Hongyi; Li, Xinfu

    2015-11-01

    Both the rich mineralization in the Lower Yangtze Block (LYB) and the post-collisional mafic rocks in the Dabie Orogen (DBO) are closely related to the Cretaceous magmatism in east-central China. Various geodynamic models have been proposed for explaining the mechanism of the Cretaceous magmatism, but these models are controversial and even contradictory with each other, especially on the mechanism of adakites. A unified geodynamic model is required for explaining the magmatism in east-central China, in particular, the spatial and temporal correlations of magmatic activity in the DBO and that in the LYB. For this purpose, we apply teleseismic tomography to study P-wave velocity structure down to 800 km depth beneath east-central China. A modified multiple-channel cross-correlation method is used to collect 28,805 high-quality P-wave arrival-time data from seismograms of distant earthquakes recorded by permanent seismic stations and our temporary stations in the study region. To remove the influence of crustal heterogeneity on the mantle tomography, we used the CRUST1.0 model to correct the teleseismic relative residuals. Our tomography revealed distinct high-velocity (high-V) anomalies beneath the DBO and two flanks of the LYB, and low-velocity (low-V) anomalies above the high-V zones. Combining our tomographic images with previous geological, geochemical and geophysical results, we infer that these high-V and low-V anomalies reflect the detached lithosphere and upwelling asthenospheric materials, respectively, which are associated with the Late Mesozoic dynamic process and the Cretaceous magmatism. We propose a double-slab subduction model that a ridge subduction yielded the adakitic rocks in the LYB during 150-135 Ma and the subsequent Pacific Plate subduction played a crucial role in not only the formation of igneous rocks in the LYB but also remelting of the subducted South China Block beneath the DBO during 135-101 Ma.

  8. Upper Triassic mafic dykes of Lake Nyos, Cameroon (West Africa) I: K-Ar age evidence within the context of Cameroon Line magmatism, and the tectonic significance

    Science.gov (United States)

    Aka, Festus Tongwa; Hasegawa, Takeshi; Nche, Linus Anye; Asaah, Asobo Nkengmatia Elvis; Mimba, Mumbfu Ernestine; Teitchou, Isidore; Ngwa, Caroline; Miyabuchi, Yasuo; Kobayashi, Tetsuo; Kankeu, Boniface; Yokoyama, Tetsuya; Tanyileke, Gregory; Ohba, Takeshi; Hell, Joseph Victor; Kusakabe, Minoru

    2018-05-01

    The hydrodynamic fragmentation that formed Lake Nyos in northwest Cameroon did not only make it the most unpopular lake in the world from a gas disaster perspective, it also opened a rare and formidable window through which much of the geology of Cameroon can be studied in a single locality. The Cambrian quartz monzonite cliff excavated by the maar-forming explosion and exposed in its northeastern shore is intruded by mafic dykes, two of which we dated. Even though close to one another, the dykes are different in composition. The alkaline dyke yields a slightly older (Carnian) K-Ar fedspar age of 231.1 ± 4.8 Ma, while the sub alkaline dyke yields an age of 224.8 ± 4.7 Ma (Norian). Based on radioisotopic age data available over the last 48 years (347 data) for the Cameroon Line magmatism comprising eruptives and volcano-plutonic complexes, the Nyos dykes are way older than the Cameroon Line, and even pre-date the Lower Cretaceous initiation of west Gondwana fragmentation in Equatorial Atlantic domain. They would therefore not have been directly linked to the formation of the Cameroon Line. Alternatively, they might be associated with the development of intra-continental rift systems in West Central Africa that pre-dated west Gondwana breakup to form the Atlantic Ocean.

  9. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    Science.gov (United States)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  10. D/N and /sup 18/O//sup 16/O in magmatic waters and gases of the Great Tolbachik fissure eruption, Kamchatka

    Energy Technology Data Exchange (ETDEWEB)

    Menyailov, I A; Vetshtein, V E; Nikitina, L P; Artemchuk, V G [AN SSSR, Petropavlovsk-Kamchatskii. Inst. Vulkanologii; AN Ukrainskoj SSR, Kiev. Inst. Geokhimii i Fiziki Mineralov)

    1981-01-01

    Isotope content of magmatic gases and their condensates (magmatic waters) is studied on the basis of the Great Tolbachik fissure eruption, Kamchatka. The phenomenon of regular increase of deuterium content in magmatic water and protium content in gases is found out. It is supposed that this fact is conditioned by isotope fractionation during phase transitions in liquid-steam-gas system in the process of the formation of magmatic hearth and gas release from magma during eruption.

  11. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  12. Western cratonic domains in Uruguay: geochronology

    International Nuclear Information System (INIS)

    Preciozzi, F.; Peel, E.; Muzio, E.; Ledesma, R.; Guerequiz, R.

    2001-01-01

    The western cratonic domains in Uruguay are divided into three major units: Piedra Alta Terrane, Valentines Block and Pavas Block. Piedra Alta Terrane lacks of evidence of Neoproterozoic orogenesis (deformation, metamorphism or magmatism). Sarandí del Yi - Arroyo Solís Grande shear zone, separates it from Valentines Block. Valentines Block is separated from Pavas Block by Cueva del Tigre shear zone. Magmatic rocks with different ages, compositions and emplacements occur all over the Piedra Alta Terrane distributed in three metamorphic belts (Arroyo Grande, San José and Montevideo) as well as in the Central Gneissic-Migmatitic Complex (Figure 1). Samples from the Gneissic-Migmatitic complex, late tectonic granitoids and basic rocks associated to the metamorphic belts were analyzed using Rb/Sr, U/Pb, K/Ar and Sm/Nd methodologies. The age ranges obtained for granitoids

  13. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    Science.gov (United States)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  14. Magmatic Diversity of the Wehrlitic Intrusions in the Oceanic Lower Crust of the Northern Oman Ophiolite

    Science.gov (United States)

    Kaneko, R.; Adachi, Y.; Miyashita, S.

    2014-12-01

    The Oman ophiolite extends along the east coast of Oman, and is the world's largest and best-preserved slice of obducted oceanic lithosphere. The magmatic history of this ophiolite is complex and is generally regarded as having occurred in three stages (MOR magmatism, subduction magmatism and intraplate magmatism). Wehrlitic intrusions constitute an important element of oceanic lower crust of the ophiolite, and numerous intrusions cut gabbro units in the northern Salahi block of this ophiolite. In this study area, we identified two different types of wehrlitic intrusions. One type of the intrusions mainly consists of dunite, plagioclase (Pl) wehrlite and mela-olivine (Ol) gabbro, in which the crystallization sequence is Ol followed by the contemporaneous crystallization of Pl and clinopyroxene (Cpx). This type is called "ordinary" wehrlitic intrusions and has similar mineral compositions to host gabbros (Adachi and Miyashita 2003; Kaneko et al. 2014). Another type of the intrusions is a single intrusion that crops out in an area 250 m × 150 m along Wadi Salahi. This intrusion consists of Pl-free "true" wehrlite, in which the crystallization sequence is Ol and then Cpx. The forsterite contents (Fo%) of Ol from the "ordinary" wehrlitic intrusions and "true" wehrlitic intrusions have ranges of 90.8-87.0 (NiO = 0.36-0.13 wt%) and 84.7 (NiO = 0.31 wt%), respectively. Cr numbers (Cr#) of Cr-spinel from the "true" wehrlitic intrusions show higher Cr# value of 0.85 than those of the "ordinary" wehrlitic intrusions (0.48-0.64). But the former is characterized by very high Fe3+ values (YFe3+ = 0.49-0.68). Kaneko et al. (2014) showed that the "ordinary" ubiquitous type has similar features to MOR magmatism and the depleted type in the Fizh block (Adachi and Miyashita 2003) links to subduction magmatism. These types are distinguished by their mineral chemistries (TiO2 and Na2O contents of Cpx). The TiO2 and Na2O contents of Cpx from the "true" wehrlitic intrusions have 0

  15. Electrical structure of the lithosphere across the Western Paraná suture zone: the role of a Neoproterozoic-Cambrian subduction in generating the Paraná Magmatic Province

    Science.gov (United States)

    Dragone, G. N.; Bologna, M.; Gimenez, M. E.; Alvarez, O.; Lince Klinger, F. G.; Correa-Otto, S.; Ussami, N.

    2017-12-01

    The Paraná Magmatic Province (PMP) together with the Etendeka Province (EP) in Africa is one of the Earth's largest igneous provinces originated prior to the Western Gondwanaland break-up and the inception of the South Atlantic Ocean in the Lower Cretaceous. Geochemical data of PMP-EP basalts collected since late 1980's indicate the origin of PMP-EP by melting of a heterogeneous and enriched subcontinental lithospheric mantle with fast rate of eruption (borders of the PMP, the Western Paraná suture zone (WPS in Fig. 1). We discuss the electrical properties of the lithosphere along three MT profiles across the WPS. MT-A profile (Padilha et al., 2015, JGR) extends from Rio Apa craton towards the center of PMP (high-TiO2 basalts). Profile MT-B extends from Tebicuary craton towards the center of PMP (low-TiO2) and profile MT-C extends from Rio de la Plata craton towards the southern PMP (low- and high-TiO2). All profiles show a resistive ( 104 ohm m) and thick (> 150 km) lithosphere in the cratonic areas whereas the electrical lithosphere is thinner (<100 km) with alternating high and low resistivities within PMP. Vertically elongated and high electrical conductivity anomalies ( 10 ohm m) centered at 40 km depth occur along the -30 mGal contour line in the three profiles, and are interpreted as the location of the suture and former subduction zone. We will discuss the correlation between geochemical and petrological characteristics of basalts and the electrical properties of the lithospheric mantle underneath.

  16. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  17. Magma flow recorded by magmatic and magnetic fabrics in a shallow granitic pluton: La Gloria Pluton, central Chile

    Science.gov (United States)

    Payacán, I. J.; Gutiérrez, F. J.; Gelman, S. E.; Bachmann, O.; Parada, M. A.

    2013-12-01

    To better understand the dynamics of a small, shallow, silicic magma reservoir, magmatic and magnetic (AMS) fabrics are compared in samples obtained from La Gloria Pluton (LGP), a 10 Ma granitic intrusion located in southern Andes. The magnetic fabric of LGP, mainly given by magnetite, is characterized by oblate shapes. Magnetic lineations have a NW trend with subhorizontal dip, following the main pluton elongation, while magnetic foliation planes have dips varying gradually from vertical at the walls to subhorizontal toward the center and the roof of the pluton. On the basis of numerical simulations, magnetic fabric was interpreted to represent the shear record induced by magmatic convection along solidification fronts as the reservoir reached its rheological locking point. Magmatic fabric (mineral orientation) was determined on 12 samples along the pluton. Three mutually orthogonal thin sections were produced for each sample, perpendicular to the AMS tensor axes. Size and orientation of individual crystals were obtained by image analysis. A 2-D tensor for two mineral groups (plagioclase and amphibole+biotitie) was defined in each mineral plane projecting the crystal lengths on the main crystal orientation (given by Bingham statistics). A 3-D magmatic fabric tensor was obtained. In order to compare the magmatic and magnetic fabrics, magmatic anisotropy parameters were defined similar to the AMS tensors. Magmatic fabric and anisotropy parameter values vary depending on the location inside the pluton: (1) Samples located at the borders exhibit vertical foliations and lineations with a NW trend, similar to the magnetic fabric tensors and higher anisotropy values for plagioclase than amphibole+biotite,; (2) samples located at the center of the LGP commonly present subvertical foliations/lineations, which differ from the magnetic fabric, and higher magmatic anisotropy degree values for amphibole+biotite than plagioclase. Based on numerical simulations of the fluid

  18. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  19. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    Science.gov (United States)

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  20. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))

    1992-08-31

    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  1. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  2. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    Science.gov (United States)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    Myanmar (Burma) is richly endowed in precious and base metals, having one of the most diverse collections of natural resources in SE Asia. Its geological history is dominated by the staged closing of Tethys and the suturing of Gondwana-derived continental fragments onto the South China craton during the Mesozoic-Cenozoic. The country is located at a crucial geologic juncture where the main convergent Tethyan collision zone swings south around the Namche Barwa Eastern Himalayan syntaxis. However, despite recent work, the geological and geodynamic history of Myanmar remains enigmatic. Plate margin processes, magmatism, metasomatism and the genesis of mineral deposits are intricately linked, and there has long been recognized a relationship between the distribution of certain mineral deposit types, and the tectonic settings which favour their genesis. A better knowledge of the regional tectonic evolution of a potential exploration jurisdiction is therefore crucial to understanding its minerals prospectivity. This strong association between tectonics and mineralization can equally be applied in reverse. By mapping out the spatial, and temporal, distribution of presumed co-genetic mineral deposits, coupled with an understanding of their collective metallogenetic origin, a better appreciation of the tectonic evolution of a terrane may be elucidated. Identification and categorization of metallotects within a geodynamically-evolving terrane thus provides a complimentary tool to other methodologies (e.g. geochemical, geochronological, structural, geophysical, stratigraphical), for determining the tectonic history and inferred geodynamic setting of that terrane through time. Myanmar is one such study area where this approach can be undertaken. Here are found two near-parallel magmatic belts, which together contain a significant proportion of that country's mineral wealth of tin, tungsten, copper, gold and silver. Although only a few 100 km's apart, these belts exhibit a

  3. Observational constraints on the identification of shallow lunar magmatism : insights from floor-fractured craters

    OpenAIRE

    Jozwiak, Lauren; Head, James; Neumann, G. A.; Wilson, Lionel

    2017-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity so...

  4. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  5. A normalised seawater strontium isotope curve. Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth

    International Nuclear Information System (INIS)

    Shields, G.A.

    2007-01-01

    The strontium isotope composition of seawater is strongly influenced on geological time scales by changes in the rates of continental weathering relative to ocean crust alteration. However, the potential of the seawater 87 Sr/ 86 Sr curve to trace globally integrated chemical weathering rates has not been fully realised because ocean 87 Sr/ 86 Sr is also influenced by the isotopic evolution of Sr sources to the ocean. A preliminary attempt is made here to normalise the seawater 87 Sr/ 86 Sr curve to plausible trends in the 87 Sr/ 86 Sr ratios of the three major Sr sources: carbonate dissolution, silicate weathering and submarine hydrothermal exchange. The normalised curve highlights the Neoproterozoic-Phanerozoic transition as a period of exceptionally high continental influence, indicating that this interval was characterised by a transient increase in global weathering rates and/or by the weathering of unusually radiogenic crustal rocks. Close correlation between the normalised 87 Sr/ 86 Sr curve, a published seawater δ 34 S curve and atmospheric pCO 2 models is used here to argue that elevated chemical weathering rates were a major contributing factor to the steep rise in seawater 87 Sr/ 86 Sr from 650 Ma to 500 Ma. Elevated weathering rates during the Neoproterozoic-Cambrian interval led to increased nutrient availability, organic burial and to the further oxygenation of Earth's surface environment. Use of normalised seawater 87 Sr/ 86 Sr curves will, it is hoped, help to improve future geochemical models of Earth System dynamics. (orig.)

  6. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  7. Provenance and tectonic setting of the Neoproterozoic clastic rocks hosting the Banana Zone Cu-Ag mineralisation, northwest Botswana

    Science.gov (United States)

    Kelepile, Tebogo; Bineli Betsi, Thierry; Franchi, Fulvio; Shemang, Elisha; Suh, Cheo Emmanuel

    2017-05-01

    Petrographic and geochemical data were combined in order to decipher the petrogenesis of the Neoproterozoic sedimentary succession associated with the Banana Zone Cu-Ag mineralisation (northwest Botswana), in the Kalahari Copperbelt. The investigated Neoproterozoic sedimentary succession is composed of two formations including the Ngwako Pan and the D'kar Formations. The Ngwako Pan Formation is made up of continental siliciclastic sediments, mainly sandstones interbedded with siltstones and mudstones, whereas the D'kar Formation is comprised of shallow marine laminated siltstones, sandstones and mudstones, with subordinate limestone. Copper-Ag mineralisation is essentially confined at the base of the D'kar Formation, which bears reduced organic components, likely to have controlled Cu-Ag precipitation. Sandstones of both the Ngwako Pan and the D'kar Formations are arkoses and subarkoses, composed of quartz (Q), feldspars (F) and lithic fragments (L). Moreover, geochemically the sandstones are considered as potassic and classified as arkoses. On the other hand, mudrocks of the D'kar Formation are finely laminated and are dominated by muscovite, sericite, chlorite and quartz. The modified chemical index of weathering (CIW‧) values indicated an intense chemical weathering of the source rock. The dominance of detrital quartz and feldspar grains coupled with Al2O3/TiO2 ratios (average 29.67 and 24.52 for Ngwako Pan and D'kar Formations, respectively) and Ni and Cr depletion in the sandstones, suggest a dominant felsic source. However, high concentrations of Ni and Cr and a low Al2O3/TiO2 ratio (block and deposited in a continental rift setting (passive margin) in a humid environment. The source rocks might have been the Palaeoproterozoic basement rocks (granitoids and granitic gneiss) and the Mesoproterozoic Kgwebe volcanic rocks exposed north of the study area.

  8. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.

    2008-01-01

    magma formation beneath North Santorini throughout its 500 ka history is attributed to variable transfer of sedimentary components - either terrigenous or pelagic, as bulk sediments or high-temperature partial melts rather than fluids or low-temperature partial melts - from a rupture zone...... in the subducted slab to the overlying mantle. The three main magmatic series followed independent paths of assimilation of upper crustal materials during fractional crystallization. Assimilation was more pronounced at the basaltic stage. The long-lived histories of the three main magmatic series imply repetitive...... melting of isolated mantle regions, ascent of magmas through independent feeder systems, and their residence in separate crustal magma chambers....

  9. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Science.gov (United States)

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  10. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  11. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks

    Science.gov (United States)

    Müntener, Othmar; Ewing, Tanya; Baumgartner, Lukas P.; Manzini, Mélina; Roux, Thibaud; Pellaud, Pierre; Allemann, Luc

    2018-05-01

    The subduction system in southern Patagonia provides direct evidence for the variability of the position of an active continental arc with respect to the subducting plate through time, but the consequences on the arc magmatic record are less well studied. Here we present a geochemical and geochronological study on small plutons and dykes from the upper crust of the southern Patagonian Andes at 51°S, which formed as a result of the subduction of the Nazca and Antarctic plates beneath the South American continent. In situ U-Pb geochronology on zircons and bulk rock geochemical data of plutonic and dyke rocks are used to constrain the magmatic evolution of the retro-arc over the last 30 Ma. We demonstrate that these combined U-Pb and geochemical data for magmatic rocks track the temporal and spatial migration of the active arc, and associated retro-arc magmatism. Our dataset indicates that the rear-arc area is characterized by small volumes of alkaline basaltic magmas at 29-30 Ma that are characterized by low La/Nb and Th/Nb ratios with negligible arc signatures. Subsequent progressive eastward migration of the active arc culminated with the emplacement of calc-alkaline plutons and dikes 17-16 Ma with elevated La/Nb and Th/Nb ratios and typical subduction signatures constraining the easternmost position of the southern Patagonian batholith at that time. Geochemical data on the post-16 Ma igneous rocks including the Torres del Paine laccolith indicate an evolution to transitional K-rich calc-alkaline magmatism at 12.5 ± 0.2 Ma. We show that trace element ratios such as Nb/Ta and Dy/Yb systematically decrease with increasing SiO2, for both the 17-16 Ma calc-alkaline and the 12-13 Ma K-rich transitional magmatism. In contrast, Th/Nb and La/Nb monitor the changes in the source composition of these magmas. We suggest that the transition from the common calc-alkaline to K-rich transitional magmatism involves a change in the source component, while the trace element ratios

  12. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    Magmatic-hydrothermal ore deposits are important economic Cu, Au, Mo and Sn resources (Sillitoe, 2010, Kesler, 1994). The ore formation is a result of superimposed enrichment processes and metals can precipitate due to fluid-rock interaction and/or temperature drop caused by convection or mixing with meteoric fluid (Heinrich and Candela 2014). Microthermometry and LA-ICP MS trace element analyses of fluid inclusions of a well-characterized quartz sample from the Yankee Lode quartz-cassiterite vein deposit (Mole Granite, Australia) suggest that tin precipitation was driven by dilution of hot magmatic water by meteoric fluids (Audétat et al.1998). High resolution in situ oxygen isotope measurements of quartz have the potential to detect changing fluid sources during the evolution of a hydrothermal system. We analyzed the euhedral growth zones of this previously well-studied quartz sample. Growth temperatures are provided by Audétat et al. (1998) and Audétat (1999). Calculated δ 18O values of the quartz- and/or cassiterite-precipitating fluid show significant variability through the zoned crystal. The first and second quartz generations (Q1 and Q2) were precipitated from a fluid of magmatic isotopic composition with δ 18O values of ˜ 8 - 10 ‰. δ 18O values of Q3- and tourmaline-precipitating fluids show a transition from magmatic δ 18O values of ˜ 8 ‰ to ˜ -5 ‰. The outermost quartz-chlorite-muscovite zone was precipitated from a fluid with a significant meteoric water component reflected by very light δ 18O values of about -15 ‰ which is consistent with values found by previous studies (Sun and Eadington, 1987) using conventional O-isotope analysis of veins in the distal halo of the granite intrusion. Intense incursion of meteoric water during Q3 precipitation (light δ 18O values) agrees with the main ore formation event, though the first occurrence of cassiterite is linked to Q2 precipitating fluid with magmatic-like isotope signature. This

  13. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved.......Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  14. New geochemical, geochronological and structural constraints on the Ediacaran evolution of the south Sirwa, Agadir-Melloul and Iguerda inliers, Anti-Atlas, Morocco

    Science.gov (United States)

    Blein, O.; Baudin, T.; Soulaimani, A.; Cocherie, A.; Chèvremont, P.; Admou, H.; Ouanaimi, H.; Hafid, A.; Razin, P.; Bouabdelli, M.; Roger, J.

    2014-10-01

    Paleoproterozoic metamorphic and igneous rocks, Tonian (?)-lower Cryogenian passive margin sedimentary rocks, Neoproterozoic dolerites, and Upper Ediacaran volcaniclastic, volcanic and pyroclastic rocks are exposed in the Agadir Melloul, Iguerda and the southern edge of the Sirwa inliers. A recent field mapping program of the Ediacaran Ouarzazate Group in these areas allow to distinguish three principal volcanic sequences. The first sequence (Adrar-n-Takoucht Formation) outcrops mainly south of the Sirwa inlier, and is composed of felsic pyroclastic deposits and local basaltic lavas with ages ranging between 572 and 570 Ma. The second sequence (Anammar and Tadoughast formations) occurs primarily in the Agadir Melloul-Jbel Iguiguil inlier. The Anammar Formation contains essentially volcano-detrital sediments, with fine airfall pyroclastic deposits. The Tadoughast Formation is composed of felsic pyroclastic deposits and rhyolitic domes with ages ranging between 567 and 564 Ma. The third sequence (Fajjoud Formation) contains felsic pyroclastic deposits, with an age of 556 Ma, associated with porphyritic basalts. The magmatism of the Ouarzazate Group was not continuous between 572 and 556 Ma, but related to distinct pyroclastic pulses. Geochemical data indicate that the pyroclastic rocks of the Ouarzazate Group have a highly potassic calc-alkaline to shoshonitic affinity. However, the basaltic facies associated with the Adrar-n-Takoucht Formation demonstrate a calc-alkaline affinity whereas those associated with the Fajjoud Formation have a tholeiitic affinity. Rhyolitic domes were derived from hyperaluminous leucogranites. In sum, the typology of zircons defines three poles: (i) subalkaline granites; (ii) calc-alkaline monzogranites and granodiorites frequently associated with basic rocks; and (iii) aluminous leucogranites. In addition, the volcaniclastic deposits of the Ouarzazate Group are submitted to a syn-sedimentary tectonic. The Adrar-n-Takoucht Formation is

  15. Geodynamic setting of mesozoic magmatism and its relationship to uranium metallogenesis in southeastern China

    International Nuclear Information System (INIS)

    Chen Peirong

    2004-01-01

    In the southeastern China, magmatism was developed quite intensely in Mesozoic forming a large quantity of rare and nonferrous metal deposits. The Indosinian orogenic movement ( Early Mesozoic) and the Yanshanian movement (Late Mesozoic) provided the dynamic force for magmatism and metallogenesis in this region. The intra-plate extension was induced by the Indosinian orogenic movement in South China continent under a regionally compressional framework to form Indosinian granites. The Yanshanian movement was a post-orogenic geologic event in relation to the Indosinian orogeny, and characterized by intense lithosphere breaking-up, resulting in large scale magmatic activities and a great amount of mineral resources was formed. The Indosinian granites overprinted by the Yanshanian tectono-magma event were closely related to uranium metallogenesis and were likely a kind of uranium source rock. Therefore, research on the distribution pattern of Indosinian granitoids and factors favorable to uranium ore-formation should be enhanced during prospecting in southern China. (author)

  16. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    Science.gov (United States)

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  17. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.

    1996-09-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  18. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.

    1996-01-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  19. Bimodal magmatism produced by progressively inhibited crustal assimilation 2 (PICA)

    NARCIS (Netherlands)

    Meade, F.C.; Troll, V.R.; Ellam, R.M.; Freda, C.; Font Morales, L.; Donaldson, C.H.; Klonowska, I.

    2014-01-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous

  20. On the Hydrogranular Dynamics of Magmatic Gravity Currents

    Science.gov (United States)

    McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.

    2016-12-01

    Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit

  1. Net alkalinity and net acidity 1: Theoretical considerations

    International Nuclear Information System (INIS)

    Kirby, Carl S.; Cravotta, Charles A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO 2 , and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined 'CO 2 -acidity' is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO 2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass-action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mgL -1 as CaCO 3 (based on pH and analytical concentrations of dissolved Fe II , Fe III , Mn, and Al in mgL -1 ):acidity calculated =50{1000(10 -pH )+[2(Fe II )+3(Fe III )]/56+2(Mn) /55+3(Al)/27}underestimates contributions from HSO 4 - and H + , but overestimates the acidity due to Fe 3+ and Al 3+ . However, these errors tend to approximately cancel each other. It is demonstrated that 'net alkalinity' is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the

  2. Net alkalinity and net acidity 1: Theoretical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  3. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts

    Science.gov (United States)

    Siler, D. L.; Karson, J. A.

    2017-10-01

    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  4. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.

    1997-01-01

    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  5. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    Science.gov (United States)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  6. The Marbat metamorphic core-complex (Southern Arabian Peninsula) : reassessment of the evolution of a Neoproterozoic island-arc from petrological, geochemical and U-Pb zircon data

    OpenAIRE

    Barbey, P.; Denele, Y.; Paquette, J. L.; Berger, J.; Ganne, Jérôme; Roques, D.

    2018-01-01

    The Marbat basement (Sultanate of Oman) belongs to the Neoproterozoic accretion domain of the Arabian-Nubian shield. We present new geochronological, petrological and geochemical data as an extension of our previous study (Denele et al., 2017) re-interpreting this basement as a metamorphic core complex (MCC). We showed that this MCC consists of a metamorphic unit (Juffa complex) separated by an extensional detachment from a plutonic unit (Sadh complex and Tonalite plutons). Geochemical data s...

  7. The evolution of Yellowstone's magmatic system over the past 630 kyr: Insights from the crystal record

    Science.gov (United States)

    Stelten, M. E.

    2017-12-01

    The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular

  8. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  9. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    Science.gov (United States)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  10. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs

    Science.gov (United States)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil

    2011-03-01

    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One

  11. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    Science.gov (United States)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    The Neoproterozoic Gabal Abu Diab pluton is a part of the Arabian Nubian shield (ANS) continental crust and located in the Central Eastern Desert (CED) of Egypt. It constitutes multiphase granitic pluton intruded into granodiorite and metagabbro-diorite rocks with sharp and nonreactive contacts. Based on field observations, colors, structural variations and petrographic investigations, this granitic outcrop consists of an inner core of two-mica granite (TMG) followed outward by garnet bearing muscovite granite (GBMG) and albite granite (AG). Petrographical study indicated that medium to coarse-grained TMG is dominated by K-feldspar (Or88-98), quartz, plagioclase (albite, An0-7), muscovite and biotite with hypidiomorphic texture. With exception the appearance of garnet and the disappearance of biotite the GBMG resembles the TGM, while AG is leucocratic without any mafic mineral. The main accessories are zircon, Nb and Ta-bearing rutile, columbite, ilmenorutile, ilmenite, magnetite and apatite. This mineralogical similarity and the existence of columbite group minerals (CGM) in all granitoids, indicates a cogenetic relationship. Microprobe analyses reveal that, besides the CGM, rutile and ilmenite are the main repository phases for Nb-Ta-Ti. Columbite-(Mn) exists as individual subhedral crystals (up to 100μm in size) or intimate intergrowth with Nb-bearing rutile and/or ilmenite. The CGM are represented mostly by columbite-(Mn) with Ta/(Ta+Nb) and Mn/(Mn+Fe) ratio ranging from 0.02-0.08 and 0.4-0.9, respectively suggesting extreme degree of magmatic fractionation. Rutile contains significant amounts of Ta (up to 4 wt.% Ta2O5) and Nb (up to 22 wt.% Nb2O5). Biotites are phlogopite-annite in composition (Ann47-60Phlog40-53,on average) and are enriched with AlIV that characterize peraluminous granites. Garnets contain 60-69 mol.% spessartine and 28-36 mol.% almandine where, the ratio of spessartine and almandine together exceeds 95 mole percent, similar to garnet occur

  12. Transition from island-arc to passive setting on the continental margin of Gondwana: U-Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá-Barrandian Unit, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Sláma, Jiří; Dunkley, D. J.; Kachlík, V.; Kusiak, M. A.

    2008-01-01

    Roč. 461, 1-4 (2008), s. 44-59 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bohemian Massif * Teplá–Barrandian Unit * Neoproterozoic * Armorican Terrane Assemblage * Gondwana * zircon dating Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.677, year: 2008

  13. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  14. Increased liver alkaline phosphatase and aminotransferase ...

    African Journals Online (AJOL)

    The effect of daily, oral administration of ethanolic extract of Khaya senegalensis stem bark (2mg/kg body weight) for 18days on the alkaline phosphatase, aspartate and alanine aminotransferase activities of rat liver and serum were investigated. Compared with the control, the activities of liver alkaline phosphatase (ALP), ...

  15. Sample preparation in alkaline media

    International Nuclear Information System (INIS)

    Nobrega, Joaquim A.; Santos, Mirian C.; Sousa, Rafael A. de; Cadore, Solange; Barnes, Ramon M.; Tatro, Mark

    2006-01-01

    The use of tetramethylammonium hydroxide, tertiary amines and strongly alkaline reagents for sample treatment involving extraction and digestion procedures is discussed in this review. The preparation of slurries is also discussed. Based on literature data, alkaline media offer a good alternative for sample preparation involving an appreciable group of analytes in different types of samples. These reagents are also successfully employed in tailored speciation procedures wherein there is a critical dependence on maintenance of chemical forms. The effects of these reagents on measurements performed using spectroanalytical techniques are discussed. Several undesirable effects on transport and atomization processes necessitate use of the method of standard additions to obtain accurate results. It is also evident that alkaline media can improve the performance of techniques such as inductively coupled plasma mass spectrometry and accessories, such as autosamplers coupled to graphite furnace atomic absorption spectrometers

  16. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  17. Mineralogy and geochemistry of triassic carbonatites in the Matcha alkaline intrusive complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian orogenic belt

    Science.gov (United States)

    Vrublevskii, V. V.; Morova, A. A.; Bukharova, O. V.; Konovalenko, S. I.

    2018-03-01

    Postorogenic intrusions of essexites and alkaline and nepheline syenites in the Turkestan-Alai segment of the Kyrgyz Southern Tien Shan coexist with dikes and veins of carbonatites dated at ∼220 Ma by the Ar-Ar and Rb-Sr age methods. They are mainly composed of calcite and dolomite (60-85%), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500 °C. Alkaline silicate and salt-carbonate melts are derived from sources with mainly negative bulk εNd(t) ∼ from -11 to 0 and high initial 87Sr/86Sr ratios (∼0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ13C (-6.5 to -1.9‰), δ18O (9.2-23‰), δD (-58 to -41‰), and δ34S (12.6-12.8‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the "last echo" of the Tarim mantle plume.

  18. Origin of fumarolic fluids from Tupungatito Volcano (Central Chile): interplay between magmatic, hydrothermal, and shallow meteoric sources

    Science.gov (United States)

    Benavente, Oscar; Tassi, Franco; Gutiérrez, Francisco; Vaselli, Orlando; Aguilera, Felipe; Reich, Martin

    2013-08-01

    Tupungatito is a poorly known volcano located about 100 km eastward of Santiago (Chile) in the northernmost sector of the South Volcanic Zone. This 5,682 m high volcano shows intense fumarolic activity. It hosts three crater lakes within the northwestern portion of the summit area. Chemical compositions of fumarolic gases and isotopic signatures of noble gases (3He/4He and 40Ar/36Ar are up to 6.09 Ra and 461, respectively), and steam (δ18O and δD) suggest that they are produced by mixing of fluids from a magmatic source rich in acidic gas compounds (SO2, HCl, and HF), and meteoric water. The magmatic-hydrothermal fluids are affected by steam condensation that controls the outlet fumarolic temperatures (contamination from the subducting slab, (2) the sedimentary basement, and (3) limited contribution from crustal sediments. Gas geothermometry based on the kinetically rapid H2-CO equilibria indicates equilibrium temperatures 200 °C and redox conditions are consistent with those inferred by the presence of the SO2-H2S redox pair, typical of fluids that have attained equilibrium in magmatic environment. A comprehensive conceptual geochemical model describing the circulation pattern of the Tupungatito hydrothermal-magmatic fluids is proposed. It includes fluid source regions and re-equilibration processes affecting the different gas species due to changing chemical-physical conditions as the magmatic-hydrothermal fluids rise up toward the surface.

  19. Structural, petrological and geochronological analysis of the lithotypes from the Pien region (Parana State, Brazil) and adjacences

    International Nuclear Information System (INIS)

    Harara, Ossama Mohamed

    1996-01-01

    The Pien area presents the major geotectonic domains separated by the Pien Shear Zone (PSZ). The northern one is the Rio Pien Granite-Mylonitic Suite composed by calc-alkaline granitoids of Neoproterozoic age. The southern domain is represented by the Amphibolite-Granulite where high grade metamorphism took place at the end of paleoproterozoic time. Considering the identified lithotypes, their geochemical affinity (particularly the Ti, Cr, Ni and REE content) and the geological context observed in the area, a geotectonical model of active continental margin related to subduction SSZ (Supra-Subduction Zone) is proposed. K-Ar on plagioclase from gabbronorites gave Neoproterozoic ages although Sm-Nd whole rock isochron yielded Paleoproterozoic ages. Based in geochemical data, it is proposed that the biotite gneiss and biotite-amphibole-gneiss which occur near the PSZ have a shoshonitic to high-K calc-alkaline features which are characteristic of active continental margins. K-Ar on biotite extracted from these rocks, gave Neoproterozoic ages. The available radiometric data for the Rio Pien mylonitic granitoids show that between 650-595 Ma the generation, deformation and cooling below the isotherm of 250 deg C occurred. On the other hand, the geochronological data for the Agudos do Sul Massif are in the 590-570 Ma interval showing its younger generation. The Sr 87 / Sr 86 initial ratios for both granitoids suggest more involvement of the continental crust in the origins of Agudos do Sul granitic Massif. The analyses of the entire set of the available data for the Pien area allows the suggestion of a geotectonic scenery related to the evolution of an active continental margin during the collages associated to the Brasiliano Cycle

  20. Trouble Upstairs: Reconstructing Permian-Triassic Climate during Siberian Traps Magmatism

    Science.gov (United States)

    Black, B. A.; Neely, R. R., III; Lamarque, J. F.; Elkins-Tanton, L. T.; Mills, M. J.

    2014-12-01

    The eruption of large igneous provinces can transfer significant masses of volatiles from Earth's interior to the atmosphere. What are the consequences of this degassing for habitability and extinction? In this presentation, we consider this question in the context of Siberian Traps magmatism, which has been shown to overlap within geochronologic uncertainty with catastrophic deterioration of Permian-Triassic marine and terrestrial ecosystems. To investigate the impacts of endogenic gases on climate, atmospheric chemistry, and ocean circulation, we conducted a series of numerical experiments with a comprehensive global model for the Permian-Triassic. Our simulations predict the intensity and distribution of acid rain and ozone depletion, with implications for terrestrial biota. We further explore feedbacks between sulfur emissions, transient cooling, and shifts in ocean circulation. We suggest that Siberian Traps magmatism may have triggered several distinct kill mechanisms in the oceans and on land, contributing to a complex combined pattern of environmental stress and latest Permian ecological failure.

  1. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  2. Post-rift magmatism in the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Xu, H.; Zhao, F.; Xia, S.; Sun, J.; Fan, C.

    2017-12-01

    Multi-beam, 2D seismic reflection and borehole data reveal that post-rift magmatism are widespread in the northern margin of South China Sea. A large-scale volcanic complex was identified at water depths of 500 to 3000 m, covering an area of ca. 8000 km2. This volcanic complex includes seamounts, igneous sills, dykes and intruded volcanic bodies. Combining data from exploration wells BY7-1 and BY2 with published seismic stratigraphic data, we can highlight multiple extrusive events from the Early Oligocene to Early Miocene, reflecting progressive continental breakup in the South China Sea. Most intruded magma through the continental crust also uplifted sediments up to the T6 unconformity. Given the evidence in this work that Early Miocene magmatic bodies were developed above or along faults, we suggest that post-rift magmatism in the northern margin of the South China Sea was largely controlled by the faults. Reactivation events in the faults are suggested to have generated preferential vertical pathways for the ascent of magma within a context of progressive continental breakup and thinned continental crust, as the South China Sea was being formed.

  3. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc

    OpenAIRE

    Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Fowler, S. J.; Cvetković, V.

    2017-01-01

    New age and whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj-Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, a Cu-Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Se...

  4. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  5. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey

    Science.gov (United States)

    İmer, Ali; Richards, Jeremy P.; Creaser, Robert A.

    2013-06-01

    The Çöpler epithermal Au deposit and related subeconomic porphyry Cu-Au deposit is hosted by the middle Eocene Çöpler-Kabataş magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic-Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75 ± 0.26 Ma and 44.19 ± 0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13 ± 0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44 ± 0.28 Ma) and biotite (43.84 ± 0.26 Ma), and Re-Os ages from two molybdenite samples (44.6 ± 0.2 and 43.9 ± 0.2 Ma) suggesting a short-lived (history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler-Kabataş intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden-Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).

  6. Similar and Contrasting Response of Rifting and Transtension in the Gulf of California and Walker Lane to Preceding Arc Magmatism

    Science.gov (United States)

    Henry, C. D.; Faulds, J. E.

    2006-12-01

    The Gulf of California (GC) and Walker Lane (WL) have undergone strikingly similar development with strike- slip faulting following initial extension. They differ significantly in the amount of Pacific-North American plate motion taken up by each: essentially all relative motion in the GC and ~25% in the WL. In both areas, ancestral arc magmatism preceded and probably focused deformation, perhaps because heating and/or hydration weakened the lithosphere. However, differences in migration of the Rivera (RTJ) and Mendocino triple junctions (MTJ) related to differences in the orientation of plate boundaries determined how strike-slip faulting developed. Abrupt southward jumps in the RTJ led to abrupt cessation of magmatism over arc lengths of as much as 1000 km and initiation of east-northeast extension within the future GC. The best known jump was at ~13 Ma, but an earlier jump occurred at ~18 Ma. Arc magmatism has been best documented in Baja California, Sonora, and Nayarit, although Baja constituted the most-trenchward fringe of the ancestral arc. New and published data indicate that Sinaloa underwent a similar history of arc magmatism. The greatest volume of the arc immediately preceding RTJ jumps was probably in mainland Mexico. Arc magmatism shut off following these jumps, extension began in the future GC, and strike-slip faulting either followed or accompanied extension in the GC. In contrast, the MTJ migrated progressively northward. New and published data indicate magmatism generally shut off coincident with this retreat, but distinct nodes or zones of magmatism, presumably unrelated to subduction, persisted or initiated after arc activity ceased. We have suggested that the WL has grown progressively northward, following the retreating arc, and that the northern WL is its youngest part. However, the timing of initiation of strike-slip faulting in most of the WL is poorly known and controversial. Testing our hypothesis requires determining initiation and

  7. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  8. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  9. Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

    Science.gov (United States)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2018-03-01

    The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.

  10. Acidity and alkalinity in mine drainage: Theoretical considerations

    Science.gov (United States)

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  11. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  12. A possible connection between post-subduction arc magmatism and adakite-NEB rock association in Baja California, Mexico

    Science.gov (United States)

    Castillo, P. R.

    2007-05-01

    Late Miocene to Recent arc-related magmatism occurs in Baja California, Mexico despite the cessation of plate subduction along its western margin at ~12.5 Ma. It includes calcalkaline and K-rich andesites, tholeiitic basalts and basaltic andesites, alkalic basalts similar to many ocean island basalts (OIB), magnesian and basaltic andesites with adakitic affinity (bajaiites), adakites, and Nb-enriched basalts (NEB). A popular model for the close spatial and temporal association of adakite (plus bajaiite) and NEB in Baja California is these are due to melting of the subducted Farallon/Cocos plate, which in turn is caused by the influx of hot asthenospheric mantle through a window created in the subducted slab directly beneath the Baja California peninsula [e.g., Benoit, M. et. al. (2002) J. Geol. 110, 627-648; Calmus, T. et al. (2003) Lithos 66, 77-105]. Here I propose an alternative model for the cause of post-subduction magmatism in Baja California in particular and origin of adakite-NEB rock association in general. The complicated tectonic configuration of the subducting Farallon/Cocos plate and westward motion of the North American continent caused western Mexico to override the hot, upwelling Pacific mantle that was decoupled from the spreading centers abandoned west of Baja California. The upwelling asthenosphere is best manifested east of the peninsula, beneath the Gulf of California, and is most probably due to a tear or window in the subducted slab there. The upwelling asthenosphere is compositionally heterogeneous and sends materials westward into the mantle wedge beneath the peninsula. These materials provide sources for post-subduction tholeiitic and alkalic magmas. Portions of tholeiitic magmas directly erupted at the surface produce tholeiitic lavas, but some get ponded beneath the crust. Re-melting and/or high-pressure fractional crystallization of the ponded tholeiitic magmas generate adakitic rocks. Alkalic magmas directly erupted at the surface

  13. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    Science.gov (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  14. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    Science.gov (United States)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  15. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  16. Petrogenesis of the Mairupt microgranite: A witness of an Uppermost Silurian magmatism in the Rocroi Inlier, Ardenne Allochton

    Science.gov (United States)

    Cobert, Corentin; Baele, Jean-Marc; Boulvais, Philippe; Poujol, Marc; Decrée, Sophie

    2018-03-01

    Magmatism in the Rocroi inlier (Ardenne Allochton, southeastern Avalonia during eo-Hercynian times) consists of a swarm of bimodal dykes (diabase and/or microgranite) emplaced in Middle to Upper Cambrian siliciclastics (Revin Group). Felsic volcanites interbedded within the Upper Silurian/Lower Devonian transgressive strata on the eastern edge of the inlier were interpreted as belonging to the same magmatic event. This was subsequently invalidated by zircon U-Pb dating of the Mairupt and Grande Commune magmatic rocks, which yielded an Upper Devonian age. Here we report a reevaluation of the age of the Mairupt microgranite based on LA-ICP-MS in situ U-Pb zircon geochronology, which yields a concordant age of 420.5 ± 2.9 Ma (Late Silurian/Early Devonian). This new dating restores the consistency between the different magmatic occurrences in the Rocroi inlier. The geochemical and petrographical data furthermore indicate a major crustal contribution, which fits well within the context of crust thinning of the Ardenne margin (southeastern Avalonia) in the transtensional Rheno-Hercynian back-arc basin.

  17. 50 Myr of pulsed mafic magmatism in the High Arctic Large Igneous Province

    Science.gov (United States)

    Pearson, D. G.; Dockman, D. M.; Heaman, L. M.; Gibson, S. A.; Sarkar, C.

    2017-12-01

    Extensive and voluminous Cretaceous mafic magmatism in the Sverdrup Basin of Arctic Canada forms the circum-Arctic High Arctic Large Igneous Province (HALIP). The small number of published high-precision ages for this LIP indicate its eruption over a considerable timespan raising concerns over whether the HALIP can be strictly defined as a single LIP and questioning the role of a single or multiple plumes in its genesis. Here we present an integrated geochemical and geochronological study to better constrain the timing and cause of mafic magma genesis in the Canadian HALIP. Six new U-Pb and four 40Ar/39Ar ages of mafic lavas and intrusive sheets range from 121 Ma to 78 Ma. The U-Pb ages are the first analyzed from the mafic intrusions of Axel Heiberg and Ellesmere Islands. The new geochronology, combined with other published high-precision ages, reveal a > 50 Myr duration of mafic magmatism in the HALIP defined by three main pulses. Tholeiites dominate the initial 25 Myr of magmatism, transitioning to coeval emplacement of alkali and tholeiitic basalts. Whole-rock Sr-Nd isotope ratios indicate that both magma types are derived from a similar source dominated by convecting mantle. Rare-earth-element inversion models reveal that the alkalic and tholeiitic magmas were generated beneath a bimodal lithospheric `lid' thickness of 65 ± 5 and 45 ± 4 km, respectively. We suggest that the early 128 - 122 Ma tholeiitic event is primarily plume-generated and correlates across the circum-Arctic with the other HALIP tholeiites. Younger HALIP magmatism, with coeval alkalic and tholeiitic magmas erupting over 25 Myr, may be explained by alternating modes of edge-driven mantle convection as the primary control on magma genesis. A distal plume may have intensified magma production by edge-driven convection.

  18. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    Science.gov (United States)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI Sc(2-3 ppm), positive Sr anomaly and predominantly negative zircon εHf(t) values (-10.8 to -9.3 with an average of -10.2) and initial 176Hf/177Hf ratios (0.281947-0.282022) confirm a Paleoproterozoic crustal source. Based on the field and geochemical evidences, we propose that a previously metasomatized mafic lower-crustal source enriched in alkalis has undergone CO2-present partial melting as a result of asthenospheric upwelling beneath an aborted rifting along the DRZ generating the magma that crystallized the Sundamalai rocks

  19. New Sm/Nd and U/Pb geochronological constraints of the Archean to neoproterozoic evolution of the Amparo basement complex of the Central Ribeira Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Fetter, A.H.; Hackspacher, P.C.; Ebbert, H.D; Dantas, E.L; Costa, A.C.D. da

    2001-01-01

    The Amparo Basement Complex is a distinctive collage of migmatitic tronjhemitetonalite- granodiorite (TTG) orthogneisses that represents the older basement exposures within the Central Ribeira Belt, a Late Neoproterozoic (ca. 600 Ma) collisional belt in southeastern Brazil. These basement gneisses are overlain by Mesoproterozoic to Neoproterozoic supracrustal sequences, and intruded by Neoproterozoic collisional granitoids. Pioneering Rb/Sr, Pb/Pb and K/Ar geochronological studies of the Amparo Complex, e.g. (Wernick et al., 1981; Wernick and Oliveira, 1986; Arthur, 1988; Tassinari, 1988; Campos Neto, 1991) provided some initial insights into the antiquity and geologic evolution of the complex, but little about the crustal evolution of the constituent gneisses. Furthermore, the susceptibility of these systems to partial isotopic resetting, left some doubt about the timing and true number of geologic events recorded by these polydeformed rocks. Recent Sm/Nd whole rock (Dantas et al., 2000) and new U/Pb single crystal zircon and monazite data obtained from the Amparo Complex, however, now furnish information on the crustal growth history of the basement and provide precise age constraints on the timing of events related to the geologic evolution of the complex. Based on these new data, it appears that the oldest rocks within the complex are polymigmatized tronjhemitic gneisses located near the town of Amparo. The oldest phase of this migmatite yields a U/Pb zircon age of 3,024 +/- 9 Ma. Sm/Nd data from this locale yields a Nd T(DM) model age of 3.28 Ga suggesting that the genesis of this crustal unit involved some input from yet older crust. Data from banded tonalitic gneisses collected ca. 50 km south of Amparo indicate that subsequent Archean crustal growth around the older core occurred around 2.77 Ga (U/Pb zircon age of 2,772 +/- 26 Ma. A Nd T(DM) model age of 3.02 Ga obtained from these tonalites also indicate enrichment from older crustal sources during their

  20. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction The formation of porphyry copper deposits is attributed to the shallow emplacement, and subsequent cooling of the hydrothermal system of porphyritic intrusive rocks (Titley and Bean, 1981. These deposits have usually been developed along the chain of subduction-related volcanic and calc-alkalin batholiths (Sillitoe, 2010. Nevertheless, it is now confirmed that porphyry copper systems can also form in collisional and post collisional settings (Zarasvandi et al., 2015b. Detailed studies on the geochemical features of ore-hosting porphyry Cu-Mo-Au intrusions indicate that they are generally adakitic, water and sulfur- riched, and oxidized (Wang et al., 2014. For example, high oxygen fugacity of magma has decisive role in transmission of copper and gold to the porphyry systems as revealed in (Wang et al., 2014. In this regard, the present work deals with the mineral chemistry of amphibole and plagioclase in the Dalli porphyry Cu-Au deposit. The data is used to achieve the physical and chemical conditions of magma and its impact on mineralization. Moreover, the results of previous studies on the hydrothermal system of the Dalli deposit such as Raman laser spectroscopy and fluid inclusion studies are included for determination of the evolution from magmatic to hydrothermal conditions. Materials and methods In order to correctly characterize the physical and chemical conditions affecting the trend of mineralization, 20 least altered and fractured samples of diorite and quartz-diorite intrusions were chosen from boreholes. Subsequently, 20 thin-polished sections were prepared in the Shahid Chamran University of Ahvaz. Finally, mineral chemistry of amphibole and plagioclase were determined using electron micro probe analyses (EMPA in the central lab of the Leoben University. Results Amphibole that is one of the the main rock-forming minerals can form in a wide variety of igneous and metamorphic rocks. Accordingly, amphibole chemistry can be

  1. Alkaline pretreatment of Mexican pine residues for bioethanol ...

    African Journals Online (AJOL)

    Alkaline pretreatment of Mexican pine residues for bioethanol production. ... Keywords: Lignocellulosic biomass, alkaline pretreatment, enzymatic hydrolysis, fermentable sugars, fermentation. African Journal of Biotechnology Vol. 12(31), pp.

  2. Magmatic development of the outer Vøring margin from seismic data

    Science.gov (United States)

    Breivik, Asbjørn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2014-09-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired over the margin. One profile crosses from the Vøring Plateau to the Vøring Spur, a bathymetric high north of the EJMFZ. The P wave data were ray traced into a 2-D crustal velocity model. The velocity structure of the Vøring Spur indicates up to 15 km igneous crustal thickness. Magmatic processes can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This and two other profiles show a positive H-VP correlation at the Vøring Plateau, consistent with elevated mantle temperature at breakup. However, during the first 2 Ma magma production was augmented by a secondary process, possibly small-scale convection. From ˜51.5 Ma excess melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows that it was created by at least two uplift events, with the main episode close to the Miocene/Pliocene boundary. Low H-VP correlation of the spur is consistent with renewed igneous growth by constant, moderate-degree mantle melting, not related to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, precluding that compressional flexure at the EJMFZ uplifted the high. We find a proposed Eocene triple junction model for the margin to be inconsistent with observations.

  3. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  4. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Geissler, W.H.; Bräuer, K.; Vavryčuk, Václav; Tomek, Č.; Kämpf, H.

    2017-01-01

    Roč. 36, č. 12 (2017), s. 2846-2862 ISSN 0278-7407 R&D Projects: GA ČR GA17-19297S; GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : active intraplate magmatic underplating * mantle-derived fluids * high-velocity lower crust * reflection-free magma body Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.784, year: 2016

  5. The strata and palaeo-geomorphology framework at the end of neoproterozoic and development mode of source rocks at the beginning of Cambrian in Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-12-01

    Full Text Available Referred to the new recognition from petroleum exploration of the Sinian to Cambrian in South China, it could be considered that the distribution of the early Cambrian source rocks was controlled by the palaeo-geomorphology at the end of Neoproterozoic in the Tarim Basin. Based on the zircon U-Pb dating of pyroclastic rock samples from the clastic rock stratum under the bottom of Cambrian carbonate rocks, the stratigraphic correlation of the Sinian to Cambrian was conducted to build the palaeo-geomorphology framework at the end of Neoproterozoic in Tarim Basin. Lastly, according to the development mode of source rocks at the beginning of Cambrian, the distribution of source rocks was predicted initially through the division of seismic facies. The youngest zircon concordia age of pyroclastic rocks from the bottom of well Tong 1 is 707±8Ma. It was revealed by the strata framework of the Sinian to Cambrian, the palaeo-geomorphology at the end of Neoproterozoic in Tarim Basin was characterized by an uplift highland in Bachu-Tazhong area, the south north high-low, and the west is higher than the east. The distribution of source rocks in the bottom of the Cambrian on the palaeo-platform and slopes was coincident with the Upper Sinian dolomite basically. But the contemporaneous sediment happened to be absent or changed in sedimentary facies on the uplift and its edges. From the seismic facies of the strata under the bottom of Cambrian, it could be concluded that source rocks in the type of the Xishanbraque Group (∈1xs was limited in the Manjiaer Depression, while the source rocks in the type of the Yuertusi Group (∈1y are widely distributed in south of Tabei Uplift, east Awat Depression, and even the Maigt Slope. However, among the west Awat Depression and western Tanguzibasi Depression, and the middle area of the Bachu-Tazhong Uplifts, the contemporaneous source rocks may have changed into sedimentary facies of tidal flat and lagoon, instead of

  6. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Toens, P.D.

    1980-10-01

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations [af

  7. Application of alkaline waterflooding to a high acidity crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  8. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  9. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  10. Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile

    Science.gov (United States)

    Burns, Dale H.; de Silva, Shanaka L.; Tepley, Frank; Schmitt, Axel K.; Loewen, Matthew W.

    2015-07-01

    The long-term evolution of continental magmatic arcs is episodic, where a few transient events of high magmatic flux or flare-ups punctuate the low-flux magmatism or "steady state" that makes up most of the arc history. How this duality manifests in terms of differences in crustal architecture, magma dynamics and chemistry, and the time scale over which transitions occur is poorly known. Herein we use multiscale geochemical and isotopic characteristics coupled with geothermobarometry at the Purico-Chascon Volcanic Complex (PCVC) in the Central Andes to identify a transition from flare-up to steady state arc magmatism over ∼800 kyr during which significant changes in upper crustal magmatic dynamics are recorded. The PCVC is one of the youngest volcanic centers related to a 10-1 Ma ignimbrite flare-up in the Altiplano-Puna Volcanic Complex of the Central Andes. Activity at the PCVC initiated 0.98 ± 0.03 Ma with the eruption of a large 80-100 km3 crystal-rich dacite ignimbrite. High, restricted 87Sr/86Sr isotope ratios between 0.7085 and 0.7090 in the bulk rock and plagioclase crystals from the Purico ignimbrite, combined with mineral chemistry and phase relationships indicate the dacite magma accumulated and evolved at relatively low temperatures around 800-850 °C in the upper crust at 4-8 km depth. Minor andesite pumice erupted late in the ignimbrite sequence records a second higher temperature (965 °C), higher pressure environment (17-20 km), but with similar restricted radiogenic bulk rock 87Sr/86Sr = 0.7089-0.7091 to the dacites. The compositional and isotopic characteristics of the Purico ignimbrite implicate an extensive zone of upper crustal mixing, assimilation, storage and homogenization (MASH) between ∼30 and 4 km beneath the PCVC ∼1 Ma. The final eruptions at the PCVC engine". High magmatic fluxes during the flare-up would lead to elevated geothermal gradients and efficient crustal processing leading to a dominantly "crustal" magmatism feeding the

  11. OIB signatures in basin-related lithosphere-derived alkaline basalts from the Batain basin (Oman) - Constraints from 40Ar/39Ar ages and Nd-Sr-Pb-Hf isotopes

    Science.gov (United States)

    Witte, M.; Jung, S.; Pfänder, J. A.; Romer, R. L.; Mayer, B.; Garbe-Schönberg, D.

    2017-08-01

    Tertiary rift-related intraplate basanites from the Batain basin of northeastern Oman have low SiO2 ( 9.73 wt.%) and moderate to high Cr and Ni contents (Cr > 261 ppm, Ni > 181 ppm), representing near primary magmas that have undergone fractionation of mainly olivine and magnetite. Rare earth element systematics and p-T estimates suggest that the alkaline rocks are generated by different degrees of partial melting (4-13%) of a spinel-peridotite lithospheric mantle containing residual amphibole. The alkaline rocks show restricted variations of 87Sr/86Sr and 143Nd/144Nd ranging from 0.70340 to 0.70405 and 0.51275 to 0.51284, respectively. Variations in Pb isotopes (206Pb/204Pb: 18.59-18.82, 207Pb/204Pb: 15.54-15.56, 208Pb/204Pb: 38.65-38.98) of the alkaline rocks fall in the range of most OIB. Trace element constraints together with Sr-Nd-Pb isotope composition indicate that assimilation through crustal material did not affect the lavas. Instead, trace element variations can be explained by melting of a lithospheric mantle source that was metasomatized by an OIB-type magma that was accumulated at the base of the lithosphere sometimes in the past. Although only an area of less than 1000 km2 was sampled, magmatic activity lasted for about 5.5 Ma with a virtually continuous activity from 40.7 ± 0.7 to 35.3 ± 0.6 Ma. During this period magma composition was nearly constant, i.e. the degree of melting and the nature of the tapped source did not change significantly over time.

  12. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  13. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  14. Constraints on the depth of generation and emplacement of a magmatic epidote-bearing quartz diorite pluton in the Coast Plutonic Complex, British Columbia

    Science.gov (United States)

    Chang, J.M.; Andronicos, C.L.

    2009-01-01

    Petrology and P-T estimates indicate that a magmatic epidote-bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ???1.4 GPa and cooled nearly isobarically at ???0.9 GPa. The P-T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ???30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ???55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P-T path followed by magmas. ?? 2009 Blackwell Publishing Ltd.

  15. Geochemistry Petrography, thermobarometry and investigation of magmatic series in Mirabad- Chehel Khane granitoid body (east of Bouin– Miandasht, Isfahan province

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Tabatabaei Manesh

    2017-11-01

    Full Text Available On the base of petrology, the Mirabad- Chehel Khane granitoid, east of Bouin-Miandasht, dominantly consists of syenogranite, monzogranite, alkali granite and granodiorites. The main minerals of these rocks are quartz, alkali feldspar (Orthoclase, plagioclase (Albite - Oligoclase, biotite, ± amphibole with minor amount of allanite, zircon, titanite, apatite, ± tourmaline.  The biotite from the granites are Fe-rich type (annite and primary magmatic in origin. The composition of the biotites studied principally falls in the calc-alkaline subduction related I-type granite on the tectonomagmatic discrimination diagrams, which stand on their major element oxides. Which is consistent with the nature of their host rocks. The studied amphiboles are classified as calcic (ferro-hornblende which points to the I-type nature of the granitoid.  The tourmaline composition plots on the schorl - foitite field. The temperature for the alteration, on the base of chlorite composition from the syenogranite, is estimated around 350°C and from the monzogranite rocks about 341°C.  Based on the application of Al-in amphibole, a 3 Kbar pressure was determined for the syenogranite unit corresponding to the depth of 8-11 Km for the emplacement of the pluton. Hornblende- plagioclase thermometer shows 694 to 700°C for the equilibrium of these two minerals.

  16. Geochemistry and U/Pb geochronology of the Neuvy-Bouin pluton (Vendean Haut-Bocage): an example of a multistage granite pluton

    International Nuclear Information System (INIS)

    Cuney, M.; Brouand, M.; Dautel, D.; Michard, A.; Stussi, J.M.; Poncet, D.; Bouton, P.; Colchen, M.; Vervialle, J.P.

    1993-01-01

    New geological, structural and geochemical data show the presence of at least four magmatic units in the Neuvy-Bouin massif. U/Pb zircon age (340±4 Ma) obtained on the Largeasse granites indicates that in the Neuvy-Bouin pluton the magmatic activity began during Visean times. The emplacement of the Largeasse granites is followed by the aluminopotassic two-mica granites of Pougne-Herisson and by two mica leucogranites. The small high-K calc-alkaline granite body discovered in the Neuvy-Bouin pluton represents the first occurrence of this type of magmatism in the area

  17. Basic and ultrabasic coastal dykes adjacent to the Sao Sebastiao Channel (North coast of Sao Paulo State, Brazil)

    International Nuclear Information System (INIS)

    Garda, Gianna Maria; Schorscher, Johann Hans Daniel

    1996-01-01

    The portions of the Precambrian Costeiro Complex adjacent to the Sao Sebastiao Channel (Sao Paulo State, Brazil) are crosscut by mafic dykes of basic to intermediate composition, lamprophyres and trachytes. The former have been correlated with the basalts of the Parana Basin, while the lamprophyres are expressions of an alkaline magmatism different from the one that happened approximately 80 Ma ago in the Sao Sebastiao, Buzios, Vitoria and Montao de Trigo islands, where more acid terms predominate with associated trachytes and rare phonolites. The basic-ultrabasic lamprophyric magmatism is widespread along the Sao Paulo and Rio de Janeiro coasts; they are independent from and most likely older than the stocks and alkaline massifs. (author)

  18. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa

    Science.gov (United States)

    Wilson, Allan

    2013-04-01

    The Pongola Supergroup is one of the most extensive and well preserved volcano-sedimentary successions emplaced in a continental setting in the Meso-Archean (c. 2.95 Ga). It contrasts with both the older (Barberton type c.3.5 Ga) and younger (Belingwe type c.2.7 Ga) greenstone belts in southern Africa in that the sequence has not undergone the strong horizontal compressional tectonics typically related to greenstone belt-TTG environments. However, it is appropriate to compare this sequence with rocks of the Barberton greenstone belt by which the final phase of deposition preceded that of the juxtaposed Pongola basin with a relatively small time interval. The Pongola succession, which commenced with the first major magmatic event after the Barberton greenstone belt, overlies granitoids and remnants of greenstone belts in SE South Africa and in SW Swaziland. Formation was not in a continental rift environment but most likely in a marginal epicontinental basin with syn-depositional subsidence in a half-graben fault system in the type area. The Pongola rocks occur in two domains related to a NW-trending central basement high in the Kaapvaal Craton and achieving a maximum thickness of 8 km in the northern areas. The lower section (Nsuze group 3.7 km thick) is made up mainly of lavas and pyroclastic rocks and the upper section (Mozaan Group 4.3 km thick) is aranaceous sediments and argillites with a thick volcanic unit observed in the south-eastern facies. Chemical affinities of the lavas include tholeiite and calc-alkaline over the compositional range of basalt to rhyolite. There is a preponderance of andesites in the compositional array. The preservation of these rocks gives insight into the range of volcanic processes that took place at this stage of Earth history and in some areas it is possible to identify eruptions from a single source over several kilometres, as well as feeder-dyke systems to the lava flows. Simultaneous eruption of contrasting magmas from several

  19. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction

    Science.gov (United States)

    Yang, Hao; Ge, Wenchun; Dong, Yu; Bi, Junhui; Wang, Zhihui; Ji, Zheng; Yang, H.; Ge, W. C.; Dong, Y.; Bi, J. H.; Wang, Z. H.; Ji, Z.

    2017-09-01

    In this paper, we report zircon U-Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western margin of the Jiamusi Block (WJB), NE China. The intermediate to felsic (SiO2 = 59.67-74.04 wt%) granitoids belong to calc-alkaline series and are characterized by enrichments in light rare earth elements and large ion lithophile elements with pronounced negative Nb, Ta and Ti anomalies, revealing typical continental magmatic arc geochemical signatures. The zircon U-Pb determinations on the granodiorite, monzogranite, syenogranite and quartz diorite samples yielded ages between ca. 275-245 Ma, which, together with the published coeval intrusive rocks, indicates that Permian to Early Triassic continental arc magmatism occurred extensively in the WJB. The low and mainly negative zircon ɛ Hf( t) values between -7.6 and +1.6 and the zircon Hf model ages of 1.2-1.8 Ga, which are significantly older than their crystallization ages, suggest that they were mainly derived from reworking of ancient crustal materials with a limited input of juvenile components. The geochemical systematics and petrogenetic considerations indicate that the studied granitoids were generated from a zone of melting, assimilation, storage, and homogenization, i.e., a MASHed zone at the base of Paleo- to Mesoproterozoic continental crust, where large portions of igneous rocks and minor clay-poor sediments involved in the source region. In combination with regional geological data, we argue that the Jiamusi Block was unlikely the rifted segment of the Songliao Block and two possible geodynamical models were proposed to interpret the formation of the ca. 275-245 Ma granitoids in the WJB. In the context of Permian global plate reconstruction, we suggest that Paleo-Pacific plate subduction was initiated in the Permian to Early Triassic beneath the Jiamusi Block, and even whole eastern NE China.

  20. Magmatism during Gondwana break-up : new geochronological data from Westland, New Zealand

    International Nuclear Information System (INIS)

    Van der Meer, Q.H.A.; Scott, J.M.; Waight, T.E.; Sudo, M.; Schersten, A.; Cooper, A.F.; Spell, T.L.

    2013-01-01

    Newly determined Late Cretaceous 40 Ar/ 39 Ar ages on megacrystic kaersutite from four lamprophyre dikes, and a U-Pb zircon age on a trachyte, from central and north Westland (New Zealand) are presented. These ages suggest that the intrusion of mafic dikes (88-86 and 69 Ma) was not necessarily restricted to the previously established narrow age range of 80-92 Ma. The younger lamprophyre and trachyte dikes (c. 68-70 Ma) imply that tensional stresses in the Western Province were either renewed at this time, or that extension and related magmatism continued during opening of the Tasman Sea. Extension-related magmatism in the region not only preceded Tasman seafloor spreading initiation (starting at c. 83 Ma, lasting to c. 53 Ma), but may have sporadically continued for up to 15 Ma after continental break-up. (author)

  1. Geochronological constraints on the polycyclic magmatism in the Bou Azzer-El Graara inlier (Central Anti-Atlas Morocco)

    Science.gov (United States)

    Blein, O.; Baudin, T.; Chèvremont, P.; Soulaimani, A.; Admou, H.; Gasquet, P.; Cocherie, A.; Egal, E.; Youbi, N.; Razin, P.; Bouabdelli, M.; Gombert, P.

    2014-11-01

    New U-Pb SHRIMP zircon ages from the Bou Azzer-El Graara onlier constrains the Neoproterozoic evolution of the Anti-Atlas during Pan-African orogenesis. Within the Central Anti-Atlas, the Bou Azzer-El Graara inlier exposes a dismembered ophiolite, long considered to mark a late Neoproterozoic suture between the West African Craton in the south, and Neoproterozoic arcs to the north. From north to south, this inlier includes four main geological units: a volcanic-arc, an ophiolite, a metamorphic complex and a continental platform. Several plutons intrude the volcanic-arc, the ophiolite, the metamorphic complex, and post-orogenic volcanic and sedimentary deposits unconformably cover these terranes. The age of the volcanic-arc is reported here for the first time. Analyses of zircon of two rhyolites provide ages of 761 ± 7 Ma and 767 ± 7 Ma. Zircons from two gneisses provide dates of 755 ± 9 Ma and 745 ± 5 Ma. Both dates are considered best estimates of the crystallization ages of their igneous protoliths. Analyses of zircon from two granitic bodies, which crosscut gneisses, provide younger dates of 702 ± 5 Ma and 695 ± 7 Ma. The age of an aplitic body of the ophiolite is reported here for the first time, as 658 ± 8 Ma (SHRIMP U-Pb on zircons). Theses ages suggest the existence of three distinct orogenic events during Cryogenian times: (i) 770-760 Ma Tasriwine-Tichibanine orogeny with rollback of the subducting oceanic plate, leading to the formation of back-arc basins; (ii) 755-695 Ma Iriri-n'Bougmmane orogeny; and (iii) the 660-640 Ma Bou Azzer orogeny involving the formation and the emplacement of the Bou Azer ophiolite. During Ediacaran times, the Bou Azzer-El Graara inlier is characterized with the development of a continental volcanic arc between 630 and 580 Ma (Bou Lbarod Group, 625 ± 8 Ma; Bleïda granodiorite, 586 ± 15 Ma), and strike-slip pull-apart basins (Tiddiline Group, 606 ± 4 Ma and 606 ± 5 Ma). These volcanic and sedimentary Lower Ediacaran

  2. Structural, petrological and geochronological analysis of the lithotypes from the Pien region (Parana State, Brazil) and adjacences; Analise estrutural, petrologica e geocronologica dos litotipos da Regiao de Pien (PR) e adjacencias

    Energy Technology Data Exchange (ETDEWEB)

    Harara, Ossama Mohamed

    1996-12-31

    The Pien area presents the major geotectonic domains separated by the Pien Shear Zone (PSZ). The northern one is the Rio Pien Granite-Mylonitic Suite composed by calc-alkaline granitoids of Neoproterozoic age. The southern domain is represented by the Amphibolite-Granulite where high grade metamorphism took place at the end of paleoproterozoic time. Considering the identified lithotypes, their geochemical affinity (particularly the Ti, Cr, Ni and REE content) and the geological context observed in the area, a geotectonical model of active continental margin related to subduction SSZ (Supra-Subduction Zone) is proposed. K-Ar on plagioclase from gabbronorites gave Neoproterozoic ages although Sm-Nd whole rock isochron yielded Paleoproterozoic ages. Based in geochemical data, it is proposed that the biotite gneiss and biotite-amphibole-gneiss which occur near the PSZ have a shoshonitic to high-K calc-alkaline features which are characteristic of active continental margins. K-Ar on biotite extracted from these rocks, gave Neoproterozoic ages. The available radiometric data for the Rio Pien mylonitic granitoids show that between 650-595 Ma the generation, deformation and cooling below the isotherm of 250 deg C occurred. On the other hand, the geochronological data for the Agudos do Sul Massif are in the 590-570 Ma interval showing its younger generation. The Sr{sup 87} / Sr{sup 86} initial ratios for both granitoids suggest more involvement of the continental crust in the origins of Agudos do Sul granitic Massif. The analyses of the entire set of the available data for the Pien area allows the suggestion of a geotectonic scenery related to the evolution of an active continental margin during the collages associated to the Brasiliano Cycle 201 refs., 130 figs., 6 tabs., 2 maps

  3. Structural, petrological and geochronological analysis of the lithotypes from the Pien region (Parana State, Brazil) and adjacences; Analise estrutural, petrologica e geocronologica dos litotipos da Regiao de Pien (PR) e adjacencias

    Energy Technology Data Exchange (ETDEWEB)

    Harara, Ossama Mohamed

    1997-12-31

    The Pien area presents the major geotectonic domains separated by the Pien Shear Zone (PSZ). The northern one is the Rio Pien Granite-Mylonitic Suite composed by calc-alkaline granitoids of Neoproterozoic age. The southern domain is represented by the Amphibolite-Granulite where high grade metamorphism took place at the end of paleoproterozoic time. Considering the identified lithotypes, their geochemical affinity (particularly the Ti, Cr, Ni and REE content) and the geological context observed in the area, a geotectonical model of active continental margin related to subduction SSZ (Supra-Subduction Zone) is proposed. K-Ar on plagioclase from gabbronorites gave Neoproterozoic ages although Sm-Nd whole rock isochron yielded Paleoproterozoic ages. Based in geochemical data, it is proposed that the biotite gneiss and biotite-amphibole-gneiss which occur near the PSZ have a shoshonitic to high-K calc-alkaline features which are characteristic of active continental margins. K-Ar on biotite extracted from these rocks, gave Neoproterozoic ages. The available radiometric data for the Rio Pien mylonitic granitoids show that between 650-595 Ma the generation, deformation and cooling below the isotherm of 250 deg C occurred. On the other hand, the geochronological data for the Agudos do Sul Massif are in the 590-570 Ma interval showing its younger generation. The Sr{sup 87} / Sr{sup 86} initial ratios for both granitoids suggest more involvement of the continental crust in the origins of Agudos do Sul granitic Massif. The analyses of the entire set of the available data for the Pien area allows the suggestion of a geotectonic scenery related to the evolution of an active continental margin during the collages associated to the Brasiliano Cycle 201 refs., 130 figs., 6 tabs., 2 maps

  4. Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications

    International Nuclear Information System (INIS)

    Poma, Stella; Zappettini, Eduardo O; Quenardelle, Sonia; Santos, Joao O; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil

    2014-01-01

    We have carried out zircon U-Pb SHRIMP dating and Hf isotope determinations as well as geochemical analyses on three plutonic units of Gondwanan magmatism that crop out in NW Argentina. Two episodes of different age and genesis have been identified. The older one includes gabbros and diorites (Rio Grande Unit) of 267±3 Ma and granitoids (belonging to the Llullaillaco Unit) of 263±1 Ma (late Permian, Guadalupian); the parent magmas were generated in an intraplate environment and derived from an enriched mantle but were subsequently contaminated by crustal components. The younger rocks are granodiorites with arc signature (Chuculaqui Unit) and an age of 247±2 Ma (middle Triassic-Anisian). Hf isotope signature of the units indicates mantle sources as well as crustal components. Hf model ages obtained are consistent with the presence of crustal Mesoproterozoic (mainly Ectasian to Calymnian (T DM(c) =1.24 to 1.44 Ga-negative ε Hf m) and juvenile Cryogenian sources (T DM =0.65 to 0.79 Ga-positiveε Hf(T) , supporting the idea of a continuous, mostly Mesoproterozoic, basement under the Central Andes, as an extension of the Arequipa-Antofalla massif. The tectonic setting and age of the Gondwanan magmatism in NW Argentina allow to differentiate: a. Permian intra-plate magmatism developed under similar conditions to the upper section of the Choiyoi magmatism exposed in the Frontal Cordillera and San Rafael Block, Argentina; b. Triassic magmatism belonging to a poorly known subduction-related magmatic arc segment of mostly NS trend with evidence of porphyry type mineralization in Chile, allowing to extend this metallotect into Argentina

  5. Intense magmatic degassing through the lake of Copahue volcano, 2013-2014

    Science.gov (United States)

    Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.

    2015-09-01

    Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.

  6. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Science.gov (United States)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.

    2018-04-01

    Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter-mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter-mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine - δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine-spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine-spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult-to-apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet-bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks

  7. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  8. Characterization of potassic materials of Pocos de Caldas alkaline massif, Southeastern Brazil; Caracterizacao de materiais potassicos do macico alcalino de Pocos de Caldas (MG)

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.; Navarro, F.C.; Roveri, C.D. [Universidade Federal de Alfenas (UNIFAL), MG (Brazil); Bergerman, M.G., E-mail: pattypgpatty@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil)

    2016-07-01

    Potassium, which has featured in Brazil's agricultural sector and in the world's in the application of fertilizers, is present in magmatic rocks, such as nepheline syenite and phonolite, found in the Alkaline Massif of Pocos de Caldas (AMPC). The rare earth elements (REE), in turn, also occur in this region and have important uses in various industrial fields. The aim of this study was to investigate the potential of potassic rocks of AMPC in the fertilizer and rare earths industry. Five samples were collected and characterized. It was observed that there was no preferential concentration by granulometric range of potassium oxide, alumina, silica and iron oxide. Feldspathic mass, potash feldspar, and muscovite were found in all samples. The samples show REE with amounts greater than those found in the earth's crust, except for lutetium and scandium and possessed average content of potassium oxide from 8.70 to 14.40%. (author)

  9. Present-day Opening of the Natron Rift: Tectonic and Magmatic Processes at Work

    Science.gov (United States)

    Calais, E.; Dalaison, M.; Saria, E.; Doubre, C.; Masson, F.

    2017-12-01

    The young Natron basin (system, is an important locale to study the initial stage of continental rifting. It was the locus of a rarely observed tectono-magmatic event in July 2007, with slow slip on an intra-basin normal fault followed by a 10 km-long dike intrusion underneath the Gelai shield volcano. Here we report on a series of GPS observations over a 20-site network spanning the basin, measured repeatedly since 2013. We observe a long wavelength ( 200 km wide) extension with a horizontal rate of about 2 mm/yr, consistent with recentlty published regional kinematic models, and a velocity gradient centered on the west-bounding fault of the Natron basin. Initial models show that the data is best fit by a normal fault dipping 60 degrees to the east and slipping at a rate of 6 mm/yr. Superimposed on this long wavelength extension, we observe a smaller scale ( 30 km wide) extensional signal in the middle of the basin, roughly coincident with the location of the Gelai volcano, which was the locale of the 2007 seismic-magmatic crisis. We investigate the relative importance of tectonic faulting, post-diking relaxation following the 2007 intrusion (as observed for instance in Afar or Iceland after similar events), and melt recharge of the intra-basin magmatic system in present-day extension across this young segment of the East African Rift.

  10. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gondwana subduction-modified mantle domain prevents magmatic seafloor generation in the Central Indian Ridge

    Science.gov (United States)

    Morishita, T.; Nakamura, K.; Senda, R.; Suzuki, K.; Kumagai, H.; Sato, H.; Sato, T.; Shibuya, T.; Minoguchi, K.; Okino, K.

    2013-12-01

    The creation of oceanic crust at mid-ocean ridges is essential to understanding the genesis of oceanic plate and the evolution of the Earth. Detailed bathymetric measurements coupled with dense sample recovery at mid-ocean ridge revealed a wide range of variations in the ridge and seafloor morphologies, which cannot be simply explained by a spreading rate, but also by ridge geometry, mantle compositions and thermal structure (Dick et al., 2003 Nature; Cannat et al. 2006 Geology). It is now widely accepted that very limited magmatic activity with tectonic stretching generates oceanic core complex and/or smooth seafloor surface in the slow to ultraslow-spreading ridges, where serpentinized peridotite and gabbros are expected to be exposed associated with detachment faults (Cann et al., 1997 Nature; Cannat et al., 2006), although magmatism might be an essential role for the formation of oceanic core complexes (Buck et al., 2005 Nature; Tucholke et al 2008 JGR). A rising question is why magmatic activity is sometimes prevented during the oceanic plate formation. Ancient melting domain, that are too refractory to melt even in adiabatically upwelling to the shallow upper mantle, might cause the amagmatic spreading ridges (Harvey et al., 2006 EPSL, Liu et al.,2008 Nature). Its origin and effect on seafloor generations are, however, not well understood yet. We report an oceanic hill as an example of an ancient subduction-modified mantle domain, probably formed at continental margin of the Gondwanaland~Pangea supercontinent, existing beneath the Central Indian Ridge. This domain is the most likely to have prevented magmatic seafloor generation, resulting in creation of very deep oceanic valley and serpentine diaper (now the studied oceanic hill) at the present Central Indian ridge.

  12. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  13. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    Science.gov (United States)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  14. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  15. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  16. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    Science.gov (United States)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  17. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... A new strain of Bacillus sp. was isolated from alkaline soil, which was able to produce extracellular alkaline ... rice and dates (Khosravi-Darani et al., 2008), protein by- products from lather ..... Pigeon pea waste as a novel ...

  18. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  19. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics

    Science.gov (United States)

    Peng, Peng; Guo, Jinghui; Zhai, Mingguo; Windley, Brian F.; Li, Tiesheng; Liu, Fu

    2012-09-01

    The 2200-1880 Ma igneous rocks in the central and eastern parts of the North China Craton (NCC) constitute a new Hengling magmatic belt (HMB), which includes the ~ 2147 Ma Hengling mafic sill/dyke swarm, the ~ 2060 Ma Yixingzhai mafic dyke swarm, and the ~ 1973 Ma Xiwangshan mafic dyke swarm. The three swarms are contiguous and have experienced variable degrees of metamorphism from greenschist to low amphibolite facies (Hengling), medium granulite facies (Yixingzhai), and medium/high-pressure granulite facies (Xiwangshan). They are all tholeiitic in composition typically with 47-52 wt.% SiO2 and 4-10 wt.% MgO, and all show light rare earth element enrichments and Nb- and Ta-depletion. Their Nd TDM ages are in the range of 2.5-3.0 Ga. Specifically, the Hengling and Yixingzhai dykes/sills are depleted in Th, U, Zr, Hf and Ti, whereas the Xiwangshan dykes are enriched in U and weakly depleted in other elements. Variable Sr-anomalies indicate significant feldspar accumulation (positive anomalies) or fractionation. The ɛNd(t) values of the three swarms are: - 3.2-+3.0 (Hengling), - 1.7-+ 1.8 (Yixingzhai) and - 1.4-+ 1.0 (Xiwangshan). These mafic representatives of the HMB originated from the > 2.5 Ga sub-continental lithospheric mantle of the NCC, and with A-type granites and other igneous associations in this belt they likely evolved in an intra-continental rift. The progressive changing compositions of the three swarms are interpreted in terms of their source regions at different depths, i.e., shallower and shallower through time. And the decrease in scale and size of the intrusions and their magma volumes indicate the progressive weakening of magmatism in this rift. The rocks in this belt are different chronologically, petrologically and chemically from those in the Xuwujia magmatic belt (XMB). We propose that the two magmatic belts represent two different magmatic systems in different blocks of the NCC, i.e., an eastern block (with the HMB) and a western block

  20. Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    KAUST Repository

    Le Corvec, Nicolas

    2014-07-01

    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activity may occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplay may exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements and may hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing. Key Points Analyzing Mount Etna east flank dynamics during the 2001 eruption Good correlation between analogue models and GPS data Understanding the different behavior of faulting before/during/after an eruption © 2014. American Geophysical Union. All Rights Reserved.

  1. Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    KAUST Repository

    Le Corvec, Nicolas; Walter, Thomas R.; Ruch, Joel; Bonforte, Alessandro; Puglisi, Giuseppe

    2014-01-01

    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activity may occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplay may exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements and may hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing. Key Points Analyzing Mount Etna east flank dynamics during the 2001 eruption Good correlation between analogue models and GPS data Understanding the different behavior of faulting before/during/after an eruption © 2014. American Geophysical Union. All Rights Reserved.

  2. Episodic melting and magmatic recycling along 50 Ma in the Variscan belt linked to the orogenic evolution in NW Iberia

    Science.gov (United States)

    Gutiérrez-Alonso, G.; López-Carmona, A.; García Acera, G.; Martín Garro, J.; Fernández-Suárez, J.; Gärtner, A.; Hofmann, M.

    2017-12-01

    The advent of a large amount of more precise U-Pb age data on Variscan granitoids from NW Iberia in recent years has provided a more focused picture of the magmatic history of the Western European Variscan belt (WEVB). Based on these data, three main pulses of magmatic activity seem to be well established.

  3. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  4. Origin and mobility of hydrocarbon gases in alkaline plutons : the example of the Khibina complex, NW Russia

    Energy Technology Data Exchange (ETDEWEB)

    Treloar, P.J.; Beeskow, B.; Rankin, A.H. [Kingston Univ., Kingston upon Thames (United Kingdom). School of Earth Sciences; Potter, J. [Western Ontario Univ., London, ON (Canada). Dept. of Earth Science; Nivin, V. [Geological Inst., Apatity (Russian Federation). Kola Science Centre

    2006-07-01

    The origin and distribution of abiogenic hydrocarbon gases (HCGs) was discussed with particular reference to HCGs in the Khibina pluton which are dominated by methane (CH{sub 4}) with minor amounts of higher hydrocarbons and hydrogen (H{sub 2}). Although isotopic data and hydrocarbon species ratios point to an abiogenic source, they do not distinguish between primary magmatic hydrocarbons and those generated by late magmatic re-speciation or post-magmatic Fischer-Tropsch (FT) synthesis. Some rock textures suggest limited CH{sub 4} production by FT synthesis, but the presence of primary, syn-magmatic CH{sub 4}-rich fluid inclusions, and the absence of primary and secondary carbon dioxide (CO{sub 2}) rich inclusions, suggest a dominantly early magmatic origin for the HCGs. The permeability and porosity in the Khibina pluton can be constrained by the distribution and geometry of fluid inclusion planes (FIPs) and open cracks (OCs), as well as by the magnitude and pathways of fluid flow. Orientation data for FIPs and OCs, obtained from oriented thin sections, revealed a range of orientations in sub-parallel arrays, suggesting continual re-activation of old fracture systems. The extensive occurrence of OCs and sealed FIPs points to long lived porosities and permeabilities with large fluid fluxes integrated over time. FIP and OC density values were found to be consistent with gas release patterns characterized by spontaneous release during mining of large volumes of HCG stored in a network of interconnected, sealed microfractures and fluid inclusion planes that unzip during stress. It was determined that the HCGs have a primary magmatic origin although there is local evidence for limited post-magmatic FT synthesis. Long term continuous gas migration has occurred within the complex through an interconnected set of fractures. FIPs represent aliquots of gas sealed during open system migration. It was concluded that the complex contains a potentially economically viable

  5. Petrography, structure and geochemistry of nepheline syenites from the Pocos de Caldas alkaline massif, states of Minas Gerais and Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Ulbrich, H.H.

    1984-01-01

    The subcircular Mid-Cretaceous Pocos de Caldas alkaline massif, states of Minas Gerais and Sao Paulo, southern Brazil, covers over 800 Km 2 , and has as its main rock types phonolites and nepheline syenites, with subordinate amounts of pyroclastic rocks. Nepheline syenites consist mainly of K-feldspar, nepheline and pyroxene, varying both in texture and 'rare-metal silicates' content. A useful petrographic division is that which classifies the rocks into agpaitic and non-agpaitic (miaskitic or intermediate) types. The latter varieties, characterized by the absence of rare-metal silicates, are predominant by far; agpaitic types are easily recognized by the presence of eudialyte and other rare-metal silicates. Both petrographic and, as far as possible, structural descriptions as well are given for most of the mapped nepheline syenite bodies; many bodies show subhorizontal or moderately-dipping contacts with their country rocks. Chemically, these rocks show, on the whole, high alkaline contents (12-15%) and commonly very high K 2 O abundances. Chemical as well as additional isotopic and geochronological (Rb/Sr) data suggest that the asthenosphere is the source of parental magmas for the Pocos de Caldas nepheline syenites. The same arguments are used to reject, as unlikely, the magmatic activity interval (over 30 m.y.) given by previously published K/Ar ages. Simple structural models of the crust lithosphre in the Parana Basin area, coupled with the westward plate movement, suggest that irregularities at the asthenosphere-lithosphere decoupling surface are probable sites for melting of asthenospheric (and lithospheric) rocks induced by pressure relief. (D.J.M.) [pt

  6. Retrogressive hydration of calc-silicate xenoliths in the eastern Bushveld complex: evidence for late magmatic fluid movement

    Science.gov (United States)

    Wallmach, T.; Hatton, C. J.; De Waal, S. A.; Gibson, R. L.

    1995-11-01

    Two calc-silicate xenoliths in the Upper Zone of the Bushveld complex contain mineral assemblages which permit delineation of the metamorphic path followed after incorporation of the xenoliths into the magma. Peak metamorphism in these xenoliths occurred at T=1100-1200°C and P <1.5 kbar. Retrograde metamorphism, probably coinciding with the late magmatic stage, is characterized by the breakdown of akermanite to monticellite and wollastonite at 700°C and the growth of vesuvianite from melilite. The latter implies that water-rich fluids (X CO 2 <0.2) were present and probably circulating through the cooling magmatic pile. In contrast, calc-silicate xenoliths within the lower zones of the Bushveld complex, namely in the Marginal and Critical Zones, also contain melilite, monticellite and additional periclase with only rare development of vesuvianite. This suggests that the Upper Zone cumulate pile was much 'wetter' in the late-magmatic stage than the earlier-formed Critical and Marginal Zone cumulate piles.

  7. Microchemistry, geochemistry and geochronology of the Lagoa Real Uranium Province (BA) magmatic association: petrological and evolutionary significance

    International Nuclear Information System (INIS)

    Amorim, Lucas Eustaquio Dias

    2016-01-01

    The Lagoa Real Uranium Province (PULR) is located in the center-south of the Bahia State, in the central part of Sao Francisco Craton and consists of an association of Paleoproterozoic meta-granites, alkali-gneiss, albitites, meta-leucodiorite and charnockites. This work has as objective the studies of the magmatic association, trying to understand its petrological and evolutionary meaning. For this purpose, representative bodies were sampled in order to develop unpublished studies of litogeochemistry, isotopes, geochronology and mineral chemistry. These analyzes were performed in: different preserved granitoid facies (Lagoa do Barro, Sao Timoteo, Juazeirinho and late pegmatitic phases), the meta-leucodiorites and charnockite. The data obtained using several modern methodologies, such as geochronology and mineral chemistry by LA-ICP-MS, provided results that allowed the characterization of two magmatic lithologies not described in the literature (Juazeirinho granite e late pegmatitic phases), and also a lithology preliminarily described (Lagoa do Barro granite). Moreover, these data contributed to elucidate the origin and meaning of the leucodiorite and charnoquito varieties, and made it possible to verify new compositional and mineral chemistry tendencies of Sao Timoteo granite. The data presented show that the studied granites were affected by albititization events (tardi or post-magmatic), which have different micro-chemical characteristics from the processes of albite formation related to the non-mineralized albitites bodies. Three albititization events were identified: a) An event that affected the granites characterized by the formation of albite with Rb and U, (b) Another event related to fluids associated with late pegmatitic bodies that formed albite with high levels of U, Rb and Ba, and partially affected the granites of the next pegmatoids portions; and (c) a final albititization event that caused the formation of the albite gneiss bodies, with albite

  8. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  9. The effects of magmatic redistribution of heat producing elements on the lunar mantle evolution inferred from numerical models that start from various initial states

    Science.gov (United States)

    Ogawa, Masaki

    2018-02-01

    To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.

  10. Caracterización geoquímica y estudio comparativo de plagiogranitos de las Zonas Surportuguesa y Ossa-Morena (SO del Macizo Ibérico, España)

    OpenAIRE

    Bellido, F.; Díez-Montes, A.; Sánchez-García, T.

    2010-01-01

    Plagiogranites and albitic rocks belonging to contrasted magmatic associations of different ages and geodynamic environments outcrop in Ossa-Morena (OMZ) and Surportuguese (SPZ) Zones. OMZ plagiogranites are related with Cambrian-Ordovician rifting and represent a part of the felsic members of a bimodal magmatic suite and show oceanic plagiogranites affinities. SPZ plagiogranites are related with a Carboniferous volcano-plutonic calc-alkaline suite related with Variscan Orogeny. Both plagiogr...

  11. New Sm-Nd isotopic data from the Southern Aracuai-Ribeira belt: Parabaiba Do Sul group and associated granitic intrusions

    International Nuclear Information System (INIS)

    Medeiros, Silvia Regina de; Wiedemann, Cristina Maria

    2001-01-01

    The Aracuai-Ribeira belt is a Neoproterozoic orogenic belt extending along the Brazilian Coast, bordering the eastern margin of the Sao Francisco craton (Pedrosa Soares et al., in press). In this work we start unveiling the magmatic source characteristics of the southern Espirito Santo segment of this belt through the use of new Sm-Nd data were obtained from exactly the same sample which Sollner et al. (1991), took their U-Pb and Rb-Sr measurements (the major isotopic informations available up to now) allowing thus a correlation with this previous geochronologic work, contributing for an improvement of the evolution model of the whole belt (au)

  12. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    Science.gov (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  13. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  15. The Estimation Formation Alkaline In The Proses Desalination MSF

    International Nuclear Information System (INIS)

    Latiffah, Siti Nurul

    2000-01-01

    Already to go on estimation phenomena formation alkaline scale of a seawater. In desalination system seawater on MSF to go on scale by a thermal decomposition HCO sub.3- ion and hydrolysis carbonate ion with water on the temperature operation. The varieties alkaline scale in attached on tube surface, while reduced efficiency heat transfer and to raise corrosion attack to structure material is caused all this high cost. Estimation to take please which a sum step by step decomposition ion bicarbonate from then information scale which carbonate and hydroxyl ion. The various scale maximal is alkaline form is a calcium carbonate = 116,5 gram per meter cubic the various sedimentation is alkaline and magnesium hydroxide = 67,57 gram per meter cubic

  16. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage

    Science.gov (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf

    2013-07-01

    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  17. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  18. Arc magmatism as a window to plate kinematics and subduction polarity: Example from the eastern Pontides belt, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu

    2011-01-01

    Full Text Available The Eastern Pontides orogenic belt in the Black Sea region of Turkey offers a critical window to plate kinematics and subduction polarity during the closure of the Paleotethys. Here we provide a brief synthesis on recent information from this belt. We infer a southward subduction for the origin of the Eastern Pontides orogenic belt and its associated late Mesozoic–Cenozoic magmatism based on clear spatial and temporal variations in Late Cretaceous and Cenozoic arc magmatism, together with the existence of a prominent south-dipping reverse fault system along the entire southern coast of the Black Sea. Our model is at variance with some recent proposals favoring a northward subduction polarity, and illustrates the importance of arc magmatism in evaluating the geodynamic milieu associated with convergent margin processes.

  19. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  20. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  1. Repeated magmatic intrusions at El Hierro Island following the 2011-2012 submarine eruption

    Science.gov (United States)

    Benito-Saz, Maria A.; Parks, Michelle M.; Sigmundsson, Freysteinn; Hooper, Andrew; García-Cañada, Laura

    2017-09-01

    After more than 200 years of quiescence, in July 2011 an intense seismic swarm was detected beneath the center of El Hierro Island (Canary Islands), culminating on 10 October 2011 in a submarine eruption, 2 km off the southern coast. Although the eruption officially ended on 5 March 2012, magmatic activity continued in the area. From June 2012 to March 2014, six earthquake swarms, indicative of magmatic intrusions, were detected underneath the island. We have studied these post-eruption intrusive events using GPS and InSAR techniques to characterize the ground surface deformation produced by each of these intrusions, and to determine the optimal source parameters (geometry, location, depth, volume change). Source inversions provide insight into the depth of the intrusions ( 11-16 km) and the volume change associated with each of them (between 0.02 and 0.13 km3). During this period, > 20 cm of uplift was detected in the central-western part of the island, corresponding to approximately 0.32-0.38 km3 of magma intruded beneath the volcano. We suggest that these intrusions result from deep magma migrating from the mantle, trapped at the mantle/lower crust discontinuity in the form of sill-like bodies. This study, using joint inversion of GPS and InSAR data in a post-eruption period, provides important insight into the characteristics of the magmatic plumbing system of El Hierro, an oceanic intraplate volcanic island.

  2. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    Science.gov (United States)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  3. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the opera......Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing...

  4. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    Science.gov (United States)

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  5. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    Science.gov (United States)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did

  7. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    International Nuclear Information System (INIS)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-01-01

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma)

  8. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  9. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  10. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5, has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α(8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α(8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further

  11. Osteocalcin and bone-specific alkaline phosphatase in Sickle cell ...

    African Journals Online (AJOL)

    specific alkaline phosphatase (b-AP) total protein levels were evaluated as indicators of bone turnover in twenty patients with sickle cell haemoglobinopathies and in twenty normal healthy individuals. The serum bonespecific alkaline phosphatase ...

  12. Zircon U-Pb geochronology, Sm-Nd and Pb-Pb isotope systematics of Ediacaran post-collisional high-silica Acampamento Velho volcanism at the Tupanci area, NW of the Sul-Rio-Grandense Shield, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Carlos Augusto; Leitzke, Felipe Padilha; Lima, Evandro Fernandes de; Barreto, Carla Joana Santos; Matté, Vinicius; Philipp, Ruy Paulo; Conceição, Rommulo Vieira, E-mail: casommer@sinos.net, E-mail: eflgeologo@gmail.com, E-mail: ruy.philipp@ufrgs.br, E-mail: rommulo.conceicao@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Geociências; Lafon, Jean Michel, E-mail: lafonjm@ufpa.br [Universidade Federal do Pará (UFPA), Belém, PA (Brazil). Laboratório de Geologia Isotópica; Basei, Miguel Ângelo Stipp, E-mail: baseimas@usp.br [Universidade de São Paulo (CPGeo/IGc/USP), São Paulo, SP (Brazil)

    2017-10-15

    We present new U-Pb zircon ages and Sm-Nd-Pb isotopic data for volcanic and hypabyssal acid rocks from the northernmost exposure of the Acampamento Velho Formation in the NW portion of the Sul-Rio-Grandense Shield, Brazil. The first volcanic episode, grouped in the high-Ti rhyolites from the Tupanci hill, shows age of 579 ± 5.6 Ma, which is in agreement with the post-collisional Acampamento Velho Formation volcanism in the Bom Jardim Group of the Camaquã Basin. A poorly constrained age of 558+/- 39Ma was obtained for rhyolites from the low-Ti group at the Picados Hill, which may indicate a younger acid volcanism, or a greater time span for the volcanism of the Acampamento Velho Formation in southernmost Brazil. Regarding magmatic sources, Sm/Nd isotopic data coupled to Pb isotopes and a review of trace element geochemistry indicate different amounts of Paleoproterozoic (Dom Feliciano, Pinheiro Machado Suite) to Neoproterozoic (Rio Vacacaí terrane) lower crust melting. Our data, coupled with literature data, contribute to a better understanding of the stratigraphic evolution for the Neoproterozoic post-collisional volcanic successions of the Camaquã Basin in the Sul-Rio-Grandense Shield. (author)

  13. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  14. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.

    1993-01-01

    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  15. U-Pb age of the Anuri dyke: paleoproterozoic potassic alkaline magmatism and implications for the Transamazonic orogeny in the Sao Francisco Craton

    International Nuclear Information System (INIS)

    Conceicao, Herbet; Rios, Debora Correia; Oberli, Felix

    2007-01-01

    The Anuri Syenitic Dyke (72 km 2 ) is the south representative of a 1000 km N-S alignment of syenitic dykes which occur at the East Bahia. As the others bodies, Anuri is essentially composed of hypersolvus ultrapotassic syenites, which show the records of its differentiation by the presence of mafic-ultramafic apatite-rich cumulates. Its crystallization age of 2095- 4 Ma (U-Pb zircao ) is quite similar with results obtained for the other syenitic dykes, which suggest that their intrusions occur almost at the same time, sincronically, after the Transamazonic Orogeny climax. The geochemical data reveal that Anuri syenites are Ba, Sr, P, LREE enriched and show negative anomalies of Ti and Nb, suggesting a mantelic source subduction related. The initial Sr ratio and ε Nd values confirms the presence of this anomalous mantle. These data suggest that at the end of Transamazonic Orogeny, at the Sao Francisco Craton, there were particular conditions which allow the generation of alkaline magmas through the melting of an EMI reservoir. (author)

  16. Petrology and U-PB geochronology of the Robertson River Igneous Suite, Blue Ridge province, Virginia - Evidence for multistage magmatism associated witn an early episode of Laurentian rifting

    Science.gov (United States)

    Tollo, R.P.; Aleinikoff, J.N.

    1996-01-01

    The Late Neoproterozoic (735-702 Ma) Robertson River Igneous Suite includes at least eight plutons ranging in composition from syenogranite to alkali feldspar granite to alkali feldspar syenite. These plutons intruded Mesoproterozoic (1.2-1.0 Ga) gneissic basement of the Blue Ridge anticlinorium in northern and central Virginia during an early episode of Laurentian rifting. Robertson River plutons range in composition from metaluminous to peralkaline and, relative to other granite types, exhibit compositional characteristics of A-type granitoids including (1) marked enrichment in Nb, Zr, Y, REE (except Eu), and Ga, (2) high Ga/Al and FeO(total)/MgO, and (3) depletion of Ba and Sr. High Ga/Al ratios are particularly diagnostic of the suite and serve as an effective discriminant between originally metaluminous and peralkaline bulk compositions, providing a useful proxy for widely used indicators based on major elements that are prone to remobilization. U-Pb isotopic analyses of zircons indicate that the suite was emplaced in two pulses, occurring at 735 to 722 and 706 to 702 Ma. Metaluminous magmas were emplaced during both pulses, formed most of the main batholith, and fractionated as independent, time-correlative groups. Peralkaline magmas were emplaced only during the final pulse, formed a volcanic center that erupted unknown quantities of rhyolite, and experienced a style of fractionation similar to the metaluminous types. Differences in Ce/Nb, Y/Nb, and Yb/Ta ratios suggest that the metaluminous and peralkaline magmas were derived from different sources. The Robertson River Igneous Suite is part of a regional group of Late Neoproterozoic (760-700 Ma) plutons including at least 20 other A-type granitoid bodies exposed throughout the Laurentian terrane of Virginia and northwestern North Carolina. Like the Robertson River, most of the other granitoids are metaluminous in composition, typically form multi-intrusive, elongate plutons, and are not geographically

  17. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    Science.gov (United States)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  18. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    Science.gov (United States)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  19. Stratigraphical analysis of the neoproterozoic sedimentary sequences of the Sao Francisco Basin

    International Nuclear Information System (INIS)

    Martins, Mariela; Lemos, Valesca Brasil

    2007-01-01

    A stratigraphic analysis was performed under the principles of Sequence Stratigraphy on the neoproterozoic sedimentary sequences of the Sao Francisco Basin (Central Brazil). Three periods of deposition separated by unconformities were recognized in the Sao Francisco Megasequence: (1) Sequences 1 and 2, a cryogenian glaciogenic sequence, followed by a distal scarp carbonate ramp, developed during stable conditions, (2) Sequence 3, a Upper Cryogenian stack homoclinal ramps with mixed carbonate-siliciclastic sedimentation, deposited under a progressive influence of compressional stresses of the Brasiliano Cycle, (3) Sequence 4, a Lower Ediacaran shallow platform dominated by siliciclastic sedimentation of molassic nature, the erosion product of the nearby uplifted thrust sheets. Each of the carbonate-bearing sequences presents a distinct δ 13 C isotopic signature. The superposition to the global curve for carbon isotopic variation allowed the recognition of a major depositional hiatus between the Paranoa and Sao Francisco Megasequences, and suggested that the glacial diamictite deposition (Jequitai Formation) took place most probably around 800 Ma. This constrains the Sao Francisco Megasequence deposition to the interval between 800 and 600 Ma (the known ages of the Brasiliano Orogeny defines the upper limit). A minor depositional hiatus (700.680 Ma) was also identified separating sequences 2 and 3. Isotopic analyses suggest that from then on, more restricted environmental conditions were established in the basin, probably associated with a first order global event, which prevailed throughout deposition of the Sequence 3. (author)

  20. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2009-12-01

    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  1. Deeply concealed half-graben at the SW margin of the East European Craton (SE Poland) — Evidence for Neoproterozoic rifting prior to the break-up of Rodinia

    OpenAIRE

    P. Krzywiec; P. Poprawa; M. Mikołajczak; S. Mazur; M. Malinowski

    2018-01-01

    Baltica was one of continents formed as a result of Rodinia break-up 850–550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and ki...

  2. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    Science.gov (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  3. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  4. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling

    Science.gov (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis

    2009-11-01

    .7040-0.70435). Rare earth element patterns are characterized by variably fractionated light to heavy REE (La/YbN = 5.7-34) and by the absence of Eu negative anomalies suggesting evolution of these rocks with limited plagioclase fractionation. We interpret the petrographic, geochemical, and isotopic data as indicating open-system evolution at all volcanic centers characterized by fractional crystallization and magma mixing processes at different lower- to mid-crustal levels as well as by assimilation of mafic lower crust and/or its partial melts. Thus, we propose that the adakite-like signatures of Ecuadorian rocks (e.g., high Sr/Y and La/Yb values) are primarily the result of lower- to mid-crustal processing of mantle-derived melts, rather than of slab melts and slab melt-mantle interactions. The isotopic signatures of the least evolved adakite-like rocks of the active and recent volcanoes are the same as those of Tertiary ”normal” calc-alkaline magmatic rocks of Ecuador suggesting that the source of the magma did not change through time. What changed was the depth of magmatic evolution, probably as a consequence of increased compression induced by the stronger coupling between the subducting and overriding plates associated with subduction of the aseismic Carnegie Ridge.

  5. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  6. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids

    Science.gov (United States)

    Piccoli, P. M.; Candela, P. A.

    2006-05-01

    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  7. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems

    Science.gov (United States)

    Mittal, T.; Richards, M. A.

    2017-12-01

    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for

  8. Floor-fractured craters on the Moon: an evidence of past intrusive magmatic activity

    Science.gov (United States)

    Thorey, C.; Michaut, C.

    2012-12-01

    Floor-fractured lunar craters (FFC's) are a class of craters modified by post impact mechanisms. They are defined by distinctive shallow, often plate-like or convex floors, wide floor moats and radial, concentric and polygonal floor-fractures, suggesting an endogenous process of modification. Two main mechanisms have been proposed to account for such observations : 1) viscous relaxation and 2) spreading of magmatic intrusions at depth below the crater. Here, we propose to test the case of magmatic intrusions. We develop a model for the dynamics of magma spreading below an elastic crust with a crater-like topography and above a rigid horizontal surface. Results show first that the lithostatic pressure increase at the crater rim prevents the intrusion from spreading horizontally giving rise to intrusion thickening and to an uplift of the crater floor. Second, the deformation of the overlying crust exerts a strong control on the intrusion shape, and hence, on the nature of the crater floor uplift. As the deformation can only occur over a minimum flexural wavelength noted Λ, the intrusion shape shows a bell-shaped geometry for crater radius smaller than 3Λ, or a flat top with smooth edges for crater radius larger than 3Λ. For given crustal elastic properties, the crust flexural wavelength increases with the intrusion depth. Therefore, for a large intrusion depth or small crater size, we observe a convex uplift of the crater floor. On the contrary, for a small intrusion depth or large crater size, the crater floor undergoes a piston-like uplift and a circular moat forms just before the rim. The depth of the moat is controlled by the thickening of the crust at the crater rim. On the contrary to viscous relaxation models, our model is thus able to reproduce most of the features of FFC's, including small-scale features. Spreading of a magmatic intrusion at depth can thus be considered as the main endogenous mechanism at the origin of the deformations observed at FFC

  9. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  10. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  11. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  12. Petrography and geochronology (U/Pb-Sm/Nd) the Passagem Granite, Pensamiento Granitoid Complex, Paragua Terrane, SW Amazon Craton, Mato Grosso, Brazil; Petrologia e geocronologia (U/Pb-Sm/Nd) do Granito Passagem, Complexo Granitoide Pensamiento, SW do Craton Amazonico (MT)

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Gisely Carmo de, E-mail: giselycarmo@hotmail.co [Universidade Federal de Mato Grosso (ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Programa de Pos-Graduacao em Geociencias; Sousa, Maria Zelia Aguiar de, E-mail: mzaguiar@terra.com.b [Universidade Federal de Mato Grosso(ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais; Ruiz, Amarildo Salina; Matos, Joao Batista de, E-mail: asruiz@gmail.co, E-mail: jmatos@cpd.ufmt.b [Universidade Federal de Mato Grosso (ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Geologia Geral

    2010-09-15

    The Passagem granite includes stocks, plugs and dikes located in the Ricardo Franco hill - Vila Bela da Santissima Trindade region - state of Mato Grosso, central Brazil. The Passagem Granite is included in the Paragua terrane - SW Amazonian Craton. It consists of isotropic monzogranite, sienogranite and more rarely granodiorites with leucocratic dark gray to white color. These rocks range from hypidomorphic inequigranular to xenomorphic texture, fine to medium grained. Biotite is the only primary mafic present as essential phase and characterize an expanded slightly acid sequence formed by a sub-alkaline magmatism of high-potassium calc-alkaline, slightly peraluminous composition from arc magmatic tectonic environment during a post-collisional period. Mechanism of fractional crystallization of plagioclase, biotite, titanite, apatite and zircon associated with simultaneous crustal assimilation are suggested for the evolution of these rocks. The results support the hypothesis of a post-collisional magmatism in the Paragua terrane at 1284 +- 20 Ma corresponding to the crystallization age of the Passagem granite. This paper propose that Passagem Granite represents as an extension in Brazilian terrane of the Pensamiento Granitoid Complex. (author)

  13. Petrography and geochronology (U/Pb-Sm/Nd) the Passagem Granite, Pensamiento Granitoid Complex, Paragua Terrane, SW Amazon Craton, Mato Grosso, Brazil

    International Nuclear Information System (INIS)

    Jesus, Gisely Carmo de; Sousa, Maria Zelia Aguiar de; Ruiz, Amarildo Salina; Matos, Joao Batista de

    2010-01-01

    The Passagem granite includes stocks, plugs and dikes located in the Ricardo Franco hill - Vila Bela da Santissima Trindade region - state of Mato Grosso, central Brazil. The Passagem Granite is included in the Paragua terrane - SW Amazonian Craton. It consists of isotropic monzogranite, sienogranite and more rarely granodiorites with leucocratic dark gray to white color. These rocks range from hypidomorphic inequigranular to xenomorphic texture, fine to medium grained. Biotite is the only primary mafic present as essential phase and characterize an expanded slightly acid sequence formed by a sub-alkaline magmatism of high-potassium calc-alkaline, slightly peraluminous composition from arc magmatic tectonic environment during a post-collisional period. Mechanism of fractional crystallization of plagioclase, biotite, titanite, apatite and zircon associated with simultaneous crustal assimilation are suggested for the evolution of these rocks. The results support the hypothesis of a post-collisional magmatism in the Paragua terrane at 1284 +- 20 Ma corresponding to the crystallization age of the Passagem granite. This paper propose that Passagem Granite represents as an extension in Brazilian terrane of the Pensamiento Granitoid Complex. (author)

  14. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Shaheen, S.; Barrakzai, Q.

    2012-01-01

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  15. Elevated Serum Level of Human Alkaline Phosphatase in Obesity

    International Nuclear Information System (INIS)

    Khan, A. R.; Awan, F. R.; Najam, S. S.; Islam, M.; Siddique, T.; Zain, M.

    2015-01-01

    Objective: To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. Methods: The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass index: normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Results: Of the 197 subjects, 97(49 percent) were obese and 100(51 percent) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Conclusion: Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity. (author)

  16. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  17. Duration of Parana magmatism and implications for the evolution and source regions of continental flood basalts

    International Nuclear Information System (INIS)

    Mantovani, M.S.M.; Stewart, K.; Turner, S.; Hawkesworth, C.J.

    1995-01-01

    Duration of Continental Floods Basalts magmatism has generally been considered to be extremely short. Ar-Ar data for different magma type, over a broad region within Parana, demonstrate a duration of 10 Ma, an order of magnitude greater than the usually accepted duration of magmatism. The dating method included rigorous geochemical selection tests, to discard altered samples, combined with the analysis of laser spot technique using the isochron approach. This methodology allows discrimination between rocks which yield precise ages and those which are too altered or heterogeneous. The agreement between the determined age and the relative stratigraphic position of samples supports the above statement. 4 figs

  18. Duration of Parana magmatism and implications for the evolution and source regions of continental flood basalts

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, M.S.M. [Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico; Stewart, K.; Turner, S.; Hawkesworth, C.J. [Open Univ., Milton Keynes (United Kingdom). Dept. of Earth Sciences

    1995-12-31

    Duration of Continental Floods Basalts magmatism has generally been considered to be extremely short. Ar-Ar data for different magma type, over a broad region within Parana, demonstrate a duration of 10 Ma, an order of magnitude greater than the usually accepted duration of magmatism. The dating method included rigorous geochemical selection tests, to discard altered samples, combined with the analysis of laser spot technique using the isochron approach. This methodology allows discrimination between rocks which yield precise ages and those which are too altered or heterogeneous. The agreement between the determined age and the relative stratigraphic position of samples supports the above statement. 4 figs.

  19. A generally applicable sequential alkaline phosphatase immunohistochemical double staining

    NARCIS (Netherlands)

    van der Loos, Chris M.; Teeling, Peter

    2008-01-01

    A universal type of sequential double alkaline phosphatase immunohistochemical staining is described that can be used for formalin-fixed, paraffin-embedded and cryostat tissue sections from human and mouse origin. It consists of two alkaline phosphatase detection systems including enzymatic

  20. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    Science.gov (United States)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  1. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting

    International Nuclear Information System (INIS)

    Matos, Ramiro; Teixeira, Wilson; Bettencourt, Jorge Silva; Geraldes, Mauro Cesar

    2009-01-01

    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al 2 O 3 and CaO contents with increasing SiO 2 suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 ± 21 Ma and 1373 ± 20 Ma respectively, and the Sm-Nd T DM model ages are between 1.9 to 2.0 Ga, while ε Nd(1330) values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 ± 20 Ma, and variable Sm-Nd T DM model ages (1.6 to 1.9 Ga) and ε Nd(1330) values (+0.4 to -1.2) that are comparable with previous results found for other coeval plutons. The Porvenir, San Cristobal and Piso Firme plutons

  3. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  4. Acid transformation of bauxite residue: Conversion of its alkaline characteristics

    OpenAIRE

    Kong, X.; Li, M.; Xue, S.; Hartley, W.; Chen, C.; Wu, C.; Li, X.; Li, Y.

    2016-01-01

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and...

  5. Isotopic investigation of the late neoproterozoic and early cambrian carbon cycle on the northern Yangtze platform, south China

    International Nuclear Information System (INIS)

    Guo Qingjun; Liu Congqiang; Harald Strauss; Tatiana Goldberg

    2003-01-01

    The Precambrian-Cambrian transition is one of the critical time intervals in Earth history. Profound geotectonic, climatic and biological changes occur during the late Neoproterozoic and its transition into the early Cambrian. This study has researched on paired carbonate and organic carbon isotope determinations from Nanjiang, Sichuan Province of the Yangtze Platform, and provided a preliminary geochemical explanation for environmental variations and bio-events observed on the northern Yangtze Platform during the Precambrian-Cambrian transitional interval and their causal relationship. Organic carbon isotopic compositions on sediments vary from -35.8 to -30.1‰ at Nanjiang section; carbonate carbon isotopic compositions change between -3.5 and +0.5‰. Various carbon and sulphur isotopic compositions, different pyrite and organic matter content reflect changing environment and burial of organic matter in the Dengying Fm., the lower and upper part of Niutitang Fm. Anoxic conditions result in widespread preservation of organic rich sediments and pyrites in the black shales on the Yangtze Platform. (authors)

  6. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  7. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

    Science.gov (United States)

    Soejono, Igor; Janoušek, Vojtěch; Žáčková, Eliška; Sláma, Jiří; Konopásek, Jiří; Machek, Matěj; Hanžl, Pavel

    2017-09-01

    Cadomian magmatic complexes of the Brunovistulian Domain crop out at the eastern termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. Geochronological and geochemical study of the granitic rocks across the Brunovistulian Domain reveals new information about the timing and nature of this magmatic activity originally situated along the northern margin of Gondwana. Zircon U-Pb data (601 ± 3 Ma, Brno Massif; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš orthogneiss) from the allochtonous Moravicum indicate the prolonged magmatic activity within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and Sr-Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd model ages ( c. 1.3-2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian Domain. These results constrain the magmatic-arc activity to c. 635-570 Ma and provide a further evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived from variously mature crustal sources at different times suggests heterogeneous crustal segments to having been involved in the magmatic-arc system during its multistage evolution.

  8. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring

    Science.gov (United States)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.

    2016-12-01

    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  9. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA

    Science.gov (United States)

    Lucic, Gregor; Stix, John; Wing, Boswell

    2015-04-01

    We present a degassing study of Long Valley Caldera that explores the structural controls upon emissions of magmatic carbon dioxide gas. A total of 223 soil gas samples were collected and analyzed for stable carbon isotopes using a field-portable cavity ring-down spectrometer. This novel technique is flexible, accurate, and provides sampling feedback on a daily basis. Sampling sites included major and minor volcanic centers, regional throughgoing faults, caldera-related structures, zones of elevated seismicity, and zones of past and present hydrothermal activity. The classification of soil gases based on their δ13C and CO2 values reveals a mixing relationship among three end-members: atmospheric, biogenic, and magmatic. Signatures dominated by biogenic contributions (~4 vol %, -24‰) are found on the caldera floor, the interior of the resurgent dome, and areas associated with the Hilton Creek and Hartley Springs fault systems. With the introduction of the magmatic component (~100 vol %, -4.5‰), samples acquire mixing and hydrothermal signatures and are spatially associated with the central caldera and Mammoth Mountain. In particular, they are concentrated along the southern margin of the resurgent dome where the interplay between resurgence-related reverse faulting and a bend in the regional fault system has created a highly permeable fracture network, suitable for the formation of shallow hydrothermal systems. This contrasts with the south moat, where despite elevated seismicity, a thick sedimentary cover has formed an impermeable cap, inhibiting the ascent of fluids and gases to the surface.

  10. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    Science.gov (United States)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  11. The magmatism and metamorphism at the Malayer area, Western Iran

    Science.gov (United States)

    Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.

    2009-04-01

    The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and

  12. Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy).

    Science.gov (United States)

    Tositti, Laura; Cinelli, Giorgia; Brattich, Erika; Galgaro, Antonio; Mostacci, Domiziano; Mazzoli, Claudio; Massironi, Matteo; Sassi, Raffaele

    2017-01-01

    The Euganean Hills of North East Italy have long been recognised as an area characterized by a higher than average natural radiation background. This is due to two main reasons: a) primary lithogenic radiation due to rhyolitic and trachytic outcrops, which are "acidic alkaline" magmatic rocks potentially enriched in uranium and thorium; b) secondary sources related to a geothermal field - widely exploited for spa tourism in the area since the Roman age - producing surface release of radon-enriched fluids. Though radioactivity levels in the Euganean district have been often investigated in the past - including recent works aimed at assessing the radiation doses from radon and/or total gamma radiation - no effort has been put so far into producing a thorough assessment linking radiation protection data to geological-structural features (lithology, faults, water, organic matter content, etc.). This work represents the first part of the interdisciplinary project "Geological and geochemical control on Radon occurrence and natural radioactivity in the Euganean Hills district (North-Eastern Italy)", aimed at producing detailed results of the actual radiation levels in connection mainly with lithological parameters. A detailed sampling strategy, based on lithostratigraphy, petrology and mineralogy, has been adopted. The 151 rock samples collected were analyzed by high resolution γ-ray spectrometry with ex situ HPGe detectors. Statistical and geostatistical analyses were performed, and outlier values of U and Th - possibly associated with anomalies in the geological formation - were identified. U, Th and K concentration maps were developed using both the entire database and then again after expunging the outliers; the two were then compared. In all maps the highest values can be associated to trachyte and rhyolite lithologies, and the lowest ones to sedimentary formations. The external dose due to natural radionuclides in the soil - the so called terrestrial gamma dose

  13. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    Science.gov (United States)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra

  14. Role of magmatism in continental lithosphere extension: an introduction to tectnophysics special issue

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, Jolante W [Los Alamos National Laboratory

    2008-01-01

    The dynamics and evolution of rifts and continental rifted margins have been the subject of intense study and debate for many years and still remain the focus of active investigation. The 2006 AGU Fall Meeting session 'Extensional Processes Leading to the Formation of Basins and Rifted Margins, From Volcanic to Magma-Limited' included several contributions that illustrated recent advances in our understanding of rifting processes, from the early stages of extension to breakup and incipient seafloor spreading. Following this session, we aimed to assemble a multi-disciplinary collection of papers focussing on the architecture, formation and evolution of continental rift zones and rifted margins. This Tectonophysics Special Issue 'Role of magmatism in continental lithosphere extension' comprises 14 papers that present some of the recent insights on rift and rifted margins dynamics, emphasising the role of magmatism in extensional processes. The purpose of this contribution is to introduce these papers.

  15. Dual Geochemical Characteristics for the Basic Intrusions in the Yangtze Block, South China: New Evidence for the Breakup of Rodinia

    Directory of Open Access Journals (Sweden)

    Shengyuan Shu

    2018-05-01

    Full Text Available Neoproterozoic intraplate magmatic rocks are widespread in the Yangtze Block (YZB. The contrasting interpretations on their petrogenesis and tectonic evolution induce stimulating discussions on the coeval tectonic setting, including the two competing models of rift-related (R-model and arc-related (A-model. Their main evidence is dominantly from felsic magmatic rocks. In contrast, the less evolved basic rocks are more suitable for tectonic setting discrimination. Here we study the Longtanqing basic intrusions (LTQ that are exposed to the central part of the N–S trending Kangdian rift in the western YZB, by detailed geochemical and geochronological investigations. Zircon U–Pb dating of the two diabases from LTQ yield identical ages within error of 777 ± 17 Ma and 780 ± 5.3 Ma, respectively. LTQ rocks are characterized by low SiO2 (49.83–50.71 wt %, high MgO (5.91–6.53 wt %, and Cr (140–150 ppm contents, supporting the significant mantle affinity. They also display dual geochemical characteristics, including a series of features of continental within-plate basalts (WPB, Ti/V = 37.3–47.5, Zr/Y = 3.4–3.8, Ta/Hf = 0.19–0.23, and the typical signatures of island arc basalt (IAB, such as highly depleted in HFSE and HREE, and enriched in LREE and LILE. Most zircon εHf(t values are positive (1.6–9.4 while the corresponding Hf depleted mantle model ages (TDM1 range from 1.0 Ga to 1.3 Ga. In combination with the occurrence of inherited zircons (991–1190 Ma, it is suggested that their sources are dominantly derived from the lithospheric mantle that was reconstructed in the late Mesoproterozoic. Thus, LTQ is mainly formed by partial melting of the enriched lithospheric mantle, and subsequently assimilated by a juvenile crust during upwelling. The melt compositions are controlled by different degrees of the crystal fractionation of the dominant clinopyroxene and plagioclase with minor amphibole under high fO2 conditions. Combined with

  16. Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2018-01-01

    Full Text Available The complete volcanic sequences restored in the Coastal Range of Taiwan are key archives for better understanding the magmatic and tectonic evolution of the Northern Luzon Arc. This paper reports (1 new zircon U-Pb ages and Hf isotopic data of fourteen volcanic samples from different sequences of four major volcanoes in the Coastal Range, (2 Hf isotopic data of dated magmatic and detrital zircons from two offshore volcanic islands, Lutao and Lanyu. These data indicate that the arc magmatism in the Coastal Range started at ~15 Ma, most active at ~9 Ma, and ceased at ~4.2 Ma. Magmatic zircons from the arc rocks show a significant variation in Hf isotopic composition, with εHf(T values varying from +24.9 to +4.8. As pointed out by our previous studies, old continental zircons that show Cathaysian-type ages and Hf isotope features are common in samples from the Yuemei, Chimei, and Lanyu volcanoes, supporting the notion for the influence of the existence of an accreted micro-continent or continental fragment plays a role in the petrogenesis. Such inherited zircons are not observed in the Chengkuang’ao and Tuluanshan volcanoes and uncommon in Lutao, implying the discontinuity or a limited extent of the accreted continental fragment. The εHf(T values are high and positive from ~15 - 8 Ma (+25 to +15; ±5ε-unit variation, and became lower from ~6 to 4.2 Ma (+20 to +8; ±6ε units and the lowest from ~1.3 Ma (+19 to +5; ±7ε units. Such a temporal variation in zircon Hf isotopic ratios can be also identified in whole-rock Hf and Nd isotopic compositions, which decrease from ~6 Ma when the Northern Luzon Arc may have started colliding with the Eurasian continental margin.

  17. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    Science.gov (United States)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  18. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  19. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  20. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume