WorldWideScience

Sample records for neonatal rats electron

  1. Altered state of primordial follicles in neonatal and early infantile rats due to maternal hypothyroidism: Light and electron microscopy approach.

    Science.gov (United States)

    Danilović Luković, Jelena; Korać, Aleksandra; Milošević, Ivan; Lužajić, Tijana; Puškaš, Nela; Kovačević Filipović, Milica; Radovanović, Anita

    2016-11-01

    Thyroid hormones (TH) are one of the key factors for normal prenatal development in mammals. Previously, we showed that subclinical maternal hypothyroidism leads to premature atresia of ovarian follicles in female rat offspring in the pre-pubertal and pubertal periods. The influence of decreased concentration of TH on primordial follicles pool formation during neonatal and early infantile period of rat pups was not investigated previously. Maternal hypothyroidism during pregnancy has irreversible negative influence on primordial follicles pool formation and population of resting oocytes in female rat offspring. The study was done on neonatal and early infantile control (n-10) and hypothyroid (n-10) female rat pups derived from control (n-6) and propylthiouracil (PTU) treated pregnant dams (n-6), respectively. Ovaries of all pups were removed and processed for light and transmission electron microscopy (TEM). Number of nests, oogonia and oocytes per nest, primordial, primary, secondary and preantral follicles were determined. Screening for overall calcium presence in ovarian tissue was done using Alizarin red staining. Morphology and volume density of nucleus, mitochondria and smooth endoplasmic reticulum (sER) in the oocytes in primordial follicles was also assessed. Caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), both markers for apoptosis, and proliferating cell nuclear antigen (PCNA) for proliferation were determined in oocytes and granulosa cells in different type of follicles. In neonatal period, ovaries of hypothyroid pups had a decreased number of oogonia, oocytes and nests, an increased number of primordial follicles and a decreased number of primary and secondary follicles, while in early infantile period, increased number of primary, secondary and preantral follicles were found. Alizarin red staining was intense in hypothyroid neonatal rats that also had the highest content of dilated sER. Number of mitochondria with

  2. Cerebral microbleeds in a neonatal rat model

    Science.gov (United States)

    Carusillo Theriault, Brianna; Woo, Seung Kyoon; Karimy, Jason K.; Keledjian, Kaspar; Stokum, Jesse A.; Sarkar, Amrita; Coksaygan, Turhan; Ivanova, Svetlana; Gerzanich, Volodymyr

    2017-01-01

    Background In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. Methods Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. Results mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. Conclusions In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development. PMID:28158198

  3. Hypoxia reoxygenation induces premature senescence in neonatal SD rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Feng-xiang ZHANG; Ming-long CHEN; Qi-jun SHAN; Jian-gang ZOU; Chun CHEN; Bing YANG; Dong-jie XU; Yu JIN; Ke-jiang CAO

    2007-01-01

    Aim: To investigate whether hypoxia reoxygenation induces premature senes-cence in neonatal Sprague-Dawley (SD) rat cardiomyocytes. Methods: Cardio-myocytes were isolated from neonatal SD rat heart and identified by immunohisto-chemistry. The control cultures were incubated at 37 ℃ in a humidified atmo-sphere of 5% CO and 95% air. The hypoxic cultures were incubated in a modular incubator chamber filled with 1% O2, 5% CO2, and balance N2 for 6 h. The reoxygen-ated cultures were subjected to 1% O2 and 5% CO2 for 6 h, then 21% oxygen for 4,8, 12, 24, and 48 h, respectively. Cell proliferation was determined using bromo-deoxyuridine labeling. The ultrastructure of cardiomyocytes was observed by using an electron microscope. Β-Galactosidase activity was determined by using a senescence β-galactosidase Staining Kit. P16INK4a and telomerase reverse tran-scriptase (TERT) mRNA levels were measured by real time quantitative PCR. TERT protein expression was determined by immunohistochemistry. Telomerase activi-ties were assayed by using the Telo TAGGG Telomerase PCR ELISApplus kit. Results:The initial cultures consisted of pure cardiomyocytes identified by immunohisto-chemistry. The proportion of BrdU positive cells was reduced significantly in the hypoxia reoxygenation-treated group (P<0.01). Under the condition of hypoxia reoxygenation, mitochondrial dehydration appeared; p16'INK4a and TERT mRNA levels, β-galactosidase activity, TERT protein expression and telomerase activi-ties were all significantly increased (P<0.01 or P<0.05). Conclusion: These data indicate that premature senescence could be induced in neonatal SD rat cardiomyo-cytes exposed to hypoxia reoxygenation. Although TERT significantly increased,it could not block senescence.

  4. Renal inflammatory response to urinary tract infection in rat neonates.

    Science.gov (United States)

    Zarepour, M; Moradpoor, H; Emamghorashi, F; Owji, S M; Roodaki, M; Khamoushi, M

    2015-09-01

    Urinary tract infection (UTI) is one of the most common bacterial infections. Maternal UTI is a risk factor for neonatal UTI. The aim of the present study was to determine the severity of renal inflammation in neonate rats born from mothers with induced UTI. Twelve pregnant rats (Sprague-Dawley) were included in study. The rats were divided into two groups (six rats in each group). In the first group, pyelonephritis was induced in the third trimester of pregnancy and the second group was used as a control group. After delivery, the neonates were divided into three groups based on days after birth (the 1 st, 3 rd and 7 th days after birth). In each group, two neonates of each mother were killed and a midline abdominal incision was made and both kidneys were aseptically removed. On the 7 th day, rat mothers were killed and their kidneys were removed. The preparations were evaluated with a bright field microscope for inflammatory response. Renal pathology showed inflammation in all UTI-induced mothers, but only two cases of neonates (2.1%) showed inflammation in the renal parenchyma. There was no relation between the positive renal culture and the pathological changes. We conclude that neonates with UTI born to UTI-induced mothers showed a lesser inflammatory response.

  5. Renal inflammatory response to urinary tract infection in rat neonates

    Directory of Open Access Journals (Sweden)

    M Zarepour

    2015-01-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections. Maternal UTI is a risk factor for neonatal UTI. The aim of the present study was to determine the severity of renal inflammation in neonate rats born from mothers with induced UTI. Twelve pregnant rats (Sprague-Dawley were included in study. The rats were divided into two groups (six rats in each group. In the first group, pyelonephritis was induced in the third trimester of pregnancy and the second group was used as a control group. After delivery, the neonates were divided into three groups based on days after birth (the 1 st, 3 rd and 7 th days after birth. In each group, two neonates of each mother were killed and a midline abdominal incision was made and both kidneys were aseptically removed. On the 7 th day, rat mothers were killed and their kidneys were removed. The preparations were evaluated with a bright field microscope for inflammatory response. Renal pathology showed inflammation in all UTI-induced mothers, but only two cases of neonates (2.1% showed inflammation in the renal parenchyma. There was no relation between the positive renal culture and the pathological changes. We conclude that neonates with UTI born to UTI-induced mothers showed a lesser inflammatory response.

  6. The neurological effects of brevetoxin on neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Tapley, S.R.; Ramsdell, J.S.; Xi, D. [Medical Univ. of South Carolina, Charleston, SC (United States)] [and others

    1994-12-31

    We have investigated the neuroexcitatory and neurodegenerative effects of brevetoxin on neonatal rats. Brevetoxin, a marine-biotoxin that has been implicated in several seafood poisoning incidents, is produced by the dinoflagellate Gymnodinium brevis. Four studies were done: dose response, northern analysis, immunohistochemistry and neurodegeneration. We found that neonatal rats are much more sensitive to brevetoxin than adult rats. The effectiveness of c-fos as a biomarker is being investigated, because of the high basal expression in young animals. The neurodegeneration, although not available yet, should provide valuable information.

  7. Isolation of cardiac myocytes and fibroblasts from neonatal rat pups.

    Science.gov (United States)

    Golden, Honey B; Gollapudi, Deepika; Gerilechaogetu, Fnu; Li, Jieli; Cristales, Ricardo J; Peng, Xu; Dostal, David E

    2012-01-01

    Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FBs) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Both cell types are relatively easy to culture as monolayers and can be manipulated using molecular and pharmacological tools. Because NRVM cease to proliferate after birth, and FBs undergo phenotypic changes and senescence after a few passages in tissue culture, primary cultures of both cell types are required for experiments. Below we describe methods that provide good cell yield and viability of primary cultures of NRVM and FBs from 0 to 3-day-old neonatal rat pups.

  8. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  9. Melatonin potentiates the anticonvulsant action of phenobarbital in neonatal rats.

    Science.gov (United States)

    Forcelli, Patrick A; Soper, Colin; Duckles, Anne; Gale, Karen; Kondratyev, Alexei

    2013-12-01

    Phenobarbital is the most commonly utilized drug for neonatal seizures. However, questions regarding safety and efficacy of this drug make it particularly compelling to identify adjunct therapies that could boost therapeutic benefit. One potential adjunct therapy is melatonin. Melatonin is used clinically in neonatal and pediatric populations, and moreover, it exerts anticonvulsant actions in adult rats. However, it has not been previously evaluated for anticonvulsant effects in neonatal rats. Here, we tested the hypothesis that melatonin would exert anticonvulsant effects, either alone, or in combination with phenobarbital. Postnatal day (P)7 rats were treated with phenobarbital (0-40mg/kg) and/or melatonin (0-80mg/kg) prior to chemoconvulsant challenge with pentylenetetrazole (100mg/kg). We found that melatonin significantly potentiated the anticonvulsant efficacy of phenobarbital, but did not exert anticonvulsant effects on its own. These data provide additional evidence for the further examination of melatonin as an adjunct therapy in neonatal/pediatric epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Brief neonatal handling alters sexually dimorphic behaviors in adult rats.

    Science.gov (United States)

    Fujimoto, Tetsuya; Kubo, Kazuhiko; Nishikawa, Yasuo; Aou, Shuji

    2014-03-01

    Several effects of neonatal handling on brain and behavior have been reported. We investigated the effects of neonatal handling on behaviors that have been shown to be sexually dimorphic in rats using an open-field test. "Gender differences" were observed in locomotor activity, exploratory behavior and grooming in the handled group. However, clear gender differences in these behaviors were not observed in the non-handled group. Our findings show that brief daily handling sessions (~ 1 min) in the first 2 weeks of postnatal life increased locomotor activity and exploratory behavior, and that these effects were more pronounced in females. Moreover, many rats in the non-handling group exhibited an increase in defecation relative to the handling group during the 10-min observation period. This suggests that the non-handling group experienced more stress in response to the novel open-field arena, and that this resulted in the absence of gender differences. Notably, this anxiety-related response was attenuated by neonatal handling. Our study underscores the impact of brief neonatal handling on sexually dimorphic behaviors, and indicates that caution should be exercised in controlling for the effects of handling between experimental groups, particularly in neurotoxicological studies that evaluate gender differences.

  11. Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats.

    Science.gov (United States)

    Iizuka, Makito

    2009-05-01

    The pattern of respiratory activity in abdominal muscles was studied in anesthetized, spontaneously breathing, vagotomized neonatal rats at postnatal days 0-3. Anesthesia (2.0% isoflurane, 50% O(2)) depressed breathing and resulted in hypercapnia. Under this condition, abdominal muscles showed discharge late in the expiratory phase (E2 activity) in most rats. As the depth of anesthesia decreased, the amplitude of discharges in the diaphragm and abdominal muscles increased. A small additional burst frequently occurred in abdominal muscles just after the termination of diaphragmatic inspiratory activity (E1 or postinspiratory activity). Since this E1 activity is not often observed in adult rats, the abdominal respiratory pattern likely changes during postnatal development. Anoxia-induced gasping after periodic expiratory activity without inspiratory activity, and in most rats, abdominal expiratory activity disappeared before terminal apnea. These results suggest that a biphasic abdominal motor pattern (a combination of E2 and E1 activity) is a characteristic of vagotomized neonatal rats during normal respiration.

  12. Neonatally induced diabetes: liver glycogen storage in pregnant rats

    Directory of Open Access Journals (Sweden)

    Isabela Lovizutto Iessi

    2012-04-01

    Full Text Available The aim of this sstudy was to evaluate the liver glycogen storage in pregnant rats presenting neonatal streptozotocin-induced diabetes and to establish a relation with glycemia and insulin levels. Wistar rats were divided in to two groups: 1 Mild Diabetes (STZ - received streptozotocin (glycemia from 120 to 300 mg/dL, 2 Control - received vehicle (glycemia below 120 mg/dL. At days 0, 7, 14 and 21 of the pregnancy, body weight and glycemia were evaluated. At day 21 of the pregnancy, the rats were anesthetized for blood and liver collection so as to determine insulin and liver glycogen, which showed no changes in the STZ group as compared to the controls. In the STZ group, maternal weight gain were lower as compared to those in the control group. Significantly increased glycemia was observed at days 0 and 14 of the pregnancy in the STZ group. Therefore, neonatally induced diabetes in the rats did not cause metabolic changes that impaired insulin and liver glycogen relation in these rats.

  13. Taurine concentrations in fetal, neonatal and pregnant rats.

    Directory of Open Access Journals (Sweden)

    Akahori,Shuichiro

    1986-04-01

    Full Text Available The concentrations of taurine in the fetal and neonatal organs, and the maternal organs, plasma and urine of rats between the 15th day of gestation and the 21st day after birth were determined using an automatic amino acid analyzer. In the fetal liver and brain and in the placenta, the taurine concentration was the highest of all ninhydrin positive compounds. In the fetal liver and placenta, the concentrations of taurine increased significantly with the gestational days. Concentrations of taurine in the brain were much higher in the fetus and neonate than that in the adult. Moreover, the total amount of taurine per fetus increased markedly after the 15th day of gestation, and near term, reached almost the same amount as in the adult rat liver. In contrast to this, a significant decrease was observed in the taurine concentration in the maternal liver and muscle near term. The concentration of taurine in the urine of pregnant rats decreased near term, but in the plasma of pregnant rats the concentration of taurine did not change during pregnancy.

  14. Neonatal handling induces anovulatory estrous cycles in rats

    Directory of Open Access Journals (Sweden)

    Gomes C.M.

    1999-01-01

    Full Text Available Since previous work has shown that stimulation early in life decreases sexual receptiveness as measured by the female lordosis quotient, we suggested that neonatal handling could affect the function of the hypothalamus-pituitary-gonadal axis. The effects of neonatal handling on the estrous cycle and ovulation were analyzed in adult rats. Two groups of animals were studied: intact (no manipulation, N = 10 and handled (N = 11. Pups were either handled daily for 1 min during the first 10 days of life or left undisturbed. At the age of 90 days, a vaginal smear was collected daily at 9:00 a.m. and analyzed for 29 days; at 9:00 a.m. on the day of estrus, animals were anesthetized with thiopental (40 mg/kg, ip, the ovaries were removed and the oviduct was dissected and squashed between 2 glass slides. The number of oocytes of both oviductal ampullae was counted under the microscope. The average numbers for each phase of the cycle (diestrus I, diestrus II, proestrus and estrus during the period analyzed were compared between the two groups. There were no significant differences between intact and handled females during any of the phases. However, the number of handled females that showed anovulatory cycles (8 out of 11 was significantly higher than in the intact group (none out of 10. Neonatal stimulation may affect not only the hypothalamus-pituitary-adrenal axis, as previously demonstrated, but also the hypothalamus-pituitary-gonadal axis in female rats.

  15. Neonatal caffeine exposure and seizure susceptibility in adult rats.

    Science.gov (United States)

    Guillet, R; Dunham, L

    1995-08-01

    Early developmental exposure to caffeine in rats results in changes in brain excitability that persist to adulthood. The mechanism of these alterations is unknown. To identify potential neurotransmitter systems involved, we exposed neonatal rats to caffeine and determined seizure thresholds for chemoconvulsants active at different CNS receptors in the adult animal. Rats were unhandled (NH) or received by gavage (0.05 ml/10 g) either vehicle (water) or caffeine (15-20 mg/kg/day) for postnatal days 2-6. At age 70-90 days, each rat was infused intravenously (i.v.) with picrotoxin (PIC), bicuculline (BIC) [convulsants acting at the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor], pentylenetetrazol [PTZ, possibly acting at both GABA/BDZ and N-methyl-D-aspartate (NMDA) receptors], caffeine (acting at adenosine receptors), strychnine (STR, acting at glycine receptors), or kainic acid (KA, acting at the NMDA receptor). Seizure thresholds were analyzed as a function of neonatal treatment and sex. Thresholds for caffeine, PTZ, PIC, and KA were increased as a function of neonatal caffeine exposure (p = 0.01, 0.02, 0.02, and 0.005, respectively). The thresholds for BIC and STR were not altered. There were also gender differences in seizure susceptibility. Thresholds for seizures produced by BIC, caffeine, PIC, and STR were higher in females (p = 0.005, 0.005, 0.001, and 0.0001, respectively), but were not different for seizures caused by PTZ. These results suggest that early developmental exposure to caffeine affects later seizure susceptibility. Moreover, some of these effects are gender specific.

  16. Differential expression of parvalbumin interneurons in neonatal phencyclidine treated rats and socially isolated rats

    DEFF Research Database (Denmark)

    Kaalund, Sanne Simone; Riise, Jesper; Broberg, Brian

    2013-01-01

    of parvalbumin-positive interneurons (PV(+) interneurons). In this study we examined PV(+) expression in two rat models of cognitive dysfunction in schizophrenia, the environmental social isolation (SI) and pharmacological neonatal phencyclidine (neoPCP) models. Using a stereological method, the optical...... cells (p = 0.024) in the mPFC of neonatal phencyclidine rats. We observed no alterations in the total number of neurons, hippocampal PV(+) interneurons, parvalbumin mRNA expression or volume of the mPFC or HPC in the two models. Thus, as the total number of neurons remains unchanged following...

  17. Dual role of GABA in the neonatal rat hippocampus.

    Science.gov (United States)

    Khalilov, I; Dzhala, V; Ben-Ari, Y; Khazipov, R

    1999-11-01

    The effects of modulators of GABA-A receptors on neuronal network activity were studied in the neonatal (postnatal days 0-5) rat hippocampus in vitro. Under control conditions, the physiological pattern of activity of the neonatal hippocampal network was characterized by spontaneous network-driven giant depolarizing potentials (GDPs). The GABA-A receptor agonist isoguvacine (1-2 microM) and the allosteric modulator diazepam (2 microM) induced biphasic responses: initially the frequency of GDPs increased 3 to 4 fold followed by blockade of GDPs and desynchronization of the network activity. The GABA-A receptor antagonists bicuculline (10 microM) and picrotoxin (100 microM) blocked GDPs and induced glutamate (AMPA and NMDA)-receptor-mediated interictal- and ictal-like activities in the hippocampal slices and the intact hippocampus. These data suggest that at early postnatal ages GABA can exert a dual - both excitatory and inhibitory - action on the network activity.

  18. Neonatal inhalatory anesthetic exposure: reproductive changes in male rats.

    Science.gov (United States)

    Arena, A C; Pereira, O C M

    2002-12-01

    We investigated the effects of an inhalatory anesthetic (ethyl ether) during the neonatal period of brain sexual differentiation on the later fertility and sexual behavior of male rats. Animals were exposed to ethyl ether immediately after birth. At adulthood, body weight, testes wet weight, and plasma testosterone levels were not affected; however, neonatal exposure to ether showed alterations on male fertility: a decrease in the number of spermatids and spermatozoa, an increase in the transit time of cauda epididymal spermatozoa and a decrease in daily sperm production. An alteration of sexual behavior was also observed: decreased male sexual behavior and appearance of homosexual behavior when the male rats were castrated and pretreated with exogenous estrogen. Probably, the ether delayed or reduced the testosterone peak of the sexual differentiation period, altering the processes of masculinization and defeminization of the hypothalamus. Our results indicate that perinatal exposure to ethyl ether during the critical period of male brain sexual differentiation, acting as endocrine disruptors, has a long-term effect on the fertility and sexual behavior of male rats, suggesting endocrine disruption through incomplete masculinization and defeminization of the central nervous system.

  19. Development of the adrenal axis in the neonatal rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, Ronnie [Univ. of Rochester, NY (United States)

    1977-01-01

    Plasma corticosterone and ACTH concentrations were determined in neonatal rats 1, 7, 14, and 21 days old, under a variety of experimental conditions, to obtain more information on the postnatal development of the rat hypothalamo-adrenal (HHA) axis. The results indicate that: (1) there is a diminution followed by an increase in responsiveness of the adrenal gland, but the pituitary response to direct hormonal stimulation is unchanged during the first three postnatal weeks; (2) continued stimulation of the adrenal by ACTH or of the central nervous system (CNS) or hypothalamus by corticosterone is necessary during early postnatal development to allow normal maturation of the HHA axis; and (3) feedback inhibition is operative by birth, at least to a moderate degree. Taken together, the studies suggest that both the adrenal and pituitary glands are potentially functional at birth, but that the hypothalamic and CNS mediators of the stress response are not mature until at least the second or third postnatal week. (ERB)

  20. Ketamine induces tau hyperphosphorylation at serine 404 in the hippocampus of neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Haiyan Jin; Zhiyong Hu; Mengjie Dong; Yidong Wu; Zhirui Zhu; Lili Xu

    2013-01-01

    Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with equivalent volumes of saline served as controls. Hippocampal samples were collected at 1, 7 or 14 days following administration. Electron microscopy showed that neuronal structure changed noticeably following ketamine treatment. Specifically, microtubular structure became irregular and disorganized. Quantitative real time-PCR revealed that phosphorylated tau mRNA was upregulated after ketamine. Western blot analysis demonstrated that phosphorylated tau levels at serine 396 initially decreased at 1 day after ketamine injection, and then gradually returned to control values. At 14 days after injection, levels of phosphorylated tau were higher in the ketamine group than in the control group. Tau protein phosphorylated at serine 404 significantly increased after ketamine injection, and then gradually decreased with time. However, the levels of tau protein at serine 404 were significantly greater in the ketamine group than in the control group until 14 days. The present results indicate that ketamine induces an increase of phosphorylated tau mRNA and excessive phosphorylation of tau protein at serine 404, causing disruption of microtubules in the neonatal rat hippocampus and potentially resulting in damage to hippocampal neurons.

  1. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    Science.gov (United States)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  2. Neurobehavioral Deficits in Progressive Experimental Hydrocephalus in Neonatal Rats.

    Science.gov (United States)

    Olopade, F E; Shokunbi, M T

    2017-03-06

    Hydrocephalus is usually associated with functional deficits which can be assessed by neurobehavioral tests. This study characterizes the neurobehavioral deficits occurring with increasing duration and severity of ventriculomegaly in an experimental neonatal hydrocephalic rat model. Hydrocephalus was induced in three weeks old albino rats by intracisternal injection of kaolin while controls received sterile water injection. They were sacrificed in batches at one, four and eight weeks post-injection after neurobehavioral tests (forelimb grip strength, open field and Morris water maze tests) were performed. The hydrocephalic rats were also categorized into mild, moderate and severe hydrocephalus based on ventricular size. The indices of muscular strength and vertical movements in severely hydrocephalic rats were 28.05 ± 5.19 seconds and 7.29 ± 2.71 rearings respectively, compared to controls (75.68 ± 8.58 seconds and 17.09 ± 1.25 rearings respectively). At eight weeks, vertical movements were significantly reduced in hydrocephalic rats compared to controls (3.14 ± 1.3 vs 13 ± 4.11 rearings). At one week, indices of learning and memory were significantly reduced in hydrocephalic rats, compared to controls (0.89±0.31 vs 3.88±1.01 crossings), but at 8 weeks, the indices were similar (2.56 ± 0.41 vs 3.33 ± 0.71 crossings). Untreated hydrocephalus is accompanied by decline in motor functions which increase with duration and severity of ventriculomegaly. However, cognitive deficits appear to partially recover.

  3. Human milk oligosaccharides are differentially metabolised in neonatal rats.

    Science.gov (United States)

    Jantscher-Krenn, Evelyn; Marx, Carolin; Bode, Lars

    2013-08-01

    Human milk oligosaccharides (HMO) are complex glycans that are highly abundant in human milk, but not in infant formula. Accumulating data, mostly from in vitro and animal studies, indicate that HMO benefit the breast-fed infant in multiple ways and in different target organs. In vitro incubation studies suggest that HMO can resist the low pH in the infant's stomach and enzymatic degradation in the small intestine and reach the colon in the same composition as in the mother's milk. The oligosaccharide composition in faeces of breast-fed infants is, however, very different from that in the mother's milk, raising questions on when, where and how HMO are metabolised between ingestion and excretion. To answer some of these questions, we established a pulse-chase model in neonatal rats and analysed HMO profiles to track their composition over time in five consecutive equal-length intestinal segments as well as in serum and urine. The relative abundance of individual HMO changed significantly within the first 2 h after feeding and already in the segments of the small intestine prior to reaching the colon. Only 3'-sialyllactose, the major oligosaccharide in rat milk, and hardly any other HMO appeared in the serum and the urine of HMO-fed rats, indicating a selective absorption of rat milk-specific oligosaccharides. The present results challenge the paradigm that HMO reach the colon and other target organs in the same composition as originally secreted with the mother's milk. The present results also raise questions on whether rats and other animals represent suitable models to study the effects of HMO.

  4. Effect of maternal diabetes on gliogensis in neonatal rat hippocampus

    Science.gov (United States)

    Sadeghi, Akram; Esfandiary, Ebrahim; Hami, Javad; Khanahmad, Hossein; Hejazi, Zahra; Razavi, Shahnaz

    2016-01-01

    Background: Diabetes in pregnancy is a common metabolic disorder associated with various adverse outcomes in the offspring including impairments in attention and memory and alterations in social behavior. Glial cells are proven to have a critical role in normal function of neurons, and alteration in their activity could contribute to disturbance in the brain function. The aim of this study was to investigate the effect of maternal diabetes on hippocampal mRNA expression and distribution pattern of glial fibrillary acidic protein (GFAP) immunoreactive glial cells in the dentate gyrus (DG) of rat neonate at postnatal day 14 (P14). Materials and Methods: Wistar female rats were randomly allocated in control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by injection of streptozotocin from 4 weeks before gestation until parturition. After delivery, the male offspring was euthanized at P14. Results: Our results showed a significant higher level of hippocampal GFAP expression and an increase in the mean number of GFAP positive cells in the DG of diabetic group offspring (P 0.05). Conclusion: The present study revealed that diabetes during pregnancy strongly increased the glial cells production in the developing rat hippocampus. PMID:27656611

  5. Neonatal injections of methoxychlor decrease adult rat female reproductive behavior.

    Science.gov (United States)

    Bertolasio, Jennifer; Fyfe, Susanne; Snyder, Ben W; Davis, Aline M

    2011-12-01

    Methoxychlor (MXC), a commonly used pesticide, has been labeled as an endocrine disruptor. To evaluate the impact of neonatal exposure to MXC on female reproduction, female Sprague-Dawley rats were given subcutaneous injections on postnatal days 1, 3, and 5. The injections contained 1.0mg MXC, 2.0mg MXC, 10 μg 17β-estradiol benzoate (positive control), or sesame oil (vehicle). The injections of MXC had no effect on anogenital distance or day of vaginal opening. Treatment with either 2.0mg MXC or estradiol significantly increased the total number of days with vaginal keratinization. Treatment with MXC had no effect on ability to exhibit a mating response as an adult female, although the high dose MXC (2.0) and the positive control (estradiol) animals demonstrated a decrease in degree of receptivity, a decrease in proceptive behavior and an increase in rejection behavior. These data suggest that higher doses of MXC given directly to pups during the neonatal period can act as an estrogen and alter aspects of the nervous system, impacting adult reproductive characteristics.

  6. Development of Chemosensitivity in Neurons from the Nucleus Tractus Solitarii (NTS) of Neonatal Rats

    Science.gov (United States)

    Conrad, Susan C.; Nichols, Nicole L.; Ritucci, Nick A.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the development of chemosensitivity during the neonatal period in rat Nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO2) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164±4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged neonates, chemical synaptic block medium increased CI. Carbenoxolone did not significantly alter the number of NTS neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (

  7. Differential expression of parvalbumin in neonatal phencyclidine-treated rats and socially isolated rats.

    Science.gov (United States)

    Kaalund, Sanne S; Riise, Jesper; Broberg, Brian V; Fabricius, Katrine; Karlsen, Anna S; Secher, Thomas; Plath, Niels; Pakkenberg, Bente

    2013-02-01

    Decreased parvalbumin expression is a hallmark of the pathophysiology of schizophrenia and has been associated with abnormal cognitive processing and decreased network specificity. It is not known whether this decrease is due to reduced expression of the parvalbumin protein or degeneration of parvalbumin-positive interneurons (PV(+) interneurons). In this study, we examined PV(+) expression in two rat models of cognitive dysfunction in schizophrenia: the environmental social isolation (SI) and pharmacological neonatal phencyclidine (neoPCP) models. Using a stereological method, the optical fractionator, we counted neurons, PV(+) interneurons, and glial cells in the medial prefrontal cortex (mPFC) and hippocampus (HPC). In addition, we quantified the mRNA level of parvalbumin in the mPFC. There was a statistically significant reduction in the number of PV(+) interneurons (p = 0.021) and glial cells (p = 0.024) in the mPFC of neonatal phencyclidine rats, but not in SI rats. We observed no alterations in the total number of neurons, hippocampal PV(+) interneurons, parvalbumin mRNA expression or volume of the mPFC or HPC in the two models. Thus, as the total number of neurons remains unchanged following phencyclidine (PCP) treatment, we suggest that the decreased number of counted PV(+) interneurons represents a reduced parvalbumin protein expression below immunohistochemical detection limit rather than a true cell loss. Furthermore, these results indicate that the effect of neonatal PCP treatment is not limited to neuronal populations.

  8. Cardiac and plasma lipid profiles in response to acute hypoxia in neonatal and young adult rats

    Directory of Open Access Journals (Sweden)

    Raff Hershel

    2010-01-01

    Full Text Available Abstract Background The physiological and biochemical responses to acute hypoxia have not been fully characterized in neonates. Fatty acids and lipids play an important role in most aspects of cardiac function. Methods We performed comprehensive lipid profiling analysis to survey the changes that occur in heart tissue and plasma of neonatal and young adult rats exposed to hypoxia for 2 h, and following 2 h of recovery from hypoxia. Results Cardiac and plasma concentrations of short-chain acylcarnitines, and most plasma long-chain fatty acids, were decreased in hypoxic neonates. Following recovery from hypoxia, concentrations of propionylcarnitine, palmitoylcarnitine, stearoylcarnitine were increased in neonatal hearts, while oleylcarnitine and linoleylcarnitine concentrations were increased in neonatal plasma. The concentrations of long-chain fatty acids and long-chain acylcarnitines were increased in the hearts and plasma of hypoxic young adult rats; these metabolites returned to baseline values following recovery from hypoxia. Conclusion There are differential effects of acute hypoxia on cardiac and plasma lipid profiles with maturation from the neonate to the young adult rat. Changes to neonatal cardiac and plasma lipid profiles during hypoxia likely allowed for greater metabolic and physiologic flexibility and increased chances for survival. Persistent alterations in the neonatal cardiac lipid profile following recovery from hypoxia may play a role in the development of rhythm disturbances.

  9. Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats.

    Science.gov (United States)

    Conrad, Susan C; Nichols, Nicole L; Ritucci, Nick A; Dean, Jay B; Putnam, Robert W

    2009-03-31

    We studied the development of chemosensitivity during the neonatal period in rat nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO(2)) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164+/-4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged NTS neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (NTS neurons that respond to hypercapnia or the magnitude of that response.

  10. Systemic Injection of Low-Dose Lipopolysaccharide Fails to Break down the Blood–Brain Barrier or Activate the TLR4-MyD88 Pathway in Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2014-06-01

    Full Text Available We aimed to investigate whether peripheral low-dose lipopolysaccharide (LPS induces the breakdown of the blood–brain barrier (BBB and/or the activation of toll-like receptor 4 (TLR4 in the neonatal rat brain. Neonatal rats received intraperitoneal injections of low-dose LPS (0.3 mg/kg∙bw, and the BBB compromise was detected by Evans Blue extravasation and electron microscopy. Meanwhile, TLR4, adaptin myeloid differentiation factor 88 (MyD88, nuclear transcription factor kappa-B (NF-κB p50 and tumor necrosis factor alpha (TNFα in the neonatal rat brain were determined by quantitative real-time polymerase chain reaction (PCR and Western Blot. Immunohistochemistry was used to determine the distribution and activation of microglia in the brain after LPS administration. It was demonstrated that Evans Blue extravasation was not observed in the brain parenchyma, and that tight junctions of cerebral endothelial cells remained intact after systemic injections of LPS in neonatal rats. Although intracerebroventricular injections of LPS activated microglia and up-regulated the expression of TLR4, MyD88, NF-κB p50 and TNFα in the neonatal rat brain, systemic LPS did not induce these responses. These findings indicate that while the neonatal rat brain responds to the direct intra-cerebral administration of LPS through robust TLR4 activation, systemic low-dose LPS does not induce the innate immune reaction or compromise the BBB in neonatal rats.

  11. Neonatal administration of citalopram delays somatic maturation in rats

    Directory of Open Access Journals (Sweden)

    T.C.B.J. Deiró

    2004-10-01

    Full Text Available We investigated the somatic maturation of neonate rats treated during the suckling period with citalopram, a selective serotonin reuptake inhibitor. Groups with 6 male neonates were randomly assigned to different treatments 24 h after birth. Each litter was suckled by one of the dams until the 21st postnatal day. Body weight, head axis and tail length were measured daily from the 1st to the 21st postnatal day. Time of ear unfolding, auditory conduit opening, incisor eruption, and eye opening was determined. Pups received 5 mg (Cit5, 10 mg (Cit10 or 20 mg/kg (Cit20 citalopram sc, or saline (0.9% NaCl, w/v, sc. Compared to saline, body weight was lower (24.04%, P < 0.01 for Cit10 from the 10th to the 21st day and for Cit20 from the 6th to the 21st day (38.19%, P < 0.01. Tail length was reduced in the Cit20 group (15.48%, P < 0.001 from the 8th to the 21st day. A reduction in mediolateral head axis (10.53%, P < 0.05 was observed from the 11th to the 21st day in Cit10 and from the 6th to the 21st day in Cit20 (13.16%, P < 0.001. A reduction in anteroposterior head axis was also observed in the Cit20 group (5.28%, P < 0.05 from the 13th to the 21stday. Conversely, this axis showed accelerated growth from the 12th to the 21stday in the Cit5 group (13.05%, P < 0.05. Auditory conduit opening was delayed in the Cit5 and Cit20 groups and incisor eruption was delayed in all citalopram groups. These findings show that citalopram injected during suckling to rats induces body alterations and suggest that the activity of the serotoninergic system participates in growth mechanisms.

  12. Computational tool for morphological analysis of cultured neonatal rat cardiomyocytes.

    Science.gov (United States)

    Leite, Maria Ruth C R; Cestari, Idágene A; Cestari, Ismar N

    2015-08-01

    This study describes the development and evaluation of a semiautomatic myocyte edge-detector using digital image processing. The algorithm was developed in Matlab 6.0 using the SDC Morphology Toolbox. Its conceptual basis is the mathematical morphology theory together with the watershed and Euclidean distance transformations. The algorithm enables the user to select cells within an image for automatic detection of their borders and calculation of their surface areas; these areas are determined by adding the pixels within each myocyte's boundaries. The algorithm was applied to images of cultured ventricular myocytes from neonatal rats. The edge-detector allowed the identification and quantification of morphometric alterations in cultured isolated myocytes induced by 72 hours of exposure to a hypertrophic agent (50 μM phenylephrine). There was a significant increase in the mean surface area of the phenylephrine-treated cells compared with the control cells (p<;0.05), corresponding to cellular hypertrophy of approximately 50%. In conclusion, this edge-detector provides a rapid, repeatable and accurate measurement of cell surface areas in a standardized manner. Other possible applications include morphologic measurement of other types of cultured cells and analysis of time-related morphometric changes in adult cardiac myocytes.

  13. Effect of Maternal Diabetes on Cerebellum Histomorphometry in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Z Khaksar

    2010-04-01

    Full Text Available Introduction: In pregnant mothers, maternal diabetes occurs when pancreas can't produce enough insulin resulting in increased blood glucose levels in the mother and subsequently in the fetus. This investigation was conducted to evaluate the effects of maternal diabetes on cerebellum of offspring of diabetic mothers (ODM, which was carried out at the veterinary faculty of Shiraz University in 2007-2008. Methods: This was an experimental study that included sixteen normal adult female rats divided in two groups. Diabetes was induced in one group by Alloxan agent. Both groups became pregnant by natural mating . At 7, 14, 21 and 28 days after birth, the cerebellum of all offsprings were collected and the weight of neonates was also measured. After producing histological slides, Olympus BX51 microscope and ‍‍‍‍‍‍‍ Olysia softwarwere used. Various histological parameters used included gray and white matters thicknesses (µ, the number of cells in gray and white matter separately per unit and the ratio of gray matter to white matter. Results: Cerebellar parameters decreased in ODM as compared to the control group. The body weight of ODM was significantly more than that of the control group (p< 0.05. Conclusions: Maternal hyperglycaemia exhibited deleterious effects on cerebellum during fetal life, which remained persistent during postneonatal period. Maternal diabetes also resulted in reduction of number of cells and thicknesses of both gray and white matter.

  14. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    500 μg/kg per day at embryonic 18 days in following 2 days. As controls, 10 pregnant rats were intraperitoneally injected with the same dose of normal saline at the same time. ② After delivery, mother rats in both groups were sacrificed, and then the infection status of uterus and placenta was observed through haematoxylin and eosin (HE) staining. A great quantity of neutrophilic leukocytes infiltrated, which was the identification standard. Twenty control neonatal rats and 20 experimental neonatal rats (7 days) were selected randomly. The changes of ultrastructure in cortex, hippocamp, internal capsule and callus were detected under an electron microscope, and MBP and S-100 in serum and brain tissues were detected by ELISA method.③ t test was used for comparing the differences of measurement data. MAIN OUTCOME MEASURES: ① The content of MBP and S-100 in serum and brain tissue of neonatal rats be tween two groups. ② Pathological detection results of uterus and placenta of neonatal rats.③ Detection results of brain tissue under an electron microscope. RESULTS: Forty-seven pregnant rats and forty neonatal rats were involved in the result analysis. ① The content of MBP in serum and brain tissue of neonatal rats: MBP content in brain tissue of neonatal rats in the experimental group was significantly lower than that in the control group [(5.898±1.050) μg/L vs. (7.006±1.071) μg/L, t =3.221, P < 0.01], while MBP content in the serum of neonatal rats in the experimental group was significantly higher than that in the control group[(3.912±0.783) μg/L vs. (2.625±0.766) μg/L, t =5.120, P < 0.01]. ②The content of S-100 in serum and brain tissue of neonatal rats: The content of S-100 in brain tissue and serum of neonatal rats in the experimental group was significantly higher than that in the control group, respectively, [(6.412±0.820) μg/L vs. (5.377±0.712) μg/L; (3.393±0.550) μg/L vs. (2.298±0.614)μg/L,t =4.154, 5.791, P < 0.01].

  15. Neonatal caffeine exposure alters seizure susceptibility in rats in an age-related manner.

    Science.gov (United States)

    Guillet, R

    1995-10-27

    Early developmental exposure to caffeine in rats results in decreased susceptibility to certain chemically-induced seizures in the adult. To determine whether this effect first appears in adulthood or is present during preceding developmental stages, we exposed neonatal rats to caffeine and determined seizure thresholds in animals 28, 42 and 70-90 days of age. Rats were unhandled or received either vehicle (water) or caffeine (15-20 mg/kg/day) by gavage (0.05 ml/10 g) over postnatal days 2-6. At 28, 42, or 70-90 days of age, rats were infused intravenously with picrotoxin (PIC), bicuculline (BIC), pentylenetetrazol (PTZ), caffeine (CAFF), strychnine (STR), or kainic acid (KA). Seizure thresholds for each compound were analyzed as a function of neonatal treatment, sex, and age. At 28 days, neonatally caffeine-exposed rats had a higher seizure threshold only for PTZ (P PIC (P < 0.0007) and PTZ (P < 0.0001) than did controls. These results at 28 and 42 days are compared with previously reported data that demonstrated that in adulthood, rats neonatally exposed to caffeine have higher thresholds for seizure induction with CAFF, PTZ, and KA. Thus, early developmental exposure to caffeine results in decreases in seizure susceptibility that are agent specific and may result in a delay in the decrease in seizure threshold that occurs for many agents between late juvenile ages and adulthood.

  16. The antiapoptotic effect of insulin against anoxia/reoxygenation injury in cultured cardiomyocyte of neonatal rat

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To study protective effect of insulin against cardiomyocyte apoptosis in anoxia/reoxygenation (A/R)injury of neonatal rat. Methods: The model of A/R injury was finished through receiving anoxia for 2 h and reoxygenation for 4 h in cultured cardiomyocytes of neonatal rat. The cardiomyocytes were divided randomly into 3 groups: control group (CON), anoxia/reoxygenation group (A/R) and insulin-treated group (INS). At the end of reoxygenation of 4 hours, activities of lactate dehydrogenase (LDH),contents of malondialdehyde (MDA) were assessed through spectrophotometric procedures, myocyte apoptosis were detected through TUNEL and DNA Ladder. Results: MDA, LDH, and Apoptosis Index were significantly decreased in INS group compared with A/R group (P<0.01). Conclusion: Insulin has a protective effect against A/R injury in cultured cardiomyocyte of neonatal rat; the protective mechanism may contribute to antiapoptosis of insulin.

  17. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  18. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    Science.gov (United States)

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  19. Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats

    NARCIS (Netherlands)

    van de Wall, E. H. E. M.; Wielinga, P. Y.; Strubbe, J. H.; van Dijk, G.

    2006-01-01

    Several mechanisms involved in ingestive behavior and neuroendocrine activity rely on vagal afferent neuronal signaling. Seemingly contradictory to this idea are observations that vagal afferent neuronal ablation by neonatal capsaicin (CAP) treatment has relatively small effects on glucose homeostas

  20. Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats

    NARCIS (Netherlands)

    van de Wall, E. H. E. M.; Wielinga, P. Y.; Strubbe, J. H.; van Dijk, G.

    2006-01-01

    Several mechanisms involved in ingestive behavior and neuroendocrine activity rely on vagal afferent neuronal signaling. Seemingly contradictory to this idea are observations that vagal afferent neuronal ablation by neonatal capsaicin (CAP) treatment has relatively small effects on glucose homeostas

  1. Peripheral effect of NMDA receptor antagonists on adult rats exposed to neonatal colon pain

    Institute of Scientific and Technical Information of China (English)

    ChunLin; ElieD.Al-Chaer

    2004-01-01

    AIM: Previous work done by Al-Chaer' s lab has shown that colon irritation (CI) in neonates can lead to chronic visceral hypersensitivity in adult rats, with characteristics of visceral allodynia and hyperalgesia, associated with central neuronal sensitization in the absence of identifiable peripheral pathology (Al-Chaer et al. 2000) . The pathogenesis of

  2. Effect of diazepam on sociability of rats submitted to neonatal seizures

    Directory of Open Access Journals (Sweden)

    Ingrid Stanize Leite

    2016-06-01

    Full Text Available Status epilepticus (SE, an acute condition characterized by repetitive or ongoing seizures activity, may produce long-term deleterious consequences. Previous data demonstrated that Wistar rats subjected to neonatal SE displayed autistic behavior, characterized by social play impairment, low preference by novelty, deficit in social discrimination; anxiety related behavior and stereotyped behavior with no changes in locomotor activity (doi: http://dx.doi.org/10.1007/s00702-010-0460-1, doi: http://dx.doi.org/10.3389/fnbeh.2013.00036, doi: http://dx.doi.org/10.1007/s00702-014-1291-2 [1–3]. Taking into account the bi-directional relationship between the state of anxiety and social interaction (doi: http://dx.doi.org/10.1007/s10567-009-0062-3 [4], we evaluated the impact of the state of anxiety on social interaction. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE (380 mg/kg, ip and the controls received 0.9% saline (0.1 ml/10 g. The groups received saline or diazepam (1.0 mg/kg 45 min prior each behavioral testing that started from 60 days of postnatal life. In the open field, rats subjected to neonatal seizure exhibited less central zone activity as compared to animals treated with diazepam, with no changes in the total locomotor activity. In elevated plus maze, rats subjected to neonatal seizure and treated with diazepam exhibited higher locomotor activity and spent more time on the open arms as compared to untreated animals. In approach phase of sociability paradigm, animals subjected to neonatal seizures similarly to controls, regardless the treatment, spent more time with social stimulus as compared to non social stimulus. In social novelty phase of sociability paradigm, animals subjected to neonatal seizures differently of controls, regardless the treatment, spent similar time with familiar and novel stimulus.

  3. MODEST HYPOTHERMIA PROVENTS APOPTOSIS IN A NEONATAL RAT MODEL OF HYPOXIC-ISCHEMIC BRAINDAMAGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Recent studies in neonatal animals have shown that even slightly decreasing in brain or core temperature could ameliorate the damage resulting from hypoxic-ischemia insults. But the influence of hypothermia which had been used after the end of hypoxia-ischemia of the model hypoxia-ischemia brain damage(HIBD)was unknown. This research wanted to investigate whether hypothermia of defferent begin time after HIBD still could protect the brain in neonatal rats. Methods Pericranial temperatures were adjusted to 31 C in neonatal rats immediately or 2h after the end of hypoxia-ischemia(HI),the number of apoptosis cells in HIBD rats' brain had been counted,rat pups' storing food ability had been observed. Results Apoptosis increased obviously when rat pups were 8 days old, while hypothermia reduced apoptosis ,and postponed apoptosis expression in group that 31 C hypothermia was used immediately or 1h after the end of HI,and hypothermia improved the rat pups' storing food ability. This effect was more obviously in the group that hypothermia was used immediately after the HI than in the group that hypothermia was used 1h after the HI. But the protective effect was not clear in the group that hypothermia was used 2 h after the HI. Conclusion Hypothermia which was used within 1h after the end of HI could protect the HIBD neonatal rat pups brain, this effect was more obviously in the hypothermia be used early after the end of HI group than in the hypothermia be used late after the end of HI group.

  4. Zinc influences on brain development, pituitary an thyroidfunction iniodine-deficient pregnant and neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Yang; Jianchao Bian; Xin Wang; Haiming Wang; Yongping Liu; Shuzhen Wang; Zhichun Mu; Xinluan Li

    2008-01-01

    BACKGROUND: Zinc (Zn) has been shown to greatly influence brain development. Zn supplements may reduce injury to cell membranes of the thyroid gland due to iodine deficiency. OBJECTIVE: To establish an iodine deficiency rat model using low-iodine food, which was supplemented with compound Zn and Zn gluconate, to observe the effects of Zn on brain development, as well as pituitary gland and thyroid gland function in iodine-deficient rats. DESIGN, TIME AND SETTING: Randomized grouping study of neural development was performed in the central laboratory of Shandong Institute for Prevention and Treatment of Endemic Disease from 1998 to 1999. MATERIALS: A total of 270 Wistar, female rats, one month after weaning, were used in this study, including 150 pregnant and 120 neonatal rats. Rats were randomly divided into six groups: normal control, model, iodine, compound Zn, iodine and compound Zn, and zinc gluconate. Each group contained 25 pregnant rats and 20 nenoatal rats. METHODS: The pregnant rats and 20 neonatal rats, and well as the normal group, were fed standard chow and allowed free access to tap water (containing 5 μ g/L iodine and 1 mg/L Zn). The remaining five groups were fed low-iodine chow. However, the model group received distilled water, the iodine group received potassium-iodide distilled water (containing 300 μ g/L iodine), the compound Zn group received distilled water and intragastrically administrated 10 mL/kg compound Zn solution, once per day, the iodine and compound Zn group received distilled water with 300 p g/L iodine and intragastrically administrated 10 mL/kg compound Zn solution, once per day. All treatments lasted 90 days. MAIN OUTCOME MEASURES: All pregnant rats were sacrificed on the day 21 of pregnancy. Body mass, number and rate of fetal absorption, as well as fetal death and malformation, were determined. Thyroid and pituitary gland weights were measured, as well as serum levels of thyroid hormone, gonadotropin, and sex hormones. In the

  5. Inhibition of Sirtuin 2 exerts neuroprotection in aging rats with increased neonatal iron intake

    Institute of Scientific and Technical Information of China (English)

    Xijin Wang; Meihua Wang; Liu Yang; Jie Bai; Zhiqiang Yan; Yuhong Zhang; Zhenguo Liu

    2014-01-01

    Impaired iron homeostasis may cause damage to dopaminergic neurons and is critically involved in the pathogenesis of Parkinson’s disease. At present, very little is understood about the effect of neonatal iron intake on behavior in aging animals. Therefore, we hypothesized that increased neonatal iron intake would result in signiifcant behavior abnormalities and striatal dopamine depletion during aging, and Sirtuin 2 contributes to the age-related neurotoxicity. In the present study, we observed that neonatal iron intake (120 μg/g per day) during postnatal days 10–17 resulted in significant behavior abnormalities and striatal dopamine depletion in aging rats. Furthermore, after AK-7 (a selective Sirtuin 2 inhibitor) was injected into the substantia nigra at postnatal 540 days and 570 days (5 μg/side per day), striatal dopamine depletion was signiifcant-ly diminished and behavior abnormality was improved in aging rats with neonatal iron intake. Experimental ifndings suggest that increased neonatal iron intake may result in Parkinson’s dis-ease-like neurochemical and behavioral deifcits with aging, and inhibition of Sirtuin 2 expression may be a neuroprotective measure in Parkinson’s disease.

  6. Effect of single or combined application of UDP-glucose, GDNF and memantine on improvement of white matter injury in neonatal rats assessed with light and electron microscopy pathologically%UDP-糖、GDNF和美金胺改善新生大鼠缺血性脑白质病变的光电镜病理评估

    Institute of Scientific and Technical Information of China (English)

    李文娟; 毛凤霞; 陈惠金; 钱龙华

    2012-01-01

    Objective To evaluate pathologically the effect of the single or combined application of UDP-glucose, GDNF and memantine on the improvement of white matter injury in neonatal rats with periventricular leukomalacia (PVL) under light and electron microscopy. Methods A five-day-old neonatal ral model for PVL was esiabJished by ligation of the lateral common carotid artery following 120-minute hypoxia. Rats were randomly divided into six groups (30 rats in each group); sham-operated, PVL, LJDP-glucuse (UDP-glucose 2000 mg/kg jntraperi tone ally after PVL), GDNF (GDNF 100 μg/kg intracerebrally afler PVL) , imemantine ( memantine 20 mg/kg intraperitoneally after PVL) , and a combination administration of three drugs ( UDP-glucose, GDNF and memantine). The rats were sacrificed 7 or 21 days after PVL for assessment of pathological changes in the white matter under both light and electron microscopy. The number and thickness of the myelin sheath in the white matter were measured under electron microscopy, and both of pathological grading and scoring were undertaken under light microscopy. Results There was care and sparse myelinogenesis with a loose arrangement of nerve fibers in the white matter under electron microscopy in the PVL group at 7 and 21 days after PVL. The number and thickness of the myelin sheath in the PVL group were significantly less than in the sham-operated, UDP-glucose, GDNF, memantine and combination administration groups (P<0- 01). The results of pathological grading of white matter under light microscopy showed that all rats in the PVL group manifested either mild injury (38% -50% ) or severe injury (50%-62%) at 7 and 21 days after PVL. The majority of rats (50%-88%) in the four drug administration groups had normal white matter at 7 and 21 days after PVL. The pathological scores at 7 and 21 days after PVL in the PVL group were the highest, and they were significantly higher than in the other five groups (P < 0. 05). Conclusions The single or

  7. Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase.

    Science.gov (United States)

    Rosa, Andrea Pereira; Jacques, Carlos Eduardo Dias; de Souza, Laila Oliveira; Bitencourt, Fernanda; Mazzola, Priscila Nicolao; Coelho, Juliana Gonzales; Mescka, Caroline Paula; Dutra-Filho, Carlos Severo

    2015-05-01

    Recently, the consequences of diabetes on the central nervous system (CNS) have received great attention. However, the mechanisms by which hyperglycemia affects the central nervous system remain poorly understood. In addition, recent studies have shown that hyperglycemia induces oxidative damage in the adult rat brain. In this regard, no study has assessed oxidative stress as a possible mechanism that affects the brain normal function in neonatal hyperglycemic rats. Thus, the present study aimed to investigate whether neonatal hyperglycemia elicits oxidative stress in the brain of neonate rats subjected to a streptozotocin-induced neonatal hyperglycemia model (5-day-old rats). The activities of glucose-6-phosphate-dehydrogenase (G6PD), 6-phosphogluconate-dehydrogenase (6-PGD), NADPH oxidase (Nox), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), the production of superoxide anion, the thiobarbituric acid-reactive substances (TBA-RS), and the protein carbonyl content were measured. Neonatal hyperglycemic rats presented increased activities of G6PD, 6PGD, and Nox, which altogether may be responsible for the enhanced production of superoxide radical anion that was observed. The enhanced antioxidant enzyme activities (SOD, CAT, and GSHPx) that were observed in neonatal hyperglycemic rats, which may be caused by a rebound effect of oxidative stress, were not able to hinder the observed lipid peroxidation (TBA-RS) and protein damage in the brain. Consequently, these results suggest that oxidative stress could represent a mechanism that explains the harmful effects of neonatal hyperglycemia on the CNS.

  8. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  9. Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat.

    Science.gov (United States)

    Bhardwaj, S K; Forcelli, P A; Palchik, G; Gale, K; Srivastava, L K; Kondratyev, A

    2012-06-01

    Previous work has indicated an association between seizures early in life and increased risk of psychiatric disorders, including schizophrenia. However, because early-life seizures are commonly treated with antiepileptic drugs (AEDs) such as phenobarbital, the possibility that drug treatment may affect later-life psychiatric outcomes needs to be evaluated. We therefore tested the hypothesis that phenobarbital exposure in the neonatal rat increases the risk of schizophrenia-like behavioral abnormalities in adulthood. Thus, in this study, we examined the effects of a single acute neonatal exposure to phenobarbital on adult behavioral outcomes in the rat neonatal ventral hippocampal (nVH) lesion model of schizophrenia. We compared these outcomes to those in rats a) without nVH lesions and b) with nVH lesions, without phenobarbital. The tasks used for behavioral evaluation were: amphetamine-induced locomotion, prepulse inhibition, elevated plus-maze, and novel object recognition task. We found that neonatal phenobarbital treatment (in the absence of nVH lesions) was sufficient to disrupt sensorimotor gating (as tested by prepulse inhibition) in adulthood to an extent equivalent to nVH lesions. Additionally, neonatal phenobarbital exposure enhanced the locomotor response to amphetamine in adult animals with and without nVH lesions. Our findings suggest that neonatal exposure to phenobarbital can predispose to schizophrenia-like behavioral abnormalities. Our findings underscore the importance of examining AED exposure early in life as a potential risk factor for later-life neuropsychiatric abnormalities in clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Neonatal tactile stimulation changes anxiety-like behavior and improves responsiveness of rats to diazepam.

    Science.gov (United States)

    Boufleur, Nardeli; Antoniazzi, Caren T D; Pase, Camila S; Benvegnú, Dalila M; Barcelos, Raquel C S; Dolci, Geisa S; Dias, Verônica T; Roversi, Katiane; Roversi, Karine; Koakoskia, Gessi; Rosa, João G; Barcellos, Leonardo J G; Bürger, Marilise E

    2012-09-20

    In this study we evaluated the influence of neonatal tactile stimulation (TS) on behavioral and biochemical effects related to a low dose of diazepam (DZP) in adult rats. Male pups of Wistar rats were handled (TS) daily from PND1 to PND21 for 10 min, while unhandled (UH) rats were not touched. In adulthood, half the animals of each group received a single administration of diazepam (0.25mg/kg body weight i.p.) or vehicle and then were submitted to behavioral and biochemical evaluations. In the TS group, DZP administration reduced anxiety-like symptoms in different behavioral paradigms (elevated plus maze, EPM; staircase and open-field and defensive burying) and increased exploratory behavior. These findings show that neonatal TS increased DZP pharmacological responses in adulthood compared to neonatally UH animals, as observed by reduced anxiety-like symptoms and lower levels of plasma cortisol. TS also changed plasma levels of antioxidant defenses such as vitamin C and glutathione peroxidase, whose increase may be involved in lower oxidative damages to proteins in cortex, subthalamic region and hippocampus of these animals. Here we are showing for the first time that neonatal TS is able to change responsiveness to benzodiazepine drugs in adulthood and provides better pharmacological responses in novel situations of stress.

  11. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  12. Biosynthesis of vitamin C stabilized tin oxide nanoparticles and their effect on body weight loss in neonatal rats.

    Science.gov (United States)

    Yang, Jie; Yang, Ke-Qing; Qiu, Li

    2017-09-01

    The green synthesis of tin oxide nanoparticles (SnO2 NPs) using vitamin C (Vc) as a reducing agent via a biosynthetic approach is described. The effect of Vc-stabilized SnO2 NPs on the body weight of neonatal rats is also studied. The prepared SnO2NPs were characterized using spectroscopic and microscopic instrumental techniques including transmission electron microscopy (TEM), UV-visible spectrophotometry (UV-vis), X-ray diffraction and Fourier transform infrared spectroscopy, which confirmed the formation of NPs. TEM images confirmed the formation of spherical NPs with a mean particle size of around 30nm. The body weight studies showed that vitamin-C stabilized SnO2 NPs promote a higher body weight gain compared to raw SnO2 NPs. It was also shown that Vc can counteract the decreased body weight caused by SnO2 NPs in neonatal rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fetal and neonatal nicotine exposure in Wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Jennifer E Bruin

    Full Text Available Nicotine replacement therapy (NRT is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control or nicotine bitartrate (1 mg/kg/d via subcutaneous injection for 2 weeks prior to mating until weaning. At 3-4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted.

  14. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats.

    Science.gov (United States)

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F

    1995-07-01

    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  15. Neonatal exposure to LPS leads to heightened exploratory activity in adolescent rats.

    Science.gov (United States)

    Rico, Javier Leonardo Rodríguez; Ferraz, Denise Brufato; Ramalho-Pinto, Francisco Juarez; Morato, Silvio

    2010-12-20

    Although several reports have demonstrated physiological and behavioral changes in adult rats due to neonatal immune challenges, little is known about their effects in adolescence. Since neonatal exposure to lipopolysaccharide (LPS) alters the neural substrates involved in cognitive disorders, we tested the hypothesis that it may also alter the response to novel environments in adolescent rats. At 3 and 5 days of age, male Wistar rats received intraperitoneal injections of either vehicle solution or E. coli LPS (0.05mg/kg) or were left undisturbed. In the mid-adolescent period, between 40 and 46 days of age, the rats were exposed to the following behavioral tests: elevated plus-maze, open-field, novel-object exploration task, hole-board and the modified Porsolt forced swim test. The results showed that, in comparison with control animals, LPS-treated rats exhibited (1) less anxiety-related behaviors and enhanced patterns of locomotion and rearing in the plus-maze and the open-field tests, (2) high levels of exploration of both objects in the novel-object task and of corner and central holes in hole-board test, and (3) more time spent diving, an active behavior in the forced swim test. The present findings suggest that neonatal LPS exposure has long-lasting effects on the behavior profile adolescent rats exhibit in response to novelty. This behavioral pattern, characterized by heightened exploratory activity in novel environments, also suggests that early immune stimulation may contribute to the development of impulsive behavior in adolescent rats.

  16. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat.

    Directory of Open Access Journals (Sweden)

    Daniel J Bonthius

    2007-11-01

    Full Text Available The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region-virus-immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV

  17. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Directory of Open Access Journals (Sweden)

    Dubner Ronald

    2005-09-01

    Full Text Available Abstract Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors to compare gene expression profiles in the lumbar spinal dorsal horn (LDH of adult (P60 male rats that received neonatal CAR treatment within (at postnatal day 3; P3 and outside (at postnatal 12; P12 of the sensitive period. The data were obtained both without inflammation (at baseline and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems in the LDH ipsilateral to the

  18. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.

    Science.gov (United States)

    Ren, Ke; Novikova, Svetlana I; He, Fang; Dubner, Ronald; Lidow, Michael S

    2005-09-22

    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The

  19. [Long-term changes in adaptive behavior of rats after neonatal inflammatory pain].

    Science.gov (United States)

    Mikhailenko, V A; Butkevich, I P; Vershinina, E A; Ulanova, N A

    2015-01-01

    In this study we addressed the tonic nociceptive system functional activity in the formalin test, anxiety- and depression-like behaviors and spatial learning in adolescent male rats exposed in the neonatal development to repeated inflammatory pain peripheral stimulation. The following groups of 25-day-old rats were used after being exposed on days 7 and 8 to: 1) formalin-induced inflammatory pain with maternal separation for 60 min (FS), 2) the same inflammatory pain stimulation without maternal separation (FWS), 3) physiological saline injection with maternal separation for 1 h (SS), 4) physiological saline injection without maternal separation (SWS) and 5) no stimulation (intact rats). The data obtained indicate that pain caused in 7-8-day-old rat pups by formalin injection into the plantar pad of the hind paw manifests by adolescence (day 25 as a strengthened inflammatory response under the analogous painful stimulation in the formalin test, adaptive behavior disorder in the forced swimming test and spatial learning disability. Our findings that a short-term repeated maternal deprivation of the 7-8-day-old rat pups without inflammatory pain increases the depression-like behavior are also of particular interest. Thus, a repeated inflammatory pain during the neonatal development brings about significant changes in the adaptive behaviors studied as well as in spatial learning in adolescent rats.

  20. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Xue, Qin; Li, Yong; Zhang, Lubo

    2011-11-01

    Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.

  1. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, R.C. (Oregon State Univ., Corvallis (United States) Pacific Northwest Laboratories, Richland, WA (United States)); Springer, D.L. (Pacific Northwest Laboratories, Richland, WA (United States)); Buhler, D.R. (Oregon State Univ., Corvallis (United States))

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  2. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    Science.gov (United States)

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats.

  3. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    Science.gov (United States)

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.

  4. Effect of Angelica sinensis on neural stem cell proliferation in neonatal rats following intrauterine hypoxia

    Institute of Scientific and Technical Information of China (English)

    Hesheng Yue; Xudong Chen; Xiaoming Zhong; Hong Yu

    2008-01-01

    BACKGROUND:Angelica sinensis is a widely used herb in Chinese traditional medicine.It has been shown to improve hypoxia in embryonic rats and reduce nestin expression in neural stem cells,resulting in proliferation of neural stem cells.OBJECTIVE:To study the protective effect of Angelica on neural stem cell proliferation in neonatal rats after intrauterine hypoxia.DESIGN,TIME AND SETTING:The randomized,controlled,experiment was performed at the Department of Histology and Embryology,Luzhou Medical College,China from July 2007 to January 2008.MATERIALS:Because gestational days 14-15 are a key stage in rat nervous system development,21 healthy,pregnant Sprague Dawley rats(14 days after conception)were used for this study.Nestin monoclonal primary antibody was obtained from Chemicon,USA.Angelica parenteral solution(250 g/L)was obtained from Pharmaceutical Preparation Section,Second Affiliated Hospital of Wuhan University,China.METHODS:Rats were randomly divided into a control group(n=5),a hypoxia group(n=8),and an Angelica group(n=8).Saline(8 mL/kg)was injected into the caudal vein of rats in the hypoxia group once a day for seven consecutive days.Intrauterine hypotonic hypoxia was induced using 13% O2 for two hours per day on three consecutive days.Rats in the Angelica group received injections of Angelica parenteral solution(250 g/L);all other protocols were the same as the hypoxia group.The control group procedures were identical to the hypoxia group,but under normal,non-hypoxic conditions.After birth,brain tissues were immediately obtained from neonatal rats and prepared for nestin immunohistochemistry.MAIN OUTCOME MEASURES:Nestin-positive cells in hippocampal CA3 area of neonatal rats in each group were quantified using image analysis to detect signal absorbance.RESULTS:The number of nestin-positive cells increased in the hippocampal CA3 area of neonatal rats in the hypoxia group.The number of nestin-positive cells was less in the Angelica group than in the

  5. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 1; Postnatal maturation of hippocampal cells

    Energy Technology Data Exchange (ETDEWEB)

    Represa, A.; Dessi, F.; Beaudoin, M.; Ben-Ari, Y. (Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France))

    1991-01-01

    The axons of dentate granule cells, the mossy fibres, establish synaptic contacts with the thorny excrescences of the apical dendrite of CA3 pyramidal neurons. Dentate granule cells develop postnatally in rats, whereas the CA3 pyramidal cells are generated before birth. In the present studies, using unilateral neonatal {gamma}-ray irradiation to destroy the granule cells in one hemisphere, we have studied the effect of mossy fibre deprivation on the development of their targets. We show that such ''degranulation'' prevents the normal development of giant thorny excrescences, suggesting that the development of thorny excrescences in CA3 pyramidal neurons is under the control of mossy fibres. In contrast, irradiation of the hippocampus of the neonatal rat does not affect the development of the dendritic arborization of CA3 pyramidal cells and their non-mossy dendritic spines. (author).

  6. Neonatal sciatic nerve transection induces TUNEL labeling of neurons in the rat spinal cord and DRG.

    Science.gov (United States)

    Oliveira, A L; Risling, M; Deckner, M; Lindholm, T; Langone, F; Cullheim, S

    1997-09-08

    Transection of a peripheral nerve in neonatal rats induces an extensive death of axotomized neurons. We demonstrate here that spinal motoneurons and sensory dorsal root ganglia neurons become TUNEL-labeled after sciatic nerve transection in neonatal rats, thus indicating that apoptotic mechanisms are involved in the death process. Interestingly, there is also a profound increase of TUNEL-labeled interneurons in the deep dorsal horn. This location suggests that an intact afferent input and/or contact with target cells is essential for interneuronal survival. Death of motoneurons and sensory neurons could be a result of the injury per se and/or the deprivation of neurotrophic substances, secondary to the loss of contact with target cells.

  7. Long-lasting neonatal inflammation enhances pain responses to subsequent inflammation, but not peripheral nerve injury in adult rats.

    Science.gov (United States)

    Lim, Eun Jeong; Back, Seung Keun; Kim, Myung Ah; Li, Chengjin; Lee, Jaehee; Jeong, Keun Yeong; Na, Heung Sik

    2009-05-01

    The early postnatal period has been suggested to be the vulnerable time for structural and functional reorganization of sensory systems, and painful stimuli at this time may alter neuronal circuits, thereby leading to changes in an individual's response to pain later in life. In the present study, we examined whether inflammatory experience in the early life can affect pain responses to subsequent noxious insults later in life. The two groups of neonatal rats, treated with an inflammatory irritant and untreated, were subjected to inflammation and peripheral nerve injury in adulthood. Neonatal inflammation was induced by injection of complete Freund's adjuvant (CFA, 25 microl) into the hindpaw or tail of newborn rat pups. Adult rats which had suffered from neonatal paw inflammation at P0 were subjected to re-injection of CFA into the paw neonatally exposed to CFA or L5 spinal nerve ligation. Paw thickness and histology of inflamed paw were examined to assess the neonatal inflammation. Adult animals whose tail had been subjected to CFA injection on P3 received tail-innervating nerve injury. The results showed that the neonatal CFA-treated rats suffered from chronic inflammation, confirmed by persistent increase of paw thickness and histological result of inflamed paw. These animals showed enhanced pain responses to re-inflammatory challenge by injection of CFA (200 microl) into the neonatally inflamed paw 8 weeks after birth compared with the neonatally untreated animals. However, neuropathic pain on the hindpaw and the tail which had been induced by peripheral nerve injury in the neonatal CFA-treated group were not different from those of the untreated group. The present data suggest that early neonatal long-lasting inflammation differentially affects pain responses later in life, depending on the types of subsequent noxious insults.

  8. Immunomagnetic Indirect Positive Sorting of Precartilaginous Stem Cells from Neonatal Rat

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To investigate the technique of sorting high-purity precartilaginous stem cells from rat's perichondrium, neonatal rat's perichondrium cells suspensions were incubated with monoclone antibody of anti-fibroblast growth factor receptor-3 (anti-FGFR-3), and the labeled cells were separated from the suspension in the magnetic field by immuno-beads coated with the second antibody. Purityof the sorted neural stem cells was found to be 93.0 %-99.0 %, with living cells amounting to 80 %-85 %. The magnetic cell sorting system could effectively separate precartilaginous stem cells fromperichondrium cell suspensions.

  9. Analgesic effects of JCM-16021 on neonatal maternal separation-induced visceral pain in rats

    Institute of Scientific and Technical Information of China (English)

    Joseph; JY; Sung

    2010-01-01

    AIM:To investigate the pharmacological effect of JCM-16021,a Chinese herbal formula,and its underlying mechanisms.METHODS:JCM-16021 is composed of seven herbal plant materials.All raw materials of the formula were examined according to the quality control criteria listed in the Chinese Pharmacopeia(2005).In a neonatal maternal separation(NMS)model,male SpragueDawley rats were submitted to daily maternal separation from postnatal day 2 to day 14,or no specific handling(NH).Starting from postnatal day 60,rats...

  10. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats.

    Science.gov (United States)

    Montandon, Gaspard; Horner, Richard L; Kinkead, Richard; Bairam, Aida

    2009-11-15

    Caffeine is commonly used clinically to treat apnoeas and unstable breathing associated with premature birth. Caffeine antagonizes adenosine receptors and acts as an efficient respiratory stimulant in neonates. Owing to its persistent effects on adenosine receptor expression in the brain, neonatal caffeine administration also has significant effects on maturation of the respiratory control system. However, since adenosine receptors are critically involved in sleep regulation, and sleep also modulates breathing, we tested the hypothesis that neonatal caffeine treatment disrupts regulation of sleep and breathing in the adult rat. Neonatal caffeine treatment (15 mg kg(-1) day(-1)) was administered from postnatal days 3-12. At adulthood (8-10 weeks old), sleep and breathing were measured with a telemetry system and whole-body plethysmography respectively. In adult rats treated with caffeine during the neonatal period, sleep time was reduced, sleep onset latency was increased, and non-rapid eye movement (non-REM) sleep was fragmented compared to controls. Ventilation at rest was higher in caffeine-treated adult rats compared to controls across sleep/wake states. Hypercapnic ventilatory responses were significantly reduced in caffeine-treated rats compared to control rats across sleep/wake states. Additional experiments in adult anaesthetized rats showed that at similar levels of arterial blood gases, phrenic nerve activity was enhanced in caffeine-treated rats. This study demonstrates that administration of caffeine in the neonatal period alters respiratory control system activity in awake and sleeping rats, as well as in the anaesthetized rats, and also has persistent disrupting effects on sleep that are apparent in adult rats.

  11. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    Directory of Open Access Journals (Sweden)

    Lominiki Slawo

    2011-03-01

    Full Text Available Abstract Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM. The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs, in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP, non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes.

  12. PROPERTIES OF PROLIFERATION AND DIFFERENTIATION OF NEONATAL RAT RETINAL PROGENITOR CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    Kang Qianyan; Liu Yong; Zhao Jianjun; Qiu Fen; Chen Xinlin; Tian Yumei; Hu Ming

    2006-01-01

    Objective To investigate the properties of proliferation and differentiation of neonatal rat retinal progenitor cells (RPCs) in vitro. Methods RPCs were isolated from neonatal SD rats neural retina and cultured in DMEM/F12+N2 with EGF and bFGF (suspension medium )or 10%FBS without EGF and bFGF (differentiation medium). The cells grew as suspended spheres or adherent monolayers, depending on different culture conditions. The neural stem cells or retinal progenitors, neurons, astrocytes, retinal ganglion cells, rod photoreceptors and the proliferating cells were evaluated with immunofluorescence analysis by Nestin or Pax6, Map2, GFAP, Thy-1, Rhodopsin and BrdU antibodies respectively. Results RPCs could propagate and differentiate in suspension or differentiation medium and express the markers of Nestin (92.86%) or Pax6 (86.75%), Map2 (38.54%), GFAP (20.93%), Thy-1 (27.66%) and Rhodopsin(13.33%)in suspension medium; however, Nestin (60.27%), Pax6 (52%), Map2 (34.94%), GFAP (38.17%), Thy-1(30.84%) and Rhodopsin (34.67%) in differentiation medium. 96.4% of the population in the neurospheres was BrdU-positive cells. The cells could spontaneously adherent forming some subspheres and retinal specific cell types. Conclusion Neonatal rat RPCs possess the high degree of proliferation and can differentiate into neurons, astrocytes, retinal ganglion cells and rod photoreceptors in vitro. There are different proportions for RPCs to differentiate into specific cell types.

  13. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    Science.gov (United States)

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD.

  14. Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Tai-ping HU; Fang-ping XU; Yuan-jian LI; Jian-dong LUO

    2006-01-01

    Aim:To test the hypothesis that statins inhibit leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes.Methods:Cultured neonatal rat cardiomyocytes were used to evaluate the effects of simvastatin on leptininduced hypertrophy.Intracellular reactive oxygen species (ROS) levels were determined by using 2',7'-dichlorofluorescein diacetate (DCF-DA) fluorescence.Total intracellular RNA and cell protein content,which serve as cell proliferative markers,were assayed by using propidium iodide (PI) fluorescence and the Bio-Rad DC protein assay.respectively.The cell surface area,an indicator of cell hypertrophy,was quantified by using Leica image analysis software.Results:After 72 h treatment,1eptin markedly increased RNA 1evels,cell surface area,and total cell protein levels in cardiomyocytes,which were significantly inhibited by simvastatin or catalase treatment.ROS levels were significantly elevated in cardiomyocytes treated with leptin for 4 h compared with those cells without leptin treatment.The increase in ROS levels in cardiomyocytes induced by leptin was reversed by treatment with simvastatin and catalase.Conclusion:Simvastatin inhibits leptin-induced ROS-mediated hyperophy in cultured neonatal rat cardiac myocytes.Statin therapy may provide an effective means of improving cardiac dysfunction in obese humans.

  15. Sildenafil Improves Brain Injury Recovery following Term Neonatal Hypoxia-Ischemia in Male Rat Pups.

    Science.gov (United States)

    Yazdani, Armin; Khoja, Zehra; Johnstone, Aaron; Dale, Laura; Rampakakis, Emmanouil; Wintermark, Pia

    2016-01-01

    Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control. Both groups were randomized to oral sildenafil or vehicle twice daily for 7 consecutive days. Gait analysis was performed on P27. At P30, the rats were sacrificed, and their brains were extracted. The surfaces of both hemispheres were measured on hematoxylin and eosin-stained brain sections. Mature neurons and endothelial cells were quantified near the infarct boundary zone using immunohistochemistry. HI caused significant gait impairment and a reduction in the size of the left hemisphere. Treatment with sildenafil led to an improvement in the neurological deficits as measured by gait analysis, as well as an improvement in the size of the left hemisphere. Sildenafil, especially at higher doses, also caused a significant increase in the number of neurons near the infarct boundary zone. In conclusion, sildenafil administered after neonatal HI may improve brain injury recovery by promoting neuronal populations.

  16. RAGE/NF-κB signaling mediates lipopolysaccharide induced acute lung injury in neonate rat model.

    Science.gov (United States)

    Li, Yuhong; Wu, Rong; Tian, Yian; Yu, Min; Tang, Yun; Cheng, Huaipin; Tian, Zhaofang

    2015-01-01

    Lipopolysaccharide (LPS) is known to induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Accumulating data suggest the crucial role of RAGE in the pathogenesis of ALI/ARDS. However, the mechanism by which RAGE mediates inflammatory lung injury in the neonates remains elusive. In this study we established LPS-induced ALI model in neonate rats, and investigated the role of RAGE/NF-κB signaling in mediating ALI. We found that RAGE antibody or bortezomib reduced LPS-induced histopathological abnormalities in the lung and lung damage score. RAGE antibody or bortezomib also reduced TNF-α level in both serum and BALF of the rats. Furthermore, RAGE antibody or bortezomib significantly reduced LPS-induced upregulation of RAGE and NF-κB expression in the lung. In conclusion, we established ALI model in neonate rats to demonstrate that LPS induced inflammatory lung injury via RAGE/NF-κB signaling. Interference with RAGE/NF-κB signaling is a potential approach to prevent and treat sepsis-related ALI/ARDS.

  17. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure.

    Science.gov (United States)

    Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia

    2016-08-01

    We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure.

  18. Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui Zhu; Xiao Han; Dafeng Ji; Guangming Lv; Meiyu Xu

    2012-01-01

    Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde.

  19. Neonatal handling affects learning, reversal learning and antioxidant enzymes activities in a sex-specific manner in rats.

    Science.gov (United States)

    Noschang, Cristie; Krolow, Rachel; Arcego, Danusa Mar; Toniazzo, Ana Paula; Huffell, Ana Paula; Dalmaz, Carla

    2012-06-01

    Early life experiences have profound influences on behavior and neurochemical parameters in adult life. The aim of this study is to verify neonatal handling-induced sex specific differences on learning and reversal learning as well as oxidative stress parameters in the prefrontal cortex and striatum of adult rats. Litters of rats were non-handled or handled (10 min/day, days 1-10 after birth). In adulthood, learning and reversal learning were evaluated using a Y maze associated with palatable food in male and female rats. Morris water maze reversal learning was verified in males. Oxidative stress parameters were evaluated in both genders. Male neonatal handled animals had a worse performance in the Y maze reversal learning compared to non-handled ones and no difference was observed in the water maze reversal learning task. Regarding females, neonatal handled rats had a better performance during the Y maze learning phase compared to non-handled ones. In addition, neonatal handled female animals showed a decreased SOD/CAT ratio in the PFC compared to non-handled females. We conclude that neonatal handling effects on learning and memory in adult rats are sex and task specific. The sex specific differences are also observed in the evaluation of antioxidant enzymes activities with neonatal handling affecting only females. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    Science.gov (United States)

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  1. Gastrodin protects neonatal rat brain against hypoxic-ischemic encephalopathy Acute therapeutic drug effects

    Institute of Scientific and Technical Information of China (English)

    Yanjun Niu; Zhengyong Jin

    2008-01-01

    BACKGROUND:Pharmacological experiments have demonstrated that gastrodin has a protective effect on neonatal rat brain subjected to hypoxia-ischemia; however,the underlying mechanism has not been fully elucidated. OBJECTIVE:The aim of this study was to investigate the acute therapeutic effects of gastrodin by observing prostaglandin B2 and 6-keto-prostaglandin F 1 a in brain issue of neonatal rats that received gastrodin injections immediately after hypoxia-ischemia.DESIGN:Single-factor design.SETTING:Department of Pediatrics,Affiliated Hospital of Yanbian University. MATERIALS:This study was performed in the Laboratory of the Department of Pediatrics,Affiliated Hospital of Yanbian University(key laboratory of provincial Health Department)from April to December 2003.Fifty-five Wistar rats of either gender,aged 7 days,were provided by the Laboratory Animal Center of Affiliated Hospital of Yanbian University.The rats were randomly divided into normal control(n=10), model(n=15),gastrodin-treated(n=15),and Danshen-treated(n=15)groups.The protocol was performed in accordance with guidelines from the Institute of Health Sciences for the use and care of animals.The following reagents were.used:Gastrodin(Sancai Medicine Group Co.,Ltd.,Zhongshan,Guangdong Province,China;component:gastrodin),Danshen(Conba Stock Company,Jinhua,Zhengjiang Province,China; component:salvia miltiorrhiza),and reagent kits for 125I-prostaglandin B2 and 125I-6-prostaglandin F 1 a (Research and Development Center for Science and Technology,General Hospital of Chinese PLA). METHODS:Rats in the normal control group received no treatment.Rats in the remaining 3 groups were anesthetized,followed by ligation of the left common carotid artery.One hour later,the rats were placed in a closed hypoxic box and allowed to inhale 8% oxygen-air(2.0-3.0 L/min)for 2 hours to develop hypoxic-ischemic encephalopathy.Immediately after lesion,rats in the gastrodin and Danshen-treated groups were intraperitoneally

  2. Latent inhibition in rats neonatally treated chronically with MK-801: differential effects on conditioned taste aversion and conditioned emotional response.

    Science.gov (United States)

    Niikura, Ryo; Nozawa, Takashi; Yamada, Kazuo; Kato, Katsunori; Ichitani, Yukio

    2015-04-15

    Chronic neonatal blockade of N-methyl-d-aspartate (NMDA) receptors produces various abnormal behaviors in adulthood animals. This study investigated the effects of neonatal treatment chronically with MK-801 in rats on the preexposure-induced retardation of CS-US association, i.e. latent inhibition (LI), of two aversive classical conditioning tasks in adulthood. In conditioned taste aversion (CTA) using sucrose taste and LiCl, neonatal chronic MK-801 (0.4 mg/kg twice/day) treatment attenuated the inhibitory effect of sucrose preexposure on the aversive conditioning, although the treatment did not affect CTA conditioning itself. On the other hand, in conditioned emotional response (CER) using tone and electrical foot shock, rats neonatally treated with MK-801 showed the same degree of inhibitory effect of tone preexposure on the aversive conditioning compared with neonatally vehicle-treated rats, and also showed the same level of CER conditioning itself. Thus, the effect of chronic neonatal blockade of NMDA receptors on the LI of classical conditioning in adulthood was differentiated by the task employed. Results suggest that LI of CTA paradigm compared with that of CER is more sensitive to abnormal development after chronic neonatal blockade of NMDA receptors as an index of cognitive/attentional deficits caused by the treatment.

  3. Diffusion tensor imaging correlates with cytopathology in a rat model of neonatal hydrocephalus

    Directory of Open Access Journals (Sweden)

    Hertzler Dean A

    2010-11-01

    Full Text Available Abstract Background Diffusion tensor imaging (DTI is a non-invasive MRI technique that has been used to quantify CNS abnormalities in various pathologic conditions. This study was designed to quantify the anisotropic diffusion properties in the brain of neonatal rats with hydrocephalus (HCP and to investigate association between DTI measurements and cytopathology. Methods DTI data were acquired between postnatal day 7 (P7 and P12 in 12 rats with HCP induced at P2 and in 15 age-matched controls. Animals were euthanized at P11 or P22/P23 and brains were processed with immunohistochemistry for glial fibrillary acidic protein (GFAP, ionized calcium-binding adaptor molecule (Iba-1, and luxol fast blue (LFB to assess astrocytosis, microglial reactivity and degree of myelination, respectively. Results Hydrocephalic rats were consistently found to have an abnormally low (at corrected p-level of Conclusions This study demonstrates the feasibility of employing DTI on the brain in experimental hydrocephalus in neonatal rats and reveals impairments in multiple regions of interest in both grey and white matter. A strong correlation was found between the immunohistochemical results and the changes in anisotropic diffusion properties.

  4. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    Science.gov (United States)

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-01-01

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451

  5. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Peter Kiss

    2013-11-01

    Full Text Available Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  6. Effects of neonatal overfeeding on juvenile and adult feeding and energy expenditure in the rat.

    Directory of Open Access Journals (Sweden)

    Aneta Stefanidis

    Full Text Available Overfeeding during perinatal life leads to an overweight phenotype that persists throughout the juvenile stage and into adulthood, however, the mechanism(s underlying this effect are poorly understood. We hypothesized that obesity due to neonatal overfeeding is maintained by changes in energy expenditure and that these changes differ between males and females. We investigated feeding, physical activity, hormonal and metabolic alterations that occur in adult rats made obese by having been nursed in small litters (SL compared with those from control litters (CL. There were no differences in absolute food intake between the groups, and juvenile and adult SL rats ate less chow per gram body weight than the CL did in the dark (active phase. Juvenile, but not adult SL rats did have reduced whole body energy expenditure, but there were no differences between the groups by the time they reached adulthood. Adult SL females (but not males had reduced brown adipose tissue (BAT temperatures compared with CL in the first half of the dark phase. Our results indicate a persistent overweight phenotype in rats overfed as neonates is not associated with hyperphagia at any stage, but is reflected in reduced energy expenditure into the juvenile phase. The reduced dark phase BAT activity in adult SL females is not sufficient to reduce total energy expenditure at this stage of life and there is an apparently compensatory effect that prevents SL and CL from continuing to diverge in weight that appears between the juvenile and adult stages.

  7. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Directory of Open Access Journals (Sweden)

    Silverberg Gerald D

    2009-05-01

    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  8. The effect of exposure to hypergravity on pregnant rat dams, pregnancy outcome and early neonatal development

    Science.gov (United States)

    Ladd, B.; Nguon, K.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that hypergravity exposure affects food intake and mass gain during pregnancy. In the present study, we explored the hypothesis that changes in maternal body mass in hypergravity-exposed pregnant rat dams affect pregnancy outcome and early offspring development. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravity and by exposure during critical developmental periods. To test this hypothesis, we compared maternal body mass gain, food consumption, birth outcome and early offspring development between Sprague Dawley rat dams exposed to graded (1.5 1.75G) chronic hypergravity (HG) or rotation (rotational control, RC) on a 24-ft centrifuge for 22.5 h starting on gestational day (G) 10 with dams housed under identical conditions but not exposed to hypergravity (SC). We also compared maternal body mass, food consumption, birth outcome and early offspring development between rat dams exposed to 1.65G during different stages of pregnancy and nursing. Exposure to hypergravity resulted in transient loss in body mass and prolonged decrease in food consumption in HG dams, but the changes observed at 1.5G were not magnified at 1.65G or 1.75G. On the other hand RC dams gained more mass and consumed more food than SC dams. Exposure to hypergravity also affected pregnancy outcome as evidenced by decreased litter size, lowered neonatal mass at birth, and higher neonatal mortality; pregnancy outcome was not affected in RC dams. Neonatal changes evidenced by impaired righting response observed at 1.5G was magnified at higher gravity and was dependent on the period of hypergravity exposure. On the other hand, righting response was improved in RC neonates. Hypergravity exposure during early postpartum affected the food consumption of nursing mothers and affected early survival of their offspring. The changes observed in dams and neonates appear to be due to hypergravity exposure since animals exposed to the rotation

  9. Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats

    Directory of Open Access Journals (Sweden)

    Xiaoyan eWu

    2014-06-01

    Full Text Available Neonatal isolation is a widely accepted model to study the long-term behavioral changes produced by the early life events. However, it remains unknown whether neonatal isolation can induce autistic-like behaviors, and if so, whether pharmacological treatment can overcome it. Here, we reported that newborn rats subjected to individual isolations from their mother and nest for 1 hr per day from postnatal days 1 to 9 displayed apparent autistic-like symptoms including social deficits, excessive repetitive self-grooming behavior, and increased anxiety- and depressive-like behaviors tested in young adult (postnatal days 42-56 compared to normal reared controls. Furthermore, these behavioral changes were accompanied by impaired adult hippocampal neurogenesis and reduced the ratio of excitatory/inhibitory synaptic transmissions, as reflected by an increase in spontaneous inhibitory postsynaptic current (sIPSC and normal spontaneous excitatory postsynaptic current (sEPSC in the hippocampal CA1 pyramidal neuron. More importantly, chronic administration of lithium, a clinically used mood stabilizer, completely overcame neonatal isolation-induced autistic-like behaviors, and restored adult hippocampal neurogenesis as well as the balance between excitatory and inhibitory activities to physiological levels. These findings indicate that neonatal isolation may produce autistic-like behaviors, and lithium may be a potential therapeutic agent against autism spectrum disorders during development.

  10. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Xi Lei

    Full Text Available OBJECTIVES: To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. METHODS: Female Sprague-Dawley rats (n = 3 each group were treated with or without an n-3 PUFAs (fish oil enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7 were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control. The 5-bromodeoxyuridine (Brdu was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9, respectively. RESULTS: Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. CONCLUSION: Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working

  11. Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy.

    Science.gov (United States)

    Sitnikova, Evgenia

    2011-03-04

    Absence epilepsy has age-related onset. In a WAG/Rij rat genetic model, absence seizures appear after puberty and they are increased with age. It is known that (1) epileptic activity in WAG/Rij rats is initiated at the perioral area in the somatosensory cortex; (2) sensory deprivation, i.e., whisker trimming during the critical period of development, could enhance excitatory activity in the somatosensory cortex. It is hypothesized that the cortex may become more excitable after neonatal vibrissae removal, and this may precipitate absence seizures in adult rats. We found that whisker trimming during the first postnatal weeks caused more rapid development of EEG seizure activity in adult WAG/Rij rats. Epileptic discharges in the trimmed rats were more numerous (vs control), showed longer duration and often appeared in desynchronized and drowsy EEG. The number of absence-like spindle-shaped EEG events (spike-wave spindles) in the whisker-trimmed rats was higher than in control, especially during the intermediate sleep state. An age-dependent increase of intermediate sleep state was found in the trimmed rats, but not in the intact animals. We discuss epigenetic factors that can modulate absence epilepsy in genetically prone subjects.

  12. Neonatal exposure to novelty enhances long-term potentiation in CA1 of the rat hippocampus.

    Science.gov (United States)

    Tang, Akaysha C; Zou, Bende

    2002-01-01

    Exposing rats to an enriched environment over an extended period of time has been shown to enhance hippocampal long-term potentiation (LTP). Whether such prolonged exposure to environmental manipulation is necessary for LTP enhancement and whether the environmentally induced enhancement can persist long after the cessation of the environmental manipulation remain unknown. Using a novelty exposure procedure modified from the method of neonatal handling, we exposed neonatal rats to a non-home environment for 3 min/day during the first 3 weeks of life. We examined the LTP of both population spikes and excitatory postsynaptic potentials (EPSPs), in vitro, in the CA1 of the hippocampus during adulthood (7-8 and 13-14 months of age). We found that both the LTP of population spikes and the LTP of EPSPs were enhanced among animals who experienced neonatal novelty exposure. These results demonstrate that effective environmental enhancement of LTP can be achieved by as brief and as transient a manipulation as a 3-min/day exposure over the first 3 weeks of life. The resulting enhancement can outlast the environmental manipulation by at least 1 year.

  13. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    Science.gov (United States)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  14. Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury

    Science.gov (United States)

    Miranda, Luis F.; Rodrigues, Claudia O.; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Klim, Jammie; Hehre, Dorothy; McNiece, Ian; Hare, Joshua M.; Suguihara, Cleide Y.; Young, Karen C.

    2016-01-01

    BACKGROUND Stem cell factor (SCF) and its receptor, c-kit, are modulators of angiogenesis. Neonatal hyperoxia-induced lung injury (HILI) is characterized by disordered angiogenesis. The objective of this study was to determine whether exogenous SCF improves recovery from neonatal HILI by improving angiogenesis. METHODS Newborn rats assigned to normoxia (RA: 20.9% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to 15, received daily injections of SCF 100 µg/kg or placebo (PL) from P15 to P21. Lung morphometry was performed at P28. Capillary tube formation in SCF-treated hyperoxia-exposed pulmonary microvascular endothelial cells (HPMECs) was determined by Matrigel assay. RESULTS As compared with RA, hyperoxic-PL pups had decrease in alveolarization and in lung vascular density, and this was associated with increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and vascular remodeling. In contrast, SCF-treated hyperoxic pups had increased angiogenesis, improved alveolarization, and attenuation of pulmonary hypertension as evidenced by decreased RVSP, right ventricular hypertrophy, and vascular remodeling. Moreover, in an in vitro model, SCF increased capillary tube formation in hyperoxia-exposed HPMECs. CONCLUSION Exogenous SCF restores alveolar and vascular structure in neonatal rats with HILI by promoting neoangiogenesis. These findings suggest a new strategy to treat lung diseases characterized by dysangiogenesis. PMID:24153399

  15. Lower trunk of brachial plexus injury in the neonate rat: effects of timing repair.

    Science.gov (United States)

    Lauretti, Liverana; Pallini, Roberto; Romani, Rossana; Di Rocco, Federico; Ciampini, Alessandro; Gangitano, Carlo; Del Fa, Aurora; Fernandez, Eduardo

    2009-06-01

    After lesion of a peripheral nerve in neonatal mammals, motoneurons undergo a cell death. We wanted to ascertain if early surgery could influence such post-axotomy motoneuronal death and improve the functional outcome. In this study, we investigated the functional and anatomical results after immediate and delayed repair of the lower trunk of brachial plexus (BP) sectioned at birth in rats. In neonate rats, the lower trunk of the left BP was cut. This nerve trunk was repaired either immediately [immediately-reconstructed group of rats (IR), or 30 days after, tardy reconstructed group of rats (TR)]; in the third group of animals, the nerve was not repaired (noreconstructed group of rats, NoR). In each group of animals, functional studies were performed at 90 days of age using the grooming test and the walking tracks analysis. Histologic studies of the C7-T1 spinal cord and lower trunk of BP were performed at 30 and 90 days of age; the numbers of motoneuron and axon were counted. Functional recovery was related to the difference in motoneuron number between the injured and the uninjured sides of the spinal cord of the operated animals. On the one side, only in the rats in which the inferior trunk was immediately repaired, the difference in motoneuron number between the two sides of the spinal cord was not statistically significant; these animals showed a good axonal regeneration and function recovery. On the other side, in the rats in which the inferior trunk was left unrepaired or tardy repaired, the decrease in motoneuron number in the injured side compared with the uninjured side of the spinal cord was statistically significant; these animals showed no axonal regeneration and no function recovery. The results cited above suggest that an important role in restoration of good neurological function after section of the lower trunk of BP in neonate rats is played by early nerve repair. Good neurological function was related more to a quite numerical balance of

  16. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat.

    Science.gov (United States)

    Alvarez, Pedro; Levine, Jon D; Green, Paul G

    2015-03-30

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2-9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50-75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    Science.gov (United States)

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  18. Modification of motoneuron size after partial denervation in neonatal rats.

    Science.gov (United States)

    Tyc, F; Vrbová, G

    2007-11-01

    Our previous studies have shown that partial denervation of extensor digitorum longus muscle (EDL) in the rat at 3 days of age causes an increase in the activity of the intact motoneurons. The originally phasic pattern of activity of EDL became tonic after partial denervation. These modifications of motoneuron activity were associated with the change in the phenotype of the muscle from fast to slow contracting and with a conversion of the muscle fibres from a fast to a slow type. The present study investigates whether the size of the cell body of the active EDL motoneurons change in parallel with the altered muscular activity. The study involved partial denervation of rat EDL muscle by section of the L4 spinal nerve at 3 days of age. Then the remaining motoneurons from L5 spinal nerve supplying the EDL muscle were retrogradly labelled with horseradish peroxidase two months later. The results show a reduction in motoneuron size in parallel with an increase in activity of the motoneurons after partial denervation of EDL muscle.

  19. Neonatal handling reduces the number of cells in the medial preoptic area of female rats.

    Science.gov (United States)

    Camozzato, Tatiane S C; Winkelmann-Duarte, Elisa C; Padilha, Camila B; Miguel, Sandro P R; Bonzanini, Laisa; Anselmo-Franci, Janete A; Fernandes, Marilda C; Lucion, Aldo B

    2009-01-09

    Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2'-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure "lesioned" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain.

  20. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    Science.gov (United States)

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.

  1. Airborne fine particulate matter induced pulmonary inflammation as well as oxidative stress in neonate rats

    Institute of Scientific and Technical Information of China (English)

    DING Li-ren; WANG Kai; Baher Fahmy; SHEN Hua-hao; Cormier Stephania

    2010-01-01

    Background Airborne fine particulate matter (PM) can induce pulmonary inflammation which may adversely affect human health, but very few reports about its effect on the neonate rats are available. This study aimed to observe the potential impact and toxicity of fine PMs on the airway in neonate rats.Methods Pulmonary inflammation, cytotoxicity, histopathology, and antioxidants as well as oxidant products were assessed 24 hours after intratracheal instillation of fine PM consecutively for 3 days. Cytotoxicity of fine PM was measured in Hep-2 cells.Results Rats treated with high dose fine PM developed significant pulmonary inflammation characterized by neutrophiland macrophage infiltration. The inflammatory process was related to elevated level of TNF-α and prooxidant/antioxidant imbalance in the lung. Cytotoxicity studies performed in human epithelial cells indicated that high dose fine PM significantly reduced cell viability.Conclusion The study demonstrated acute exposure to fine PM induced airway inflammation as well as increased oxidative stress in addition to its direct toxic effect on airway epithelium cells.

  2. Neurotoxicity of prenatal alcohol exposure on medullary pre-Bötzinger complex neurons in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Ming-li Ji; Yun-hong Wu; Zhi-bin Qian

    2015-01-01

    Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is un-known whether the 5-hydroxytryptamine 2A receptor (5-HT2AR) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10% (v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT2AR protein and mRNA levels in the pre-Bötzing-er complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduc-tion was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10%alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These ifndings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT2AR protein and mRNA levels.

  3. Long-term potentiation in the neonatal rat barrel cortex in vivo.

    Science.gov (United States)

    An, Shuming; Yang, Jenq-Wei; Sun, Haiyan; Kilb, Werner; Luhmann, Heiko J

    2012-07-11

    Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro. We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV/lower layer II/III at P3-P5 and in the cortical plate/upper layer V at P0-P1. Our study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo.

  4. Effects of neonatal handling on central noradrenergic and nitric oxidergic systems and reproductive parameters in female rats.

    Science.gov (United States)

    Raineki, Charlis; Szawka, Raphael Escorsim; Gomes, Cármen Marilei; Lucion, Marta Knijnik; Barp, Jaqueline; Belló-Klein, Adriane; Franci, Celso Rodrigues; Anselmo-Franci, Janete Aparecida; Sanvitto, Gilberto Luiz; Lucion, Aldo Bolten

    2008-01-01

    Early-life environmental events that disrupt the mother-pup relationship may induce profound long-lasting changes on several behavioral and neuroendocrine systems. The neonatal handling procedure, which involves repeated brief maternal separations followed by experimental manipulations, reduces sexual behavior and induces anovulatory estrous cycles in female rats. On the afternoon of proestrus, neonatally handled females show a reduced surge of luteinizing hormone (LH) and an increased content of gonadotropin-releasing hormone in the medial preoptic area (MPOA). In order to detect the possible causes for the reduced ovulation and sexual behavior, the present study aimed to analyze the effects of neonatal handling on noradrenaline (NA) and nitric oxide (NO) levels in the MPOA on the afternoon of proestrus. Neonatal handling reduced MHPG (NA metabolite) levels and MHPG/NA ratio in the MPOA, indicating decreased NAergic activity. Additionally, neonatal handling decreased NO levels, as measured by the metabolites (NO(x)), nitrite and nitrate in the same period. We may conclude that the neonatal handling procedure decreased activity of the NAergic and NOergic systems in the MPOA during proestrus, which is involved in the control of LH and FSH secretion, and this may possibly explain the anovulatory estrous cycles and reduced sexual behavior of the neonatally handled female rats. (c) 2007 S. Karger AG, Basel

  5. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats.

    Science.gov (United States)

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect.

  6. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  7. Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats

    Directory of Open Access Journals (Sweden)

    Hofmann Cane

    2011-07-01

    Full Text Available Abstract Painful stimuli during neonatal stage may affect brain development and contribute to abnormal behaviors in adulthood. Very few specific therapies are available for this developmental disorder. A better understanding of the mechanisms and consequences of painful stimuli during the neonatal period is essential for the development of effective therapies. In this study, we examined brain reactions in a neonatal rat model of peripheral inflammatory pain. We focused on the inflammatory insult-induced brain responses and delayed changes in behavior and pain sensation. Postnatal day 3 pups received formalin injections into the paws once a day for 3 days. The insult induced dysregulation of several inflammatory factors in the brain and caused selective neuronal cell death in the cortex, hippocampus and hypothalamus. On postnatal day 21, rats that received the inflammatory nociceptive insult exhibited increased local cerebral blood flow in the somatosensory cortex, hyperalgesia, and decreased exploratory behaviors. Based on these observations, we tested recombinant human erythropoietin (rhEPO as a potential treatment to prevent the inflammatory pain-induced changes. rhEPO treatment (5,000 U/kg/day, i.p., coupled to formalin injections, ameliorated neuronal cell death and normalized the inflammatory response. Rats that received formalin plus rhEPO exhibited normal levels of cerebral blood flow, pain sensitivity and exploratory behavior. Treatment with rhEPO also restored normal brain and body weights that were reduced in the formalin group. These data suggest that severe inflammatory pain has adverse effects on brain development and rhEPO may be a possible therapy for the prevention and treatment of this developmental disorder.

  8. Therapeutic benefits of delayed lithium administration in the neonatal rat after cerebral hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Cuicui Xie

    Full Text Available AIM: We have previously shown that lithium treatment immediately after hypoxia-ischemia (HI in neonatal rats affords both short- and long-term neuroprotection. The aim of this study was to evaluate possible therapeutic benefits when lithium treatment was delayed 5 days, a time point when most cell death is over. METHODS: Eight-day-old male rats were subjected to unilateral HI and 2 mmol/kg lithium chloride was injected intraperitoneally 5 days after the insult. Additional lithium injections of 1 mmol/kg were administered at 24 h intervals for the next 14 days. Brain injury was evaluated 12 weeks after HI. Serum cytokine measurements and behavioral analysis were performed before sacrificing the animals. RESULTS: Brain injury, as indicated by tissue loss, was reduced by 38.7%, from 276.5±27.4 mm3 in the vehicle-treated group to 169.3±25.9 mm3 in the lithium-treated group 12 weeks after HI (p<0.01. Motor hyperactivity and anxiety-like behavior after HI were normalized by lithium treatment. Lithium treatment increased neurogenesis in the dentate gyrus as indicated by doublecortin labeling. Serum cytokine levels, including IL-1α, IL-1β, and IL-6, were still elevated as late as 5 weeks after HI, but lithium treatment normalized these cytokine levels. CONCLUSIONS: Delayed lithium treatment conferred long-term neuroprotection in neonatal rats after HI, and this opens a new avenue for future development of treatment strategies for neonatal brain injury that can be administered after the acute injury phase.

  9. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)

    Science.gov (United States)

    Harding, Benjamin; Conception, Katherine; Li, Yong; Zhang, Lubo

    2016-01-01

    Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis) and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI) insult in neonatal rats via intracerebroventricular (ICV) injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS) sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional inflammatory injury, such

  10. Effect of Costus igneus: The insulin plant, on prediabetes and diabetes in neonatal streptozotocin rats

    Directory of Open Access Journals (Sweden)

    Murthy EGK Talasila

    2014-12-01

    Full Text Available Introduction: Pre-diabetes is a condition that persists for a considerable duration before progressing into type 2 diabetes mellitus (T2DM. Development of resistance to insulin is the underlying cause of pre-diabetes, preventive measures such as diagnosis, treatment and exercise will preclude its development into T2DM. The present study aims at studying the effect of pre-treatment and post-treatment with isolated fraction of Costus igneus on pre-diabetes and diabetes in neonatal streptozotocin (STZ induced T2DM.Methods: Neonatal rats were treated with STZ and differentiated for pre-treatment and post-treatment. Rats of pre-treated group were treated with isolated fraction of Costus igneus (CIF from 4th week after STZ administration and after 12th week in non-treated rats of post-treatment group. The antihyperglycemic was studied on 7th and 12th week after STZ treatment using oral glucose tolerance test and the hypoglycemic effect was studied on day 1, 7, 14 and 21 of treatment after 12th week of STZ treatment in both pre and post treated groups.Results: Oral glucose tolerance test on 7th and 12th week had shown a protective effect against increase in blood glucose levels in pre-treated groups whereas, no such significant decrease was observed in non-treated groups. In the effect on hypoglycemia, a reduction in blood glucose levels was observed on treatment with CIF in both pre and post treated rats on 14th and 21st day.Conclusions: Treatment with CIF in pre-diabetic stage could reduce the chances of progression into T2DM and is also beneficial in diabetic rats, which could be due to increase in the peripheral utilization of glucose and the insulin mimetic effect of Costus igneus.

  11. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    Science.gov (United States)

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood.

  12. Organ explant culture of neonatal rat ventricles: a new model to study gene and cell therapy.

    Directory of Open Access Journals (Sweden)

    A Dénise den Haan

    Full Text Available Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture may be used as a model to study gene and cell therapy. We compared (immuno histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20% and freshly isolated tissue (17%, but common (82% in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, -80.5±3.5 mV in freshly isolated tissue, and -60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively. Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms, while monolayers could not. Successful lentiviral (LV transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar

  13. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    Science.gov (United States)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  14. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  15. Comparative behavioral changes in postpubertal rats after neonatal excitotoxic lesions of the ventral hippocampus and the prefrontal cortex.

    Science.gov (United States)

    Flores, Gonzalo; Silva-Gómez, Adriana B; Ibáñez, Osvaldo; Quirion, Remi; Srivastava, Lalit K

    2005-06-01

    The neonatal ventral hippocampal (nVH) and the neonatal prefrontal cortex (nPFC) lesions in rats have been used as models to test the hypothesis that early neurodevelopmental abnormalities lead to behavioral changes putatively linked to schizophrenia. We investigated the role of the nVH and the nPFC lesions on behavioral characteristics related to locomotor behaviors, social interaction, and grooming. Bilateral ibotenic acid lesions of the VH, the PFC, or both were made in neonatal Sprague-Dawley rats (postnatal day 7, P7) and their behaviors studied at P35 and P60. No significant differences in any of the behaviors were observed between sham animals and rats with ibotenic acid lesions at P35. Postpubertally (at P60), the spontaneous locomotor activity of nVH-lesioned rats was significantly enhanced compared to the sham controls; however, this hyperactivity was reversed by nVH and nPFC double lesions. Neonatal PFC lesion alone did not alter spontaneous activity, although a trend of increased activity was observed. The duration of grooming was significantly decreased in rats with neonatal lesions of the VH. Similar to the data on locomotion, nVH plus nPFC lesion normalized the grooming behavior. Lesion of the PFC alone was without any significant effect on grooming behavior. Neonatal VH-lesioned animals spent less time in active social interaction, and this effect persisted even in nVH plus nPFC-lesioned animals. By itself, nPFC lesion did not alter social behavior. These data suggest that subtle developmental aberrations within PFC caused by nVH lesions, rather than the lesion of PFC itself, may contribute to some of the behavioral changes seen in the nVH-lesioned rats.

  16. Imprecise Whisker Map in the Neonatal Rat Barrel Cortex.

    Science.gov (United States)

    Mitrukhina, Olga; Suchkov, Dmitry; Khazipov, Roustem; Minlebaev, Marat

    2015-10-01

    The somatosensory barrel cortex in rodents contains a topographic map of the facial whiskers where each cortical barrel is tuned to a corresponding whisker. However, exactly when this correspondence is established during development and how precise the functional topography of the whisker protomap is at birth, before the anatomical formation of barrels, are questions that remain unresolved. Here, using extracellular and whole-cell recordings from the barrel cortex of 0- to 7-day-old (P0-7; P0 = day of birth) rat pups in vivo, we report a low level of tuning to the principal whisker at P0-1, with multiple adjacent whiskers evoking large multi- and single-unit responses and excitatory postsynaptic currents in cortical neurons. Additionally, we found broad and largely overlapping projection fields (PFs) for neighboring whiskers in the barrel cortex at P0-1. Starting from P2-3, a segregated whisker map emerged, characterized by preferential single whisker tuning and segregated whisker PFs. These results indicate that the functional whisker protomap in the somatosensory cortex is imprecise at birth, that for 2-3 days after birth, whiskers compete for the cortical target territories, and that formation of a segregated functional whisker map coincides with emergence of the anatomical barrel map. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Prenatal nicotine alters vigilance states and AchR gene expression in the neonatal rat: implications for SIDS.

    Science.gov (United States)

    Frank, M G; Srere, H; Ledezma, C; O'Hara, B; Heller, H C

    2001-04-01

    Maternal smoking is a major risk factor for sudden infant death syndrome (SIDS). The mechanisms by which cigarette smoke predisposes infants to SIDS are not known. We examined the effects of prenatal nicotine exposure on sleep/wake ontogenesis and central cholinergic receptor gene expression in the neonatal rat. Prenatal nicotine exposure transiently increased sleep continuity and accelerated sleep/wake ontogeny in the neonatal rat. Prenatal nicotine also upregulated nicotinic and muscarinic cholinergic receptor mRNAs in brain regions involved in regulating vigilance states. These findings suggest that the nicotine contained in cigarette smoke may predispose human infants to SIDS by interfering with the normal maturation of sleep and wake.

  18. Effect of G-CSF and TPO on HIBD in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Mei Liu; Yi Feng; Ai-Min Li

    2015-01-01

    Objective:To observe effect of granulocyte colony-stimulating factor(G-CSF) and restructure human thrombopoietin on hypoxic-ischemic brain damage(HIBD) in new born rats.Methods:A total of60 neonatalSD rats were selected and divided into4 groups, with15 in each group.Group A served as control group.Rats ofGroupsB-D were prepared forHIBD model by ligation of left common carotid artery combined with hypoxia method.Rats ofGroupA were only completed with free left common carotid artery without ligation and hypoxia operation.AfterHIBD model preparation,GroupB was administrated with subcutaneous injection of normal saline for placebo treatment;GroupC was administrated with cervical subcutaneous injection of0.5 μg/10 g granulocyte colony stimulating factor(G-CSF) for5 d(Once a day);GroupD was administrated with intraperitoneal injection of15U/10 g recombinant human thromobopoietin(rhTPO) for treatment.After modeling for7,14 and21 d,5 rats were sacrificed in each group, respectively. Brain quality damage(%) conditions of experimental animals in each group were compared in different time points, and cerebral histopathological changes of each group were observed. Expression of nestin in rats of each group was detected by immunohistochemical method. Results:After modeling for7,14 and21 d, brain quality damages(%) ofGroupsB,C andD were significant higher than that of inGroupA(P0.05). Conclusions:BothG-CSF andTPO can protect the nervous system ofHIBD neonatal rats. G-CSF can promote the proliferation and differentiation of neural precursor cells to decrease the degeneration and necrosis of nerve cell.TPO can obviously ameliorate morphology index ofHIBD rats.Through regulating ratio ofTIMP-1 andMMP-9,TPO can maintain the integrity of blood brain barrier to relieve the occurrence of brain damage.

  19. Effect of erythropoietin on intestinal injury and bacterial translocation in neonatal rat model of necrotizing enterocolitis

    Directory of Open Access Journals (Sweden)

    Xiao-qing CHEN

    2012-05-01

    Full Text Available Objective  To observe the influence of erythropoietin (EPO on intestinal histopathological changes and bacterial translocation (BT in neonatal rat model of necrotizing enterocolitis (NEC, and explore the protective effect of EPO against NEC. Methods  Seventy-five three-day-old SD rat pups were randomly divided into three groups (25 in each group: normal control group, NEC model group and EPO intervention group. The rat pups in normal control group were placed together with their mothers and breast fed, receiving no other intervention. NEC model group rats were separated from their mothers, housed in an incubator, and gavaged with rat-milk substitute, then experienced hypoxia (breathing 100% nitrogen gas for 90s and cold stress (4℃ for 10min three times daily for 3 days. EPO intervention group rats were fed with the substitute of rat-milk supplemented with 0.1U/ml of EPO, and they were also given hypoxia and cold stress similar to that of the NEC model group. Blood samples were obtained via cardiac puncture, and 2-cm-length of terminal ileum proximal to the ileocecal valve were obtained from the animals on the 4th day. The histopathological changes in terminal ileum were scored after hematoxylin-eosin (HE staining, and the scores ≥2 were defined as NEC. To determine the incidence of bacterial translocation, 16S rRNA real-time fluorescence quantitative PCR was used to detect the bacterial DNA in blood samples. Results  Compared with the NEC model group, the mean rank-sum rate of the intestinal histopathological score (39.4583 vs 53.8696, NEC incidence [25%(6/24 vs 57%(13/23] and bacterial translocation rate [17% (4/24 vs 65%(15/23] in EPO intervention group were significantly lowered (P < 0.05, P < 0.01. Conclusion  Enteral EPO administration is not only effective for reduction of the severity and incidence of NEC, but also for decrease of the bacterial translocation rate in neonatal rat models.

  20. [Influence of neonatally administered gonadotropin on the sexual function of adult rats].

    Science.gov (United States)

    Götz, F; Vedder, I; Dörner, G

    1975-02-01

    Male and female rats were daily injected with 10 IU HCG plus 10 IU FSH from the 1st to 14th day of life in order to investigate the influence of neonatal gonadotrophin administration on the sex-specific differentiation of the brain. When adult, the males showed hypogonadism associated with approximately normal sexual activity. In the females, precocious puberty, indicated by premature vaginal opening and spontaneous estrus, occurred. Furthermore, bisexuality with a tendency towards more male behavioural patterns was observed, but no impairment of ovarian cyclicity. Thus, hypergonadotrophic hypergonadism during the hypothalamic differentiation phase gave rise to bisexual behaviour in adult female rats associated with normal ovarian cycles. The question of a direct or indirect influence of gonadotrophins on the sex-specific brain differentiation is discussed.

  1. Effect of neonatal handling on adult rat spatial learning and memory following acute stress.

    Science.gov (United States)

    Stamatakis, A; Pondiki, S; Kitraki, E; Diamantopoulou, A; Panagiotaropoulos, T; Raftogianni, A; Stylianopoulou, F

    2008-03-01

    Brief neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function resulting in increased ability to cope with stress. Since stress is known to affect cognitive abilities, in the present study we investigated the effect of brief (15 min) handling on learning and memory in the Morris water maze, following exposure to an acute restraint stress either before training or recall. Exposure of non-handled rats to the acute stress prior to training resulted in quicker learning of the task, than in the absence of the stressor. When acute stress preceded acquisition, male handled rats showed an overall better learning performance, and both sexes of handled animals were less impaired in the subsequent memory trial, compared to the respective non-handled. In addition, the number of neurons immunoreactive for GR was higher in all areas of Ammon's horn of the handled rats during the recall. In contrast, the number of neurons immunoreactive for MR was higher in the CA1 and CA2 areas of the non-handled males. When the acute restraint stress was applied prior to the memory test, neonatal handling was not effective in preventing mnemonic impairment, as all animal groups showed a similar deficit in recall. In this case, no difference between handled and non-handled rats was observed in the number of GR positive neurons in the CA2 and CA3 hippocampal areas during the memory test. These results indicate that early experience interacts with sex and acute stress exposure in adulthood to affect performance in the water maze. Hippocampal corticosterone receptors may play a role in determining the final outcome.

  2. Pancreatic and pancreatic-like microbial proteases accelerate gut maturation in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Olena Prykhodko

    Full Text Available Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats.Suckling rats (Rattus norvegicus were instagastrically gavaged with porcine pancreatic enzymes (Creon, microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14-16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability.Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner.Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals.

  3. Distinct Testicular Steroidogenic Response Mechanisms Between Neonatal and Adult Heat-Acclimated Male Rats

    Directory of Open Access Journals (Sweden)

    Beata Kurowicka

    2015-03-01

    Full Text Available Background: In comparison to short-term gonad heat exposure, little is known about the molecular mechanisms that regulate testicular steroidogenesis during long-term whole body heat acclimation. Material and Methods: Testicular slices from neonatal (NHA and adult (AHA heat-acclimated Wistar rats were analysed in vitro to assess the mRNA expression and enzymatic activity of steroidogenic enzymes under basal and luteinising hormone (LH or prolactin (PRL stimulated conditions compared with control rats (CR. Furthermore, a de-acclimated group (DA was created by transferring adult NHA rats to control conditions. Results: Heat acclimation significantly increased plasma LH levels in the AHA group and LH and PRL in the NHA group compared with the CR group; however, after heat acclimation, the T and E2 levels did not differ from the control levels. All heat-acclimated groups showed high basal intra-testicular steroid production in vitro. Moreover, basal Cyp11a1 and Hsd3b1 levels were upregulated in vitro in the NHA and DA groups versus the CR group. LH in vitro stimulation upregulated Cyp11a1 expression in the NHA and AHA groups and PRL stimulation upregulated Cyp17a1 levels in the NHA and DA groups compared with the basal expression levels. In the AHA group, decreased basal Star and CYP11A activities but increased HSD3B1 and CYP17A1 activities were found. Conclusion: Our data revealed that despite the similar steroid levels in plasma and secreted in vitro by neonatal and adult heat-acclimated rat testicular slices, the molecular mechanisms underlying the steroidogenic response to heat acclimation during these different developmental stages were distinct.

  4. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia.

    Science.gov (United States)

    Fournier, Sébastien; Gulemetova, Roumiana; Baldy, Cécile; Joseph, Vincent; Kinkead, Richard

    2015-04-01

    Human and animal studies on sleep-disordered breathing and respiratory regulation show that the effects of sex hormones are heterogeneous. Because neonatal stress results in sex-specific disruption of the respiratory control in adult rats, we postulate that it might affect respiratory control modulation induced by ovarian steroids in female rats. The hypoxic ventilatory response (HVR) of adult female rats exposed to neonatal maternal separation (NMS) is ∼30% smaller than controls (24), but consequences of NMS on respiratory control in aging female rats are unknown. To address this issue, whole body plethysmography was used to evaluate the impact of NMS on the HVR (12% O2, 20 min) of middle-aged (MA; ∼57 wk old) female rats. Pups subjected to NMS were placed in an incubator 3 h/day for 10 consecutive days (P3 to P12). Controls were undisturbed. To determine whether the effects were related to sexual hormone decline or aging per se, experiments were repeated on bilaterally ovariectomized (OVX) young (∼12 wk old) adult female rats. OVX and MA both reduced the HVR significantly in control rats but had little effect on the HVR of NMS females. OVX (but not aging) reduced the anapyrexic response in both control and NMS animals. These results show that hormonal decline decreases the HVR of control animals, while leaving that of NMS female animals unaffected. This suggests that neonatal stress alters the interaction between sex hormone regulation and the development of body temperature, hormonal, and ventilatory responses to hypoxia.

  5. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    Science.gov (United States)

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  6. Effects of Graded Hypothermia on Hypoxic-ischemic Brain Damage in the Neonatal Rat

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan Xia; Yi-xin Xia

    2011-01-01

    Objective To investigate the effect of graded hypothermia on neuropathologic alteratiors of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2/19) of mortality in rat of 37℃ group, but no death occurred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44.4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.

  7. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion

    Directory of Open Access Journals (Sweden)

    Guy eSandner

    2014-01-01

    Full Text Available Rats with a neonatal ventral hippocampal lesion (NVHL are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioural modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioural effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine or an adrenaline receptor antagonist, (RX821002 at doses documented to modify alertness of rats, respectively 5 mg/Kg and 1 mg/Kg. Rats were selected prior to the experiments using MRI (magnetic resonance imaging. Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both Caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX821002 was found to facilitate learning.Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits.

  8. Prostanoid receptors involved in regulation of the beating rate of neonatal rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hakima Mechiche

    Full Text Available Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PGF(2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD(2 and BW245C and TP receptor agonists (U-46619 produced increases in the beating rate. Sulprostone (a prostanoid EP(1 and EP(3 receptor agonist induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP(1 antagonist. Butaprost (a selective prostanoid EP(2 receptor agonist, misoprostol (a prostanoid EP(2 and EP(3 receptor agonist, 11-deoxy-PGE(1 (a prostanoid EP(2, EP(3 and EP(4 receptor agonist did not alter the beating rate. Our results strongly suggest that prostanoid EP(1 receptors are involved in positive regulation of the beating rate. Prostanoid EP(1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate and prostanoid TP, DP(1 and EP(1 receptors (which positively regulate the spontaneous beating rate.

  9. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia.

    Science.gov (United States)

    Marcelino, Thiago Beltram; de Lemos Rodrigues, Patrícia Idalina; Miguel, Patrícia Maidana; Netto, Carlos Alexandre; Pereira Silva, Lenir Orlandi; Matté, Cristiane

    2015-10-05

    Pregnancy is a critical period for brain metabolic programming, being affected by individual environment, such as nutrition, stress, and physical exercise. In this context, we previously reported a cerebral antioxidant upregulation and mitochondrial biogenesis in the offspring delivered from exercised mothers, which could provide neuroprotection against neonatal insults. Hypoxia-ischemia (HI) encephalopathy is one of the most studied models of neonatal brain injury; disrupting motor, cognitive, and learning abilities. Physiopathology includes oxidative stress, allied to mitochondria energy production failure, glutamatergic excitotoxicity, and cell death. In this study we evaluated the effect of maternal swimming during pregnancy on offspring׳s brain oxidative status evaluated fourteen days after HI stablishment. Swimming exercise was performed by female adult rats one week before and during pregnancy, in controlled environment. Their offspring was submitted to HI on postnatal day 7, and the brain samples for biochemical assays were obtained in the weaning. Contrary to our expectations, maternal exercise did not prevent the oxidative alterations observed in brain from HI-rats. In a general way, we found a positive modulation in the activities of antioxidant enzymes, measured two weeks after HI, in hippocampus, striatum, and cerebellum of pups delivered from exercised mothers. Reactive species levels were modulated differently in each structure evaluated. Considering the scenery presented, we concluded that HI elicited a neurometabolic adaptation in both brain hemispheres, particularly in hippocampus, parietal cortex, and cerebellum; while striatum appears to be most damaged. The protocol of aerobic maternal exercise was not enough to fully prevent HI-induced brain damages.

  10. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus.

    Science.gov (United States)

    Caillard, O; Ben-Ari, Y; Gaiarsa, J L

    1999-07-01

    1. The plasticity of GABAergic synapses was investigated in neonatal rat hippocampal slices obtained between postnatal days 3 and 6 using intracellular recording techniques. Ionotropic glutamate receptor antagonists were present throughout the experiments to isolate GABAA receptor-mediated postsynaptic potentials (GABAA PSPs) or currents (GABAA PSCs). 2. Repetitive depolarizing pulses (20 pulses, 0.5 s duration, at 0.1 Hz, each pulse generating 4-6 action potentials) induced a long-term potentiation in the slope and amplitude of the evoked GABAA PSPs and GABAA PSCs. 3. Long-term potentiation was prevented by intracellular injection of the calcium chelator BAPTA (50 mM), or when the voltage-dependent calcium channels blockers Ni2+ (50 microM) and nimodipine (10 microM) were bath applied. 4. Repetitive depolarizing pulses induced a persistent (over 1 h) increase in the frequency of spontaneous GABAA PSCs. 5. Repetitive depolarizing pulses induced a long-lasting increase in the frequency of miniature GABAA PSCs, without altering their amplitude or decay-time constant. 6. It is concluded that the postsynaptic activation of voltage-dependent calcium channels leads to a long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. This form of plasticity is expressed as an increase in the probability of GABA release or in the number of functional synapses, rather than as an upregulation of postsynaptic GABAA receptor numbers or conductance at functional synapses.

  11. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current.

    Science.gov (United States)

    Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L; Pijnappels, Daniël A; Panfilov, Alexander V

    2016-06-01

    Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities.

  12. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    Science.gov (United States)

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  13. Prenatal iodine deficiency results in structurally and functionally immature lungs in neonatal rats.

    Science.gov (United States)

    Godbole, Madan M; Rao, Geeta; Paul, B N; Mohan, Vishwa; Singh, Preeti; Khare, Drirh; Babu, Satish; Nath, Alok; Singh, P K; Tiwari, Swasti

    2012-05-15

    Maternal hypothyroidism affects postnatal lung structure. High prevalence of hypothyroxinemia (low T4, normal T3) in iodine-deficient pregnant women and associated risk for neuropsychological development along with high infant/neonatal mortality ascribed to respiratory distress prompted us to study the effects of maternal hypothyroxinemia on postnatal lung development. Female Sprague Dawley rats were given a low-iodine diet (LID) with 1% KClO(4) in drinking water for 10 days, to minimize thyroid hormone differences. Half of these rats were continued on iodine-deficient diet; ID (LID with 0.005% KClO(4)) for 3 mo, whereas the rest were switched to an iodine-sufficient diet; IS [LID + potassium iodide (10 μg iodine/20 g of diet + normal drinking water)]. Pups born to ID mothers were compared with age-matched pups from IS mothers at postnatal days 8 (P8) and 16 (P16) (n = 6-8/group). ID pups had normal circulating T3 but significantly low T4 levels (P factor-1 and SP-D were significantly higher (3-fold) compared with IS pups. At P16, significantly lower levels of SP-B and SP-C found in ID pups may be responsible for immature lung development and reduced lung compliance. Our data suggest that maternal hypothyroxinemia may result in the development of immature lungs that, through respiratory distress, could contribute to the observed high infant mortality in ID neonates.

  14. Reduced Renshaw Recurrent Inhibition after Neonatal Sciatic Nerve Crush in Rats

    Directory of Open Access Journals (Sweden)

    Liang Shu

    2014-01-01

    Full Text Available Renshaw recurrent inhibition (RI plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S and medial gastrocnemius (MG motor pools was assessed by conditioning monosynaptic reflexes (MSR elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.

  15. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Jantzie, Lauren L; Todd, Kathryn G

    2010-01-01

    Neonatal hypoxia-ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10mg/kg) or vehicle immediately before HI (n >or= 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1Beta (IL-1Beta) and tumour necrosis factor-alpha (TNF-alpha); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Our study investigates "acute" neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury.

  16. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    Science.gov (United States)

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  17. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Martin

    Full Text Available Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N₂, 5 min on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence. We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.

  18. Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats

    DEFF Research Database (Denmark)

    Secher, Thomas; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The FGL peptide is a neural cell adhesion molecule-derived fibroblast growth factor receptor agonist. FGL has both neurotrophic and memory enhancing properties. Neonatal phencyclidine (PCP) treatment on postnatal days 7, 9, and 11 has been shown to result in long-lasting behavioral abnormalities......, including cognitive impairment relevant to schizophrenia. The present study investigated the effect of FGL on spatial learning and memory deficits induced by neonatal PCP treatment. Rat pups were treated with 30mg/kg PCP on postnatal days 7, 9, and 11. Additionally, the rats were subjected to a chronic FGL...... treatment regimen where FGL was administered throughout development. Rats were tested as adults for spatial reference memory, reversal learning, and working memory in the Morris water maze. The PCP-treated rats demonstrated a robust impairment in working memory and reversal learning. However, the long...

  19. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    Science.gov (United States)

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  20. Alteration of conditioned emotional response and conditioned taste aversion after neonatal ventral hippocampus lesions in rats.

    Science.gov (United States)

    Angst, Marie-Josée; Macedo, Carlos Eduardo; Guiberteau, Thierry; Sandner, Guy

    2007-04-27

    Sprague-Dawley rats were submitted to bilateral ventral hippocampus lesions 7 days after birth according to the Lipska and Weinberger's procedure for modeling schizophrenia. The aim of the present work was to better characterize their learning capacity. A double latent inhibition study was conducted using respectively conditioned taste aversion and conditioned emotional response. In the background of this evaluation, locomotion under apomorphine and startle reactions, inhibited or not by prepulses, was also evaluated. Our experimental methods were the same as those used in previous studies from the laboratory which were found to be sensitive to pharmacological manipulations and shown by others to be unaffected by lesions of the ventral hippocampus carried out in adult rats. In contrast, neonatally lesioned rats, once adults (over 60 days old), were hyper-responsive to noise--i.e., the startle response to a 105 db(A) noise pulse was enhanced--and hyperactive under apomorphine (0.7 mg/kg). The prepulse inhibition properties of the startle remained unchanged. Lesioned rats showed a deficit but not a suppression of conditioning, similar in both tests, but latent inhibition was preserved. Such observations complement the already known memory deficit produced in this neurodevelopmental model of schizophrenia.

  1. Neonatal DSP-4 treatment modifies GABAergic neurotransmission in the prefrontal cortex of adult rats.

    Science.gov (United States)

    Bortel, Aleksandra; Nowak, Przemyslaw; Brus, Ryszard

    2008-01-01

    N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a noradrenergic neurotoxin which selectively damages noradrenergic projections originating from the locus coeruleus (LC). DSP-4 treatment of rats on the first and third days after birth produces a long-lasting lesion of noradrenergic neurons in the prefrontal cortex (PFC). In DSP-4-lesioned rats, studied as adults, we observed a decrease in norepinephrine content, with no significant change in the levels of dopamine, 5-hydroxytryptamine, and gamma-aminobutyric acid (GABA). There is now a well established interaction between noradrenergic and GABAergic systems, whereby the noradrenergic system is involved in the regulation of basal GABA release, while GABAergic neurons simultaneously exert tonic inhibitory regulation of LC norepinephrine neurons. We examined GABAergic neurotransmission in the norepinephrine-denervated PFC for a better appreciation of the interaction between these two systems. Treatment with the GABA transaminase inhibitor vigabatrine (VGB) increased the GABA level of PFC (tissue content) in both intact and lesioned groups. Additionally, VGB increased extracellular GABA concentration in the PFC in both control and DSP-4-lesioned animals, but the elevation of GABA was 2-fold higher in DSP-4 lesioned rats. These findings indicate that neonatal DSP-4 treatment increases GABAergic neurotransmission in the PFC of rats in adulthood, perhaps by decreasing reactivity of central GABA(A) receptors.

  2. Neonatally Induced Mild Diabetes in Rats and Its Effect on Maternal, Placental, and Fetal Parameters

    Directory of Open Access Journals (Sweden)

    Yuri Karen Sinzato

    2012-01-01

    Full Text Available The aim of this study was to assess placental changes and reproductive outcomes in neonatally induced mild diabetic dams and fetal development in their offspring. At birth, female rats were assigned either to control or diabetic group (100 mg of streptozotocin/Kg, subcutaneously. At adulthood, the female rats were mated. During pregnancy, the blood glucose levels and glucose and insulin tolerance tests were performed. At term, maternal reproductive outcomes, fetal and placental weight, and placental morphology were analyzed. Diabetic rats had smaller number of living fetuses, implantations and corpora lutea, and increased rate of embryonic loss. Placenta showed morphometric alterations in decidua area. Our results showed that mild diabetes was sufficient to trigger alterations in maternal organism leading to impaired decidua development contributing to failure in embryonic implantation and early embryonic losses. Regardless placental decidua alteration, the labyrinth, which is responsible for the maternal-fetal exchanges, showed no morphometric changes contributing to an appropriate fetal development, which was able to maintain normal fetal weight at term in mild diabetic rats. Thus, this experimental model of diabetes induction at the day of birth was more effective to reproduce the reproductive alterations of diabetic women.

  3. Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Di Liang; Yuan-Yuan Guo; Ming Sun; Ying Ding; Ning Wang; Li Yuan; Wei De

    2011-01-01

    AIM: To investigate the mechanism behind β-cell regeneration in neonatal rat pancreas treated with streptozotocin (STZ).METHODS: Neonatal Sprague Dawley rats were intraperitoneally injected with 70 mg/kg STZ. Body weight,pancreas weight and blood glucose were recorded every two days after the treatment. To identify the expression and location of transcription factors in the rat pancreas,double immunofluorescent staining was performed using antibodies to specific cell markers and transcription factors.RESULTS: Expression of Neurogenin 3 (Ngn3), a marker for endocrine precursor cells, was observed by immunofluorescence in a few β-cells and many α-cells. The expression reached a peak 12 d after treatment. Pax4,a transcription factor that lies downstream of Ngn3 and plays an important role in β-cell differentiation, was also expressed in the α-cells of STZ-treated rats. We did not observe significant changes in Nkx6.1, which is essential for β-cell maturation in the treated rats.CONCLUSION: α-cells dedifferentiated into endocrine precursor cells and acquired the ability to dedifferentiate in the neonatal rat pancreas after STZ treatment.

  4. Acute desensitization of presynaptic GABA(B)-mediated inhibition and induction of epileptiform discharges in the neonatal rat hippocampus

    NARCIS (Netherlands)

    Tosetti, P; Bakels, R; Colin-Le Brun, [No Value; Ferrand, N; Gaiarsa, JL; Caillard, O

    2004-01-01

    The consequences of sustained activation of GABA(B) receptors on GABA(B)-mediated inhibition and network activity were investigated in the neonatal rat hippocampus using whole-cell and extracellular field recordings. GABA(B)-mediated presynaptic control of gamma-aminobutyric acid (GABA) release prog

  5. Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hanna Ventola; Liisa Lehtoranta; Mari Madetoja; Marja-Leena Simonen-Tikka; Leena Maunula; Merja Roivainen; Riitta Korpela; Reetta Holma

    2012-01-01

    AIM:To study the effects of live and dead Lactobacillus rhamnosus GG (GG) on rotavirus infection in a neonatal rat model.METHODS:At the age of 2 d,suckling Lewis rat pups were supplemented with either live or dead GG and the treatment was continued daily throughout the experiment.At the age of 5 and 6 d the pups received oral rotavirus (RV) SA-11 strain.The pups were sacrificed at the age of 7 or 8 d by decapitation.The gastrointestinal tract was removed and macroscopic observations were done.The consistency of feces in the colon was classified using a four-tier system.RV was detected from the plasma,small intestine,colon and feces by real-time quantitative polymerase chain reaction (PCR).RESULTS:In this neonatal rat model,RV induced a mild-to-moderate diarrhea in all except one pup of the RV-inoculated rats.RV moderately reduced body weight development from day 6 onwards.On day 7,after 2 d of RV infection,live and dead GG groups gained significantly more weight than the RV group without probiotics [36% (P =0.001) and 28% (P =0.031),respectively].In addition,when compared with the RV control group,both live and dead GG reduced the weight ratio of colon/animal body weight to the same level as in the healthy control group,with reductions of 22% (P=0.002) and 28% (P < 0.001),respectively.Diarrhea increased moderately in both GG groups.However,the diarrhea incidence and severity in the GG groups were not statistically significantly different as compared with the RV control group.Moreover,observed diarrhea did not provoke weight loss or death.The RV control group had the largest amount of RV PCR-positive samples among the RV-infected groups,and the live GG group had the smallest amount.Rats receiving live GG had significantly less RV in the colon (P =0.027) when compared with the RV control group.Live GG was also more effective over dead GG in reducing the quantity of RV from plasma (P =0.047).CONCLUSION:Both live and dead GG have beneficial effects in RV

  6. Development of UDP-glucuronosyltransferase activity toward digitoxigenin-monodigitoxoside in neonatal rats.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1985-01-01

    Glucuronidation is low or undetectable in embryonic and early fetal tissues and changes to adult levels at rates depending on the acceptor, tissue, and species. Because other data indicate there may be a specific UDP-glucuronosyltransferase (GT) in the liver of adult rats that glucuronidates digitoxigenin-monodigitoxoside (DIG), the development of GT activity in neonatal rats toward DIG was compared with that of other acceptors. Conjugation of p-nitrophenol and 1-naphthol was higher at birth and decreased to adult levels by 20 days of age. Glucuronidation of chloramphenicol, morphine, valproic acid, and bilirubin increased from birth to adult activity by 20 days of age. Conjugation of phenolphthalein, estrone, and diethylstilbestrol was low in 1-day-old rats and higher than adult in 20-day-old animals. In contrast, glucuronidation of DIG was barely detectable (9% of adult) in 20-day-old rats. The concentration of UDP-glucuronic acid was 50% of adult levels at birth and increased to adult values by 10 days of age. Administration of 3-methylcholanthrene on days 6 to 9 after birth significantly stimulated GT activity toward 1-naphthol, p-nitrophenol, and morphine, whereas phenobarbital precociously increased conjugation of chloramphenicol, valproic acid, morphine, and diethylstilbestrol. Pregnenolone-16 alpha-carbonitrile enhanced the development of GT activity toward morphine, chloramphenicol, valproic acid, bilirubin, diethylstilbestrol, and estrone. Glucuronidation of DIG was not increased after 3-methylcholanthrene or phenobarbital, but could be induced after pregnenolone-16 alpha-carbonitrile to 7% of adult values in 10-day-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats.

    Science.gov (United States)

    Thomas, Roshni Baby; Joy, Shilpa; Ajayan, M S; Paulose, C S

    2013-11-01

    Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.

  8. Effects of neonatal fluoxetine exposure on behavior across development in rats selectively bred for an infantile affective trait.

    Science.gov (United States)

    Zimmerberg, Betty; Germeyan, Sierra C

    2015-03-01

    Infants born to women with depressive symptoms are at higher risk for insecure attachment and behavioral problems. Thus current medical practice is to continue psychotropic medication of pregnant women with depression despite concerns about its behavioral teratology. There are few animal studies focused on long-term behavioral effects of prenatal antidepressant exposure; in addition, studies have not looked at individual differences in baseline affective state as a source of response variability. In this study, fluoxetine, a selective serotonin reuptake inhibitor (SSRI), was administered to male and female rat pups from postnatal days 2-7 to model exposure to antidepressants in the human third trimester. Four behavioral measures were conducted from the neonatal to adult age periods in Low and High lines selectively bred for their rate of ultrasonic vocalizations after brief maternal separation. Neonatal fluoxetine administration decreased distress calls in both lines, but to a greater extent in High line rats than Low line. Neonatal fluoxetine also impaired motor coordination in neonates. Neonatal fluoxetine administration decreased social behavior in both juvenile and adult subjects. Fluoxetine-related reductions in anxiety behavior were not observed at the two older ages. As expected, High line subjects displayed more anxiety behavior than Low line subjects at all three test ages. These results suggest that there are may be significant behavioral consequences of antidepressant use during late pregnancy on offspring maternal attachment and social behavior, with implications for increased risk of autism spectrum disorders.

  9. Noradrenergic Modulation of Intrinsic and Synaptic Properties of Lumbar Motoneurons in the Neonatal Rat Spinal Cord

    Science.gov (United States)

    Tartas, Maylis; Morin, France; Barrière, Grégory; Goillandeau, Michel; Lacaille, Jean-Claude; Cazalets, Jean-René; Bertrand, Sandrine S.

    2009-01-01

    Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a KIR like current. Methoxamine (α1), clonidine (α2) and isoproterenol (β) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (α1), yohimbine (α2) and propranolol (β). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic α1 and β receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord. PMID:20300468

  10. Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord

    Directory of Open Access Journals (Sweden)

    Maylis Tartas

    2010-03-01

    Full Text Available Although it is known that noradrenaline powerfully controls spinal motor networks, few data are available regarding the noradrenergic modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of noradrenergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of noradrenaline and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. Noradrenaline increases the motoneuron excitability partly via the inhibition of a KIR like current. Methoxamine (α1, clonidine (α2 and isoproterenol (β differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (α1, yohimbine (α2 and propranolol (β. We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by noradrenaline, methoxamine and isoproterenol. On the other hand, noradrenaline, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic α1 and β receptor activation. Our data thus show that the noradrenergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.

  11. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    Science.gov (United States)

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  12. The Investigation of Garlic (Allium Sativum Extract on Lead Detoxification of Neonatal Rats Kidney

    Directory of Open Access Journals (Sweden)

    Habibollah Johari

    2014-06-01

    in kidney poisoning treatment induced by lead in neonatal rat.Materials & Methods: Rats were divided into 7 groups of 8. The First group was the control group, which had received no materials. The second group had received 0/1 ml distilled water, the third group had received the lead with a dose of 0/6 gram per liter. The forth group had just received 0/4 g/kg garlic alcoholic – water extract. The fifth, sixth, and seventh group had first received 0/6 g lead perliter and then received doses of 0/1, 0/2, 0/4 g/kg garlic. Then, injections was performed orally in 10 consecutive days. The data were analysed then using T. Results: Based on the obtained results, there is a significant increase in the body weight and the kidney of the third, fifth, sixth and seventh groups compared with the control group. However, the body weight and kidney of rats in the fourth group showed a meaningful decrease comparing with the lead group. Regarding the third group, there was a meaningful increase in Urea, uric acid, creatinine and potassium compared with the control group but a significant decrease in the sodium. Conclusion: Protective effects of garlic on kidney are related to antioxidant properties, since different types of oxidation reactions have negative effects on glomerular filtration rate. Garlic is eliminating the poisoning effect of lead on the kidney because of having properties such as antioxidant and protective effect.

  13. Alterations to prepulse inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid and social isolation rearing.

    Science.gov (United States)

    Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A

    2016-02-01

    Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems.

  14. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.

    Science.gov (United States)

    Hartley, Stephen W; Coon, Steven L; Savastano, Luis E; Mullikin, James C; Fu, Cong; Klein, David C

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology.

  15. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.

    Directory of Open Access Journals (Sweden)

    Stephen W Hartley

    Full Text Available The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001 on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction. Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX or decentralization (DCN of the superior cervical ganglia (SCG, which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35% following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell

  16. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    Science.gov (United States)

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  17. Neonatal RU-486 (mifepristone) exposure increases androgen receptor immunoreactivity and sexual behavior in male rats.

    Science.gov (United States)

    Forbes-Lorman, Robin; Auger, Anthony P; Auger, Catherine J

    2014-01-16

    Progesterone and progestin receptors (PRs) are known to play a role in the development of brain physiology and behavior in many different species. The distribution and regulation of PRs within the developing brain suggest that they likely contribute to the organization of the brain and behavior in a sex-specific manner. We examined the role of PR signaling during development on the organization of adult sexual behavior and androgen receptor (AR) expression in the brain. We administered the PR antagonist, RU-486, subcutaneously to male and female rats on postnatal days 1-7 (0=day of birth) and examined adult sexual behavior and AR-immunoreactivity (AR-ir) in the adult brain. A typical sex difference in lordosis quotient (LQ) was observed and neonatal RU-486 treatment did not alter this behavior. In contrast, neonatal RU-486 treatment increased adult male sexual behavior and AR-ir in several brain areas in males. These data indicate that a transient disruption in PR signaling during development can have lasting consequences on the male brain and may increase male sexual behavior in part by increasing AR expression, and therefore androgen sensitivity, in adulthood.

  18. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord.

    Science.gov (United States)

    Inácio, Ana R; Nasretdinov, Azat; Lebedeva, Julia; Khazipov, Roustem

    2016-10-07

    Early stages of sensorimotor system development in mammals are characterized by the occurrence of spontaneous movements. Whether and how these movements support correlated activity in developing sensorimotor spinal cord circuits remains unknown. Here we show highly correlated activity in sensory and motor zones in the spinal cord of neonatal rats in vivo. Both during twitches and complex movements, movement-generating bursts in motor zones are followed by bursts in sensory zones. Deafferentation does not affect activity in motor zones and movements, but profoundly suppresses activity bursts in sensory laminae and results in sensorimotor uncoupling, implying a primary role of sensory feedback in sensorimotor synchronization. This is further supported by largely dissociated activity in sensory and motor zones observed in the isolated spinal cord in vitro. Thus, sensory feedback resulting from spontaneous movements is instrumental for coordination of activity in developing sensorimotor spinal cord circuits.

  19. The Specific Protein Kinase R (PKR) Inhibitor C16 Protects Neonatal Hypoxia-Ischemia Brain Damages by Inhibiting Neuroinflammation in a Neonatal Rat Model

    Science.gov (United States)

    Xiao, Jinglei; Tan, Yongchang; Li, Yinjiao; Luo, Yan

    2016-01-01

    Background Brain injuries induced by hypoxia-ischemia in neonates contribute to increased mortality and lifelong neurological dysfunction. The specific PKR inhibitor C16 has been previously demonstrated to exert a neuroprotective role in adult brain injuries. However, there is no recent study available concerning its protective role in hypoxia-ischemia-induced immature brain damage. Therefore, we investigated whether C16 protects against neonatal hypoxia-ischemia injuries in a neonatal rat model. Material/Methods Postnatal day 7 (P7) rats were used to establish classical hypoxia-ischemia animal models, and C16 postconditioning with 100 ug/kg was performed immediately after hypoxia. Western blot analysis was performed to quantify the phosphorylation of the PKR at 0 h, 3 h, 6 h, 12 h, 24 h, and phosphorylation of NF-κB 24h after hypoxia exposure. The TTC stain for infarction area and TUNEL stain for apoptotic cells were assayed 24 h after the brain hypoxia. Gene expression of IL-1β, IL-6, and TNF-α was performed at 3 h, 6 h, 12 h, and 24 h. Results The level of PKR autophosphorylation was increased dramatically, especially at 3 h (C16 group vs. HI group, P<0.01). Intraperitoneal C16 administration reduced the infarct volume and apoptosis ratio after this insult (C16 group vs. HI group<0.01), and C16 reduced proinflammatory cytokines mRNA expression, partly through inhibiting NF-κB activation (C16 group vs. HI group<0.05). Conclusions C16 can protect immature rats against hypoxia-ischemia-induced brain damage by modulating neuroinflammation. PMID:28008894

  20. SOMATIC VERSUS DENDRITIC RESPONSES TO HYPERCAPNIA IN CHEMOSENSITIVE LOCUS COERULEUS NEURONS FROM NEONATAL RATS

    Science.gov (United States)

    Ritucci, Nick A.; Dean, Jay B.; Putnam, Robert W.

    2005-01-01

    Cardiorespiratory control is mediated in part by central chemosensitive neurons that respond to increased CO2 (hypercapnia). Activation of these neurons is believed to involve hypercapnia-induced decreases in intracellular pH (pHi). All previous measurements of hypercapnia-induced pHi changes in chemosensitive neurons have been made from the soma, but chemosensitive signaling could be initiated in the dendrites of these neurons. In this study, membrane potential (Vm) and pHi were measured simultaneously in chemosensitive locus coeruleus (LC) neurons from neonatal rat brainstem slices using whole-cell pipettes and the pH-sensitive fluorescent dye pyranine. We measured pHi from the soma as well as from primary dendrites to a distance of 160 μm from the edge of the soma. Hypercapnia (15% CO2, pHo 7.00; control: 5% CO2, pHo 7.45) resulted in an acidification of similar magnitude in dendrites and soma (about 0.26 pH unit), but that was faster in the more distal regions of the dendrites. Neither the dendrites nor the soma exhibited pHi recovery during hypercapnia-induced acidification, but both regions contain pH-regulating transporters since they exhibit pHi recovery from an NH4Cl prepulse-induced acidification (at constant pHo 7.45). Exposing a portion of the dendrites to hypercapnic solution did not increase firing rate, but exposing the soma to hypercapnic solution resulted in a near maximal increase in firing rate. These data show that while the pHi response to hypercapnia is similar in the dendrites and soma, somatic exposure to hypercapnia plays a major role in the activation of chemosensitive LC neurons from neonatal rats. PMID:16014703

  1. Protective effect of polydatin on learning and memory impairments in neonatal rats with hypoxic‑ischemic brain injury by up‑regulating brain‑derived neurotrophic factor.

    Science.gov (United States)

    Sun, Jin; Qu, Yunxia; He, Huiming; Fan, Xiaolei; Qin, Yuanhua; Mao, Weifeng; Xu, Lixin

    2014-12-01

    Polydatin is a key component of Polygonum cuspidatum, a herb with medical and nutritional value. The present study investigated the protective effect of polydatin against learning and memory impairment in neonatal rats with hypoxic‑ischemic brain injury (HIBI). The unilateral common carotid artery ligation method was used to generate neonatal HIBI rats. Y‑maze testing revealed that rats with HIBI exhibited memory impairment, while rats with HIBI treated with polydatin displayed enhanced long‑term learning and memory. Of note, polydatin was found to upregulate the expression of hippocampal brain‑derived neurotrophic factor (BDNF) in rats with HIBI. BDNF has a role in protecting HIBI‑induced brain tissue injury and alleviating memory impairment. These findings showed that polydatin had a protective effect against learning and memory impairment in neonatal rats with HIBI and that the protective effect may be mediated through the upregulation of BDNF.

  2. Upregulation of Shh and Ptc1 in hyperoxia‑induced acute lung injury in neonatal rats.

    Science.gov (United States)

    Dang, Hongxing; Wang, Shaohua; Yang, Lin; Fang, Fang; Xu, Feng

    2012-08-01

    The aim of the present study was to observe the expression of sonic hedgehog (Shh) and Ptc signaling molecules in the lungs of newborn rats exposed to prolonged hyperoxia, and to explore the role of the SHH signaling pathway in hyperoxia‑induced lung injury. Newborn Sprague-Dawley rat pups were placed in chambers containing room air or oxygen above 95% for 14 days following birth. The rats were sacrificed after 3, 7 or 14 days and their lungs were removed. Sections were fixed and subjected to hematoxylin and eosin (H&E) staining. Shh and Ptc1 were quantitated by immunohistochemistry. The total RNA and protein were also extracted from lung tissue; real-time PCR (RT-PCR) and western blot analysis were utilized to assess the mRNA and protein expression of Shh and Ptc1. H&E staining demonstrated significant histomorphological changes in the hyperoxia‑exposed lungs at 3, 7 and 14 days of age. The results of the immunohistochemistry, RT-PCR and western blot analysis demonstrated that the expression of Shh was significantly higher in the hyperoxia-exposed lungs at 3, 7 and 14 days, while Ptc1 was significantly elevated at 7 and 14 days. Exposure of the neonatal rat lung to prolonged hyperoxia resulted in acute lung injury and histomorphological changes. Shh and Ptc1 were upregulated in a time-dependent manner in the course of hyperoxia-induced lung injury. The SHH signal pathway may be involved in the pathogenesis of hyperoxia-induced lung injury. This is the first evidence that in vivo hyperoxia induces activation of the SHH signal transduction pathway in newborn lung.

  3. Ketamine analgesia for inflammatory pain in neonatal rats: a factorial randomized trial examining long-term effects

    Directory of Open Access Journals (Sweden)

    Bhutta Adnan T

    2008-08-01

    Full Text Available Abstract Background Neonatal rats exposed to repetitive inflammatory pain have altered behaviors in young adulthood, partly ameliorated by Ketamine analgesia. We examined the relationships between protein expression, neuronal survival and plasticity in the neonatal rat brain, and correlated these changes with adult cognitive behavior. Methods Using Western immunoblot techniques, homogenates of cortical tissue were analyzed from neonatal rats 18–20 hours following repeated exposure to 4% formalin injections (F, N = 9, Ketamine (K, 2.5 mg/kg × 2, N = 9, Ketamine prior to formalin (KF, N = 9, or undisturbed controls (C, N = 9. Brain tissues from another cohort of rat pups (F = 11, K = 12, KF = 10, C = 15 were used for cellular staining with Fos immunohistochemistry or FluoroJade-B (FJB, followed by cell counting in eleven cortical and three hippocampal areas. Long-term cognitive testing using a delayed non-match to sample (DNMS paradigm in the 8-arm radial maze was performed in adult rats receiving the same treatments (F = 20, K = 24, KF = 21, C = 27 in the neonatal period. Results Greater cell death occurred in F vs. C, K, KF in parietal and retrosplenial areas, vs. K, KF in piriform, temporal, and occipital areas, vs. C, K in frontal and hindlimb areas. In retrosplenial cortex, less Fos expression occurred in F vs. C, KF. Cell death correlated inversely with Fos expression in piriform, retrosplenial, and occipital areas, but only in F. Cortical expression of glial fibrillary acidic protein (GFAP was elevated in F, K and KF vs. C. No significant differences occurred in Caspase-3, Bax, and Bcl-2 expression between groups, but cellular changes in cortical areas were significantly correlated with protein expression patterns. Cluster analysis of the frequencies and durations of behaviors grouped them as exploratory, learning, preparatory, consumptive, and foraging behaviors. Neonatal inflammatory pain exposure reduced exploratory behaviors in adult

  4. Effects of Angiotensin Ⅱ on Expression of the Gap Junction Channel Protein Connexin 43 in Neonatal Rat Ventricular Myocytes

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Wei Wu

    2007-01-01

    To study the effects of angiotensin Ⅱ,as a mediator of cardiac hypertrophy,on expression of connexin 43 (Cx43) in cultured neonatal rat ventricular myocytes and correlation of expression of Cx43 and cardiomyocyte hypertrophy.Methods Cardiomyocytes were isolated from newborn SD rats.Angiotensin Ⅱ was added into the media to induce myocyte hypertrophy.Cultures were exposed to 10 ~6 mol/L angiotensin Ⅱ for 72 h,Cx43 expression was characterized by RT-PCR and Immunofluorescence methods.Results Immunofluorescence analysis revealed decreased Cx43 immunoreactivity in cells treated for 72 h with angiotensin Ⅱ.RT-PCR analysis demonstrated there was an obvious decrease of Cx43 mRNA level in cells exposed to angiotensin Ⅱ for 72 h.The changes of expression of connexin 43 were related to its entrance into S phase of the cell cycle.Cultured neonatal rat cardiomyocytes were exposed for 72 h to increase concentrations of angiotensin Ⅱ ( 1.0 × 10-9 ~ 1.0 × 10-6mol/L),resulting in significantly decreased Cx43 expression.Conclusions Angiotensin Ⅱ leads to a concentration-dependent decrease in Cx43 protein in cultured neonatal rat ventricular myocytes by decreasing Cx43 mRNA synthesis.Signal transduction pathways activated by angiotensin Ⅱ under pathophysiologic conditions of cardiac hypertrophy could initiate remodeling of gap junctions.

  5. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  6. [Expression of HoxB5, SPC and AQP5 in neonatal rats with hyperoxia-induced chronic lung disease].

    Science.gov (United States)

    Xu, Wei; Fu, Jian-Hua; Xue, Xin-Dong

    2009-01-01

    Alveolar epithelium impairment is one of pathological changes associated with chronic lung disease (CLD). Hoxb5 is one of the few homeobox genes strongly expressed in the developing lung. This study investigated the expression of HoxB5, SPC and AQP5 in rats with CLD in order to explore the role of Hoxb-5 in impairment and reparation of alveolar epithelium. Eighty neonatal rats were randomly exposed to hyperoxia (model group) or to room air (control group) (n=40 each). The CLD model was induced by hyperoxia exposure. The expression of HoxB5, SPC and AQP5 protein and mRNA in the lung tissue was detected by immunohistochemistry and RT-PCR 1, 3, 7, 14 and 21 days after exposure. In the model group HoxB5 expression significantly decreased 7, 14 and 21 days after hyperoxia exposure. SPC expression decreased 3 days after hyperoxia exposure but increased significantly 7, 14 and 21 days after hyperoxia exposure as compared to the control group. AQP5 expression was progressively reduced with prolonged hyperoxia exposure. Hyperoxia exposure may lead to alveolar epithelial cell (AEC) damage in neonatal rats. The increased SPC expression and decreased AQP5 expression suggested that the ability of differentiation and transformation of AECII into AECI decreased in neonatal rats with CLD. The decreased HoxB5 expression following hyperoxia exposure might contribute to a decreased ability of differentiation of AECII.

  7. Resveratrol ameliorates hypoxia/ischemia-induced brain injury in the neonatal rat via the miR-96/Bax axis.

    Science.gov (United States)

    Bian, Hongen; Shan, Haijun; Chen, Tuanying

    2017-07-18

    This study was aimed to investigate the mechanism of resveratrol on amelioration of hypoxia/ischemia (H/I)-induced brain injury. The RT-PCR and western blot were used to detect the mRNA and protein expressions, respectively. The PC12 cell induced by OGD/R was as in vitro H/I brain injury model. The luciferase reporter assay was used to prove the relationship between Bax and miR-96, and the cell apoptosis was detected by MTT assay. The loss of MBP+ area in neonatal rats analyzed by immunohistochemistry was to evaluate the extent of brain injury. The miR-96 expression was decreased in the hippocampus and cerebral cortex of neonatal rats with H/I brain injury and the oxygenglucose deprivation/re-oxygenation (OGD/R)-induced PC12 cell, while Bax expression was opposite. And then the H/I rats and OGD/R-induced PC12 cell were treated with resveratrol (RSV); the results showed that the RSV could reverse the miR-96 and Bax expressions. Next, the luciferase reporter assay proved that Bax was a target of miR-96. We used the miR-96 inhibitor to suppress miR-96 expression in OGD/R-induced PC12 cell, and found that RSV regulated Bax expression and prevented OGD/R-induced PC12 cell apoptosis via miR-96. In addition, the immunohistochemistry was used to analyze the loss of MBP+ area in neonatal rats, and the result showed that the RSV significantly reduced the brain damage, increased miR-96 expression, and decreased Bax expression, while inhibition of miR-96 aggravated the brain damage and reversed the effect of RSV. Resveratrol ameliorates hypoxia/ischemia-induced brain injury in neonatal rat via the miR-96/ Bax axis.

  8. Vasoactive intestinal peptide can promote the development of neonatal rat primordial follicles during in vitro culture.

    Science.gov (United States)

    Chen, Niannian; Li, Yu; Wang, Wenjun; Ma, Yun; Yang, Dongzi; Zhang, Qingxue

    2013-01-01

    Recruitment of primordial follicles is essential for female fertility. Some of the intraovarian growth factors involved in the initiation of primordial follicle growth have been identified, but the exact mechanisms regulating follicle activation are poorly understood. Strong evidence indicates that vasoactive intestinal peptide (VIP), a neuropeptide found in ovarian nerves, plays a role in the physiology of follicle development and function. The aim of the present study was to determine whether VIP might regulate the activation and growth of neonatal rat primordial follicles in an in vitro culture system. Ovaries from 4-day-old rats were cultured for 14 days in medium containing 10(-7) M VIP. At the end of the culture, the developmental stages and viability of the follicles were evaluated using histological sections. Immunohistochemistry studies for proliferating cell nuclear antigen (PCNA) were performed to assess the mitotic activity of granulosa cells. In addition, the expression level of kit ligand (KL) mRNA was examined after culture. Histology showed that primordial follicles could survive and start to grow in vitro. The proportion of primordial follicles was decreased and the proportion of early primary follicles increased after in vitro culture with VIP. Immunolocalization of PCNA showed that follicle growth was initiated after VIP treatment. The expression level of KL mRNA was increased in the VIP treatment group. Thus, VIP can promote primordial follicle development, possibly mediated in part through upregulating the expression of KL.

  9. Autoantibody against Cardiac β1-Adrenoceptor Induces Apoptosis in Cultured Neonatal Rat Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yan GAO; Hui-Rong LIU; Rong-Rui ZHAO; Jian-Ming ZHI

    2006-01-01

    To clarify whether apoptosis is involved in the injury processes induced by autoantibody against cardiac β1-adrenoceptor, we investigated the biological and apoptotic effects of antibodies on cultured neonatal rat cardiomyocytes. Wistar rats were immunized with peptides corresponding to the second extracellular loop of the β1-adrenoceptor to induce the production of anti-β1-adrenoceptor antibodies in the sera.Immunoglobulin (Ig) G in the sera was detected using synthetic antigen enzyme-linked immunosorbent assay and purified using the diethylaminoethyl cellulose ion exchange technique. Apoptosis of cardiomyocytes was evaluated using agarose gel electrophoresis and flow cytometry. Our results showed that the positive serum IgG greatly increased the beating rates of cardiomyocytes and showed an "agonist-like" activity. Furthermore, positive serum IgG induced cardiomyocyte apoptosis after treatment with β1adrenoceptor overstimulation for 48 h. The effects of monoclonal antibody against β1-adrenoceptor were also found to be similar to those of positive serum IgG. It was suggested that the autoantibody could induce cardiomyocyte apoptosis by excessive stimulation of β1-adrenoceptor.

  10. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Paul Olivier

    Full Text Available OBJECTIVE: To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. METHODS: A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P 3. RESULTS: Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive, suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. INTERPRETATION: These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults.

  11. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  12. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats

    Science.gov (United States)

    Wang, Lei; Ke, Jun; Li, Yong; Ma, Qinyi; Dasgupta, Chiranjib; Huang, Xiaohui; Zhang, Lubo; Xiao, DaLiao

    2017-01-01

    Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress. PMID:28123348

  13. Temporal changes of oxidative stress markers in Escherichia coli K1-induced experimental meningitis in a neonatal rat model.

    Science.gov (United States)

    Giridharan, Vijayasree V; Simões, Lutiana R; Dagostin, Valdemira S; Generoso, Jaqueline S; Rezin, Gislaine T; Florentino, Drielly; Muniz, Jhonata P; Collodel, Allan; Petronilho, Fabricia; Quevedo, Joao; Barichello, Tatiana

    2017-07-13

    Despite advances in antimicrobial therapy and advanced critical care neonatal bacterial meningitis has a mortality rate of over 10% and induces neurological sequelae in 20-50% of cases. Escherichia coli K1 (E. coli K1) is the most common gram-negative organism causing neonatal meningitis and is the second most common cause behind group B streptococcus. We previously reported that an E. coli K1 experimental meningitis infection in neonatal rats resulted in habituation and aversive memory impairment and a significant increase in cytokine levels in adulthood. In this present study, we investigated the oxidative stress profile including malondialdehyde (MDA) levels, carbonyl protein formation, myeloperoxidase activity (MPO) activity, superoxide dismutase (SOD) activity and catalase (CAT) activity 6, 12, 24, 48, 72 and 96h after E. coli K1 experimental meningitis infection. In addition, sulfhydryl groups, nitrite and nitrate levels and activity of the mitochondrial respiratory chain enzymes were also measured in the frontal cortex and hippocampus of neonatal rats. The results from this study demonstrated a significant increase in MDA, protein carbonyls and MPO activity and a simultaneous decrease in SOD activity in the hippocampus of the neonatal meningitis survivors but the same was not observed in frontal cortex. In addition, we also observed a significant increase in complex IV activity in the hippocampus and frontal cortex of meningitis survivor rats. Thus, the results from this study reaffirmed the possible role of oxidative stress, nitric oxide and its related compounds in the complex pathophysiology of E. coli K1-induced bacterial meningitis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  15. Muscle protein metabolism in neonatal alloxan-administered rats: effects of continuous and intermittent swimming training

    Directory of Open Access Journals (Sweden)

    Ribeiro Carla

    2012-02-01

    Full Text Available Abstract Background This study aimed to examine the effects of intermittent and continuous swimming training on muscle protein metabolism in neonatal alloxan-administered rats. Methods Wistar rats were used and divided into six groups: sedentary alloxan (SA, sedentary control (SC, continuous trained alloxan (CA, intermittent trained alloxan (IA, continuous trained control (CC and intermittent trained control (IC. Alloxan (250 mg/kg body weight was injected into newborn rats at 6 days of age. The continuous training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 5% of body weight; uninterrupted swimming for 1 h/day, five days a week. The intermittent training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 15% of body weight; 30 s of activity interrupted by 30 s of rest for a total of 20 min/day, five days a week. Results At 28 days, the alloxan animals displayed higher glycemia after glucose overload than the control animals. No differences in insulinemia among the groups were detected. At 120 days, no differences in serum albumin and total protein among the groups were observed. Compared to the other groups, DNA concentrations were higher in the alloxan animals that were subjected to continuous training, whereas the DNA/protein ratio was higher in the alloxan animals that were subjected to intermittent training. Conclusion It was concluded that continuous and intermittent training sessions were effective in altering muscle growth by hyperplasia and hypertrophy, respectively, in alloxan-administered animals.

  16. Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro

    Institute of Scientific and Technical Information of China (English)

    Jia-lin DUAN; Jing-wen WANG; Yue GUAN; Ying YIN; Guo WEI; Jia CUI; Dan ZHOU

    2013-01-01

    Aim:To investigate the effects of safflor yellow A (SYA),a flavonoid extracted from Carthamus tinctorius L,on cultured rat cardiomyocytes exposed to anoxia/reoxygenation (A/R).Methods:Primary cultured neonatal rat cardiomyocytes were exposed to anoxia for 3 h followed by reoxygenation for 6 h.The cell viability was measured using MTT assay.The releases of lactate dehydrogenase (LDH) and creatine kinase (CK),level of malondialdehyde (MDA),and activities of glutathione (GSH),superoxide dismutase (SOD),catalase (CAT) and glutathione peroxidase (GSH-Px) were analyzed.Hoechst 33258 staining and changes in Bcl-2/Bax ratio and caspase 3 activity were used to examine A/R-induced apoptosis.Results:The A/R exposure markedly decreased the viability of cardiomyocytes,suppressed the activities of SOD,GSH,CAT and GSH-Px,and Bcl-2 protein expression.Meanwhile,the A/R exposure markedly increased the release of LDH and CK,and MDA production in the cardiomyocytes,and increased the rate of apoptosis,caspase 3 activity,Bax protein expression.Pretreatment with SYA (40,60 and 80 nmol/L) concentration-dependently blocked the A/R-induced changes in the cardiomyocytes.Pretreatment of the cardiomyocytes with the antioxidant N-acetylcysteine (NAC,200 μmol/L) produced protective effects that were comparable to those caused by SYA (80nmol/L).Conclusion:SYA protects cultured rat cardiomyocytes against A/R injury,maybe via inhibiting cellular oxidative stress and apoptosis.

  17. Effect of neonatal or adult heat acclimation on testicular and epididymal morphometry and sperm production in rats.

    Science.gov (United States)

    Kurowicka, B; Dietrich, G J; Kotwica, G

    2015-03-01

    The accessory gland weight, testicular and epididymal morphometry and sperm production were analyzed in four groups of rats housed at 20 or 34°C: (1) control rats (CR) kept at 20°C from birth to day 90; (2) adult heat-acclimated rats (AHA) kept at 20°C from birth to day 45 followed by 34°C to day 90; (3) neonatal heat-acclimated rats (NHA) kept at 34°C from birth to day 90 and (4) de-acclimated rats (DA) kept at 34°C from birth to day 45 followed by 20°C to day 90. In NHA and DA rats, accessory gland weight was higher than in controls. Despite the lack of differences in testicular and epididymal morphometry, curvilinear velocity of spermatozoa was lower in the NHA group compared to controls. Areas of seminiferous tubules were lower in the DA than in CR and NHA groups, however, sperm concentration and motility were not affected by the treatment in this group. In AHA rats, epithelium of approximately 20% of seminiferous tubules was degenerated and Sertoli cell number was lower in the remaining tubules. In contrast to sperm motility, epididymal duct area, area of the duct occupied by spermatozoa and cauda epididymis sperm concentration were lower in AHA rats than in the other groups. In conclusion, neonatal heat acclimation did not affect the testicular morphometry and epididymal sperm concentration, suggesting adjustment to high ambient temperature. On the contrary, adult heat acclimation of rats affected the examined parameters, leading to decreased sperm concentration.

  18. Neonatal oxytocin alters subsequent estrogen receptor alpha protein expression and estrogen sensitivity in the female rat.

    Science.gov (United States)

    Perry, Adam N; Paramadilok, Auratip; Cushing, Bruce S

    2009-12-14

    In most species, the effects of oxytocin (OT) on female reproductive behavior are dependent upon estrogen, which increases both OT and OT receptor expression. It is also becoming apparent that OT neurotransmission can influence estrogen signaling, especially during development, as neonatal OT manipulations in prairie voles alter ERalpha expression and estrogen-dependent behaviors. We tested the hypothesis that OT developmentally programs ERalpha expression and estrogen sensitivity in female Sprague-Dawley rats, a species previously used to establish the estrogen-dependence of OT signaling in adulthood. OT treatment for the first postnatal week significantly increased ERalpha-immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), but not in the medial preoptic area (MPOA). Conversely, neonatal OT antagonist (OTA) treatment significantly reduced ERalpha-immunoreactivity in the MPOA, but not in the VMH. Both treatments increased OT-immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN) and reduced estrogen sensitivity, indicated by reduced sexual receptivity following chronic estradiol benzoate (EB) administration. Behavioral deficits in OTA-treated females were apparent during both paced and non-paced tests with 0.5 microg EB (but not 5.0 or 10.0 microg EB), whereas deficits in OT-treated females were only observed during the initial paced test with 0.5 and 5.0 microg EB (but not 10.0 microg EB). The current results demonstrate that OT can positively regulate ERalpha expression within the MPOA and VMH during development; however, endogenous OT selectively programs ERalpha expression within the MPOA. Thus, exogenous OT or OTA exposure during development may have long-term consequences on behavior through stable changes in ERalpha and OT expression.

  19. Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats.

    Science.gov (United States)

    Ahn, Hyo-Jin; An, Beum-Soo; Jung, Eui-Man; Yang, Hyun; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-09-01

    Parabens are widely used as anti-microbial agents in the cosmetic and pharmaceutical industries. Recently, parabens have been shown to act as xenoestrogens, a class of endocrine disruptors. In the present study, 55 female pups were given daily subcutaneous injections of methyl-, propyl-, and butyl-paraben or 17beta-estradiol (E2) during neonatal Day 1-7. The ovaries were excised on postnatal Day 8, then fixed and stained with hematoxylin and eosin for histological analysis. The follicles were counted and classified as being in the primordial, early primary, or primary stages. The number of primordial follicles increased while early primary follicles decreased at the high doses of propyl- and butyl-paraben. The levels of anti-Mullerian hormone (AMH) and Foxl2 mRNA increased by propyl- and butyl-parabens whereas kit ligand/stem cell factor (KITL) expression was up regulated only by butyl-paraben. The mRNA levels of StAR and Cyp11a1 were significantly decreased after treatment with methyl-, propyl-, and butyl-parabens. Consistent with its use as a positive control, E2 regulated the expression of KITL, StAR, and Cyp11a1 genes, but surprisingly did not affect AMH and Foxl2 levels. Thus, E2 and parabens had different effects on the regulation of folliculogenic and steroidogenic genes, demonstrating the estrogenic and nonestrogenic properties of parabens in the ovary. Taken together, our data show that parabens stimulated AMH mRNA expression and consequently inhibited the early phase of folliculogenesis in the ovaries of neonatal female rat. The levels of steroidogenic enzymes, indicators of follicle differentiation, appeared to be regulated by parabens through inhibition of their transcriptional repressor, Foxl2. Copyright © 2012 Wiley Periodicals, Inc.

  20. The effect of human milk on DNA synthesis of neonatal rat hepatocytes in primary culture.

    Science.gov (United States)

    Kohno, Y; Shiraki, K; Mura, T

    1991-03-01

    We studied the effect of human milk on DNA synthesis of neonatal hepatocytes to elucidate the physiologic role of human milk in growth of the liver. Neonatal hepatocytes were isolated from 5-d-old rats and cultured in serum-free medium. Human milk stimulated DNA synthesis of these hepatocytes in a concentration-dependent manner. The stimulatory activity of 7.5% (vol/vol) human milk plus 0.1 mumol/L insulin was five times that of control and was almost the same as that of 20 micrograms/L human epidermal growth factor (hEGF) plus insulin. The effect of human milk was additive with treatment with hEGF and insulin. The milk associated with prolonged jaundice of infants was significantly more active than the milk that was not associated with jaundice, although the concentration of hEGF was not different between the two types of milk. The mitogenic activity of milk was heat-labile, inactivated by DTT and stable after treatment with trypsin. Three peaks of the activity were detected in milk by gel filtration and the fraction containing proteins of molecular weight between 36,000 and 76,000 showed the highest activity. Anti-hEGF antibody did not inhibit this activity completely. These results suggested the presence of mitogens other than hEGF or a more active form of hEGF in human milk. The milk associated with breast-milk jaundice exerts a different influence on cell growth and may affect maturation of the liver function related to bilirubin metabolism. The mitogenic activity of milk might be important for growth and development of the liver in infants.

  1. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  2. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  3. Hand disinfection in a neonatal intensive care unit: continuous electronic monitoring over a one-year period

    OpenAIRE

    Helder Onno K; van Goudoever Johannes B; Hop Wim C J; Brug Johannes; Kornelisse René F

    2012-01-01

    Abstract Background Good hand hygiene compliance is essential to prevent nosocomial infections in healthcare settings. Direct observation of hand hygiene compliance is the gold standard but is time consuming. An electronic dispenser with built-in wireless recording equipment allows continuous monitoring of its usage. The purpose of this study was to monitor the use of alcohol-based hand rub dispensers with a built-in electronic counter in a neonatal intensive care unit (NICU) setting and to d...

  4. Effects of neonatal androgenization on the chromatofocusing pattern of anterior pituitary FSH in the female rat.

    Science.gov (United States)

    Ulloa-Aguirre, A; Damián-Matsumura, P; Espinoza, R; Dominguez, R; Morales, L; Flores, A

    1990-08-01

    Anterior pituitary glands were removed from neonatally androgenized (100 micrograms testosterone propionate) female rats and normal controls at 5, 10, 18, 21, 30, 60 and 90 days of age, and the multiple forms of FSH present within them were separated by chromatofocusing (pH range 7.5-4.0). Additional pituitary glands from intact adult males (90 days old) were also studied for comparative purposes. All animal groups exhibited multiple forms of immunoactive FSH within a pH range of 7.5-4.0, as well as an additional FSH form obtained after the addition of 1.0 mol NaCl/l to the chromatofocusing column (salt peak). In animals 5-30 days old (controls and androgenized) the majority of FSH applied to the chromatofocusing columns was recovered within the salt peak (45-85% of total FSH immunoactivity recovered). However, as the animals aged, more FSH immunoactivity focused within less acidic regions (isoelectric point (pI) 5.9-5.0); pituitaries from animals 60 days old contained the greatest proportion of FSH focused within this pH range (controls, 39.2 +/- 0.6%; androgenized, 23.1 +/- 0.9% of total immunoactivity recovered; P less than 0.03 vs animals 30 days old for both experimental groups). This shift towards less acidic FSH was attenuated in androgenized animals compared with the controls (P less than 0.01). In control adult rats, the chromatofocusing distribution pattern of pituitary FSH varied according to the day of the oestrous cycle. Pituitary extracts from control rats decapitated during the morning of pro-oestrus, oestrus and day 1 of dioestrus exhibited the highest proportion of immunoactive FSH (23.2-28.8% of total) focused within a pH range of 5.9-5.0, whilst only 10.4-11.6% of FSH from androgenized rats and those on day 1 of dioestrus was recovered within this pH range (P less than 0.05). In control animals decapitated during the morning of pro-oestrus and oestrus, 10-26% of FSH focused within the most alkaline region (pI 7.5-6.0); the chromatofocusing

  5. Chronic administration of U50,488H fails to produce hypothalamo-pituitary-adrenal axis tolerance in neonatal rats.

    Science.gov (United States)

    Ignar, D M; Windh, R T; Kuhn, C M

    1992-02-01

    The present study investigated the effect of chronic administration of a kappa opioid receptor agonist on the function of kappa and mu opioid, serotonergic and cholinergic regulation of secretion from the hypothalamo-pituitary-adrenal axis in neonatal rats. After chronic treatment with saline or U50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]- benzeneacetamide methane sulfonate), a kappa opioid receptor agonist and subsequent pharmacological challenge, corticosterone (CS) in serum was determined. Kappa tolerance did not develop in pups treated on postnatal days 5-9 with increasing doses of U50,488H (0.5-2.5 mg/kg). When the rats were treated with the same chronic regimen of U50,488H at different stages of development from birth through weaning, only weanling rats became tolerant to U50,488H. In the absence of measurable kappa tolerance, the responses of corticosterone in serum to morphine, quipazine, a serotonin receptor agonist and physostigmine, an inhibitor of acetylcholinesterase, were attenuated in neonatal rats, treated with U50,488H. These studies suggest that kappa tolerance is more difficult to induce in developing rats than in adults and that regulation of the function of the hypothalamo-pituitary-adrenal axis by other neurotransmitter systems is altered by treatment with kappa opioid receptor agonists, even in the apparent absence of tolerance.

  6. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    Science.gov (United States)

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.

  7. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Sharon A McGrath-Morrow

    Full Text Available Electronic cigarette (E-cigarettes emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth.Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml. After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2. These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  8. Thymosin β4 inhibits microglia activation through microRNA 146a in neonatal rats following hypoxia injury.

    Science.gov (United States)

    Zhou, Tian; Huang, Yan-xia; Song, Jian-wen; Ma, Qiao-mei

    2015-12-01

    Neuroinflammation mediated by activated microglia plays a pivotal role in the pathogenesis of neurological disorders, including hypoxic injury of the developing brain. Thymosin β4 (Tβ4), the major G-actin-sequestering molecule, has an anti-inflammatory effect and has been used to treat various neurological diseases. However, the effect of Tβ4 on hypoxia-induced microglia activation in the developing brain remains unclear. We investigate here the effect of Tβ4 on microglia activation of neonatal rats after hypoxia exposure. Tβ4 treatment was carried out on 1-day-old rats and BV-2 cells. Tβ4 expression in microglia was determined by quantitative real time-PCR, western blotting, and immunofluorescence staining. Secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nitric oxide (NO) was assessed by enzyme-linked immunosorbent assay and colorimetric assay. mRNA expression of TNF-α and IL-1β, and microRNA 146a expression was determined by quantitative real time-PCR. We showed that Tβ4 treatment significantly inhibited secretion of inflammatory mediators in the cerebellum of neonatal rats following hypoxia injury. Increased expression of endogenous Tβ4 in microglia was observed both in hypoxic rats and in BV-2 cells. Tβ4 treatment significantly inhibited the expression and secretion of hypoxia-induced TNF-α, IL-1β, and NO. Remarkably, microRNA 146a expression was found to have increased in Tβ4-treated BV-2 cells. We demonstrated the anti-inflammatory effect of Tβ4 in neonatal rats following hypoxic brain injury. More importantly, our data reveal, for the first time, that Tβ4 inhibits microglia activation in vitro. Therefore, this study contributes to understanding the role and mechanism of Tβ4 function in central nervous system diseases.

  9. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex.

    Science.gov (United States)

    Downer, Eric J; Gowran, Aoife; Campbell, Veronica A

    2007-10-17

    The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.

  10. Association of Insulin-like Growth Factors with Lung Development in Neonatal Rats

    Institute of Scientific and Technical Information of China (English)

    刘汉楚; 常立文; 容志惠; 祝华平; 张谦慎; 陈红兵; 李文斌

    2004-01-01

    To explore the relationship between Insulin-like growth factor (IGF)- Ⅰ , -Ⅱ and lung development in neonatal rats. 80 timed pregnant Sprague-Dawley (SD) rats were randomly divided into 4 groups (n = 20): group A (Control group), group B (Dexamethasone (DEX) 1 group),group C (DEX 2 group), group D (retinoic acid (RA) group). 20 pregnant rats in group A, B and D were injected subcutaneously or intraperitoneally with vehicle (NS), DEX, or RA respectively during gestational day 16 to 18. All newborn rats in group C were subcutaneously injected with DEX at day 1 to 3 after birth. The lung tissue was obtained at the following times: fetuses at gestational ages of 18, 20 and 21 days, and 1, 3, 5, 7, 10, 14 and 21 days after birth. Lung tissues were used for histopathological study, the polypeptides analysis of IGF- Ⅰ , -Ⅱ (immunohistochemistry and Western blot) and mRNA analysis ( RT- PCR). The results showed that the strongest expression of IGF- Ⅰ in group A and D occurred at ages of 5-7 days (alveolar stage). The stronger their expressions, the better the alveolar develop. The peak stage of expression in group B occurred earlier, on the day 3 after birth. Compared with group A, the expression of IGF- Ⅰ during gestation age of 18 days to age of 3 days in group B were significantly higher (P<0.01), but significantly lower at other time points (P<0.01). The expression of IGF- Ⅰ was lower in group C all the time and always higher in group D than those in group A (P<0.01). The peak expression of IGFⅡ took place at the gestation age of 18 days, then gradually dropped to trace. During 18 days of gestation to age of 3 days, the expression of IGF-Ⅱ in group B was significantly higher than that in group A (P<0.01). No difference was found among all other groups. The change in the expression of IGF- Ⅰ , - Ⅱ mRNA in all 4 groups was similar to that of their polypeptides. The results suggested that there is a close linking between IGF- Ⅰ , - Ⅱ and

  11. Expression of estrogen receptor (ER) -α and -β transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present study expression of estrogen receptor subtype -α (ERα) and -β (ERβ) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1~ 3-days-old) and adult (250~350g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERα transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERα was present in the adult cerebral cortex. No significant difference in ERβ transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERα expression was significantly weaker than ERβ. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERα transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERα/ERβ transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.

  12. Hypothyroidism during neonatal and perinatal period induced by thyroidectomy of the mother causes depressive-like behavior in prepubertal rats

    Directory of Open Access Journals (Sweden)

    Marisol Pineda-Reynoso

    2010-04-01

    Full Text Available Marisol Pineda-Reynoso, Edgar Cano-Europa, Vanessa Blas-Valdivia, Adelaida Hernandez-Garcia, Margarita Franco-Colin, Rocio Ortiz-ButronDepartamento de Fisiología ‘Mauricio Russek Berman,’ Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, MéxicoAbstract: The objective of this study was to see if neonatal and perinatal hypothyroidism caused anxiety and depressive-like behaviors. Twenty female Wistar rats were randomly divided into two groups: 1 thyroidectomy caused hypothyroidism, in which the thyroid gland had been removed and the parathyroid reimplanted; and 2 false thyroidectomy. The thyroidectomy was made on rats anesthetized with ketamine-xylazine. The rats were mated and one day after giving birth, eight pups were assigned to each group randomly and they were distributed into two groups: a hypothyroid group containing male pups of a hypothyroid mother with a hypothyroid wet nurse; and a euthyroid group of male pups of a euthyroid mother with a euthyroid wet nurse. We analyzed the behavioral test at a prepubertal age. The neonatal and perinatal hypothyroidism caused by the mother’s thyroidectomy caused a decrease in body weight and length. We found that the neonatal and perinatal hypothyroidism enhanced the total exploratory activity without affecting social contact and the time spent in the open and closed arms in an elevated plus-maze. The hypothyroidism caused immobility without altering the lower climbing duration in the swimming test. This study shows a novel model to cause neonatal and perinatal hypothyroidism without using pharmacological drugs. We demonstrated that hypothyroid animals had a reduction in body weight and length, a retardation of neurodevelopment, and they had depressive-like behavior.Keywords: perinatal hypothyroidism, thyroidectomy, thyroid hormone, behavior, metabolism

  13. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats.

    Science.gov (United States)

    Wei, Zheng Zachory; Gu, Xiaohuan; Ferdinand, Anwar; Lee, Jin Hwan; Ji, Xiaoya; Ji, Xun Ming; Yu, Shan Ping; Wei, Ling

    2015-01-01

    Neonatal stroke is a major cause of mortality and long-term morbidity in infants and children. Currently, very limited therapeutic strategies are available to protect the developing brain against ischemic damage and promote brain repairs for pediatric patients. Moreover, children who experienced neonatal stroke often have developmental social behavior problems. Cellular therapy using bone marrow mesenchymal stem cells (BMSCs) has emerged as a regenerative therapy after stroke. In the present investigation, neonatal stroke of postnatal day 7 (P7) rat pups was treated with noninvasive and brain-specific intranasal delivery of BMSCs at 6 h and 3 days after stroke (1 × 10(6)cells/animal). Prior to transplantation, BMSCs were subjected to hypoxic preconditioning to enhance their tolerance and regenerative properties. The effects on regenerative activities and stroke-induced sensorimotor and social behavioral deficits were specifically examined at P24 of juvenile age. The BMSC treatment significantly reduced infarct size and blood-brain barrier disruption, promoted angiogenesis, neurogenesis, neurovascular repair, and improved local cerebral blood flow in the ischemic cortex. BMSC-treated rats showed better sensorimotor and olfactory functional recovery than saline-treated animals, measured by the adhesive removal test and buried food finding test. In social behavioral tests, we observed functional and social behavioral deficits in P24 rats subjected to stroke at P7, while the BMSC treatment significantly improved the performance of stroke animals. Overall, intranasal BMSC transplantation after neonatal stroke shows neuroprotection and great potential as a regenerative therapy to enhance neurovascular regeneration and improve functional recovery observed at the juvenile stage of development.

  14. Developmental nicotine exposure adversely effects respiratory patterning in the barbiturate anesthetized neonatal rat.

    Science.gov (United States)

    Barreda, Santiago; Kidder, Ian J; Mudery, Jordan A; Bailey, E Fiona

    2015-03-01

    Neonates at risk for sudden infant death syndrome (SIDS) are hospitalized for cardiorespiratory monitoring however, monitoring is costly and generates large quantities of averaged data that serve as poor predictors of infant risk. In this study we used a traditional autocorrelation function (ACF) testing its suitability as a tool to detect subtle alterations in respiratory patterning in vivo. We applied the ACF to chest wall motion tracings obtained from rat pups in the period corresponding to the mid-to-end of the third trimester of human pregnancy. Pups were drawn from two groups: nicotine-exposed and saline-exposed at each age (i.e., P7, P8, P9, and P10). Respiratory-related motions of the chest wall were recorded in room air and in response to an arousal stimulus (FIO2 14%). The autocorrelation function was used to determine measures of breathing rate and respiratory patterning. Unlike alternative tools such as Poincare plots that depict an averaged difference in a measure breath to breath, the ACF when applied to a digitized chest wall trace yields an instantaneous sample of data points that can be used to compare (data) points at the same time in the next breath or in any subsequent number of breaths. The moment-to-moment evaluation of chest wall motion detected subtle differences in respiratory pattern in rat pups exposed to nicotine in utero and aged matched saline-exposed peers. The ACF can be applied online as well as to existing data sets and requires comparatively short sampling windows (∼2 min). As shown here, the ACF could be used to identify factors that precipitate or minimize instability and thus, offers a quantitative measure of risk in vulnerable populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Foxg1 mRNA overexpression in neonatal rats following hypoxic brain injury

    Institute of Scientific and Technical Information of China (English)

    Luquan Li; Yi Zheng; Guoliang Mo; Fang Li; Jialin Yu

    2011-01-01

    Forkhead box G1 (Foxg1) is expressed during the embryonic stage and in postnatal brain regions sensitive to hypoxia/ischemia injury,such as the hippocampus and cerebral cortex.To date,very little is known about Foxg 1 expression changes in the brain following hypoxia injury (HI).The present study measured Foxg 1 mRNA expression using reverse-transcription polymerase chain reaction on days 3,7,14,28,and 56 following HI to determine self-restorative features in the injured brain.In addition,mRNA expression of other related layer markers,such as Reelin,RORB,Foxp1,Foxp2,ER81,and Otx-1,was detected following HI.Results revealed significantly decreased Foxg1 mRNA expression at 3 days after HI,which significantly increased by 56 days.Reelin and Foxp2 mRNA expression were upregulated until 56 days after HI,but Foxp1 and ER81 mRNA expression decreased from day 14 to 56 following HI.In addition,Otx-1 and RORB mRNA expression decreased from day 3 to 28 after HI.These findings revealed Fxog1 mRNA overexpression and varying degrees of restoration in the neonatal rat brain following HI.

  16. Electrophysiological properties of lumbosacral preganglionic neurons in the neonatal rat spinal cord.

    Science.gov (United States)

    Miura, A; Kawatani, M; Araki, I; de Groat, W C

    2000-07-28

    The electrophysiological properties of parasympathetic preganglionic neurons (PGN) in L6 and S1 spinal cord slices from neonatal rats were studied using the patch clamp techniques. PGN were identified by retrograde axonal transport of a fluorescent dye (Fast Blue) injected intraperitoneally before the experiment. PGN in the intermediolateral region of the spinal cord were divided into two classes (tonic PGN and phasic PGN) on the basis of firing properties during prolonged (300 ms) depolarizing current pulses. Tonic neurons exhibited a prolonged discharge (average maximum: 5.6); whereas phasic PGN fired on average only 1.4 spikes during depolarizing pulses. PGN were usually oval in shape. The mean long axis of tonic PGN (20.7+/-0.5 microm) was significantly (PAHP) in tonic PGN (200.5+/-11.9 ms) was longer than in phasic PGN (137.6+/-9.8 ms). 4-aminopyridine (4-AP, 0. 5 mM) reduced the threshold for spike activation in tonic and phasic PGN. 4-AP also unmasked tonic firing in phasic PGN (average maximum: 5.5 spikes during 300 ms depolarizing current pulses) and increased firing frequency by 19% in tonic PGN. These data indicate that the different discharge patterns of parasympathetic PGN are dependent in part on differences in the expression of 4-AP-sensitive K(+) channels. The two types of PGN may provide an innervation to different targets in the pelvic viscera.

  17. Early expression of GABA(A) receptor delta subunit in the neonatal rat hippocampus.

    Science.gov (United States)

    Didelon, F; Mladinic', M; Cherubini, E; Bradbury, A

    2000-12-01

    The cDNA library screening strategy was used to identify the genes encoding for GABA(A) receptor subunits in the rat hippocampus during development. With this technique, genes encoding eleven GABA(A) receptor subunits were identified. The alpha5 subunit was by far the most highly expressed, followed by the gamma2, alpha2 and alpha4 subunits respectively. The expression of the beta2, alpha1, gamma1, beta1 and beta3 subunits was moderate, although that of the alpha3 and delta subunits was weak. In situ hybridization experiments, using digoxigenin-labeled cRNA probes, confirmed that the delta subunit was expressed in the neonatal as well as in the adult hippocampus, and is likely to form functional receptors in association with other subunits of the GABA(A) receptor. When the more sensitive RT-PCR approach was used, the gamma3 subunit was also detected, suggesting that this subunit is present in the hippocampus during development but at low levels of expression. The insertion of the delta subunit into functional GABA(A) receptors may enhance the efficacy of GABA in the immediate postnatal period when this amino acid is still exerting a depolarizing and excitatory action.

  18. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  19. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  20. Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Disease in Adult Female Rats.

    Science.gov (United States)

    Moreno-Indias, Isabel; Sánchez-Alcoholado, Lidia; Sánchez-Garrido, Miguel Ángel; Martín-Núñez, Gracia María; Pérez-Jiménez, Francisco; Tena-Sempere, Manuel; Tinahones, Francisco J; Queipo-Ortuño, María Isabel

    2016-12-01

    Alterations of gut microbiome have been proposed to play a role in metabolic disease, but the major determinants of microbiota composition remain ill defined. Nutritional and sex hormone challenges, especially during early development, have been shown to permanently alter adult female phenotype and contribute to metabolic disturbances. In this study, we implemented large-scale microbiome analyses to fecal samples from groups of female rats sequentially subjected to various obesogenic manipulations, including sex hormone perturbations by means of neonatal androgenization or adult ovariectomy (OVX), as a model of menopause, to establish whether these phenomena are related to changes in gut microbiota. Basic metabolic profiles concerning glucose/insulin homeostasis were also explored. The effects of the sex hormonal perturbations, either developmentally (androgenization) or in adulthood (OVX), clearly outshone the impact of nutritional interventions, especially concerning the gut microbiota profile. Notably, we observed a lower diversity in the androgenized group, with the highest Firmicutes to Bacteroidetes ratio, supporting the occurrence of durable alterations in gut microbiota composition, even in adulthood. Moreover, the elimination of adult ovarian secretions by OVX affected the richness of gut microbiota. Our data are the first to document the durable impact of sex steroid manipulations, and particularly early androgenization, on gut microbiota composition. Such dysbiosis is likely to contribute to the metabolic perturbations of conditions of obesity linked to gonadal dysfunction in the female.

  1. Hyperprolactinemia after neonatal prolactin (PRL) deficiency in rats: evidence for altered anterior pituitary regulation of PRL secretion.

    Science.gov (United States)

    Shah, G V; Shyr, S W; Grosvenor, C E; Crowley, W R

    1988-05-01

    Previous findings from this laboratory suggest a role for milk-borne PRL in the development of the inhibitory neuroendocrine controls over PRL secretion. Thus, rats that consumed milk deficient in PRL on days 2-5 postpartum show reduced concentrations and turnover of DA in the median eminence and elevated serum levels of PRL at 30-35 days of age. The present experiments were undertaken to investigate whether these consequences of neonatal PRL deficiency persist beyond puberty, and whether alterations in pituitary responsiveness to hypothalamic hormones may be involved. Lactating rats received sc injections of either saline or the dopamine (DA) agonist bromocriptine (125 micrograms/rat.day) on each of days 2-5 postpartum, a treatment that reduces the amount of PRL in milk without abolishing lactation. Blood samples were obtained from male and female offspring at various postnatal ages, and PRL concentrations were determined by RIA. Serum PRL concentrations in offspring from both groups were low until after weaning, but the female offspring of bromocriptine-treated mothers showed significantly elevated serum PRL between days 30 and 90 postpartum. Male offspring of bromocriptine-treated mothers also had transiently increased serum PRL levels, which returned to control levels by day 40. The turnover rate of DA in the median eminence, calculated from the rate of decline after synthesis inhibition, was reduced on day 35 in neonatally PRL-deficient offspring, as shown previously. However, no differences in DA turnover between the two groups were apparent on day 60, indicating a recovery of normal dopaminergic activity. Anterior pituitary cells of 100-day-old control and neonatally PRL-deficient animals were dispersed, cultured for 3 days, and then exposed to either TRH, to stimulate PRL release, or to the DA agonist bromocriptine, which inhibits PRL release. Pituitary cells of neonatally PRL-deficient offspring were almost completely unresponsive to bromocriptine with

  2. The Effect of Iron Deficiency on Osmotic Sensitivity of Red Blood Cells from Neonatal Rats and Their Mothers.

    Science.gov (United States)

    Al-Hashimi, L Mossa; Gambling, Lorraine; McArdle, H J

    2015-12-01

    Iron deficiency during pregnancy has many effects on both the mother and her developing foetus. These can be both short and long term. One effect is an alteration in fatty acid metabolism and we hypothesised that these changes may result in alterations in membrane function and structure. In order to test this hypothesis, we measured osmotic sensitivity in red blood cells isolated from neonates and their mothers at different times following birth. We fed female rats control or iron-deficient diets for 4 weeks prior to mating and kept them on the same diet until term. At that time, we returned one group of deficient dams to the control diet. The others were kept on the same diet. We showed that iron deficiency results in a decrease in osmotic sensitivity in the mothers but not in their neonates. Returning the dams to the control diet resulted in a return of their red cell osmotic sensitivity to control levels. In the neonates, there was no recovery in haematocrit or in any other parameter, though they did not get any worse, in contrast to the pups being suckled by deficient mothers. The data show two things. The first is that following birth, the mother restores her own iron stores at the expense of the pups, and secondly, there are differences in properties and sensitivities between red cells from mothers and their neonates. This latter observation cannot be explained by differences in the membrane fatty acid profiles, which were not significantly different.

  3. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits.

    Science.gov (United States)

    Stanford, John A; Shuler, Jeffrey M; Fowler, Stephen C; Stanford, Kimberly G; Ma, Delin; Bittel, Douglas C; Le Pichon, Jean-Baptiste; Shapiro, Steven M

    2015-03-01

    Neonatal jaundice resulting from elevated unconjugated bilirubin occurs in 60-80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention-deficit hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their nonjaundiced (Nj) littermates. Data were analyzed for young adult (3-4 mo), early middle-aged (9-10 mo), and late middle-aged (17-20 mo) male rats. jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17-20 mo of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9-10 mo in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized, and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17-20-mo-old jj rats. These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND.

  4. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    Science.gov (United States)

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (pmodel used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function.

  5. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    Science.gov (United States)

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  6. Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia

    Science.gov (United States)

    Ikebara, Juliane Midori; Takada, Silvia Honda; Cardoso, Débora Sterzeck; Dias, Natália Myuki Moralles; de Campos, Beatriz Crossiol Vicente; Bretherick, Talitha Amanda Sanches; Higa, Guilherme Shigueto Vilar; Ferraz, Mariana Sacrini Ayres

    2017-01-01

    Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of

  7. Maturational changes in sympathetic and sensory innervation of the rat uterus: effects of neonatal capsaicin treatment.

    Science.gov (United States)

    Brauer, M M; Lincoln, J; Sarner, S; Blundell, D; Milner, P; Passaro, M; Burnstock, G

    1994-04-01

    The plasticity of the sympathetic and sensory innervation of the rat uterus was examined, before and after puberty, in controls and in animals where primary sensory nerves had been destroyed by neonatal capsaicin treatment. Immunohistochemical and histochemical methods were used in association with nerve density measurements and biochemical assays. The main findings were as follows: (1) Puberty was associated with a marked increase in the weight of the uterine horn, uterine cervix and parametrial tissue. This was unaffected by capsaicin treatment. (2) The sympathetic innervation of the uterine horn and parametrial tissue was reduced following puberty as revealed by a decrease in the density of noradrenaline-containing nerves and a marked decrease in the tissue concentration of noradrenaline. Sympathetic nerves supplying the uterine cervix and the blood vessels of the uterus appeared to be unaffected by puberty. (3) In contrast, the sensory supply of the uterus by substance P and calcitonin gene-related peptide-containing nerves increased in parallel with uterine growth during puberty resulting in no change in nerve density and only a slight reduction in peptide concentration. (4) Neonatal capsaicin treatment caused a long-lasting depletion of substance P- and calcitonin gene-related peptide-containing nerves. In the uterine horn and parametrial tissue, capsaicin-resistant calcitonin gene-related peptide, but not substance P, still increased with tissue weight during puberty, indeed, in the uterine horn, the relative increase was greater than in controls. (5) Sensory denervation resulted in an increase in the non-vascular sympathetic supply of the uterus, although there was a regional variation in the time course of the response. Perivascular sympathetic nerves were unaffected by capsaicin treatment. The pattern of change in non-vascular noradrenaline-containing nerves associated with puberty was similar in nature to controls. Thus, there is considerable plasticity

  8. Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibody-induced apoptosis in neonatal rat cardiomyocytes is dependent on the generation of tumor necrosis factor-α

    Institute of Scientific and Technical Information of China (English)

    Weiran Chai; Wenhui Zhang; Zhu Jin; Yiping Feng; Yanping Kuang; Jianming Zhi

    2012-01-01

    Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibodies (AT1-AA) are related to pre-eclampsia and hypertension and have a direct effect of stimulating the production of tumor necrosis factor-alpha (TNF-α) in the placenta.TNF-α is a known mediator of apoptosis.However,few studies have reported the role of TNF-α and its relationship within AT1-AA-induced apoptosis of cardiomyocytes.In this study,neonatal rat cardiomyocytes were treated with various concentrations of AT1-AA.The apoptosis of neonatal rat cardiomyocytes was determined using TUNEL assay and flow cytometry.The level of secreted TNF-α was measured by enzyme-linked immunosorbent assay,and caspase-3 activity was measured by a fluorogenic protease assay kit.AT1 receptor blockade and TNF inhibitor were added to determine whether they could inhibit the apoptotic effect of AT1-AA.Results showed that AT1-AA induced the apoptosis of neonatal rat cardiomyocytes in a dose-dependent and time-dependent manner.AT1-AA increased TNF secretion and caspase-3activities.AT1 receptor blockade completely abrogated AT1-AA-induced TNF-α secretion,caspase-3 activation,and cardiomyocyte apoptosis.TNF-α receptor inhibitor significantly attenuated AT1-AA-induced neonatal rat cardiomyocyte apoptosis.AT1-AA in the plasma of preeclamptic patients promoted neonatal rat cardiomyocyte apoptosis through a TNF-caspase signaling pathway.

  9. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.

    Science.gov (United States)

    Brekke, Eva; Berger, Hester Rijkje; Widerøe, Marius; Sonnewald, Ursula; Morken, Tora Sund

    2017-01-01

    Neonatal hypoxia-ischemia (HI) and the delayed injury cascade that follows involve excitotoxicity, oxidative stress and mitochondrial failure. The susceptibility to excitotoxicity of the neonatal brain may be related to the capacity of astrocytes for glutamate uptake. Furthermore, the neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance for limiting this kind of injury. Also, in the neonatal brain, neurons depend upon de novo synthesis of neurotransmitters via pyruvate carboxylase in astrocytes to increase neurotransmitter pools during normal brain development. Several recent publications describing intermediary brain metabolism following neonatal HI have yielded interesting results: (1) Following HI there is a prolonged depression of mitochondrial metabolism in agreement with emerging evidence of mitochondria as vulnerable targets in the delayed injury cascade. (2) Astrocytes, like neurons, are metabolically impaired following HI, and the degree of astrocytic malfunction may be an indicator of the outcome following hypoxic and hypoxic-ischemic brain injury. (3) Glutamate transfer from neurons to astrocytes is not increased following neonatal HI, which may imply that astrocytes fail to upregulate glutamate uptake in response to the massive glutamate release during HI, thus contributing to excitotoxicity. (4) In the neonatal brain, the activity of the PPP is reduced following HI, which may add to the susceptibility of the neonatal brain to oxidative stress. The present review aims to discuss the metabolic temporal alterations observed in the neonatal brain following HI.

  10. Experiment K-314: Fetal and neonatal rat bone and joint development following in Utero spaceflight

    Science.gov (United States)

    Sabelman, E. E.; Holton, E. M.; Arnaud, C. D.

    1981-01-01

    Infant rat limb specimens from Soviet and U.S. ground-based studies were examined by radiography, macrophotography, histologic sectioning and staining and scanning electron microscopy. A comparison was conducted between vivarium and flight-type diets suggesting that nutritional obesity may adversely affect pregnancy. Data were obtained on maturation of ossification centers, orientation of collagen fibers in bone, tendon and ligaments, joint surface texture and spatial relationships of bones of the hind limb. Computer reconstructions of the knee and hip show promise as a means of investigating the etiology of congenital hip dislocation.

  11. Functional responses to the cannabinoid agonist WIN 55,212-2 in neonatal rats of both genders: influence of weaning.

    Science.gov (United States)

    Borcel, Erika; Pérez-Alvarez, Laura; de Ceballos, María L; Ramirez, Belén G; Marco, Eva Maria; Fernández, Beatriz; Rubio, Marina; Guaza, Carmen; Viveros, Ma-Paz

    2004-07-01

    We have studied behavioural, biochemical and endocrine responses to the cannabinoid agonist WIN 55,212-2 (WIN) in neonatal rats, as well as the effects of weaning on such responses. We used preweanling rats (20 days of age), 25-day-old weaned rats (weaning at Day 22) and 25-day-old nonweaned rats of both sexes. The behavioural effects of WIN were assessed in the nociceptive tail immersion test and in the open field. We also analysed the effect of weaning on corticosterone responses to WIN (radioimmunoassay) as well as on WIN-stimulated [35S] GTPgammaS binding in periaqueductal grey (PAG) and striatum. The cannabinoid agonist induced a modest increase in pain thresholds, whereas the effect of the drug on open-field activity, particularly on vertical activity, was much more marked. The weaning process appeared to reduce the baseline nociceptive latencies of the female rats. No significant effect of weaning on the behavioural responses to WIN was found. However, the group of weaned females (but not males) showed a significantly reduced WIN-stimulated [35S] GTPgammaS binding in the striatum. The cannabinoid agonist significantly increased the corticosterone levels of 25-day-old rats with the effect being more marked in weaned than in nonweaned animals. The results suggest that the weaning process might produce some sexually dimorphic developmental changes in CB1 receptor function.

  12. Intact neurobehavioral development and dramatic impairments of procedural-like memory following neonatal ventral hippocampal lesion in rats.

    Science.gov (United States)

    Lecourtier, L; Antal, M-C; Cosquer, B; Schumacher, A; Samama, B; Angst, M-J; Ferrandon, A; Koning, E; Cassel, J-C; Nehlig, A

    2012-04-05

    Neonatal ventral hippocampal lesions (NVHL) in rats are considered a potent developmental model of schizophrenia. After NVHL, rats appear normal during their preadolescent time, whereas in early adulthood, they develop behavioral deficits paralleling symptomatic aspects of schizophrenia, including hyperactivity, hypersensitivity to amphetamine (AMPH), prepulse and latent inhibition deficits, reduced social interactions, and spatial working and reference memory alterations. Surprisingly, the question of the consequences of NVHL on postnatal neurobehavioral development has not been addressed. This is of particular importance, as a defective neurobehavioral development could contribute to impairments seen in adult rats. Therefore, at several time points of the early postsurgical life of NVHL rats, we assessed behaviors accounting for neurobehavioral development, including negative geotaxis and grip strength (PD11), locomotor coordination (PD21), and open-field (PD25). At adulthood, the rats were tested for anxiety levels, locomotor activity, as well as spatial reference memory performance. Using a novel task, we also investigated the consequences of the lesions on procedural-like memory, which had never been tested following NVHL. Our results point to preserved neurobehavioral development. They also confirm the already documented locomotor hyperactivity, spatial reference memory impairment, and hyperresponsiveness to AMPH. Finally, our rseults show for the first time that NVHL disabled the development of behavioral routines, suggesting dramatic procedural memory deficits. The presence of procedural memory deficits in adult rats subjected to NHVL suggests that the lesions lead to a wider range of cognitive deficits than previously shown. Interestingly, procedural or implicit memory impairments have also been reported in schizophrenic patients.

  13. The effect of maternal caffeine ingestion on pancreatic function in the neonatal rat.

    Science.gov (United States)

    Dunlop, M; Larkins, R G; Court, J M

    1982-10-01

    Pancreatic function was investigated in neonatal suckling offspring of caffeine-ingesting dams, with or without maternal sucrose supplementation, throughout pregnancy and lactation. In offspring of rats ingesting caffeine without sucrose supplementation, there was initial hyperinsulinaemia, followed by a progressive fall of plasma insulin to subnormal levels. This fall in plasma insulin coincided with depletion of pancreatic insulin stores. Both the fall in plasma insulin and depletion of pancreatic insulin stores were prevented by sucrose supplementation of caffeine-ingesting dams. Offspring of dams fed sucrose alone and control offspring also maintained pancreatic insulin stores and circulating insulin levels over the first 14 days of postnatal life. Pancreases from offspring of caffeine-exposed animals tested in vitro showed enhanced sensitivity of the insulin release process to glucose. This was reflected in the glucose concentration required to elicit half-maximal insulin release (2.4 +/- 0.2 mmol/l for caffeine offspring, 2.3 +/- 0.2 mmol/l for caffeine with sucrose, 3.8 +/- 0.3 mmol/l for sucrose and 4.1 +/- 0.3 mmol/l for control offspring, mean +/- SEM). In contrast, offspring of sucrose-supplemented (with or without caffeine) dams showed increased sensitivity of the proinsulin biosynthetic process to glucose, whereas offspring of dams ingesting caffeine alone showed no significant enhancement of the biosynthetic process compared with control offspring. Thus enhanced sensitivity of the insulin secretory process to glucose without a change in the sensitivity of the biosynthetic process in the offspring of the caffeine ingesting (non-sucrose supplemented) dams could explain the progressive depletion of pancreatic insulin stores and eventual hypoinsulinaemia seen in this group.

  14. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  15. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.

    Science.gov (United States)

    Tazerart, Sabrina; Viemari, Jean-Charles; Darbon, Pascal; Vinay, Laurent; Brocard, Frédéric

    2007-08-01

    The persistent sodium current (I(NaP)) is known to play a role in rhythm generation in different systems. Here, we investigated its contribution to locomotor pattern generation in the neonatal rat spinal cord. The locomotor network is mainly located in the ventromedial gray matter of upper lumbar segments. By means of whole cell recordings in slices, we characterized membrane and I(NaP) biophysical properties of interneurons located in this area. Compared with motoneurons, interneurons were more excitable, because of higher input resistance and membrane time constant, and displayed lower firing frequency arising from broader spikes and longer AHPs. Ramp voltage-clamp protocols revealed a riluzole- or TTX-sensitive inward current, presumably I(NaP), three times smaller in interneurons than in motoneurons. However, in contrast to motoneurons, I(NaP) mediated a prolonged plateau potential in interneurons after reducing K(+) and Ca(2+) currents. We further used in vitro isolated spinal cord preparations to investigate the contribution of I(NaP) to locomotor pattern. Application of riluzole (10 muM) to the whole spinal cord or to the upper lumbar segments disturbed fictive locomotion, whereas application of riluzole over the caudal lumbar segments had no effect. The effects of riluzole appeared to arise from a specific blockade of I(NaP) because action potential waveform, dorsal root-evoked potentials, and miniature excitatory postsynaptic currents were not affected. This study provides new functional features of ventromedial interneurons, with the first description of I(NaP)-mediated plateau potentials, and new insights into the operation of the locomotor network with a critical implication of I(NaP) in stabilizing the locomotor pattern.

  16. ROLE OF STEROIDS IN HYPEREXCITATORY ADVERSE AND ANESTHETIC EFFECTS OF SEVOFLURANE IN NEONATAL RATS

    Science.gov (United States)

    Zhang, Jiaqiang; Xu, Changqing; Puentes, Dyanet L.; Seubert, Christoph N.; Gravenstein, Nikolaus; Martynyuk, Anatoly E.

    2015-01-01

    Recent studies demonstrated that long-term developmental effects of neonatal anesthesia were more prominent in males. We tested whether steroids in general and sex steroids in particular, are involved in mediation of sevoflurane-caused paradoxical cortical seizures during the early postnatal period. Methods Cortical electroencephalograms, hippocampal synaptic activity, serum levels of steroids and the loss of the righting reflex (LORR), a marker of anesthetic effect, were measured in postnatal day 4–6 Sprague Dawley rats of both genders exposed to 2.1% sevoflurane. Results Episodes of seizures, persistent spikes in electroencephalograms and increases in serum corticosterone were similar in both genders. In order of increasing potency the corticosteroid receptor antagonist, RU28318, the estradiol receptor antagonist, ICI182780, and the estradiol synthesis inhibitor, formestane depressed sevoflurane-caused seizures. Exogenous estradiol increased sevoflurane-caused seizures, spikes and serum levels of corticosterone. These estradiol-enhanced seizures and spikes were depressed by ICI 182780 and the NKCC1 inhibitor, bumetanide, while RU28318 depressed seizures only. In hippocampal CA1 neurons, estradiol increased the amplitude, rise time and area under curve of gamma-aminobutyric acid type A receptor (GABAAR)-mediated miniature postsynaptic currents. Exogenous estradiol shortened, while ICI 182780 and formestane, lengthened the time needed for sevoflurane to induce LORR. Conclusion These findings provide evidence for gender-independent acute electroencephalographic effects of sevoflurane at this age. Corticosterone and estradiol are involved in mediation of sevoflurane-caused seizures. Estradiol, but not corticosterone, also contributes to sevoflurane-caused spikes, by enhancing GABAAR-mediated excitation in the cortex. By enhancing GABAAR-mediated inhibition in more mature caudal regions of the brain, estradiol, contributes to sevoflurane-induced LORR. PMID:26159049

  17. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  18. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization.

    Science.gov (United States)

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2008-03-01

    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.

  19. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  20. Eyeblink classical conditioning and interpositus nucleus activity are disrupted in adult rats exposed to ethanol as neonates.

    Science.gov (United States)

    Green, John T; Johnson, Timothy B; Goodlett, Charles R; Steinmetz, Joseph E

    2002-01-01

    Neonatal exposure to ethanol in rats, during the period of brain development comparable to that of the human third trimester, produces significant, dose-dependent cell loss in the cerebellum and deficits in coordinated motor performance. These rats are also impaired in eyeblink conditioning as weanlings and as adults. The current study examined single-unit neural activity in the interpositus nucleus of the cerebellum in adults following neonatal binge ethanol exposure. Group Ethanol received alcohol doses of 5.25 g/kg/day on postnatal days 4-9. Group Sham Intubated underwent acute intragastric intubation on postnatal days 4-9 but did not receive any infusions. Group Unintubated Control (from separate litters) did not receive any intubations. When rats were 3-7 mo old, pairs of extracellular microelectrodes were implanted in the region of the interpositus nucleus. Beginning 1 wk later, the rats were given either 100 paired or 190 unpaired trials per day for 10 d followed by 4 d of 100 conditioned stimulus (CS)-alone trials per day. As in our previous study, conditioned response acquisition in Group Ethanol rats was impaired. In addition, by session 5 of paired acquisition, Group Sham Intubated and Group Unintubated Control showed significant increases in interpositus nucleus activity, relative to baseline, in the CS-unconditioned stimulus interval. In contrast, Group Ethanol failed to show significant changes in interpositus nucleus activity until later in training. These results indicate that the disruption in eyeblink conditioning after early exposure to ethanol is reflected in alterations in interpositus nucleus activity.

  1. Eyeblink Classical Conditioning and Interpositus Nucleus Activity Are Disrupted in Adult Rats Exposed to Ethanol as Neonates

    Science.gov (United States)

    Green, John T.; Johnson, Timothy B.; Goodlett, Charles R.; Steinmetz, Joseph E.

    2002-01-01

    Neonatal exposure to ethanol in rats, during the period of brain development comparable to that of the human third trimester, produces significant, dose-dependent cell loss in the cerebellum and deficits in coordinated motor performance. These rats are also impaired in eyeblink conditioning as weanlings and as adults. The current study examined single-unit neural activity in the interpositus nucleus of the cerebellum in adults following neonatal binge ethanol exposure. Group Ethanol received alcohol doses of 5.25 g/kg/day on postnatal days 4–9. Group Sham Intubated underwent acute intragastric intubation on postnatal days 4–9 but did not receive any infusions. Group Unintubated Control (from separate litters) did not receive any intubations. When rats were 3–7 mo old, pairs of extracellular microelectrodes were implanted in the region of the interpositus nucleus. Beginning 1 wk later, the rats were given either 100 paired or 190 unpaired trials per day for 10 d followed by 4 d of 100 conditioned stimulus (CS)-alone trials per day. As in our previous study, conditioned response acquisition in Group Ethanol rats was impaired. In addition, by session 5 of paired acquisition, Group Sham Intubated and Group Unintubated Control showed significant increases in interpositus nucleus activity, relative to baseline, in the CS–unconditioned stimulus interval. In contrast, Group Ethanol failed to show significant changes in interpositus nucleus activity until later in training. These results indicate that the disruption in eyeblink conditioning after early exposure to ethanol is reflected in alterations in interpositus nucleus activity. PMID:12359839

  2. Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Ma, Ning-Tian; Zhou, Ru; Chang, Ren-Yuan; Hao, Yin-Ju; Ma, Lin; Jin, Shao-Ju; Du, Juan; Zheng, Jie; Zhao, Cheng-Jun; Niu, Yang; Sun, Tao; Li, Wei; Koike, Kazuo; Yu, Jian-Qiang; Li, Yu-Xiang

    2015-10-01

    Aloperine (ALO), one of the alkaloids isolated from Sophora alopecuroides L., is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of ALO on neonatal rat primary-cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Treatment with ALO (25, 50, and 100 mg/l) attenuated neuronal damage (p oxygen species and malondialdehyde production and enhanced the antioxidant enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase and the total antioxidant capacity. The results suggested that ALO has significant neuroprotective effects that can be attributed to anti-oxidative stress.

  3. Growth factor protection against cytokine-induced apoptosis in neonatal rat islets of Langerhans: role of Fas.

    Science.gov (United States)

    Harrison, M; Dunger, A M; Berg, S; Mabley, J; John, N; Green, M H; Green, I C

    1998-09-18

    Treatment of neonatal rat islets of Langerhans with combined cytokines (interleukin-1beta 10(-10) M, tumour necrosis factor-alpha 10(-10) M, interferon-gamma 5 U/ml) led to extensive cell death, which was potentiated by Fas activation with the anti-Fas cytolytic antibody JO2. Pre-treatment with insulin (25 ng/ml) or insulin-like growth factor-1 (10(-8)M) gave only partial protection against cell killing, but prevented the Fas-mediated component. In the absence of cytokine treatment, Fas-mediated killing was not observed.

  4. Effect of OLIG1 on the development of oligodendrocytes and myelination in a neonatal rat PVL model induced by hypoxia-ischemia.

    Science.gov (United States)

    Cheng, Tongfei; Xue, Xindong; Fu, Jianhua

    2015-04-01

    OLIG1 is an oligodendrocyte (OL) transcription factor, which can contribute to the proliferation and differentiation of OLs, and the maturation of myelin. The aim of this study was to clarify the role of OLIG1 in neonatal Sprague Dawley rats with periventricular leukomalacia (PVL), induced by hypoxia‑ischemia (HI). Newborn rats in the HI group were subjected to ligation of the right carotid artery, followed by 8% oxygen delivery for 2 h, while rats in the normoxia group were only subjected to isolation of the right carotid artery, without exposure to hypoxia. Samples of brain tissue from rats in both groups were collected at 1, 3, 7, 14 and 21 days. In the HI group, observation by transmission electron microscopy (TEM) revealed OLs with a damaged nuclear membrane, cellular atrophy, deformation and necrosis, and cells in myelin with a high number of small vacuoles. A double‑label immunofluorescence assay revealed the translocation of OLIG1 from the cytoplasm to the nucleus, while western blot and reverse transcription‑quantitative polymerase chain reaction assays showed that there is a significant decrease, followed by an increase, in the gene and protein expression levels of OLIG1 and myelin basic protein (MBP). Despite the increase at the late stages of HI, the final levels of these proteins remained lower than the corresponding levels in the normoxia group. In conclusion, the decreased protein expression of OLIG1 following HI plays an important role in inhibiting the development and maturation of OLs and myelin. Although OLIG1 may, via its nuclear translocation, promote the growth and development of myelin to a certain extent, this factor fails to fully repair injured myelin.

  5. Chronic cerebrolysin administration attenuates neuronal abnormalities in the basolateral amygdala induced by neonatal ventral hippocampus lesion in the rat.

    Science.gov (United States)

    Vázquez-Roque, Rubén Antonio; Ubhi, Kiren; Masliah, Eliezer; Flores, Gonzalo

    2014-01-01

    The neonatal ventral hippocampal lesion (nVHL) has emerged as a model of schizophrenia-related behavior in the rat. Our previous report demonstrated that cerebrolysin (Cbl), a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair, promoted recovery of dendritic and neuronal damage of the prefrontal cortex and nucleus accumbens and behavioral improvements in postpubertal nVHL rats. We recently demonstrated that nVHL animals exhibit dendritic atrophy and spine loss in the basolateral amygdala (BLA). This study aimed to determine whether Cbl treatment was capable of reducing BLA neuronal alterations observed in nVHL rats. The morphological evaluation included examination of dendrites using the Golgi-Cox procedure and stereology to quantify the total cell number in BLA. Golgi-Cox staining revealed that nVHL induced dendritic retraction and spine loss in BLA pyramidal neurons. Stereological analysis demonstrated nVHL also produced a reduction in cells in BLA. Interestingly, repeated Cbl treatment ameliorated dendritic pathology and neuronal loss in the BLA of the nVHL rats. Our data show that Cbl may foster recovery of BLA damage in postpubertal nVHL rats and suggests that the use of neurotrophic agents for the management of some schizophrenia-related symptoms may present an alternative therapeutic pathway in these disorders.

  6. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure.

    Directory of Open Access Journals (Sweden)

    Ihssane Zouikr

    Full Text Available Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis during postnatal day (PND 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG as well as rostral and caudal axes of the ventrolateral PAG (VLPAG. Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb as compared to medial habenula (MHb, however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.

  7. Neonatal handling prevents anxiety-like symptoms in rats exposed to chronic mild stress: behavioral and oxidative parameters.

    Science.gov (United States)

    Boufleur, Nardeli; Antoniazzi, Caren T D; Pase, Camila S; Benvegnú, Dalila M; Dias, Verônica T; Segat, Hecson J; Roversi, Katiane; Roversi, Karine; Nora, Magali Dalla; Koakoskia, Gessi; Rosa, João G; Barcellos, Leonardo J G; Bürger, M E

    2013-05-01

    This study investigated the influence of neonatal handling on behavioral and biochemical consequences of chronic mild stress (CMS) in adulthood. Male rat pups were submitted to daily tactile stimulation (TS) or maternal separation (MS), from postnatal day 1 (PND1) to postnatal day 21 (PND21), for 10 min/day. In adulthood, half the number of animals were exposed to CMS for 3 weeks and submitted to behavioral testing, including sucrose preference (SP), elevated plus maze (EPM), and defensive burying tasks (DBTs), followed by biochemical assessments. CMS reduced SP, increased anxiety in EPM and DBT, and increased adrenal weight. In addition, CMS decreased plasma vitamin C (VIT C) levels and increased protein carbonyl (PC) levels, catalase (CAT) activity in hippocampus and cortex, and superoxide dismutase (SOD) levels in cortex. In contrast, both forms of neonatal handling were able to prevent reduction in SP, anxiety behavior in DBT, and CMS-induced adrenal weight increase. Furthermore, they were also able to prevent plasma VIT C reduction, hippocampal PC levels increase, CAT activity increase in hippocampus and cortex, and SOD levels increase in cortex following CMS. Only TS was able to prevent CMS-induced anxiety symptoms in EPM and PC levels in cortex. Taken together, these findings show the protective role of neonatal handling, especially TS, which may enhance ability to cope with stressful situations in adulthood.

  8. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    Science.gov (United States)

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  9. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    Science.gov (United States)

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  10. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Ielham Hadad

    Full Text Available Stroma cell-derived factor-1α (SDF-1α is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R blocker, but not with a ryanodine receptor (RyR antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.

  11. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Wang, Zhi; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2013-11-01

    Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated with intranasal PDTC. Neurological outcomes were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia.

  12. The insulin secretion of a minced neonatal rat pancreas cultured in a pancreatic chamber, in response to various insulin secretagogues.

    Science.gov (United States)

    Araki, Y; Yoshioka, K; Inoue, Y; Nakamura, Y; Nakamura, N; Nakano, K; Yoshida, T; Kondo, M

    1981-02-01

    The minced pancreas of the neonatal rat was cultured for 35 days in a pancreatic chamber which was constructed of a plastic tube and an ultrafiltration membrane. Insulin and amylase secreted from this pancreatic chamber into the culture medium were measured. During the experiment, the concentration of glucose in the culture medium was changed between 5.5 and 16.5 mM at 2-3 day intervals in order to determine the insulin secretory response of the pancreatic tissue. Insulin secretion was markedly increased in response to 16.5 mM glucose. The ratio of insulin secretion to amylase secretion in the culture medium increased with the advance of culture days although secretions of both insulin and amylase decreased individually. On the 7th culture day, short term incubations were performed to test with various insulin secretagogues; obvious insulin release into the incubation medium was observed. These results show that the pancreatic chamber also in vitro secretes insulin rapidly and significantly in response to various stimuli; that by longer culture of a neonatal rat pancreas in this device, insulin secretory cells without exocrine tissue would be obtained without using digestive enzymes; that application of a pancreatic chamber for a pancreatic transplantation may be feasible.

  13. Phenotypic differentiation of neonatal rat cochlear spiral ganglion neurons following trypsin dissociation and culture

    Institute of Scientific and Technical Information of China (English)

    Dingjun Zha; Li Qiao; Lianjun Lu; Xue Gao; Tao Xue; Wenjuan Mi; Shunli Liu; Jianhua Qiu

    2008-01-01

    BACKGROUND: Under laboratory conditions, cochlear spiral ganglion neurons are commonly isolated and cultured by mechanical dissociation. However, these neurons are extremely fragile and survive for only a short time.OBJECTIVE: To establish a trypsin dissociation and culture method for studying neonatal rat cochlear spiral ganglion neurons. DESIGN: A single sample study. SETTING: Department of Otolaryngology, Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University of Chinese PLA.MATERIALS: This study was performed at the central laboratory for Department of Otolaryngology, Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University of Chinese PLA from February to May 2006. A total of 40 neonatal Sprague Dawley rats of either gender, aged 2-5 days, were provided by the Laboratory Animal Center of the Fourth Military Medical University of Chinese PLA. Trypsin and neuronal-specific nuclear protein (NeuN) monoclonal antibodies were purchased from Sigma Company, USA. Culture medium was synthesized using Dulbecco's modified Eagle's medium (DMEM)/F12 (Gibco Company, USA) supplemented with 10% fetal bovine serum (Sigma Company, USA), 100 000 U/L penicillin, and 1 mol/L NaOH. The following protocol was performed in accordance with ethical guidelines for the use and care of animals.METHODS: After anesthesia, rats were sacrificed by neck dislocation. A complete cochlear axis with spiral ganglion tissue was removed. The cochlear axis was rinsed three times in a culture dish with a diameter of 35 mm using Hank's balanced solution. After washings, the tissue was cut into pieces, digested with 0.25% trypsin for about 20 minutes, and incubated in a 37 ℃ water bath. The tissue was centrifuged, then mixed with serum-containing culture medium. Using a transfer pipette, the cell suspension was transferred to polylysine (0.1%)-treated culture dishes with a diameter of 35 mm. The culture dish was incubated at 37 ℃, with a 5% CO2-air environment. Once

  14. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    Science.gov (United States)

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.

  15. The Effect of Neonatal Leptin Antagonism in Male Rat Offspring Is Dependent upon the Interaction between Prior Maternal Nutritional Status and Post-Weaning Diet

    Directory of Open Access Journals (Sweden)

    J. Beltrand

    2012-01-01

    Full Text Available Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON or a high fat diet (MHF during pregnancy and lactation. Male CON and MHF neonates received either saline (S or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf diet. At day 100, body composition, blood glucose, β-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition.

  16. Effects of acute changes in neonatal leptin levels on food intake and long-term metabolic profiles in rats.

    Science.gov (United States)

    Granado, Miriam; García-Cáceres, Cristina; Fuente-Martín, Esther; Díaz, Francisca; Mela, Virginia; Viveros, Maria-Paz; Argente, Jesús; Chowen, Julie A

    2011-11-01

    In rodents there is a rise in serum leptin levels between postnatal days (PND) 5 and 14, with this neonatal leptin surge reported to modulate the maturation of hypothalamic circuits involved in appetite regulation. We hypothesized that acute changes in neonatal leptin levels have different long-term metabolic effects depending on how and when this surge is modified. To advance the timing of the normal leptin peak, male Wistar rats were injected with leptin (sc, 3 μg/g) on PND 2. To ablate the leptin peak on PND 10, a pegylated leptin antagonist (sc, 9 μg/g) was injected. Controls received vehicle. All rats were allowed to eat ad libitum until PND 150. Increased leptin on PND 2 reduced food intake (P<0.01) after 3 months of age with no effect on body weight. Levels of total ghrelin were reduced (P<0.001) and acylated ghrelin increased (P<0.05), with no other modifications in metabolic hormones. In contrast, treatment with the leptin antagonist on PND 9 did not affect food intake but reduced body weight beginning around PND 60 (P<0.02). This was associated with a reduction in fat mass, insulin (P<0.01), and leptin (P<0.007) levels and an increase in testosterone levels (P<0.01). Hypothalamic neuropeptide Y (P<0.05) and leptin receptor (P<0.005) mRNA levels were reduced, whereas mRNA levels for uncoupling protein 2 (P<0.005) were increased in visceral fat, which may indicate an increase in energy expenditure. In conclusion, acute changes in neonatal leptin levels induce different metabolic profiles depending on how and when leptin levels are modified.

  17. Thyroid function and body weight programming by neonatal hyperthyroidism in rats - the role of leptin and deiodinase activities.

    Science.gov (United States)

    Moura, E G; Santos, R S; Lisboa, P C; Alves, S B; Bonomo, I T; Fagundes, A T S; Oliveira, E; Passos, M C F

    2008-01-01

    Several authors have shown that secondary hypothyroidism was programed by neonatal thyroxine (T4) treatment. However, the associated changes of body weight (BW) were less studied, especially those related to the body fat proportion. Here, we have evaluated the effect of neonatal thyroxine treatment on BW, fat proportion, serum leptin, and thyroid function of 60-day-old rats. Wistar rats were treated with thyroxine (50 microg/100 g BW, ip) (T) or saline (S), during the first 10 days of life. BW, nose-rump length (NRL), and food consumption were monitored for 60 days, when the animals were sacrificed. Thyroid function was evaluated by thyroid radioiodine uptake (RAIU), serum T3, T4, TSH, and liver mitochondrial alpha-glycerophosphate dehydrogenase (mGPD) and type 1 and 2 deiodinases (D1 and D2) activities, which are thyroid hormone-dependent enzymes. T animals showed lower food intake, BW and NRL, but higher total fat mass (+33%) and serum leptin (+46%). They also showed lower serum T3 (-23%), T4 (-32%), TSH (-36%), RAIU (-29%) and mGPD activity (-22%). Hypothalamic and pituitary D2 activities were higher (+24% and 1.4 fold, respectively), while brown adipose tissue (BAT) D2 and skeletal muscle D1 activities were lower (-30% and -62%, respectively). Thus, neonatal hyperthyroidism programs for a higher fat proportion and hyperleptinemia, which can explain the lower food intake. The TH-dependent enzymes activities changed accordingly, except for the decrease in BAT D2, which may be due the role played by the hyperleptinemia. Finally, the decrease in peripheral deiodination may contribute to a lower me-tabolic rate that may increase the adiposity.

  18. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    Science.gov (United States)

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05). Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05). Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  19. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation.

  20. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    Science.gov (United States)

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  1. Neonatal DSP-4 treatment modifies antinociceptive effects of the CB1 receptor agonist methanandamide in adult rats.

    Science.gov (United States)

    Korossy-Mruk, Eva; Kuter, Katarzyna; Nowak, Przemysław; Szkilnik, Ryszard; Rykaczewska-Czerwinska, Monika; Kostrzewa, Richard M; Brus, Ryszard

    2013-01-01

    To study the influence of the central noradrenergic system on antinociceptive effects mediated by the CB(1)-receptor agonist methanandamide, intact rats were contrasted with rats in which noradrenergic nerves were largely destroyed shortly after birth with the neurotoxin DSP-4 [N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (50 mg/kg sc × 2, P1 and P3); zimelidine (10 mg/kg sc, 30 min pretreatment, selective serotonin reuptake inhibitor). When rats attained 10 weeks of age, monoamine and their metabolite concentrations were determined in the frontal cortex, thalamus, and spinal cord by an HPLC/ED method. Antinociceptive effects after methanandamide (10 mg/kg ip) apply were evaluated by a battery of tests. In addition, immunohistochemistry and densitometric analysis of the cannabinoid CB(1) receptor in the rat brain was performed. DSP-4 lesioning was associated with a reduction in norepinephrine content of the frontal cortex (>90 %) and spinal cord (>80 %) with no changes in the thalamus. Neonatal DSP-4 treatment produced a significant reduction in the antinociceptive effect of methanandamide in the tail-immersion test, hot-plate test and writhing tests. In the paw pressure and formalin hind paw tests results were ambiguous. These findings indicate that the noradrenergic system exerts a prominent influence on analgesia acting via the cannabinoid system in brain, without directly altering CB(1) receptor density in the brain.

  2. Identification of Retinopathy of Prematurity Related miRNAs in Hyperoxia-Induced Neonatal Rats by Deep Sequencing

    Directory of Open Access Journals (Sweden)

    Ruibin Zhao

    2014-12-01

    Full Text Available Retinopathy of prematurity (ROP remains a major problem for many preterm infants. MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level and have been studied in many diseases. To understand the roles of miRNAs in ROP model rats, we constructed two small RNA libraries from the plasma of hyperoxia-induced rats and normal controls. Sequencing data revealed that 44 down-regulated microRNAs and 22 up-regulated microRNAs from the hyperoxia-induced rats were identified by deep sequencing technology. Some of the differentially expressed miRNAs were confirmed by quantitative reverse transcription-PCR (qRT-PCR. A total of 594 target genes of the differentially expressed microRNAs were identified using a bioinformatics approach. Functional annotation analysis indicated that a number of pathways might be involved in angiogenesis, cell proliferation and cell differentiation, which might be involved in the genesis and development of ROP. The elevated expression level of the vascular endothelial growth factor (VEGF protein in the hyperoxia-induced neonatal rats was also confirmed by enzyme linked immunosorbent assay (ELISA. This study provides some insights into the molecular mechanisms that underlie ROP development, thereby aiding the diagnosis and treatment of this disease.

  3. Interleukin-1 Receptor Antagonist Reduces Neonatal Lipopolysaccharide-Induced Long-Lasting Neurobehavioral Deficits and Dopaminergic Neuronal Injury in Adult Rats

    OpenAIRE

    Yi Pang; Lu-Tai Tien; Hobart Zhu; Juying Shen; Wright, Camilla F.; Jones, Tembra K.; Mamoon, Samir A.; Bhatt, Abhay J; Zhengwei Cai; Lir-Wan Fan

    2015-01-01

    Our previous study showed that a single lipopolysaccharide (LPS) treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β) levels, as well as reduced tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (I...

  4. Transplantation of neonatal cardiomyocytes plus fibrin sealant restores myocardial function in a rat model of myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    LI Yong-shun; GAO Bing-ren

    2007-01-01

    Background Most cardiac regenerative approaches can restore injured heart muscles. In this study, we investigated if fibrin sealant could help neonatal cardiomyocytes restore myocardial function in a rat model of myocardial infarction.Methods The left anterior descending artery in adult female Sprague-Dawley (SD) rats was ligated to make a myocardial infarction model. Neonatal ventricular cardiomyocytes from one-day male SD rats were isolated, labeled and cultured. The cells were injected into the infarcted area three weeks later. The animals were randomized into four recipient groups: (1) cardiomyocytes plus fibrin sealant (group CF, n=10); (2) cardiomyocytes alone (group C, n=10); (3)fibrin sealant recipients alone (group F, n=10); (4) control group (n=10). Four weeks after transplantation,echocardiography and Langerdoff model were used to assess heart function. Immunohistochemical staining and polymerase chain reaction (PCR) were performed to track the implanted cardiomyocytes and detect the sex-determining region Y gene on Y chromosome.Results Echocardiography showed the fraction shortening (FS) in groups CF, C, F and control group was (27.80±6.32)%, (22.29±4.54)%, (19.24±6.29)% and (20.36±3.29)% respectively with statistically significant differences in group CF compared with the other groups (P<0.05). The Langendoff model revealed that the left ventricular development of peak pressure (LVDPmax, mmHg) in groups CF, C, F and control group was 104.81±17.05, 80.97±21.60, 72.07±26.17 and 71.42±17.55 respectively with statistically significant differences in group CF compared with the other groups (P<0.05). Pathological examination and PCR indicated that transplanted cardiomyocytes in group CF survived better than those in the other groups.Conclusion Transplanted neonatal cardiomyocytes plus fibrin sealant can survive in myocardial infarctioned area and improve heart function greatly in rat models.

  5. Differing perspectives on parent access to their child's electronic medical record during neonatal intensive care hospitalization: a pilot study.

    Science.gov (United States)

    Chung, Rebecca K; Kim, Una Olivia; Basir, Mir Abdul

    2017-04-10

    To improve informed medical decision-making, principles for family-centered neonatal care recommend that parents have access to their child's medical record on an ongoing basis during neonatal intensive unit care (NICU) hospitalization. Currently, many NICUs do not allow independent parent access to their child's electronic medical record (EMR) during hospitalization. We undertook a cross-sectional survey pilot study of medical professionals and parents to explore opinions regarding this practice. Inclusion criteria: 18-years old, English-literate, legal guardian of patients admitted to the NICU for 14 days. NICU medical professionals included physicians, nurse practitioners, nurses, and respiratory therapists. Medical professionals believed parent access would make their work more difficult, increase time documenting and updating families, making them more liable to litigation and hesitant to chart sensitive information. However, parents felt that they lacked control over their child's care and desired direct access to the EMR. Parents believed this would improve accuracy of their child's medical chart, and increase advocacy and understanding of their child's illness. NICU parents and medical professionals have differing perspectives on independent parental access to their child's EMR. More research is needed to explore the potential of independent parental EMR access to further improve family-centered neonatal care.

  6. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Neves Girardi

    2014-09-01

    Full Text Available Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h or not from their dams, to a stress challenge (i.p. saline injection. Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze, social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45. Maternally deprived rats exhibited increased plasma corticosterone levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of maternal deprivation, was associated with increased anxiety-like behavior in the elevated plus maze and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of maternal deprivation, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the maternal deprivation paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.

  7. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    Science.gov (United States)

    Girardi, Carlos Eduardo Neves; Zanta, Natália Cristina; Suchecki, Deborah

    2014-01-01

    Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia. PMID:25309370

  8. Post-weaning isolation promotes food intake and body weight gain in rats that experienced neonatal maternal separation.

    Science.gov (United States)

    Ryu, Vitaly; Yoo, Sang Bae; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2009-10-27

    Neonatal maternal separation (MS) in rats has been reported to result in permanent dysfunctions of the hypothalamic-pituitary-adrenal axis and the development of anxiety- and depression-like behaviors later in life. In this study, we examined the effects of post-weaning social isolation stress on food intake and body weight gain of rats with MS experience. MS was performed daily for 180 min during the first 2 weeks of birth and nonhandled control (NH) pups were left undisturbed. Weanling male pups were caged either in a group of three or singly (social isolation), and then subjected to behavioral sessions for anxiety- or depression-like behaviors at 2 months of age. Social isolation following MS experience, but neither MS nor social isolation alone, significantly increased food intake and weight gain. MS pups showed increased immobility in forced swim test, compared to NH pups, regardless of their housing conditions. In elevated plus maze test, group-caged MS pups spent less time in the open arms and more time in the closed arms than group-caged NH pups, but social isolation did not further affect the arm stay of MS pups. However, statistical analyses revealed an interaction between MS and social isolation not only in the time spent in each arms, but also in defecation scores during the ambulatory activity test. These results suggest that post-weaning social isolation may promote hyperphagia and weight gain in young rats that experienced neonatal maternal separation, perhaps, in relation with its impact on the psycho-emotional behaviors of MS pups.

  9. The expression of HoxB5 and SPC in neonatal rat lung at exposure to fluoxetine

    Directory of Open Access Journals (Sweden)

    Taghizadeh R

    2016-11-01

    Full Text Available Razieh Taghizadeh,1 Zahra Taghipour,2 Akbar Karimi,1 Ali Shamsizadeh,3 Mohammad Mohsen Taghavi,2 Mahdi Shariati,2 Ahmad Shabanizadeh,2 Hamid Reza Jafari Naveh,2 Reza Bidaki,4 Fariba Aminzadeh51Department of Biology, Payame Noor University, Isfahan, Iran; 2Department of Anatomy, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 3Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 4Shahid Sadoughi University of Medical Sciences, Yazd, Iran; 5Rafsanjan University of Medical Sciences, Rafsanjan, IranObjective: Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development.Methods: Thirty pregnant Wistar rats (weighing 200–250 g were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method.Results: Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05. Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05. Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development.Conclusion: According to the upregulated expression of HoxB5 concerning

  10. Effects of exogenous ganglioside-1 on learning and memory in a neonatal rat model of hypoxia-ischemia brain injury

    Institute of Scientific and Technical Information of China (English)

    Shizhi Li; Nong Xiao; Xiaoping Zhang; Ling Liu; Liyun Lin; Siyuan Chen; Yuxia Chen; Bei Xu

    2008-01-01

    BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 protection in hypoxia-ischemia-induced brain damage in a neonatal rat model by measuring changes in brain mass, pathological morphology, growth-associated protein-43 expression, and neurobehavioral manifestations. DESIGN, TIME AND SETTING: A randomized block-design study was performed at the lmmunohistochemistry Laboratory of the Pediatric Research Institute, Children's Hospital of Chongqing Medical University from August 2005 to August 2006. MATERIALS: A total of 36 neonatal, 7-day-old, Sprague Dawley rats were used in this experiment. The hypoxia-ischemia-induced brain damage model was established by permanently occluding the right carotid artery, followed by oxygen inhalation at a low concentration (8% O2, 92% N2) for 2 hours. METHODS: All rats were randomly divided into the following groups: GM1, model, and sham operation, with 12 rats each group. Rats in the GM1 and model groups received hypoxic/ischemic-induced brain damage. Rats in the GM1 group received injections ofGM1 (i.p., 20 mg/kg) at 0, 24, 48, 72, 96, 120, and 144 hours following models established, and rats in the model group were administered (i.p.) the same amount of saline. The right carotid artery was separated, but not ligated, in the sham operation group rats. MAIN OUTCOME MEASURES: At 1 week after surgery, expression of growth-associated protein-43, a marker of neural development and plasticity, was detected in the hippocampal CA3 region by immunohistochemistry. Brain mass was measured, and the pathological morphology was observed. At 4 weeks after surgery, behavioral changes in the remaining rats were tested by Morris water maze, and growth-associated protein-43 expression was measured. RESULTS: (1) In the GM 1 and sham operation groups, growth-associated protein-43 expression was

  11. Neonatal handling and environmental enrichment increase the expression of GAP-43 in the hippocampus and promote cognitive abilities in prenatally stressed rat offspring.

    Science.gov (United States)

    Zhang, Zhengyu; Zhang, Hua; Du, Baoling; Chen, Zhiqiang

    2012-07-26

    Neonatal handling and environmental enrichment have been used to aid the treatment and recovery of a diverse variety of brain dysfunctions. However, the underlying mechanism and the effects on cognitive function following neonatal handling and environmental enrichment are still unclear. In this study, we investigated GAP-43 protein levels in the hippocampus of prenatally stressed rat pups by Western blot on postnatal day (P) 10, P20 and P45. The cognitive ability of prenatally stressed rat pups was tested by using the Morris water maze on P45. GAP-43 protein levels were upregulated on P10 in the prenatal restraint stress (RS) group and the prenatal restraint stress plus neonatal handling and environmental enrichment (RE) group compared to the negative control (NC) group. However, the expression of GAP-43 in RS pups was lower on P20 and P45 than that in NC and RE pups. Exposure to prenatal stress prolonged average latency and total swim distance, but neonatal handling and environmental enrichment could reverse the change. Differences were also observed in the selection of search strategies. These results indicate that neonatal handling and environmental enrichment can improve the spatial learning and memory ability of prenatally stressed offspring, and the possible mechanism is the upregulation of GAP-43. Copyright © 2012. Published by Elsevier Ireland Ltd.

  12. Effects of dizocipine maleate on mitochondrial ultramicrostructure in neurons following traumatic brain injury in neonatal rats A quantitative time-course analysis

    Institute of Scientific and Technical Information of China (English)

    Huiying Zhang; Jun Gu; Wenlong Ding; Ping Zhu

    2008-01-01

    BACKGROUND: The effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist on neurodegeneration in the immature brain following traumatic brain injury(TBI)are still widely unknown.OBJECTIVE:To study the effects of dizocipine maleate(MK-801),a non-competitive NMDA receptor antagonist,on mitochondrial ultramicrostructure of neurons in the ipsilateral cingulate cortex and hippocampus after TBI in neonatal rats,and to analyze the optimal time interval of MK-801 administration(1 mg/kg).DESIGN:Completely randomized controlled study. SETTING:Shanghai Jiao Tong University. MATERIALS:Eight 7-day-old neonatal SD rats,irrespective of gender,were provided by Experimental Animal Center,Medical College of Fudan University.The experiment was approved by a local ethics committee.MK-801 was provided by Sigma.A CM-120 transmission electron microscope(Philips,Holland)was used for tissue analysis.METHODS:This study was performed at the Departments of Anatomy,Neuromorphology,and Biophysics, Medical College of Shanghai,Jiaotong University,between October 2006 and January 2007.Focal models of contusion and laceration of brain were established by the free-falling impact method.Eight rats were randomly divided into a normal control group(n=2 )and a MK-801 group(n=6).Rats in the normal control group did not receive model establishment and administration,and they were only analyzed by an electron microscope.In the MK-801 group,the cingulate cortex was damaged using a contusion device.MK-801(1 mg/kg)was intraperitoneally injected 30 minutes before lesion,immediately after lesion,and 30 minutes after lesion(n=2 for each time point).MAIN OUTCOME MEASURES:The cingulate cortex and hippocampal tissues from the injured side were removed 24 hours after lesion and routinely processed for analysis of neuronal ultramicrostructure using transmission electron microscopy.RESULTS:Differential therapeutic effects of MK-801(1 mg/kg)at distinct administration time points: thirty minutes before

  13. Micronucleated Erythrocytes in Peripheral Blood from Neonate Rats Exposed by Breastfeeding to Cyclophosphamide, Colchicine, or Cytosine-Arabinoside

    Directory of Open Access Journals (Sweden)

    Belinda C. Gómez-Meda

    2016-01-01

    Full Text Available Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs and micronucleated polychromatic erythrocytes (MNPCEs in the samples from pups in the experimental groups (P<0.02 and increased MNPCE frequencies in the samples from the dams (P<0.05. These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects.

  14. Micronucleated Erythrocytes in Peripheral Blood from Neonate Rats Exposed by Breastfeeding to Cyclophosphamide, Colchicine, or Cytosine-Arabinoside

    Science.gov (United States)

    Bañales-Martínez, Luis R.; Lemus-Varela, María de Lourdes; Trujillo, Xóchitl; Sánchez-Parada, María G.; Armendáriz-Borunda, Juan; Zúñiga-González, Guillermo M.

    2016-01-01

    Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs) and micronucleated polychromatic erythrocytes (MNPCEs) in the samples from pups in the experimental groups (P < 0.02) and increased MNPCE frequencies in the samples from the dams (P < 0.05). These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects. PMID:28018917

  15. Plasminogen activator inhibitor-1 mitigates brain injury in a rat model of infection-sensitized neonatal hypoxia-ischemia.

    Science.gov (United States)

    Yang, Dianer; Sun, Yu-Yo; Nemkul, Niza; Baumann, Jessica M; Shereen, Ahmed; Dunn, R Scott; Wills-Karp, Marsha; Lawrence, Daniel A; Lindquist, Diana M; Kuan, Chia-Yi

    2013-05-01

    Intrauterine infection exacerbates neonatal hypoxic-ischemic (HI) brain injury and impairs the development of cerebral cortex. Here we used low-dose lipopolysaccharide (LPS) pre-exposure followed by unilateral cerebral HI insult in 7-day-old rats to study the pathogenic mechanisms. We found that LPS pre-exposure blocked the HI-induced proteolytic activity of tissue-type plasminogen activator (tPA), but significantly enhanced NF-κB signaling, microglia activation, and the production of pro-inflammatory cytokines in newborn brains. Remarkably, these pathogenic responses were all blocked by intracerebroventricular injection of a stable-mutant form of plasminogen activator protein-1 called CPAI. Similarly, LPS pre-exposure amplified, while CPAI therapy mitigated HI-induced blood-brain-barrier damage and the brain tissue loss with a therapeutic window at 4 h after the LPS/HI insult. The CPAI also blocks microglia activation following a brain injection of LPS, which requires the contribution by tPA, but not the urinary-type plasminogen activator (uPA), as shown by experiments in tPA-null and uPA-null mice. These results implicate the nonproteolytic tPA activity in LPS/HI-induced brain damage and microglia activation. Finally, the CPAI treatment protects near-normal motor and white matter development despite neonatal LPS/HI insult. Together, because CPAI blocks both proteolytic and nonproteolytic tPA neurotoxicity, it is a promising therapeutics of neonatal HI injury either with or without infection.

  16. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Science.gov (United States)

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  17. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    NARCIS (Netherlands)

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic op

  18. Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats

    Directory of Open Access Journals (Sweden)

    Yuan Chia-Yi

    2011-11-01

    Full Text Available Abstract Background High aluminum (Al content in certain infant formula raises the concern of possible Al toxicity on brain development of neonates during their vulnerable period of growing. Results of in vivo study showed that Al content of brain tissues reached to 74 μM when oral intake up to 1110 μM, 10 times of that in the hi-Al infant formula. Methods Utilizing a cultured neuron cells in vitro model, we have assessed Al influence on neuronal specific gene expression alteration by immunoblot and immunohistochemistry and neural proliferation rate changes by MTT assay. Results Microscopic images showed that the neurite outgrowth of hippocampal neurons increased along with the Al dosages (37, 74 μM Al (AlCl3. MTT results also indicated that Al increased neural cell viability. On the other hand, the immunocytochemistry staining suggested that the protein expressions of NMDAR 1A and NMDAR 2A/B decreased with the Al dosages (p Conclusion Treated hippocampal neurons with 37 and 74 μM of Al for 14 days increased neural cell viability, but hampered NMDAR 1A and NMDAR 2A/B expressions. It was suggested that Al exposure might alter the development of hippocampal neurons in neonatal rats.

  19. The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor.

    Science.gov (United States)

    Holubová, A; Štofková, A; Jurčovičová, J; Šlamberová, R

    2016-12-22

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is important for maintenance of homeostasis during stress. Recent studies have shown a connection between the HPA axis and adipose tissue. The present study investigated the effect of acute heterotypic stress on plasma levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), leptin, and ghrelin in adult male rats with respect to neonatal maternal social and physical stressors. Thirty rat mothers and sixty of their male progeny were used. Pups were divided into three groups: unstressed control (C), stressed by maternal social stressor (S), stressed by maternal social and physical stressors (SW). Levels of hormones were measured in adult male progeny following an acute swimming stress (10 min) or no stress. ELISA immunoassay was used to measured hormones. The ACTH and CORT levels were significantly increased in all groups of adult progeny after acute stress; however, CORT levels were significantly lower in both neonatally stressed groups compared to controls. After acute stress, plasma leptin levels were decreased in the C and SW groups but increased in the S group. The data suggest that long-term neonatal stressors lead to lower sensitivity of ACTH receptors in the adrenal cortex, which could be a sign of stress adaptation in adulthood. Acute stress in adult male rats changes plasma levels of leptin differently relative to social or physical neonatal stressors.

  20. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 2; Development of excitatory amino acid binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Dessi, F.; Represa, A.; Ben-Ari, Y. (Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France))

    1991-01-01

    In the rat, neonatal irradiation produces a destruction of denate granule cells and prevents the development of the mossy fibre-CA3 pyramidal cell synapse. The developmental increase of high affinity kainate binding sites in the stratum lucidum was reduced on the irradiated side as compared with the control side. This suggests that a proportion of high affinity kainate binding sites is associated with mossy fibres. In contrast, the development profile of N-methyl-D-aspartate binding sites, which are associated with associational and commissural synapses in CA3, was not affected by irradiation. The role that afferent fibres may play in the development of pyramidal cells is discussed in connection with the modulatory effects of glutamate receptors on the development of neurons. (author).

  1. Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus.

    Science.gov (United States)

    Caillard, O; Ben-Ari, Y; Gaïarsa, J L

    1999-09-01

    Synaptic plasticity at excitatory glutamatergic synapses is believed to be instrumental in the maturation of neuronal networks. Using whole-cell patch-clamp recordings, we have studied the mechanisms of induction and expression of long-term depression at excitatory GABAergic synapses in the neonatal rat hippocampus (LTD(GABA-A)). We report that the induction of LTD(GABA-A) requires a GABA(A) receptor-mediated membrane depolarization, which is necessary to remove the Mg(2+) block from postsynaptic NMDA receptors. LTD(GABA-A) is associated with an increase in the coefficient of variation of evoked GABA(A) receptor-mediated synaptic currents and a decrease in the frequency, but not amplitude, of Sr(2+)-induced asynchronous GABA(A) quantal events. We conclude that LTD(GABA-A) induction requires the activation of both GABA(A) and NMDA postsynaptic receptors and that its expression is likely presynaptic.

  2. Effects of neonatal peripheral tissue injury on pain-related behaviors in adult rats

    Directory of Open Access Journals (Sweden)

    Meng-meng LI

    2013-09-01

    Full Text Available Objective To observe the effects of peripheraltissueinjury in the developmental stage of newborn rats on pain-related behaviors in adult rats. Methods SD rats 1,4,7,14,21 and 28days after birth were selected in thepresent study(4litters at each time point and 10 rats per litter.Each litter of rats was randomly divided intoinjury group(receiving subcutaneous injection of 20μl bee venomand control group(receiving subcutaneous injection of 20μl normal saline, with20 in each group, and then raised for 2 months to adulthood. The baseline pain threshold was observed by measuring spontaneous paw flinching reflex,paw withdrawal thermal latency(PWTLand paw withdrawal mechanical threshold(PWMT, then 50μl 0.4% bee venom was subcutaneously injected to each rat, and the changesinpa in reaction and pain threshold were determined. Results The baseline thermal pain threshold in adult rats receiving bee venom or normal saline at different time points after birth was similar,but baseline mechanical pain threshold in adult rats receiving bee venom at1,4,7and14 days after birth was decreased significantly compared with the adult rats receiving normal saline at corresponding time points(P0.05.Mechanical hyperalgesia was not induced in rats injected with bee venom but induced in adult ratsinjected with normal saline4-21days after birth.Injection of bee venom 21 and 28 days after birth could obviously enhance the bee venom-induced hyperalgesiain adult rats compared with control group(P<0.01. Conclusions Bee venom stimuli at different time points after birth could affect the baseline PWMT and mechanical pain hypersensitivityin adult rats but not the baseline PWTL and thermal pain hypersensitivity. The 21st day maybe a key time point of nervous system development in rats.

  3. Perialveolar bacterial microbiota and bacteraemia after dental alveolitis in adult rats that had been subjected to neonatal malnutrition.

    Science.gov (United States)

    de Araújo, Flávia Regina Gonçalves; de Castro, Célia Maria Machado Barbosa; Rocha, Judith Advíncula; Sampaio, Bruno; Diniz, Maria de Fátima Alves; Evêncio, Liriane Baratella; Montarroyos, Ulisses Ramos

    2012-04-01

    The aim of the present study was to analyse the bacteriological factors during the process of dental alveolitis, relating it to a higher incidence of bacteraemia in adult rats subjected to neonatal malnutrition. We used forty male Wistar rats, suckled by mothers fed a diet during lactation containing 17 % protein in the nourished group (N) or 8 % protein in the undernourished group (UN). After weaning, the animals were given the Labina standard diet. After 90 d, these animals underwent upper right incisor extraction and induction of alveolitis. The oral microbiota was obtained using a swab and blood culture through venous blood. These procedures were performed before the extraction, 5 min after extraction, on the 21st day after alveolitis for groups N-21 and UN-21 and on the 28th day after alveolitis for groups N-28 and UN-28. Data were expressed as means and standard deviations for parametric data, and as medians and interquartile intervals for non-parametric data. Statistical significance was considered by assuming a critical level of 5 %. Before and after extraction, lower bacterial growth was observed per colony-forming unit (CFU) in the perialveolar region of the upper right incisors of undernourished animals, while the opposite was true after alveolitis, when a larger number of CFU was observed in these animals. The percentage of positive blood cultures obtained after alveolitis was greater in the undernourished animals. The present study thus demonstrated the influence of neonatal malnutrition in the perialveolar microbiota and in the development of bacteraemia after dental alveolitis.

  4. Effect of dexmedetomidine on hippocampal neuron development and BDNF-TrkB signal expression in neonatal rats

    Science.gov (United States)

    Lv, Jie; Ou, Wei; Zou, Xiao-Hua; Yao, Yin; Wu, Jin-Li

    2016-01-01

    The study aimed to explore the effect of dexmedetomidine (DEX) on hippocampal neuron development process and on molecular expression of brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway in neonatal rats. The hippocampal neuron cells were isolated from newborn neonatal rats and cultured in vitro. One control group and three treated groups with 1, 10, and 100 μmol/L DEX were used for the study. Cell activity and apoptosis were detected by the MTT and terminal deoxynucleotidyl transferase-mediated biotinylated uridine triphosphate (UTP) nick end labeling assays. The synaptophysin (SYN) and postsynaptic density 95 (PSD95) were detected by quantitative polymerase chain reaction. There was no difference in the viability of neuron cells among the different dose groups of DEX and the control group during days 2–10 (P>0.05). Compared to the control group, there was no significant difference (P>0.05) in the expressions of SYN and PSD95 in the groups treated with 1 and 10 μmol/L DEX, whereas significant difference in the expression was observed in the group treated with 100 μmol/L DEX (PBDNF was significantly upregulated (PTrkB expression among the four groups. The expression of p-N-methyl-D-aspartate receptor increased with an increase in the concentration of DEX; however, only the high dose revealed a significant upregulation compared with the control group. The neuroprotective effect of DEX may be achieved by upregulating the expression of BDNF and phosphorylation level of N-methyl-D-aspartate receptor. PMID:28003751

  5. The Effects of Hydro-Alcoholic Extract of Zingiber Officinale on Prevention from Plumbism in Kidney Tissue of Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Habiballah Johari

    2013-08-01

    Full Text Available Background: In the present research, the effects of hydro-alcoholic extract of Zingiber officinale (ginger on treating lead-poisoned kidney of neonatal rats was studied.Materials and Methods: This research was conducted as a laboratory work. The neonatal rats were divided into 7 groups of 10 samples. The first control group received no treatment. The second control group received 0.1 mg of distilled water. As an experimental group, the one received an amount of 0.6 g/l lead. The fourth group received only 2 g/kg body weight of hydro-alcoholic extract of ginger. Groups 5 to 7 each initially received 0.6 g/l lead and then amounts of 0.5, 1 and 2 g/kg hydro-alcoholic extract of ginger. The injections were administered via oral gavage during 10 consecutive days.Results: According to the obtained results, the body and kidney weights showed a significant reduction in experimental groups that had received amounts of 1 and 2 g/kg in comparison with the group that had received lead. The kidney weight of the group that had received only extract showed no significant difference in comparison with the control group. As for the body weights, however, it showed a significant increase. Moreover, the body and kidney weights of the lead-injected group showed a significant increase in comparison with the control group.Conclusion: Lead can cause damage to kidney tissues. Due to its antioxidant and protective effect, ginger can be a medication to nephrotoxicity of lead and prevent kidney tissues from destruction.

  6. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups.

    Science.gov (United States)

    Gien, Jason; Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H

    2016-12-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1-ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ETA (BQ123/BQ610) and ETB (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1-ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. Copyright © 2016 the American Physiological Society.

  7. Role of the neuronal histaminergic system in the regulation of somatotropic function: comparison between the neonatal and the adult rat.

    Science.gov (United States)

    Grilli, R; Sibilia, V; Torsello, A; Pagani, F; Guidi, M; Luoni, M; Netti, C; Müller, E E

    1996-11-01

    To study possible age-related differences in the role of neuronal histaminergic pathways in the control of GH secretion, the effects of alpha-fluoromethylhistidine (alpha-FMH), an irreversible inhibitor of histamine (HA) synthesis, were examined on basal and opioid-induced GH release in neonatal and adult rats. The mechanisms involved in such effects were evaluated by measuring pituitary GH mRNA levels and hypothalamic levels of GH-releasing hormone (GHRH) and somatostatin (SRIF) mRNAs. Daily injection of alpha-FMH (20 mg/kg, s.c.) in pups of either sex, from birth until 10 days of age, caused a significant increase in baseline plasma GH and potentiated the GH response to the [Met5]-enkephalin analog FK 33-824 (1 mg/kg, s.c.) administered 3 h after the last alpha-FMH injection. GH and SRIF mRNA levels were significantly higher in alpha-FMH-treated pups than in controls, whereas no difference was observed in GHRH mRNA levels. In young adult male rats, acute administration of alpha-FMH (100 mg/kg, s.c., 3 h before) did not change significantly basal GH levels but potentiated FK 33-824 (0.3 mg/kg, intracarotid)-induced stimulation of GH secretion. Repeated administration of alpha-FMH (200 micrograms/rat, i.c.v., for 3 days) failed to modify basal and FK 33-824-induced GH secretion, caused a significant reduction in hypothalamic GHRH mRNA levels and left SRIF and GH mRNAs unchanged. These findings indicate that HA exerts an inhibitory effect on GH secretion in both neonatal and adult rats. The different effects of short-term HA depletion on hypothalamic and pituitary indices of somatotropic function observed at the two age periods may be ascribed to the immaturity of the HA system in early postnatal life and to a different functional role of GH-regulatory factors during ontogeny.

  8. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yi-hua [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Yong-quan [Harbin Medical University, Harbin 150086 (China); Feng, Shan-li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Bao-xin; Pan, Zhen-wei [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China); Xu, Chang-qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Li, Ting-ting [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Yang, Bao-feng, E-mail: syh200415@yahoo.com.cn [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China)

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  9. [Effect of premature birth on retinal vascular development in the neonatal rat].

    Science.gov (United States)

    Yang, Xiang-min; Li, Rong; Wang, Yu-sheng; Chu, Zhao-jie; Gao, Xiang

    2013-08-01

    To study the effects of premature birth on the development of rat retinal vasculature. Experimental study. Sixty pregnant Sprague-Dawley rats were divided into four groups: bacterial lipopolysaccharide-induced preterm group (LPS group), RU-486 induced preterm group (RP group), cesarean section induced preterm group (CP group), and the normal delivery rats as the control group. The weight of rats from each group was recorded until postnatal day 21. On postnatal day 4, 7, 10 and 14 (P4, P7, P10 and P14), the retina of right eye was dissected and whole-mounted. Each premature group was divided into two subgroups based on the number of rats in each litter, the small subgroup (6-8 rats per litter, group 1) and the large subgroup (14-18 rats per litter, group 2). The development of retinal vascularization process was observed on P4, P7 and P10 (n = 6).Independent t test, one-way ANOVA and LSD-t test were used to analyzed the results. The weight of premature rats in LPS, CP and RP groups was significantly lower than that in the normal group within postnatal 21 days (LSD-t test: all P premature rats have lower weight and much slower rate of early retinal vascularization, as compared with the normal rats. Furthermore, in the premature rats, the proportion of retinal vascularization in larger litters is less than that in smaller litters. These results indicate that premature birth and larger litter size have effects on the development of rat retinal vasculature.

  10. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    Science.gov (United States)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  11. Temporal Development of Gut Microbiota in Triclocarban Exposed Pregnant and Neonatal Rats

    Science.gov (United States)

    Kennedy, Rebekah C.; Fling, Russell R.; Robeson, Michael S.; Saxton, Arnold M.; Donnell, Robert L.; Darcy, John L.; Bemis, David A.; Liu, Jiang; Zhao, Ling; Chen, Jiangang

    2016-01-01

    Alteration of gut microbial colonization process may influence susceptibility of the newborn/infant to infectious and chronic disease. Infectious disease risk leads to widespread use of non-prescription antimicrobials in household products such as Triclocarban (TCC), an antimicrobial compound in personal care products. TCC concentrates in and is transferred through the milk to suckling offspring. TCC exposure during gestation and lactation significantly reduced phylogenetic diversity (PD) among exposed dams and neonates. Among dams using weighted UniFrac distances, TCC induced significant dysbiosis of gut microbiota by gestational day (GD) 18, a trend that continued after delivery. Similarly, an overall restructuring of gut microbiota occurred in neonates. By postnatal day (PND) 12, communities separated based on exposure status and became significantly different at PND 16. The ability of TCC to drive microbial dysbiosis warrants future investigation to evaluate the safety of non-prescription antimicrobial use, including TCC, during critical exposure windows. PMID:27646684

  12. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    Science.gov (United States)

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.

  13. Bumetanide reduce the seizure susceptibility induced by pentylenetetrazol via inhibition of aberrant hippocampal neurogenesis in neonatal rats after hypoxia-ischemia.

    Science.gov (United States)

    Hu, Jiang-Jian; Yang, Xing-Liang; Luo, Wen-Di; Han, Song; Yin, Jun; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

    2017-02-02

    Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na(+)-K(+)-Cl(-)-co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function.

  14. Chronic morphine and tramadol re-exposure induced an anti-anxiety effect in prepubertal rats exposed neonatally to the same drugs.

    Science.gov (United States)

    Gholami, Morteza; Saboory, Ehsan; Khalkhali, Hamid Reza

    2014-10-01

    Anxiety disorders are among the most common mental disorders. Drugs that are often administered to manage medical problems cause rebound anxiety. The use of morphine and tramadol has increased in recent decades. In the present study, the effects of morphine and tramadol exposure during the neonatal and prepubertal periods on anxiety-like behaviours in prepubertal rats were investigated. Male neonate rats were injected subcutaneously with saline, morphine or tramadol (3-21 mg/kg) on a daily basis from postnatal Day (P) 8 to P14. On P22, rats were divided into seven groups (saline/saline, saline/tramadol, saline/morphine, tramadol/saline, tramadol/tramadol, morphine/saline and morphine/morphine) and were injected with saline, tramadol or morphine for seven consecutive days. All rats were tested in an elevated plus maze (EPM) on P24 (acute effects), P27 (chronic effects) and P29. Locomotor activity was increased by the second and third exposure to the EPM. Re-exposure to chronic morphine and tramadol resulted in increased locomotor activity, whereas acute and chronic administration of these drugs induced no notable difference. Anxiety decreased markedly after re-exposure to tramadol and this anxiolytic-like behaviour was more dominant in EPM re-exposure in rats that had received higher doses of tramadol. Re-exposure to tramadol elicited a stronger anxiolytic-like behaviour than re-exposure to morphine. It can be concluded that repeated morphine and tramadol administration during the neonatal period followed by re-exposure to these drugs at an immature stage produces considerable anxiolytic-like behaviour. Exposure to chronic morphine and tramadol during the neonatal period may affect the developing brain, which may induce long-term changes in the opioid response.

  15. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats.

    Science.gov (United States)

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Aloisi, Anna M; Barr, Gordon A

    2017-01-01

    Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1-2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period.

  16. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired behaviora

  17. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    Science.gov (United States)

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  18. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Pedro Espinosa

    2016-01-01

    Full Text Available We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL; DHT (dihydrotestosterone of 1.0 mg/50 μL; EV (estradiol valerate of 0.1 mg/50 μL; and control (sesame oil of 50 μL. At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase and cellular (tyrosine hydroxylase immunoreactivity studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  19. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats.

    Science.gov (United States)

    Arteaga, Olatz; Revuelta, M; Urigüen, L; Martínez-Millán, L; Hilario, E; Álvarez, A

    2016-10-29

    As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

  20. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats.

    Science.gov (United States)

    Rozisky, J R; Laste, G; de Macedo, I C; Santos, V S; Krolow, R; Noschang, C; Vanzella, C; Bertoldi, K; Lovatel, G A; de Souza, I C C; Siqueira, I R; Dalmaz, C; Caumo, W; Torres, I L S

    2013-03-01

    It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.

  1. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes.

    Science.gov (United States)

    Won, Kyung-Jong; Lin, Hai Yue; Jung, Soohyun; Cho, Soo Min; Shin, Ho-Chul; Bae, Young Min; Lee, Seung Hyun; Kim, Hyun-Jung; Jeon, Byeong Hwa; Kim, Bokyung

    2012-04-01

    Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.

  2. Radioiodinated tracers for the evaluation of dopamine receptors in the neonatal rat brain after hypoxic-ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Zouakia, A. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Chalon, S. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Kung, H.F. (Hospital of the Univ. of Pennsylvania, Dept. of Radiology, Philadelphia, PA (United States)); Dognon, A.M. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Saliba, E. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Besnard, J.C. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Guilloteau, D. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France))

    1994-06-01

    In order to evaluate in vivo SPET for assessing cerebral function after hypoxic-ischemic injury in human neonates, we studied D[sub 1] and D[sub 2] dopamine receptors in a rat model. Seven-day-old rats underwent permanent unilateral common carotid ligation followed by exposure to 8% O[sub 2]. Two weeks later, in brains with no visible loss of hemispheric volume, striatal dopaminergic receptors were studied, with [[sup 125]I]TISCH and [[sup 125]I]IBZM for the D[sub 1] and D[sub 2] dopamine receptors, respectively. Using [[sup 125]I]TISCH, we observed no modifications of D[sub 1] receptors, but in contrast, ex vivo and in vitro autoradiographic experiments showed a 40% decrease in the striatal binding of [[sup 125]I]IBZM on both the ipsilateral and the contralateral side to the carotid ligation. These alterations were detected with IBZM, a D[sub 2] dopamine receptor ligand usable for SPET imaging. (orig./MG)

  3. Impact of Inhaled Nitric Oxide on the Sulfatide Profile of Neonatal Rat Brain Studied by TOF-SIMS Imaging

    Directory of Open Access Journals (Sweden)

    Hanane Kadar

    2014-03-01

    Full Text Available Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO. We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of-flight secondary ion mass spectrometry (TOF-SIMS method. This technique was used to map the variations in lipid composition of the rat brain and, particularly, of the white matter. Triplicate analysis showed a significant increase of sulfatides (25%–50% in the white matter on Day 10 of life in iNO-exposed animals from Day 0–7 of life. These robust, repeatable and semi-quantitative data demonstrate a potent effect of iNO at the molecular level.

  4. Role of neuronal nitric oxide synthase and inducible nitric oxide synthase in intestinal injury in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui LU; Bing Zhu; Xin-Dong Xue

    2006-01-01

    AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue.METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined.RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury.CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.

  5. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy.

    Science.gov (United States)

    Vickers, Mark H; Gluckman, Peter D; Coveny, Alice H; Hofman, Paul L; Cutfield, Wayne S; Gertler, Arieh; Breier, Bernhard H; Harris, Mark

    2008-04-01

    An adverse prenatal environment may induce long-term metabolic consequences, in particular obesity, hyperleptinemia, insulin resistance, and type 2 diabetes. Although the mechanisms are unclear, this "programming" has generally been considered an irreversible change in developmental trajectory. Adult offspring of rats subjected to undernutrition (UN) during pregnancy develop obesity, hyperinsulinemia, and hyperleptinemia, especially in the presence of a high-fat diet. Using this model of maternal UN, we have recently shown that neonatal leptin treatment in females reverses the postnatal sequelae induced by developmental programming. To examine possible gender-related effects of neonatal leptin treatment, the present study investigated the effect of neonatal leptin treatment on the metabolic phenotype of adult male offspring. Leptin treatment (recombinant rat leptin, 2.5 microg/g.d, sc) from postnatal d 3-13 resulted in a transient slowing of neonatal weight gain, particularly in programmed offspring. Neonatal leptin treatment of male offspring from normally nourished mothers caused an increase in diet-induced weight gain and related metabolic sequelae, including hyperinsulinemia and increased total body adiposity compared with saline-treated controls. This occurred without an increase in caloric intake. These effects were specific to offspring of normal pregnancies and were not observed in offspring of mothers after UN during pregnancy. In the latter, neonatal leptin treatment conferred protection against the development of the programmed phenotype, particularly in those fed the chow diet postnatally. These data further reinforce the importance of leptin in determining long-term energy homeostasis, and suggest that leptin's effects are modulated by gender and both prenatal and postnatal nutritional status.

  6. Ontogeny of analgesia elicited by non-nutritive suckling in acute and persistent neonatal rat pain models.

    Science.gov (United States)

    Anseloni, V; Ren, K; Dubner, R; Ennis, M

    2004-06-01

    Significant analgesic and calming effects in human infants and neonatal rodents are produced by orogustatory and orotactile stimuli associated with nursing. These naturally occurring analgesic stimuli may help to protect the vulnerable developing nervous system from the long-term effects of neonatal tissue injury. However, the efficacy of orotactile-induced analgesia across the pre-weaning period, as well as its effects on persistent inflammatory pain, is unknown. Here, we investigated the developmental profile of analgesia produced by orotactile stimulation during non-nutritive suckling in rats. The effects of suckling, as compared to non-suckling littermates, on nocifensive withdrawal responses to thermal and mechanical stimuli were examined at postnatal (P) days P0, P3, P10, P17 and P21. In some rats, Complete Freund's adjuvant (CFA) was injected in a fore- or hindpaw to produce inflammation. For thermal stimuli, suckling significantly increased forepaw withdrawal latencies at P3, P10 and P17, while hindpaw responses were increased at P3 and P10, but not at P17. In inflamed pups, suckling increased fore- and hindpaw response latencies at P10 and P17, but not at P0 or P21. Suckling-induced analgesia was naloxone-insensitive. For mechanical stimuli, suckling-induced analgesia was present at P3, P10 and P17, but not at P21, for both fore- and hindpaws in naïve and inflamed animals. Additionally, suckling had a small but significant effect at P0 for the forepaw in inflamed pups. In nearly all experiments, the peak effect of suckling for thermal and mechanical stimuli occurred at P10. These results indicate that orotactile analgesia, like orogustatory analgesia, is absent or minimal at P0, appears consistently at approximately P3 and is maximal at P10. Unlike gustatory analgesia in rats however, orotactile analgesia persists at least to P17. Orotactile stimulation during suckling effectively reduces transient pain elicited by thermal and mechanical stimuli, as well

  7. The cellular and behavioral consequences of interleukin-1 alpha penetration through the blood-brain barrier of neonatal rats: a critical period for efficacy.

    Science.gov (United States)

    Tohmi, M; Tsuda, N; Zheng, Y; Mizuno, M; Sotoyama, H; Shibuya, M; Kawamura, M; Kakita, A; Takahashi, H; Nawa, H

    2007-11-30

    Proinflammatory cytokines circulating in the periphery of early postnatal animals exert marked influences on their subsequent cognitive and behavioral traits and are therefore implicated in developmental psychiatric diseases such as schizophrenia. Here we examined the relationship between the permeability of the blood-brain barrier to interleukin-1 alpha (IL-1 alpha) in neonatal and juvenile rats and their later behavioral performance. Following s.c. injection of IL-1 alpha into rat neonates, IL-1 alpha immunoreactivity was first detected in the choroid plexus, brain microvessels, and olfactory cortex, and later diffused to many brain regions such as neocortex and hippocampus. In agreement, IL-1 alpha administration to the periphery resulted in a marked increase in brain IL-1 alpha content of neonates. Repeatedly injecting IL-1 alpha to neonates triggered astrocyte proliferation and microglial activation, followed by behavioral abnormalities in startle response and putative prepulse inhibition at the adult stage. Analysis of covariance with a covariate of startle amplitude suggested that IL-1 alpha administration may influence prepulse inhibition. However, adult rats treated with IL-1 alpha as neonates exhibited normal learning ability as measured by contextual fear conditioning, two-way passive shock avoidance, and a radial maze task and had no apparent sign of structural abnormality in the brain. In comparison, when IL-1 alpha was administered to juveniles, the blood-brain barrier permeation was limited. The increases in brain IL-1 alpha content and immunoreactivity were less pronounced following IL-1 alpha administration and behavioral abnormalities were not manifested at the adult stage. During early development, therefore, circulating IL-1 alpha efficiently crosses the blood-brain barrier to induce inflammatory reactions in the brain and influences later behavioral traits.

  8. Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration.

    Science.gov (United States)

    Porcu, Patrizia; Lallai, Valeria; Locci, Andrea; Catzeddu, Sandro; Serra, Valeria; Pisu, Maria Giuseppina; Serra, Mariangela; Dazzi, Laura; Concas, Alessandra

    2017-03-01

    Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.

  9. Lactobacillus rhamnosus GG Suppresses Meningitic E. coli K1 Penetration across Human Intestinal Epithelial Cells In Vitro and Protects Neonatal Rats against Experimental Hematogenous Meningitis

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    2009-01-01

    Full Text Available The purpose of this study was to examine prophylactic efficacy of probiotics in neonatal sepsis and meningitis caused by E. coli K1. The potential inhibitory effect of Lactobacillus rhamnosus GG (LGG on meningitic E. coli K1 infection was examined by using (i in vitro inhibition assays with E44 (a CSF isolate from a newborn baby with E. coli meningitis, and (ii the neonatal rat model of E. coli sepsis and meningitis. The in vitro studies demonstrated that LGG blocked E44 adhesion, invasion, and transcytosis in a dose-dependent manner. A significant reduction in the levels of pathogen colonization, E. coli bacteremia, and meningitis was observed in the LGG-treated neonatal rats, as assessed by viable cultures, compared to the levels in the control group. In conclusion, probiotic LGG strongly suppresses meningitic E. coli pathogens in vitro and in vivo. The results support the use of probiotic strains such as LGG for prophylaxis of neonatal sepsis and meningitis.

  10. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats.

    Science.gov (United States)

    Li, Ying-Qin; Tang, Ying; Fu, Rao; Meng, Qiu-Hua; Zhou, Xue; Ling, Ze-Min; Cheng, Xiao; Tian, Su-Wei; Wang, Guo-Jie; Liu, Xue-Guo; Zhou, Li-Hua

    2015-07-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats.

  11. Neonatal Treatment with Antiserum to Prolactin Lowers Blood Pressure in Rats

    Science.gov (United States)

    Mills, David E.; Buckman, Maire T.; Peake, Glenn T.

    1982-07-01

    Prolactin administration reportedly increases blood pressure in rats and rabbits. To study the effects of prolactiin deficiency on blood pressure, rats were given saline, normal rabbit serum, or rabbit antiserum to rat prolactin on postnatal days 2 to 5. Both males and females given antiserum had significantly lower blood pressure at 14 weeks than rats given saline or normal rabbit serum. Blood pressure differences between females given antiserum and females given saline disappeared during and following pregnancy. The antiserum also lowered the concentration of prolactin in plasma 49 percent in males and decreased the prolactin response to ether stress in both sexes. These results suggest that endogenous prolactin is involved in blood pressure regulation.

  12. The Effect of Pregnant Rat Swimming on Hypoxia-Inducible Factor-1α Levels of Neonatal Lung

    Directory of Open Access Journals (Sweden)

    Hajizade A

    2012-03-01

    Full Text Available Background: Uterine environment and fetal period can profoundly affect health of the neonat. Hypoxia-inducible factor-1α (HIF-1α is a transcription factor that regulates cellular stress responses and its activity is essential in both embryogenesis and postnatal life. The aim of the present study was to investigate the effects of maternal swimming on rat Pups' HIF-1α levels as a key regulator of oxygen in lungs.Methods: Sixteen female Wistar rats weighing 180- 200 grams were acclimated to a new environment consisting of equal light-darkness cycle and ad lib access to chow and adapted to the stress caused by water for two weeks. The rats were divided into two swimming and control groups. Swimming training began on the first day of pregnancy in a pool and continued for 3 weeks (1 h/day, 5 days/wk. Pups' lungs were removed two days after birth and their HIF-1α concentration was determined with enzyme-linked immunosorbent assay (ELISA. Statistical analysis of the data was done using independent t-test. A p-value smaller than 0.05 was considered statistically significant. Results: Swimming lead to a significant (P<0.001 increase in the Pups' lung HIF-1α levels compared with the control group. Although 3-wk period of swimming training, showed no significant increase in weight and also lung weight of newborns. Thus it can be concluded that swimming endurance training in pregnancy, can be considered as appropriate alternative in order to embryos development. Conclusion: Our research suggests that HIF-1α level is an essential element for the development of the lungs of embryos. Moreover, further studies on the lung HIF-1α levels at post-natal period with different modes of exercise will provide more clear insight into the mechanisms of the findings resulting from this study.

  13. Early maternal deprivation induces changes on the expression of 2-AG biosynthesis and degradation enzymes in neonatal rat hippocampus.

    Science.gov (United States)

    Suárez, Juan; Rivera, Patricia; Llorente, Ricardo; Romero-Zerbo, Silvana Y; Bermúdez-Silva, Francisco J; de Fonseca, Fernando Rodríguez; Viveros, María-Paz

    2010-08-19

    Early maternal deprivation (MD) in rats (24h, PND 9-10) is a model for neurodevelopmental stress. Our previous data showed that MD altered the hippocampal levels of the endocannabinoid 2-AG and the expression of hippocampal cannabinoid receptors in 13-day-old rats, with males being more markedly affected. The aim of this study was to analyze the impact of MD on the enzymes involved in 2-AG biosynthesis (DAGLalpha and DAGLbeta) and degradation (MAGL) in relevant areas (DG, CA1, CA3) of the hippocampus in 13-day-old neonatal rats. The expression of the enzymes was evaluated by quantitative RT-PCR, immunohistochemistry, and densitometry. MD induced a significant increase in DAGLalpha immunoreactivity in both males and females, which was mainly associated with fibers in the polymorphic cell layer of the dentate gyrus and in the stratum pyramidale of CA3. In contrast, the molecular layer of the dentate gyrus showed a significant decrease in DAGLalpha immunoreactivity in MD males and females. No changes were observed in DAGLbeta immunoreactivity. MD induced a significant decrease in MAGL immunoreactivity in hippocampal CA3 and CA1 areas, more marked in males than in females, and that was mainly associated with fibers in all strata of CA3 and CA1. The results also showed a significant decrease of MAGL mRNA levels in MD males. These data support a clear association between neurodevelopmental stress and dysregulation of the endocannabinoid system. This association may be relevant for schizophrenia and other neurodevelopmental psychiatric disorders.

  14. Effects of Intrathecal Ketamine in the Neonatal Rat: Evaluation of Apoptosis and Long-term Functional Outcome

    Science.gov (United States)

    Walker, Suellen M.; Westin, B. David; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L.

    2010-01-01

    Background Systemic ketamine can trigger apoptosis in the brain of rodents and primates during susceptible developmental periods. Clinically, spinally administered ketamine may improve the duration or quality of analgesia in children. Ketamine-induced spinal cord toxicity has been reported in adult animals, but has not been systematically studied in early development. Methods In anesthetized rat pups, intrathecal ketamine was administered by lumbar percutaneous injection. Changes in mechanical withdrawal threshold evaluated dose-dependent antinociceptive and carrageenan-induced anti-hyperalgesic effects in postnatal day (P)3 and 21 rat pups. Following intrathecal ketamine at P3, 7 or 21, spinal cords were examined for apoptosis (Fluoro-Jade C and activated caspase-3), histopathological change, and glial responses (ionized calcium binding adapter molecule 1 and glial fibrillary acid protein). Following maximal doses of ketamine or saline at P3 or P21, sensory thresholds and gait analysis were evaluated at P35. Results Intrathecal ketamine 3 mg/kg at P3 and 15 mg/kg at P21 reverses carrageenan-induced hyperalgesia. Baseline neuronal apoptosis in the spinal cord was greater at P3 than P7, predominantly in the dorsal horn. Intrathecal ketamine 3–10 mg/kg in P3 pups (but not 15 mg/kg at P21) acutely increased apoptosis and microglial activation in the spinal cord, and altered spinal function (reduced mechanical withdrawal threshold and altered static gait parameters) at P35. Conclusions As acute pathology and long-term behavioral change occurred in the same dose range as antihyperalgesic effects, the therapeutic ratio of intrathecal ketamine is less than one in the neonatal rat. This measure facilitates comparison of the relative safety of spinally-administered analgesic agents. PMID:20526188

  15. Desnutrição neonatal e microbiota normal da cavidade oral em ratos Neonatal malnutrition and normal microbiota of the oral cavity in rats

    Directory of Open Access Journals (Sweden)

    Solange Maria Magalhães da Silva Porto

    2007-12-01

    Full Text Available OBJETIVO: Avaliar a influência da desnutrição neonatal sobre o padrão e o crescimento de bactérias aeróbias, da microbiota normal da cavidade oral, em ratos Wistar adultos. MÉTODOS: O material da cavidade oral foi coletado através de swabs embebidos em 40µL de solução salina estéril e colocados em tubos estéreis contendo 960µL de brain heart infusion. Posteriormente, fez-se homogeneização de cada uma amostra. Então, destes 1.000µL, retirou-se 1µL e este foi semeado em placas de Petri contendo Agar-sangue e Levine para isolamento e identificação de bactérias Gram+ e Gram-, respectivamente. Essas placas foram incubadas em estufa bacteriológica a 37ºC, 48 horas, e as unidades formadoras de colônias que cresceram foram contadas e seus percentuais calculados. Para a bacterioscopia foram confeccionadas lâminas coradas pelo método de Gram. RESULTADOS: Do 5º ao 21º dia de vida os pesos corporais do grupo desnutrido (33,6g:42,8g, desvio-padrão=27,2g foram menores (pOBJECTIVE: To evaluate the influence of neonatal malnutrition on the pattern and growth of aerobic bacteria of the normal bacterial flora of the oral cavity in adults Wistar rats. METHODS: In the present study, the material of the oral cavity was collected through swabs soaked in 40µL of sterile saline solution. After the collection, each swab was placed in a sterile tube containing 960µL of brain heart infusion. Later, the samples were homogenized. Then, from the 1.000µL, 1µL was collected with a gauged loop to be sowed in Petri dishes containing Agar-blood and Agar-Levine, for the isolation and identification of the Gram-positive and Gram-negative bacteria respectively. The plates were placed into a bacteriological incubator, 37ºC, for 48 hours and the colony-forming units that grew were counted and their percentages were calculated. For bacterioscopy, slides were stained with the Gram method. RESULTS: From the 5th to the 21st day of life, body weight of

  16. Depression of A and C fibre-evoked segmental reflexes by morphine and clonidine in the in vitro spinal cord of the neonatal rat

    OpenAIRE

    Faber, E S L; Chambers, J P; Brugger, F; Evans, R. H.

    1997-01-01

    Population synaptic responses of motoneurones were recorded from a ventral root following electrical stimulation of the corresponding lumbar dorsal root in neonatal rat hemisected spinal cord preparations in vitro. Two levels of electrical stimulation were used to elicit dorsal root compound action potentials that contained either an A fibre component alone or both A and C fibre components. The effects of centrally acting analgesics and an N-methyl-D-aspartate (NMDA) receptor antagonist were ...

  17. Effect of moxifloxacin combined with cefotaxime compared to cefotaxime-gentamicin combination on prevention of white matter damage associated with Escherichia coli sepsis in neonatal rats.

    Science.gov (United States)

    Le Saché, Nolwenn; Baud, Olivier; Pansiot, Julien; Pham, Hoa; Biran, Valérie; Brunel-Meunier, Nadège; Bidet, Philippe; Kitzis, Marie-Dominique; Gressens, Pierre; Bingen, Edouard; Charriaut-Marlangue, Christiane; Bonacorsi, Stéphane

    2011-07-01

    Relative to the cefotaxime-gentamicin combination, the moxifloxacin-cefotaxime combination significantly reduced microglial activation and immature oligodendrocyte cell death and delayed myelination in the developing white matter of neonatal rats with experimental Escherichia coli sepsis. These neuroprotective effects were not due to differences in in vivo bactericidal activities or in the systemic inflammatory responses and could be related to the intrinsic immunomodulatory properties of moxifloxacin. Molecular mechanisms underlying the neuroprotective effect of moxifloxacin remain to be elucidated.

  18. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes

    Science.gov (United States)

    Hewawasam, Ruwani P.; Liu, Dan; Casarotto, Marco G.; Board, Philip G.; Dulhunty, Angela F.

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation–contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  19. Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes.

    Science.gov (United States)

    Haffar, Taha; Akoumi, Ali; Bousette, Nicolas

    2016-01-01

    Diabetic hearts exhibit intracellular lipid accumulation. This suggests that the degree of fatty acid oxidation (FAO) in these hearts is insufficient to handle the elevated lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid accumulation in diabetic hearts. We measured fatty acid oxidation, acetyl-CoA oxidation, and carnitine palmitoyl transferase (Cpt1b) activity. We measured both forward and reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We also measured reactive oxygen species using the 2', 7'-Dichlorofluorescin Diacetate (DCFDA) assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG) levels. We found that palmitate significantly impaired mitochondrial β-oxidation as well as citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative stress but may be due to DAG mediated PKC activation. This work demonstrates that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to cell death suggesting that it is a cause, rather than a consequence of palmitate mediated lipotoxicity. This impaired mitochondrial metabolism can have important implications for metabolic diseases such as diabetes and obesity. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Taha Haffar

    2016-12-01

    Full Text Available Background/Aims: Diabetic hearts exhibit intracellular lipid accumulation. This suggests that the degree of fatty acid oxidation (FAO in these hearts is insufficient to handle the elevated lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid accumulation in diabetic hearts. Methods: We measured fatty acid oxidation, acetyl-CoA oxidation, and carnitine palmitoyl transferase (Cpt1b activity. We measured both forward and reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We also measured reactive oxygen species using the 2', 7'-Dichlorofluorescin Diacetate (DCFDA assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG levels. Results: We found that palmitate significantly impaired mitochondrial β-oxidation as well as citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative stress but may be due to DAG mediated PKC activation. Conclusion: This work demonstrates that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to cell death suggesting that it is a cause, rather than a consequence of palmitate mediated lipotoxicity. This impaired mitochondrial metabolism can have important implications for metabolic diseases such as diabetes and obesity.

  1. Hypoxic preconditioning differentially affects GABAergic and glutamatergic neuronal cells in the injured cerebellum of the neonatal rat.

    Directory of Open Access Journals (Sweden)

    Sergio G Benitez

    Full Text Available In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc. Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67 and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C rats and rats submitted to Pc, hypoxia-ischemia (L and a combination of both treatments (PcL. We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult--showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization--were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult

  2. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  3. Regeneration of 5-HT fibers in hippocampal heterotopia of methylazoxymethanol-induced micrencephalic rats after neonatal 5,7-DHT injection.

    Science.gov (United States)

    Nakamura, Arata; Kadowaki, Taro; Sakakibara, Shin-ichi; Yoshimoto, Kanji; Hirata, Koichi; Ueda, Shuichi

    2010-03-01

    In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.

  4. Posture effects on spontaneous limb movements, alternated stepping, and the leg extension response in neonatal rats.

    Science.gov (United States)

    Mendez-Gallardo, Valerie; Roberto, Megan E; Kauer, Sierra D; Brumley, Michele R

    2016-03-01

    The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures--prone or supine--on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development.

  5. Modulation of adult rat benzo(a)pyrene (BaP) metabolism and DNA adduct formation by neonatal diethylstilbestrol (DES) exposure.

    Science.gov (United States)

    Ramesh, Aramandla; Inyang, Frank; Knuckles, Maurice E

    2004-12-01

    This study seeks to elucidate the role of diethylstilbestrol (DES), a synthetic estrogen on benzo(a)pyrene (BaP) metabolism in the male rat reproductive tissues. Offspring of timed-pregnant Sprague-Dawley rats were neonatally treated on days 2, 4, and 6 post-partum with 1.45 micromol/kg of DES. Ten weeks after birth, the adult rats were challenged with radiolabeled benzo(a)pyrene (3H BaP) (10 micromol/kg) and the rats were sacrificed 2 h after BaP exposure. Prostrate, testis, lung, liver, urine and feces samples were collected and extracted using a mixture of H2O, MeOH and CHCl3. The extracts were analyzed by reverse phase HPLC. The concentrations of BaP organic metabolites in DES rats were lower compared to controls (vehicle-treated rats). On the other hand, concentrations of aqueous metabolites were significantly increased in DES treated animals. The toxication to detoxication ratios were significantly decreased in DES rats compared to controls. This trend is also reflected in the decreased concentrations of BaP-DNA adducts in DES rats. Collectively these results suggest that DES is capable of modulating the metabolic pathway of BaP towards detoxification thereby preventing the manifestation of toxicity.

  6. Effects of fasting and/or oxidizing and reducing agents on absorption of neptunium from the gastrointestinal tract of mice and adult or neonatal rats.

    Science.gov (United States)

    Sullivan, M F; Ruemmler, P S; Ryan, J L

    1984-12-01

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron, and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and 235Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in 237Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the other hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with 235Np and either ferric or ferrous iron. The highest absorption obtained after gavage of ferric iron to fasted rats and mice was about two orders of magnitude higher than the value obtained in animals that were fed before gavage. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).

  7. Neonatal treatment with lipopolysaccharide differentially affects adult anxiety responses in the light-dark test and taste neophobia test in male and female rats.

    Science.gov (United States)

    Tenk, Christine M; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2013-05-01

    Neonatal administration of the bacterial cell wall component, lipopolysaccharide (LPS) has been shown to alter a variety of behavioural and physiological processes in the adult rat, including altering adult anxiety-like behaviour. Research conducted to date, however, has produced conflicting findings with some results demonstrating increases in adult anxiety-like behaviour while others report decreases or no changes in anxiety-like behaviour. Thus, the current study conducted additional evaluation of the effects of neonatal LPS exposure on adult anxiety-like behaviours by comparing the behavioural outcomes in the more traditional light-dark test, together with the less common hyponeophagia to sucrose solution paradigm. Male and female Long-Evans rats were treated systemically with either LPS (50μg/kg) or saline (0.9%) on postnatal days 3 and 5. Animals were then tested in the light-dark apparatus on postnatal day 90 for 30min. Next, following 5 days of habituation to distilled water delivery in Lickometer drinking boxes, animal were tested for neophagia to a 10% sucrose solution (0.3M) for 30min daily on postnatal days 96 and 97. In the light-dark test, neonatal LPS treatment decreased adult anxiety-like behaviour in females, but not males. In contrast, neonatal exposure to LPS did not influence adult anxiety-like behaviour as measured by hyponeophagia, but altered the licking patterns of drinking displayed towards a novel, palatable sucrose solution in adult males and females, in a manner that may reflect a decrease in situational anxiety. The current study supports the idea that neonatal LPS treatment results in highly specific alterations of adult anxiety-like behaviour, the nature of which seems to depend not only on the measure of anxiety behaviour used, but also possibly, on the degree of anxiety experienced during the behavioural test.

  8. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats

    Science.gov (United States)

    Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas

    2016-01-01

    We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682

  9. Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life

    DEFF Research Database (Denmark)

    Barbosa, Francisco B; Capito, Kirsten; Kofod, Hans;

    2002-01-01

    Pancreatic islets were isolated from rats that had been nursed by dams fed with a control or an 8.7% protein diet during the first 12 d of the lactation period. Glucose-induced insulin secretion from islets in the 8.7% protein group was reduced 50%. The islet insulin and DNA content were similar,...

  10. Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs

    NARCIS (Netherlands)

    F.A. Verhoeven; H.H. van der Putten; G. Hennemann; J.M.J. Lamers (Jos); T.J. Visser (Theo); M.E. Everts (Maria)

    2002-01-01

    textabstractCellular and nuclear uptake of [125I]tri-iodothyronine (T3) and [125I]triiodothyroacetic acid (Triac) were compared in cardiomyocytes of 2-3 day old rats, and the effect of thyroid hormone analogs on cellular T(3) uptake was measured. Cells (5-10 x 10(5) per well) were

  11. Inhibitory effects of calcium channel blockers on thyroid hormone uptake in neonatal rat cardiomyocytes

    NARCIS (Netherlands)

    F.A. Verhoeven; E.P.C.M. Moerings (Ellis); J.M.J. Lamers (Jos); G. Hennemann; T.J. Visser (Theo); M.E. Everts (Maria)

    2001-01-01

    textabstractThe effects of the Ca2+ channel blockers verapamil, nifedipine, and diltiazem on triiodothyronine (T3) and thyroxine (T4) uptake were tested in cultured cardiomyocytes from 2-day-old rats. Experiments were performed at 37 degrees C in medium with 0.5% BSA for [125I]T3 (

  12. Neonatal SSRI exposure improves mitochondrial function and antioxidant defense in rat heart.

    Science.gov (United States)

    Braz, Glauber Ruda F; Freitas, Cristiane M; Nascimento, Luciana; Pedroza, Anderson A; da Silva, Aline Isabel; Lagranha, Claudia

    2016-04-01

    Protein restriction during prenatal, postnatal, or in both periods has a close relationship with subsequent development of cardiovascular disease in adulthood. Elevated brain levels of serotonin and its metabolites have been found in malnourished states. The aim in the present study was to investigate whether treatment with fluoxetine (Fx), a selective serotonin reuptake inhibitor, mimics the detrimental effect of low-protein diet during the perinatal period on the male rat heart. Our hypothesis is that increased circulating serotonin as a result of pharmacologic treatment with Fx leads to cardiac dysfunction similar to that observed in protein-restricted rats. Male Wistar rat pups received daily subcutaneous injection of Fx or vehicle from postnatal day 1 to postnatal day 21. Male rats were euthanized at 60 days of age and the following parameters were evaluated in the cardiac tissue: mitochondrial respiratory capacity, respiratory control ratio, reactive oxygen species (ROS) production, mitochondrial membrane potential, and biomarkers of oxidative stress and antioxidant defense. We found that Fx treatment increased mitochondrial respiratory capacity (123%) and membrane potential (212%) and decreased ROS production (55%). In addition we observed an increase in the antioxidant capacity (elevation in catalase activity (5-fold) and glutathione peroxidase (4.6-fold)). Taken together, our results suggest that Fx treatment in the developmental period positively affects the mitochondrial bioenergetics and antioxidant defense in the cardiac tissue.

  13. Behavioural characterisation of rats exposed neonatally to bisphenol-A: responses to a novel environment and to methylphenidate challenge in a putative model of attention-deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Kiguchi, M.; Fujita, S.; Oki, H.; Shimizu, N.; Cools, A.R.; Koshikawa, N.

    2008-01-01

    Neonatal exposure of rats to bisphenol-A, an endocrine disruptor, has recently been proposed as a possible animal model of attention-deficit hyperactivity disorder (ADHD), because such rats exhibit motor hyperactivity. To strengthen the face validity of this animal model, the present study

  14. Behavioural characterisation of rats exposed neonatally to bisphenol-A: responses to a novel environment and to methylphenidate challenge in a putative model of attention-deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Kiguchi, M.; Fujita, S.; Oki, H.; Shimizu, N.; Cools, A.R.; Koshikawa, N.

    2008-01-01

    Neonatal exposure of rats to bisphenol-A, an endocrine disruptor, has recently been proposed as a possible animal model of attention-deficit hyperactivity disorder (ADHD), because such rats exhibit motor hyperactivity. To strengthen the face validity of this animal model, the present study replicate

  15. Maternal caffeine intake during gestation and lactation down-regulates adenosine A1 receptor in rat brain from mothers and neonates.

    Science.gov (United States)

    Lorenzo, A M; León, D; Castillo, C A; Ruiz, M A; Albasanz, J L; Martín, M

    2010-05-01

    Even though caffeine can be excreted in breast milk, few studies have analyzed the effect of maternal caffeine consumption during lactation on neonatal brain. In the present work pregnant rats were treated daily with 1 g/L of caffeine in their drinking water during pregnancy and/or lactation and the effect on adenosine A(1) receptor in brains from both lactating mothers and 15 days-old neonates was assayed using radioligand binding and real time PCR assays. Mothers receiving caffeine during gestational period developed motor activation in gestational days 8-10 which was associated with a significant decrease of total adenosine A(1) receptor number (84%). A similar decrease was detected in mothers treated with caffeine during lactation (76%) and throughout gestation and lactation (73%); this was accompanied by a significant decrease in mRNA level coding adenosine A(1) receptor (28%). In male neonates, adenosine A(1) receptor was also decreased after chronic caffeine exposure during gestation (80%), lactation (76%) and gestation plus lactation (80%). In female neonates, adenosine A(1) receptor tended to decrease in response to caffeine exposure although no significant variations were found. No variation in the level of mRNA coding adenosine A(1) receptor was detected in neonates in any case. Concerning adenosine A(2A) receptor, radioligand binding assays revealed that this receptor remains unaltered in maternal and neonatal brain in response to caffeine exposure. However, caffeine consumption during gestation and lactation evoked a significant decrease in mRNA level coding A(2A) receptor (32%) in mothers' brain.

  16. Hand disinfection in a neonatal intensive care unit: continuous electronic monitoring over a one-year period

    Directory of Open Access Journals (Sweden)

    Helder Onno K

    2012-10-01

    Full Text Available Abstract Background Good hand hygiene compliance is essential to prevent nosocomial infections in healthcare settings. Direct observation of hand hygiene compliance is the gold standard but is time consuming. An electronic dispenser with built-in wireless recording equipment allows continuous monitoring of its usage. The purpose of this study was to monitor the use of alcohol-based hand rub dispensers with a built-in electronic counter in a neonatal intensive care unit (NICU setting and to determine compliance with hand hygiene protocols by direct observation. Methods A one-year observational study was conducted at a 27 bed level III NICU at a university hospital. All healthcare workers employed at the NICU participated in the study. The use of bedside dispensers was continuously monitored and compliance with hand hygiene was determined by random direct observations. Results A total of 258,436 hand disinfection events were recorded; i.e. a median (interquartile range of 697 (559–840 per day. The median (interquartile range number of hand disinfection events performed per healthcare worker during the day, evening, and night shifts was 13.5 (10.8 - 16.7, 19.8 (16.3 - 24.1, and 16.6 (14.2 - 19.3, respectively. In 65.8% of the 1,168 observations of patient contacts requiring hand hygiene, healthcare workers fully complied with the protocol. Conclusions We conclude that the electronic devices provide useful information on frequency, time, and location of its use, and also reveal trends in hand disinfection events over time. Direct observations offer essential data on compliance with the hand hygiene protocol. In future research, data generated by the electronic devices can be supplementary used to evaluate the effectiveness of hand hygiene promotion campaigns.

  17. Protein-energy malnutrition during pregnancy alters caffeine's effect on brain tissue of neonate rats.

    Science.gov (United States)

    Mori, M; Wilber, J F; Nakamoto, T

    1984-12-17

    We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.

  18. Maternal PUFA ω-3 Supplementation Prevents Neonatal Lung Injuries Induced by Hyperoxia in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Dyuti Sharma

    2015-09-01

    Full Text Available Bronchopulmonary dysplasia (BPD is one of the most common complications of prematurity, occurring in 30% of very low birth weight infants. The benefits of dietary intake of polyunsaturated fatty acids ω-3 (PUFA ω-3 during pregnancy or the perinatal period have been reported. The aim of this study was to assess the effects of maternal PUFA ω-3 supplementation on lung injuries in newborn rats exposed to prolonged hyperoxia. Pregnant female Wistar rats (n = 14 were fed a control diet (n = 2, a PUFA ω-6 diet (n = 6, or a PUFA ω-3 diet (n = 6, starting with the 14th gestation day. At Day 1, female and newborn rats (10 per female were exposed to hyperoxia (O2, n = 70 or to the ambient air (Air, n = 70. Six groups of newborns rats were obtained: PUFA ω-6/O2 (n = 30, PUFA ω-6/air (n = 30, PUFA ω-3/O2 (n = 30, PUFA ω-3/air (n = 30, control/O2 (n = 10, and control/air (n = 10. After 10 days, lungs were removed for analysis of alveolarization and pulmonary vascular development. Survival rate was 100%. Hyperoxia reduced alveolarization and increased pulmonary vascular wall thickness in both control (n = 20 and PUFA ω-6 groups (n = 60. Maternal PUFA ω-3 supplementation prevented the decrease in alveolarization caused by hyperoxia (n = 30 compared to PUFA ω-6/O2 (n = 30 or to the control/O2 (n = 10, but did not significantly increase the thickness of the lung vascular wall. Therefore, maternal PUFA ω-3 supplementation may protect newborn rats from lung injuries induced by hyperoxia. In clinical settings, maternal PUFA ω-3 supplementation during pregnancy and during lactation may prevent BPD development after premature birth.

  19. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats.

    Science.gov (United States)

    Frankel, Sari; Medvedeva, Natalia; Gutherz, Samuel; Kulick, Catherine; Kondratyev, Alexei; Forcelli, Patrick A

    2016-04-01

    Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend

  20. Efeitos de longo prazo do estresse neonatal com lipopolissacarídeo em ratos = Long-term effects of neonatal stress using lipopolysaccharide in rats

    Directory of Open Access Journals (Sweden)

    Lunardelli, Adroaldo

    2014-01-01

    Conclusão: Os resultados demonstram que a administração neonatal de LPS consiste em um modelo experimental efetivo de programming, provocando uma série de alterações imunológicas e comportamentais na vida adulta

  1. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Shintani, Seine A.; Oyama, Kotaro [Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo (Japan); Fukuda, Norio, E-mail: noriof@jikei.ac.jp [Department of Cell Physiology, The Jikei University School of Medicine, Tokyo (Japan); Ishiwata, Shin’ichi, E-mail: ishiwata@waseda.jp [Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo (Japan); WASEDA Bioscience Research Institute in Singapore (WABIOS) (Singapore)

    2015-02-06

    Highlights: • We tested the effects of infra-red laser irradiation on cardiac sarcomere dynamics. • A rise in temperature (>∼38 °C) induced high-frequency sarcomeric auto-oscillations. • These oscillations occurred with and without blockade of intracellular Ca{sup 2+} stores. • Cardiac sarcomeres can play a role as a temperature-dependent rhythm generator. - Abstract: In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >∼38 °C induced [Ca{sup 2+}]{sub i}-independent high-frequency (∼5–10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca{sup 2+}]{sub i}-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (∼10 and ∼1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.

  2. Prevention of cumene hydroperoxide induced oxidative stress in cultured neonatal rat myocytes by scavengers and enzyme inhibitors.

    Science.gov (United States)

    Persoon-Rothert, M; Egas-Kenniphaas, J M; van der Valk-Kokshoorn, E J; Mauve, I; van der Laarse, A

    1990-10-01

    Oxidative stress induced by cumene hydroperoxide was studied in cultured neonatal rat myocytes. A progressive increase of irreversible cell injury as determined by leakage of the cytoplastic enzyme alpha-hydroxybutyrate dehydrogenase (alpha-HBDH) from the cells was noted at concentrations ranging from 25-100 microM cumene hydroperoxide (incubation time 90 min). Cumene hydroperoxide-induced damage was reduced or prevented by several compounds: the application of Trolox C, a water-soluble vitamin E analogue, and of phospholipase A2 inhibitors chlorpromazine and (to a lesser extent) quinacrine prevented alpha-HBDH release. ICRF-159, a chelator of divalent cations, ascorbic acid, a potent antioxidant, and the cysteine protease inhibitor leupeptin did not reduce the cumene hydroperoxide-induced cytotoxicity. Detoxification of hydroperoxides by the glutathione peroxidase system results in an increased flux through the pentose phosphate shunt and loss of NADPH. Glucose inhibited the cumene hydroperoxide-induced alpha-HBDH release, probably by replenishing NADPH. These results indicate that cumene hydroperoxide, after exhaustion of the glutathione system, induces irreversible injury in cultured myocytes by a mechanism that depends to a large extent on deterioration of cellular membranes caused by lipid peroxidation and phospholipase activation.

  3. A late slow depolarization unmasked in the presence of tetraethylammonium in neonatal rat sympathetic neurons in vitro.

    Science.gov (United States)

    Suppes, T

    1984-02-20

    Neonatal rat superior cervical ganglia were mechanically dissociated, and the sympathetic neurons grown in dispersed cell cultures. Intracellular microelectrodes were used to study the effects of tetraethylammonium (TEA+), a blocker of outward K+ currents, on the excitable properties of these neurons. Addition of TEA+ to the perfusion media (TEA+-media) caused the resting potential to depolarize and the action potential to increase in duration. In TEA+-media (20-60 mM), a late delayed depolarization (LDD) followed the falling phase of the action potential with a delay of 1.5-2 s (n = 95). The LDD peak amplitude was in the range of 4-26 mV and the duration, to full return of the resting potential, was in the range of 18-90 s. For a given cell the amplitude and duration of the LDD were constant. The LDD was associated with a conductance increase. No LDD could be elicited in the presence of calcium channel blockers. Evidence was found for a Ca2+-dependence of the LDD: increasing the extracellular Ca2+ concentration caused increases in the amplitude and duration of the LDD. The significance of an endogenous LDD-like potential and possible explanations for the origin of the LDD are discussed.

  4. The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure

    Directory of Open Access Journals (Sweden)

    Lamartiniere Coral A

    2007-12-01

    Full Text Available Abstract Background Phthalate esters like n-butyl benzyl phthalate (BBP are widely used plasticizers. BBP has shown endocrine-disrupting properties, thus having a potential effect on hormone-sensitive tissues. The aim of this study is to determine the effect of neonatal/prepubertal exposure (post-natal days 2–20 to BBP on maturation parameters and on the morphology, proliferative index and genomic signature of the rat mammary gland at different ages of development (21, 35, 50 and 100 days. Results Here we show that exposure to BBP increased the uterine weight/body weight ratio at 21 days and decreased the body weight at time of vaginal opening. BBP did not induce significant changes on the morphology of the mammary gland, but increased proliferative index in terminal end buds at 35 days and in lobules 1 at several ages. Moreover, BBP had an effect on the genomic profile of the mammary gland mainly at the end of the exposure (21 days, becoming less prominent thereafter. By this age a significant number of genes related to proliferation and differentiation, communication and signal transduction were up-regulated in the glands of the exposed animals. Conclusion These results suggest that BBP has an effect in the gene expression profile of the mammary gland.

  5. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia.

    Science.gov (United States)

    Chambers, R Andrew; Self, David W

    2002-12-01

    The high prevalence of substance use disorders in schizophrenia relative to the general population and other psychiatric diagnoses could result from developmental neuropathology in hippocampal and cortical structures that underlie schizophrenia. In this study, we tested the effects of neonatal ventral hippocampal lesions on instrumental behavior reinforced by sucrose pellets and intravenous cocaine injections. Lesioned rats acquired sucrose self-administration faster than sham-lesioned rats, but rates of extinction were not altered. Lesioned rats also responded at higher rates during acquisition of cocaine self-administration, and tended to acquire self-administration faster. Higher response rates reflected perseveration of responding during the post-injection "time-out" periods, and a greater incidence of binge-like cocaine intake, which persisted even after cocaine self-administration stabilized. In contrast to sucrose, extinction from cocaine self-administration was prolonged in lesioned rats, and reinstatement of cocaine seeking induced by cocaine priming increased compared with shams. These results suggest that neonatal ventral hippocampal lesions facilitate instrumental learning for both natural and drug rewards, and reduce inhibitory control over cocaine taking while promoting cocaine seeking and relapse after withdrawal. The findings are discussed in terms of possible developmental or direct effects of the lesions, and both positive reinforcement (substance use vulnerability as a primary disease symptom) and negative reinforcement (self-medication) theories of substance use comorbidity in schizophrenia.

  6. Does Pain in the Neonatal Period Influence Motor and Sensory Functions in a Similar Way for Males and Females During Post-Natal Development in Rats?

    Science.gov (United States)

    Carmo, Elisabete de Cássia do; Sanada, Luciana Sayuri; Machado, Nathalia Leilane Berto; Fazan, Valéria Paula Sassoli

    2016-08-01

    OBJECTIVE : Early pain experiences can lead to disruption in the long-term responses to pain and in abnormal development and behavior in rodents. We evaluated the sensory and motor development of Wistar rats after exposure to painful stimulation (repetitive needle prickling) immediately after birth. METHODS : Male and female rats were followed up to 6 months of life, and sensory and motor functions were investigated by testing paw withdrawal with von Frey filaments, calibrated forceps (CF), and grip strength (GS) tests. RESULTS : Body weight increased with age and tended to be smaller in pain groups compared with their controls of the same sex. GS values also increased with age in controls but were stable and even decreased in pain groups from 120 up to 180 days. The von Frey filaments test showed higher values on the nonstimulated paws in male and female pain groups, with no differences between sides on the controls. The CF test showed smaller values on the stimulated paws in the pain group, with no differences between sides on the controls. CONCLUSIONS : Pain in the neonatal period influences sensory and motor functions negatively during development in male and female rats, even long term after the painful stimulus is ceased. The neonatal injury-induced hypersensitivity is persistent, and male and female rats respond similarly to the stimulus.

  7. Interleukin-1 Receptor Antagonist Reduces Neonatal Lipopolysaccharide-Induced Long-Lasting Neurobehavioral Deficits and Dopaminergic Neuronal Injury in Adult Rats

    Directory of Open Access Journals (Sweden)

    Yi Pang

    2015-04-01

    Full Text Available Our previous study showed that a single lipopolysaccharide (LPS treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β levels, as well as reduced tyrosine hydroxylase (TH expression in the substantia nigra (SN of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg with or without IL-1ra (0.1 mg/kg, or sterile saline was injected intracerebrally into postnatal day 5 (P5 Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.

  8. Interleukin-1 receptor antagonist reduces neonatal lipopolysaccharide-induced long-lasting neurobehavioral deficits and dopaminergic neuronal injury in adult rats.

    Science.gov (United States)

    Pang, Yi; Tien, Lu-Tai; Zhu, Hobart; Shen, Juying; Wright, Camilla F; Jones, Tembra K; Mamoon, Samir A; Bhatt, Abhay J; Cai, Zhengwei; Fan, Lir-Wan

    2015-04-17

    Our previous study showed that a single lipopolysaccharide (LPS) treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β) levels, as well as reduced tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra) protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg) with or without IL-1ra (0.1 mg/kg), or sterile saline was injected intracerebrally into postnatal day 5 (P5) Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.

  9. Effects of propoxur on male fertility in wistar rat exposed neonatally

    Directory of Open Access Journals (Sweden)

    Augustave Kenfack

    2014-08-01

    Full Text Available Background: Propoxur is a carbamate pesticide widely used in crop and foodstuff protection. They are known to cause a wide variety of symptoms in animals. Methods: Twenty four young male rats were exposed to 0.00, 1.73, 2.60 and 5.20 mg/kg body weight through oral intubation for 90 days. Results: The testis weight increased significantly (P 0.05 but the percentage of sperm motility decreased significantly (P 0.05 change was observed between the control and treated males for the litter size, viability rate and sex-ratio. Conclusions: Despite the impairment of seminal epithelia and sperm characteristics, male rats orally exposed to the studied doses of propoxur maintained their fertility at the 90th day of treatment. [Int J Reprod Contracept Obstet Gynecol 2014; 3(4.000: 898-902

  10. Neuroprotection of VEGF-expression neural stem cells in neonatal cerebral palsy rats.

    Science.gov (United States)

    Zheng, Xiang-Rong; Zhang, Shan-Shan; Yin, Fei; Tang, Jie-Lu; Yang, Yu-Jia; Wang, Xia; Zhong, Le

    2012-04-21

    Cerebral palsy (CP) is a very common neural system development disorder that can cause physical disability in human. Here, we studied the neuroprotective effect of vascular endothelial growth factor (VEGF)-transfected neural stem cells (NSCs) in newborn rats with cerebral palsy (CP). Seven-day-old Sprague-Dawley rats were randomly divided into four groups: sham operation (control group), PBS transplantation (PBS group), VEGF+NSCs transplantation (transgene NSCs group) and NSCs transplantation groups (NSCs group). PBS, Transgene NSCs and NSCs groups respectively received stereotactic injections of PBS, lentiviral vector (pGC-FU-VEGF) infected NSCs or a NSCs suspension in the left sensory-motor cortex 3 days after CP model was established. The NSCs activity, their impacts on neural cell growth and apoptosis, brain development and animal behaviors were examined on the animals up to age 35-days. As expected, unilateral carotid artery occlusion plus hypoxia (cerebral palsy model) resulted in severe neural developmental disorders, including slowed growth, increased in cortical neuron apoptosis, decreased cerebral cortex micro-vessel density and retarded behavior developments. Transplantation of NSCs not only resulted in increases in VEGF protein expression in rat brains, but also largely prevented the behavioral defects and brain tissue pathology that resulted from cerebral palsy procedure, with animals received VEGF transfected NSCs always being marginally better than these received un-transfected cells. In conclusion, NSCs transplantation can partially prevent/slow down the brain damages that are associated with CP in the newborn rats, suggesting a new possible strategy for CP treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Dongsun Park

    2015-01-01

    Full Text Available Objective. Since oligodendrocyte progenitor cells (OPCs are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE, the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC, a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.

  12. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hallaq, H.; Leaf, A. (Harvard Medical School, Boston, MA (USA)); Sellmayer, A. (Univ. Munchen, (Germany)); Smith, T.W. (Brigham and Women' s Hospital, Boston, MA (USA))

    1990-10-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3{endash}5 days in culture medium enriched with 5 {mu}M arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3{endash}5 days with 5 {mu}M eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable {sup 86}Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 {plus minus} 29 and 757 {plus minus} 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3{endash}5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes.

  13. Bioluminescent imaging reveals novel patterns of colonization and invasion in systemic Escherichia coli K1 experimental infection in the neonatal rat.

    Science.gov (United States)

    Witcomb, Luci A; Collins, James W; McCarthy, Alex J; Frankel, Gadi; Taylor, Peter W

    2015-12-01

    Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Differential effects of glutamate receptor antagonists on dorsal horn neurons responding to colorectal distension in a neonatal colon irritation rat model

    Institute of Scientific and Technical Information of China (English)

    Chun Lin; Elie D Al-Chaer

    2005-01-01

    AIM: To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX),two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).METHODS: Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001,0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 μmoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.RESULTS: (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20,40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dosedependent manner; (3) In control rats, CNQX (2 μmoL)had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 μmoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 μmoL)significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.CONCLUSION: Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.

  15. Effects of maternal captopril treatment during late pregnancy on neonatal lung development in rats.

    Science.gov (United States)

    Capelari, Diego N; Sánchez, Susana I; Ortega, Hugo H; Ciuffo, Gladys M; Fuentes, Lucia B

    2012-08-20

    The renin-angiotensin system (RAS) has been implicated in pulmonary hypertension and pulmonary fibrosis. In the present study, we examined the effects of maternal exposure to captopril (2.85 mg/kg/day) during late pregnancy (G13-G21) on postnatal rat lung development. Treatment with captopril during late pregnancy caused a significant decrease in ACE activity in P0 rats. Body weight decreased at P0 (pcaptopril-treated rats. Lung weight of P0 and P8 pups was lower in treated-animals (pcaptopril-treated animals showed impaired alveolar formation, with enlarged distal airway spaces at P8, P15 and P30. Interalveolar wall distance measured by mean linear intercept increased in treated vs. age-matched animals at P8, P15 (pcaptopril-treated animals PCNA marker remains higher at all stages studied. α-Smooth muscle actin (α-SMA), a marker of fibroblast differentiation into myofibroblasts, was higher at the tips of developing secondary septa in captopril-treated lungs at P8 and P15. The increased expression of PCNA and α-SMA in treated pups suggest that beyond the effect caused by captopril, the developing lungs have the capacity to recover once the treatment was stopped. Taking together the low weight, histomorphological changes and increased expression of cellular markers caused by ACE inhibition during late pregnancy, it appears that the RAS could be an intrinsic factor involved in secondary septa formation during lung development. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Neonatal intramuscular injection of plasmid encoding glucagon-like peptide-1 affects anxiety behaviour and expression of the hippocampal glucocorticoid receptor in adolescent rats

    Indian Academy of Sciences (India)

    Huitao Fan; Lina Wang; Feng Guo; Shi Wei; Ruqian Zhao

    2010-03-01

    Early-life endocrine intervention may programme hippocampal glucocorticoid receptor (GR) expression and cause psychiatric disorders in later life. Glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of neuroendocrine and behavioural responses, but it is yet to be determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR expression and thus programme adolescent behaviour in rats. Two-dayold pups were injected intramuscularly with vacant plasmid (VP) or plasmid DNA encoding secretory GLP-1 (GP). Anxiety-related behaviour was assessed in the elevated plus maze (EPM) test at 8 weeks of age. Plasma corticosterone levels were measured with enzyme immunoassay (EIA). Protein and mRNA levels were determined by western blot and real-time polymerase chain reaction (PCR), respectively. The DNA methylation status of the GR exon 17 promoter was determined by bisulphate sequencing PCR (BSP). GP rats exhibited anxiolytic behaviour compared with their VP counterparts. Hippocampal GLP-1 receptor (GLP-1R) and GR mRNA expression were significantly elevated in GP rats without a significant difference in plasma corticosterone. Significant reduction in DNA methyltransferase 1 (DNMT1) expression was observed in GP rats disconnected with alterations in DNA methylation of the GR exon 17 promoter. Nevertheless, mRNA expression of nerve growth factor-inducible protein A (NGFI-A) was significantly elevated in GP rats. These results suggest that neonatal intramuscular injection of plasmid DNA encoding GLP-1 affects anxiety behaviour in adolescent rats, probably through NGFI-A-activated upregulation of hippocampal GR expression.

  17. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Jong-Ho Lee

    2014-06-01

    Full Text Available BackgroundThis study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF during adolescence on the adverse behavioral outcome of neonatal maternal separation.MethodsMale Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS or left undisturbed (nonhandled, NH. Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF. Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay.ResultsDaily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it.ConclusionProlonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA axis.

  18. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults.

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    Full Text Available AIMS: A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS: Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS: Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS: The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.

  19. Toxic effect of the glycoalkaloids solanine and tomatine on cultured neonatal rat heart cells.

    Science.gov (United States)

    Bergers, W W; Alink, G M

    1980-06-01

    The toxic effects of the glycoalkaloids, alpha-solanine and tomatine, were studied in beating heart cell cultures from 1--2-day-old rats. After addition of alpha-solanine (80 microgram/ml) and tomatine (40 microgram/ml) to the culture medium, the cells ceased beating within a few minutes. At a concentration of 40 microgram/ml alpha-solanine and 20 microgram/ml tomatine, both compounds caused a pronounced increase of the contraction frequency, lasting for at least 2h. K-strophantin, a reference heart glycoside, caused arrhythmic beating at 20 microgram/ml and complete cessation of contractions at 160 microgram/ml.

  20. Neonatal handling on the first postnatal day leads to increased maternal behavior and fos levels in the brain of the newborn rat.

    Science.gov (United States)

    Garoflos, Efstathios; Stamatakis, Antonios; Rafrogianni, Androniki; Pondiki, Stavroula; Stylianopoulou, Fotini

    2008-11-01

    In the present work we employed Fos expression, an index of neuronal activity, to identify brain areas activated by a single exposure to "neonatal handling" on postnatal Day 1. Eight hours following "handling" there was an increase in the number of Fos positive cells in the hippocampus, the parietal and occipital cortex. We also recorded maternal behavior during the 8 hr following "handling." "Handled" pups received increased maternal licking during the 4 hr following the end of "handling." Furthermore, the number of Fos positive cells detected in each of the three brain areas 8 hr following "handling" was positively correlated with the amount of licking up to 8 hr following "handling." These results indicate that the increased maternal care could underlie the handling-induced increase in Fos. The Fos protein, acting as a transcription factor, controls the expression of downstream genes, whose products may mediate the effects of "neonatal handling" on the developing rat brain.

  1. Neuronal reorganization in adult rats neonatally exposed to (±-3,4-methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Michael T. Williams

    2014-01-01

    Full Text Available The abuse of methylenedioxymethamphetamine (MDMA during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P11–20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this experiment we examined the impact of MDMA from P11 to P20 (20 mg/kg twice daily, 8 h apart on neuronal architecture. Golgi impregnated sections showed significant changes. In the nucleus accumbens, the dendrites were shorter with fewer spines, whereas in the dentate gyrus the dendritic length was decreased but with more spines, and for the entorhinal cortex, reductions in basilar and apical dendritic lengths in MDMA animals compared with saline animals were seen. The data show that neuronal cytoarchitectural changes are long-lasting following developmental MDMA exposure and are in regions consistent with the learning and memory deficits observed in such animals.

  2. Chronic hyperoxia alters the expression of neurotrophic factors in the carotid body of neonatal rats.

    Science.gov (United States)

    Dmitrieff, Elizabeth F; Wilson, Julia T; Dunmire, Kyle B; Bavis, Ryan W

    2011-02-15

    Chronic exposure to hyperoxia alters the postnatal development and innervation of the rat carotid body. We hypothesized that this plasticity is related to changes in the expression of neurotrophic factors or related proteins. Rats were reared in 60% O(2) from 24 to 36h prior to birth until studied at 3d of age (P3). Protein levels for brain-derived neurotrophic factor (BDNF) were significantly reduced (-70%) in the P3 carotid body, while protein levels for its receptor, tyrosine kinase B, and for glial cell line-derived neurotrophic factor (GDNF) were unchanged. Transcript levels in the carotid body were downregulated for the GDNF receptor Ret (-34%) and the neuropeptide Vgf (-67%), upregulated for Cbln1 (+205%), and unchanged for Fgf2; protein levels were not quantified for these genes. Immunohistochemical analysis revealed that Vgf and Cbln1 proteins are expressed within the carotid body glomus cells. These data suggest that BDNF, and perhaps other neurotrophic factors, contribute to abnormal carotid body function following perinatal hyperoxia.

  3. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  4. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring.

    Science.gov (United States)

    Clayton, Zoe E; Vickers, Mark H; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M

    2015-01-01

    Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing.

  5. Neonatal N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) treatment modifies the vulnerability to phenobarbital- and ethanol-evoked sedative-hypnotic effects in adult rats.

    Science.gov (United States)

    Bortel, Aleksandra; Słomian, Lucyna; Nitka, Dariusz; Swierszcz, Michał; Jaksz, Mirella; Adamus-Sitkiewicz, Beata; Nowak, Przemysław; Jośko, Jadwiga; Kostrzewa, Richard M; Brus, Ryszard

    2008-01-01

    To study the influence of the central noradrenergic system on sensitivity to sedative-hypnotic effects mediated by the aminobutyric acid (GABA) system, intact rats were contrasted with rats in which noradrenergic nerves were largely destroyed shortly after birth with the neurotoxin DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 50 mg/kg sc x2, P1 and P3]. At 10 weeks, loss of the righting reflex (LORR) was used as an index to study the acute sedative-hypnotic effects of phenobarbital (100 mg/kg ip) and ethanol (4 g/kg ip, 25% v/v). Additionally, GABA concentration in the medial prefrontal cortex (PFC), hippocampus, cerebellum and brainstem was estimated by an HPLC/ED method. Neonatal DSP-4 treatment diminished the sedative-hypnotic effects of both phenobarbital and ethanol in adult rats. While the endogenous GABA content in the PFC, hippocampus, brainstem and cerebellum of DSP-4-treated rats was not altered, phenobarbital significantly decreased GABA content of both intact and DSP-4-lesioned rats by approximately 40% in the hippocampus and by approximately 20% in other brain regions at 1 h. Ethanol reduced GABA content by approximately 15-30% but only in the hippocampus and brainstem of both intact and lesioned rats. These findings indicate that the noradrenergic system exerts a prominent influence on sedative-hypnotics acting via GABAergic systems in the brain without directly altering GABA levels in the brain.

  6. Denial of reward in the neonate shapes sociability and serotonergic activity in the adult rat.

    Directory of Open Access Journals (Sweden)

    Anastasia Diamantopoulou

    Full Text Available BACKGROUND: Manipulations of the early environment are linked to long-lasting alterations of emotionality and social capabilities. Denial of rewarding mother-pup interactions in early life of rats could serve as model for child neglect. Negative consequences for social competence in later life, accompanied by changes in the serotonergic system would be expected. In contrast, rewarding mother-pup contact should promote adequate social abilities. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats trained in a T-maze during postnatal days 10-13 under denial (DER or permission (RER of maternal contact were tested for play behavior in adolescence and for coping with defeat in adulthood. We estimated serotonin (5-HT levels in the brain under basal conditions and following defeat, as well as serotonin receptor 1A (5-HT1A and serotonin transporter (SERT expression. DER rats exhibited increased aggressive-like play behavior in adolescence (i.e. increased nape attacks, p<0.0001 and selected a proactive coping style during defeat in adulthood (higher sum of proactive behaviors: number of attacks, flights, rearings and defensive upright posture; p = 0.011, p<0.05 vs RER, non-handled-NH. In adulthood, they had lower 5-HT levels in both the prefrontal cortex (p<0.05 vs RER and the amygdala (p<0.05 vs NH, increased 5-HT levels following defeat (PFC p<0.0001 and decreased serotonin turnover (amygdala p = 0.008. The number of 5-HT1A immunopositive cells in the CA1 hippocampal area was increased (p<0.05 DER, vs RER, NH; SERT levels in the amygdala were elevated (p<0.05 vs RER, NH, but were lower in the prefrontal cortex (p<0.05 vs NH. CONCLUSIONS/SIGNIFICANCE: Denial of expected maternal reward early in life negatively affects sociability and the serotonergic system in a complex manner. We propose that our animal model could contribute to the identification of the neurobiological correlates of early neglect effects on social behavior and coping with challenges, but

  7. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  8. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Science.gov (United States)

    Huang, Yuejun; Lai, Huihong; Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Chen, Yunbin; Ma, Lian

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  9. The exposure to nicotine affects expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in neonate rats.

    Science.gov (United States)

    Xiaoyu, Wang

    2015-02-01

    In the current study effect of nicotine on expression of neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) has been studied in hippocampus and frontal cortex during development of brain in rats. Neurotrophins are factors that help in development of brain among which BDNF and NGF are very important, expressed at different stages during the developmental process. Different sedatives are reported to alter the expression of these factors. In this study, three groups of neonate rats (1-5, 5-10 and 10-15 days age) were used each having 20 rats. Ten were subjected to a dose of 66 μg of nicotine while other ten received the same amount of saline at the same time interval. Then expression of the BDNF and NGF was observed in hippocampus and frontal cortex tissue using immunoassay. Western blotting was used to observe the presence of BDNF in hippocampus as well as frontal cortex. In all groups there was a significant decrease in concentration of neurotrophic factors where nicotine was applied as compared to control. The highest expression of BDNF and NGF in hippocampus and frontal cortex was observed in 10-15 days group (G3) and in 5-10 group (G2) as compared to the control, P BDNF and it effects the development of brain in neonates that can further impair brain functions.

  10. Effects of different endocrine disruptor (EDC) mixtures on gene expression in neonatal rat brain regions

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2013-01-01

    EDC mixtures on gene expression in developing brain. Amix (8 anti-androgenic chemicals), Emix (4 estrogenic chemicals) and Tmix (Amix + Emix + paracetamol recently identified as anti-androgenic) were administered by oral gavage to rat dams from gestational day 7 until weaning, at doses corresponding...... to 450×, 200× and 100× high end human intakes (S. Christiansen et al., 2012. International Journal of Andrology 35, 303). At postnatal day 6, during the last part of sexual brain differentiation, exon microarray analyses were performed in medial preoptic area (MPO) in the highest dose group, and real...... of individual mRNAs demonstrated treatment- and sex-dependent differences between MPO and VMH. Effects were dose-dependent. Prominent are effects on the expression of genes involved in excitatory glutamatergic synapse formation and function. These data indicate that effects of complex EDC mixtures on developing...

  11. Identified ankle extensor and flexor motoneurons display different firing profiles in the neonatal rat

    DEFF Research Database (Denmark)

    Cotel, Florence; Antri, Myriam; Barthe, Jean-Yves;

    2009-01-01

    The present study was designed to compare the firing profiles exhibited by lumbar flexor or extensor motoneurons in response to injection of depolarizing/repolarizing currents. Motoneurons were recorded intracellularly in the in vitro brainstem-spinal cord of newborn rats (P4-P7). They were...... population of flexor motoneurons solely exhibited the type II profile, characterized by a frequency-current (F-I) relationship with a clockwise hysteresis. In contrast, in addition to this type II profile, the other three profiles of repetitive firing (type I, III and IV) were observed in extensor...... motoneurons; a linear F-I relationship (type I profile), a self-sustained discharge pattern together with a linear F-I relationship (type III profile) and a self-sustained firing pattern together with an F-I relationship showing a counter-clockwise hysteresis (type IV profile). Thus, during the early...

  12. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats

    DEFF Research Database (Denmark)

    Zhou, A; Farver, O; Thorn, N A

    1991-01-01

    Several amidated biologically active peptides such as pancreastatin, thyrotropin-releasing hormone, pancreatic polypeptide and amylin are produced in endocrine pancreatic tissue which contains the enzyme necessary for their final processing, i.e. peptidylglycine alpha-amidating mono-oxygenase (EC 1.......14.17.3). The enzyme needs ascorbic acid for activity as well as copper and molecular oxygen. The present work shows that pancreatic islet cells prepared from overnight cultures of isolated islets from 5-7-day-old rats accumulate 14C-labelled ascorbic acid by a Na(+)-dependent active transport mechanism which involves...... contained a fairly low concentration of iron but a high concentration of copper....

  13. Neonatal handling decreases unconditioned anxiety, conditioned fear, and improves two-way avoidance acquisition: a study with the inbred Roman high (RHA-I- and low-avoidance (RLA-I rats of both sexes

    Directory of Open Access Journals (Sweden)

    Cristobal eRío-Alamos

    2015-07-01

    Full Text Available The present study evaluated the long-lasting effects of neonatal handling (H; administered during the first 21 days of life on unlearned and learned anxiety-related responses in inbred Roman High- (RHA-I and Low-avoidance (RLA-I rats. To this aim, untreated and neonatally-handled RHA-I and RLA-I rats of both sexes were tested in the following tests/tasks in baseline acoustic startle (BAS test, a context-conditioned fear (CCF test and the acquisition of two-way active –shuttle box- avoidance (SHAV. RLA-I rats showed higher unconditioned (NOE, ZM, BAS and conditioned (CCF, SHAV anxiety. H treatment increased exploration of the novel object in the NOE test as well as exploration of the open sections of the ZM test in both rat strains and sexes, although the effects were relatively more marked in the (high anxious RLA-I strain and in females. Neonatal handling did not affect BAS, but reduced context-conditioned fear in both strains and sexes, and improved shuttle box avoidance acquisition especially in RLA-I (and particularly in females and in female RHA-I rats. These are completely novel findings, and may suggest that H-induced changes in hippocampal function, which is enhanced in RLA-Is vs RHA-I rats, could be a candidate mechanism underlying the observed long-lasting benefits of neonatal handling on known hippocampal-dependent responses/tasks.

  14. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

    Science.gov (United States)

    Qian, Taizhe; Chen, Rongqing; Nakamura, Masato; Furukawa, Tomonori; Kumada, Tatsuro; Akita, Tenpei; Kilb, Werner; Luhmann, Heiko J; Nakahara, Daiichiro; Fukuda, Atsuo

    2014-01-01

    In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na(+), K(+)-2Cl(-) cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na(+) channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine

  15. Single variant bottleneck in the early dynamics of H. influenzae bacteremia in neonatal rats questions the theory of independent action

    Science.gov (United States)

    Shao, Xinxian; Levin, Bruce; Nemenman, Ilya

    2017-08-01

    There is an abundance of information about the genetic basis, physiological and molecular mechanisms of bacterial pathogenesis. In contrast, relatively little is known about population dynamic processes, by which bacteria colonize hosts and invade tissues and cells and thereby cause disease. In an article published in 1978, Moxon and Murphy presented evidence that, when inoculated intranasally with a mixture streptomycin sensitive and resistant (Sm S and Sm R ) and otherwise isogenic strains of Haemophilus influenzae type b (Hib), neonatal rats develop a bacteremic infection that often is dominated by only one strain, Sm S or Sm R . After ruling out other possibilities through years of related experiments, the field seems to have settled on a plausible explanation for this phenomenon: the first bacterium to invade the host activates the host immune response that ‘shuts the door’ on the second invading strain. To explore this hypothesis in a necessarily quantitative way, we modeled this process with a set of mixed stochastic and deterministic differential equations. Our analysis of the properties of this model with realistic parameters suggests that this hypothesis cannot explain the experimental results of Moxon and Murphy, and in particular the observed relationship between the frequency of different types of blood infections (bacteremias) and the inoculum size. We propose modifications to the model that come closer to explaining these data. However, the modified and better fitting model contradicts the common theory of independent action of individual bacteria in establishing infections. We suggest possible experiments that would be able to confirm or reject our proposed modification of the early infection model.

  16. Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I.

    Directory of Open Access Journals (Sweden)

    Silvia Olivera-Bravo

    Full Text Available BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA, a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I, an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0 to induce an acute, transient rise of GA levels in the central nervous system (CNS. GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal

  17. Effects of the venom of the spider Ornithoctonus hainana on neonatal rat ventricular myocytes cellular and ionic electrophysiology.

    Science.gov (United States)

    Zhang, Yiya; Liu, Jinyan; Liu, Zhonghua; Wang, Meichi; Wang, Jing; Lu, Shanshan; Zhu, Li; Zeng, Xiongzhi; Liang, Songping

    2014-09-01

    Cardiac ion channels are membrane-spanning proteins that allow the passive movement of ions across the cell membrane along its electrochemical gradient, which regulates the resting membrane potential as well as the shape and duration of the cardiac action potential. Additionally, they have been recognized as potential targets for the actions of neurotransmitters, hormones and drugs of cardiac diseases. Spider venoms contain high abundant of toxins that target diverse ion channels and have been considered as a potential resource of new constituents with specific pharmacological properties. However, few peptides from spider venoms were detected as cardiac channel antagonists. In order to explore the effects of the venom of Ornithoctonus hainana on the action potential and ionic currents of neonatal rat ventricular myocytes (NRVMs), whole cell patch clamp technique was used to record action potential duration (APD), sodium current (INa), L calcium current (ICaL), rapidly activating and inactivating transient outward currents (Ito1), rapid (IKr) and slow (IKs) components of the delayed rectifier currents and the inward rectifier currents (IK1). Our results showed that 100 μg/mL venom obviously prolonged APDs. Significantly, the venom could inhibit INa and ICaL effectively, while no evident inhibitory effects on cardiac K(+) channels (Ito1, Iks, Ikr and Ik1) were observed, suggesting that the venom represented a multifaceted pharmacological profile. The effect of venom on Na(+) and Ca(2+) currents of ventricular myocytes revealed that the hainan venom as a rich resource of cardiac channel antagonists might be valuable tools for the investigation of both channels and drug development.

  18. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI.

    Science.gov (United States)

    Waddell, Jaylyn; Hanscom, Marie; Shalon Edwards, N; McKenna, Mary C; McCarthy, Margaret M

    2016-01-01

    Hypoxia-ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning.

  19. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-Ⅱ in cultured neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Jin QIN; Zheng-xiang LIU

    2006-01-01

    Aim: To examine the inhibitory effect of FAK-related nonkinase (FRNK) in cardiac hypertrophy in vitro and investigate the possible mechanisms. Methods: A functional fragment of FRNK cDNA was amplified by reverse transcription-polymerase chain reaction and cloned into the vector pcDNA3.1. Hypertrophy in neonatal rat cardiac myocytes was established with angiotensin-Ⅱ stimulation. The pcDNA3.1-FRNK or pcDNA3.1 was respectively transfected into cardiomyocytes by Lipofectamine 2000. The surface area and mRNA expression of atrial natriuretic peptide (ANP) of myocytes were employed to detect cardiac hypertrophy. NF-κB p65 protein in nuclear extracts, phosphorylation levels of ERK1/2 (p-ERK1/2) and AKT (p-AKT), as well as total ERK1/2, and AKT in variant treated cardiomyocytes were determined by Western blot. Results: Under the stimulation of angiotensin Ⅱ, the surface area of myocytes and levels of ANP mRNA were significantly increased. But transient transfection with pcDNA3.1-FRNK in advance may reduce the surface area and expression of ANP mRNA of hypertrophic myocytes. The protein levels of NF-κB p65 in nuclear extracts and p-ERK1/2, p-AKT in FRNK treated cardiomyocytes were significantly decreased compared with that in angiotensin-Ⅱ induced cardiomyocytes, while different treatments had little effect on total ERK1/2 and AKT. Conclusion: FRNK may inhibit angiotensin-Ⅱ-induced cardiomyocyte hypertrophy via decreasing phosphorylation levels at ERK1/2 and AKT, consequently downregulating nuclear translocation of NF-κB p65.

  20. Postsynaptic GABA(B) Receptors Contribute to the Termination of Giant Depolarizing Potentials in CA3 Neonatal Rat Hippocampus

    Science.gov (United States)

    Khalilov, Ilgam; Minlebaev, Marat; Mukhtarov, Marat; Juzekaeva, Elvira; Khazipov, Roustem

    2017-01-01

    During development, hippocampal CA3 network generates recurrent population bursts, so-called Giant Depolarizing Potentials (GDPs). GDPs are characterized by synchronous depolarization and firing of CA3 pyramidal cells followed by afterhyperpolarization (GDP-AHP). Here, we explored the properties of GDP-AHP in CA3 pyramidal cells using gramicidin perforated patch clamp recordings from neonatal rat hippocampal slices. We found that GDP-AHP occurs independently of whether CA3 pyramidal cells fire action potentials (APs) or remain silent during GDPs. However, the amplitude of GDP-AHP increased with the number of APs the cells fired during GDPs. The reversal potential of the GDP-AHP was close to the potassium equilibrium potential. During voltage-clamp recordings, current-voltage relationships of the postsynaptic currents activated during GDP-AHP were characterized by reversal near the potassium equilibrium potential and inward rectification, similar to the responses evoked by the GABA(B) receptor agonists. Finally, the GABA(B) receptor antagonist CGP55845 strongly reduced GDP-AHP and prolonged GDPs, eventually transforming them to the interictal and ictal-like discharges. Together, our findings suggest that the GDP-AHP involves two mechanisms: (i) postsynaptic GABA(B) receptor activated potassium currents, which are activated independently on whether the cell fires or not during GDPs; and (ii) activity-dependent, likely calcium activated potassium currents, whose contribution to the GDP-AHP is dependent on the amount of firing during GDPs. We propose that these two complementary inhibitory postsynaptic mechanisms cooperate in the termination of GDP. PMID:28701925

  1. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  2. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2014-04-01

    Full Text Available Hypoxia-ischemia (HI; reduction in blood/oxygen supply is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA. Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P7, an age comparable to a term (GA 36–38 human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are

  3. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein-calorie malnutrition.

    Science.gov (United States)

    Maheshwari, H G; Mermelstein, S; vonSchlegell, A S; Shambaugh, G E

    1997-03-01

    Neonatal brain development in the rat is adversely affected by malnutrition. Alterations in tissue binding of IGF-I in the malnourished brain were tested in rat pups from mothers who were fed a 20% protein diet (C) or a 4% protein diet (M) starting from day 21 of gestation and continued throughout suckling. IGF-I binding in both cortex and cerebellum decreased progressively in C and M groups from day 6 to day 13. At day 9, 11, and 13, the binding was significantly greater (p < 0.02) in M compared to C groups. To investigate whether these changes might be related to the alteration in receptor activity, membranes were incubated with 125I-IGF in the presence of excess insulin with or without unlabeled IGF-I. In the absence of insulin, specific IGF-I binding in the M group was increased by 41.8 +/- 13.8% (mean +/- SEM p < 0.05) relative to C group. Insulin produced a consistent but incomplete inhibition of binding in both C and M, of 75% and 67% respectively. In addition, the specific IGF-I binding in the presence of insulin was increased in M group by 70.2 +/- 9.4% relative to C, p < 0.05. To characterize the nature of this binding, cerebral cortical membranes, from both groups, incubated with 125I-IGF-I were cross-linked, and electrophoresed on 6% and 10% SDS-PAGE gels under reducing conditions. Autoradiography of the 6% gel showed two specific bands at 115 kD and 240 kD, consistent with monomeric and dimeric forms of the IGF-I receptor, which were inhibited by excess insulin. In contrast, a 10% gel showed an additional band at 35 kD (IGF-binding protein) that was not inhibited by insulin. In both gels, membrane preparations from the M group showed a heightened intensity of the bands relative to C. The increase in binding protein relative to the receptor suggests a disequilibrium that may limit the availability of exogenous IGF-I to the tissues.

  4. The responses of hypothalamic NPY and OBRb mRNA expression to food deprivation develop during the neonatal-prepubertal period and exhibit gender differences in rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Neuropeptide Y (NPY) is an important hypothalamic orexigenic neuropeptide that acts in the brain. It has been established that the fasting-induced up-regulation of NPY expression is mainly caused by a reduction in the activity of leptin, which is a hormone secreted by adipose tissue. We have reported that in female rats hypothalamic NPY mRNA expression does not respond to fasting during the early neonatal period, but subsequently becomes sensitive to it later in the neonatal period. In this study, we compared the developmental changes in the responses of NPY and leptin expression to fasting between male and female rats during the neonatal to pre-pubertal period. Fasting was induced by maternal deprivation during the pre-weaning period (postnatal days 10 and 20) and by food deprivation during the post-weaning period (postnatal day 30). Hypothalamic NPY mRNA expression was not affected by fasting on postnatal day 10, whereas it was increased by fasting on postnatal day 20 and 30 in both males and females. On the other hand, the serum leptin level was decreased by fasting at all examined ages in both sexes. Namely, hypothalamic NPY mRNA expression was not correlated with the reduction in the serum leptin level at postnatal day 10 in either sex. Under the fasted conditions, the hypothalamic NPY mRNA levels of the males were higher than those of the females on postnatal days 20 and 30, whereas no such differences were observed under the normal nourishment conditions. The serum leptin levels observed under the fasted conditions did not differ between males and females at any examined age. These results suggest that some hypothalamic NPY functions develop during the neonatal period and that there is no major difference between the sexes with regard to the time when NPY neurons become sensitive to fasting. They also indicate that hypothalamic NPY expression is more sensitive to under-nutrition in male rats than in female rats, at least during the pre-pubertal period.

  5. Neonatal inflammatory pain and systemic inflammatory responses as possible environmental factors in the development of autism spectrum disorder of juvenile rats

    OpenAIRE

    Lee, Jin Hwan; Espinera, Alyssa R.; Chen, DongDong; Choi, Ko-Eun; Caslin, Asha Yoshiko; Won, Soonmi; Pecoraro, Valentina; Xu, Guang-Yin; Wei, Ling; Yu, Shan Ping

    2016-01-01

    Background Autism spectrum disorder (ASD) affects many children and juveniles. The pathogenesis of ASD is not well understood. Environmental factors may play important roles in the development of ASD. We examined a possible relationship of inflammatory pain in neonates and the development of ASD in juveniles. Methods Acute inflammation pain was induced by 5 % formalin (5 μl/day) subcutaneous injection into two hindpaws of postnatal day 3 to 5 (P3–P5) rat pups. Western blot, immunohistochemica...

  6. Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats.

    Science.gov (United States)

    Patisaul, Heather B; Todd, Karina L; Mickens, Jillian A; Adewale, Heather B

    2009-05-01

    Neonatal exposure to endocrine disrupting compounds (EDCs) can impair reproductive physiology, but the specific mechanisms by which this occurs remain largely unknown. Growing evidence suggests that kisspeptin (KISS) neurons play a significant role in the regulation of pubertal onset and ovulation, therefore disruption of KISS signaling could be a mechanism by which EDCs impair reproductive maturation and function. We have previously demonstrated that neonatal exposure to phytoestrogens decreases KISS fiber density in the anterior hypothalamus of female rats, an effect which was associated with early persistent estrus and the impaired activation gonadotropin releasing hormone (GnRH) neurons. The goals of the present study were to (1) determine if an ERalpha selective agonist (PPT) or bisphenol-A (BPA) could produce similar effects on hypothalamic KISS content in female rats and (2) to determine if male KISS fiber density was also vulnerable to disruption by EDCs. We first examined the effects of neonatal exposure to PPT, a low (50 microg/kg bw) BPA dose, and a high (50 mg/kg bw) BPA dose on KISS immunoreactivity (-ir) in the anterior ventral periventricular (AVPV) and arcuate (ARC) nuclei of adult female rats, using estradiol benzoate (EB) and a sesame oil vehicle as controls. AVPV KISS-ir, following ovariectomy (OVX) and hormone priming, was significantly lower in the EB and PPT groups but not the BPA groups. ARC KISS-ir levels were significantly diminished in the EB and high dose BPA groups, and there was a nonsignificant trend for lower KISS-ir in the PPT group. We next examined effects of neonatal exposure to a low (50 microg/kg bw) dose of BPA and the phytoestrogens genistein (GEN) and equol (EQ) on KISS-ir in the AVPV and ARC of adult male rats, using OVX females as an additional control group. None of the compounds affected KISS-ir in the male hypothalamus. Our results suggest that the organization of hypothalamic KISS fibers may be vulnerable to disruption

  7. MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats.

    Science.gov (United States)

    Sengupta, Jyoti N; Pochiraju, Soumya; Pochiraju, Soumiya; Kannampalli, Pradeep; Bruckert, Mitchell; Addya, Sankar; Yadav, Priyanka; Miranda, Adrian; Shaker, Reza; Banerjee, Banani

    2013-01-01

    The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. Cystitis was produced by intravesicular injection of zymosan (1% in saline) into the bladder during postnatal (P) days P14 through P16 and spinal dorsal horns (L6-S1) were collected either on P60 (unchallenged groups) or on P30 after a zymosan re-challenge on P29 (re-challenged groups). miRNA arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significant, but differential, up-regulation of mature miR-181a in the L6-S1 spinal dorsal horns from zymosan-treated rats compared with saline-treated controls in both the unchallenged and re-challenged groups. The target gene analysis demonstrated multiple complementary binding sites in miR-181a for GABA(A) receptor subunit GABA(Aα-1) gene with a miRSVR score of -1.83. An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain. Copyright © 2012 International

  8. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia

    Directory of Open Access Journals (Sweden)

    Sopi Ramadan B

    2012-08-01

    Full Text Available Abstract Background Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM. Methods Electrical field stimulation (EFS, 2–20 V-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen for 7 days supplemented with L-citrulline or saline (in vitro or in vivo. The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL succinate (1 mM and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM. Results Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p ; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group. Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p ; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline. Inhibition of ASS or ASL prevented this effect of L-citrulline. Conclusion The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups

  9. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.

    Science.gov (United States)

    McLean, H A; Caillard, O; Khazipov, R; Ben-Ari, Y; Gaiarsa, J L

    1996-08-01

    giant glutamatergic potentials were observed in simultaneously recorded CA3 pyramidal cells and interneurons. CGP 35348 (0.5 mM) progressively increased the duration of these bicuculline-induced glutamatergic bursts leading to the simultaneous appearance of ictal discharges in both pyramidal cells and interneurons. 6. These results suggest that in the neonatal CA3 hippocampal region, when synchronous giant polysynaptic GABAergic PSPs are present (i.e., under basal, control conditions), spontaneously released GABA reaches a critical level and activates GABAB receptors on both pyramidal cells and interneurons thus regulating the level of glutamatergic and GABAergic activity in the CA3 neuronal network.

  10. Neonatal Handling Increases Cardiovascular Reactivity to Contextual Fear Conditioning in Borderline Hypertensive Rats (BHR)

    Science.gov (United States)

    Sanders, Brian J.; Knoepfler, Jonathan

    2008-01-01

    Much research has demonstrated that events occurring in early life can have a profound influence on future biobehavioral responses to stressful and emotion provoking situations. The purpose of these studies was to determine the effects of an early environmental manipulation, handling (HAN) on cardiovascular (CV) reactivity, freezing behavior and corticosterone (CORT) responses to contextual fear conditioning in the borderline hypertensive rat (BHR), which is susceptible to environmental stressors. HAN subjects were separated from the nest for 15 min/day on post-natal days 1–14, while non-handled (NON-HAN) controls remained in the home cage. Adult subjects were exposed to the contextual fear conditioning procedure and returned to the chamber 24 h later for a 10 min test period. HAN subjects displayed significantly more freezing behavior compared to NON-HAN(92%±2.2 vs 80.7%±5.7, p handling can modulate biobehavioral responses to contextual fear conditioning in BHR and may suggest a useful model with which to study emotionality and susceptibility to CV disease. PMID:18538802

  11. Characterization of bone cells obtained from the calvaria of neonatal rats (osteo-1) after serial subculture.

    Science.gov (United States)

    Togashi, Adriane Yaeko; Cirano, Fabiano Ribeiro; Marques, Márcia Martins; Pustiglioni, Francisco Emílio; de Lima, Luiz Antonio Pugliesi Alves

    2007-10-01

    The objective of the present study was to characterize bone cells grown in two culture media, and to determine the effective concentration of OP-1 on the growth of osteo-1 cells. Subcultured rat bone cells (osteo-1) were grown in alpha-modified Eagle's minimal essential medium (alpha-MEM) and Dulbecco's modified Eagle's medium (DMEM) and total protein content, alkaline phosphatase activity and the formation of mineralized nodules were evaluated after 7, 14 and 21 days. Cells were exposed to different concentrations of rhOP-1 for 1, 3, 5 and 7 days and compared with an untreated control. Osteo-1 cells presented a significant increase in alkaline phosphatase activity and calcium deposits were observed at 21 days. Cells treated with 10 and 20 ng/mL rhOP-1 for 24 h showed a significant increase in cell viability when compared to control. Osteo-1 cells cultured on DMEM demonstrated an osteoblastic phenotype as indicated by high alkaline phosphatase activity and the presence of calcified nodules. The results suggest that low concentrations of OP-1 may promote an osteogenic effect on osteo-1 cells.

  12. Dabigatran ameliorates post-haemorrhagic hydrocephalus development after germinal matrix haemorrhage in neonatal rat pups.

    Science.gov (United States)

    Klebe, Damon; Flores, Jerry J; McBride, Devin W; Krafft, Paul R; Rolland, William B; Lekic, Tim; Zhang, John H

    2016-01-01

    We aim to determine if direct thrombin inhibition by dabigatran will improve long-term brain morphological and neurofunctional outcomes and if potential therapeutic effects are dependent upon reduced PAR-1 stimulation and consequent mTOR activation. Germinal matrix haemorrhage was induced by stereotaxically injecting 0.3 U type VII-S collagenase into the germinal matrix of P7 rat pups. Animals were divided into five groups: sham, vehicle (5% DMSO), dabigatran intraperitoneal, dabigatran intraperitoneal + TFLLR-NH2 (PAR-1 agonist) intranasal, SCH79797 (PAR-1 antagonist) intraperitoneal, and dabigatran intranasal. Neurofunctional outcomes were determined by Morris water maze, rotarod, and foot fault evaluations at three weeks. Brain morphological outcomes were determined by histological Nissl staining at four weeks. Expression levels of p-mTOR/p-p70s6k at three days and vitronectin/fibronectin at 28 days were quantified. Intranasal and intraperitoneal dabigatran promoted long-term neurofunctional recovery, improved brain morphological outcomes, and reduced intracranial pressure at four weeks after GMH. PAR-1 stimulation tended to reverse dabigatran's effects on post-haemorrhagic hydrocephalus development. Dabigatran also reduced expression of short-term p-mTOR and long-term extracellular matrix proteins, which tended to be reversed by PAR-1 agonist co-administration. PAR-1 inhibition alone, however, did not achieve the same therapeutic effects as dabigatran administration.

  13. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    Science.gov (United States)

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

  14. Anti-diabetic effects of ethanol extract of Bryonia laciniosa seeds and its saponins rich fraction in neonatally streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Sandip B Patel

    2015-01-01

    Full Text Available Context: Bryonia laciniosa Linn. (Cucurbitaceae seed is used in traditional medicine for a number of ailments including metabolic disorders. Aim: This study evaluated the anti-diabetic action of the ethanol extract of B. laciniosa seeds and saponin fraction of it through its effect on hyperglycemia, dyslipidaemia and oxidative stress in neonatally streptozotocin (n-STZ-induced diabetic rats (n-STZ diabetic rats. Materials and Methods: Ethanol extract (250 and 500 mg/kg; p.o., saponin fraction (100 and 200 mg/kg; p.o. and standard drug glibenclamide (3 mg/kg; p.o. were administered to diabetic rats when the rats were 6 weeks old and continued for 10 consecutive weeks. Effects of ethanol extract and saponin fraction on various biochemical parameters were studied in diabetic rats. Results: The treatment with ethanol extract and saponin fraction for 10 weeks decrease in the levels of glucose, triglycerides, cholesterol, high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, serum urea, serum creatinine and diminished activities of aspartate transaminase, and alanine transaminase. The anti-hyperglycemic nature of B. laciniosa is probably brought about by the extra- the pancreatic mechanism as evidenced from unchanged levels of plasma insulin. B. laciniosa modulated effect of diabetes on the liver malondialdehyde, reduced glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT activity. Administration of ethanol extract and saponin fraction to diabetic rats showed a significant reversal of disturbed antioxidant status. Significant increase in SOD, CAT, and levels of GSH was observed in treated n-STZ diabetic rats. Conclusion: The present study reveals the efficacy of B. laciniosa seed extract and its saponin fraction in the amelioration of n-STZ diabetic rats.

  15. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals.

    Directory of Open Access Journals (Sweden)

    Angela I Bordin

    Full Text Available Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi. No evidence of adverse effects was noted among vaccinated foals.

  16. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals.

    Science.gov (United States)

    Bordin, Angela I; Pillai, Suresh D; Brake, Courtney; Bagley, Kaytee B; Bourquin, Jessica R; Coleman, Michelle; Oliveira, Fabiano N; Mwangi, Waithaka; McMurray, David N; Love, Charles C; Felippe, Maria Julia B; Cohen, Noah D

    2014-01-01

    Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals.

  17. Neonatal Nicotine Exposure Leads to Hypothalamic Gliosis in Adult Overweight Rats.

    Science.gov (United States)

    Younes-Rapozo, V; Moura, E G; Manhães, A C; Pinheiro, C R; Carvalho, J C; Barradas, P C; de Oliveira, E; Lisboa, P C

    2015-12-01

    Astrocytes and microglia, the immune competent cells of central nercous system, can be activated in response to metabolic signals such as obesity and hyperleptinaemia. In rats, maternal exposure to nicotine during lactation leads to central obesity, hyperleptinaemia, leptin resistance and alterations in hypothalamic neuropeptides in the offspring during adulthood. In the present study, we studied the activation of astrocytes and microglia, as well as the pattern of inflammatory mediators, in adult offspring of this experimental model. On postnatal day 2 (P2), osmotic minipumps releasing nicotine (NIC) (-6 mg/kg/day) or saline for 14 days were s.c. implanted in dams. Male offspring were killed on P180 and hypothalamic immunohistochemistry, retroperitoneal white adipose tissue (WAT) polymerase chain reaction analysis and multiplex analysis for plasma inflammatory mediators were carried out. At P180, NIC astrocyte cell number was higher in the arcuate nucleus (ARC) (medial: +82%; lateral: +110%), in the paraventricular nucleus (PVN) (+144%) and in the lateral hypothalamus (+121%). NIC glial fibrillary acidic protein fibre density was higher in the lateral ARC (+178%) and in the PVN (+183%). Interleukin-6 was not affected in the hypothalamus. NIC monocyte chemotactic protein 1 was only higher in the periventricular nucleus (+287%). NIC microglia (iba-1-positive) cell number was higher (+68%) only in the PVN, as was the chemokine (C-X3-C motif) receptor 1 density (+93%). NIC interleukin-10 was lower in the WAT (-58%) and plasma (-50%). Thus, offspring of mothers exposed to nicotine during lactation present hypothalamic astrogliosis at adulthood and microgliosis in the PVN.

  18. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats.

    Science.gov (United States)

    Nichols, Nicole L; Hartzler, Lynn K; Conrad, Susan C; Dean, Jay B; Putnam, Robert W

    2008-01-01

    Chemosensitive (CS) neurons are found in discrete brainstem regions, but whether the CS response of these neurons is due to intrinsic chemosensitivity of individual neurons or is mediated by changes in chemical and/or electrical synaptic input is largely unknown. We studied the effect of synaptic blockade (11.4 mM Mg2+/0.2mM Ca2+) solution (SNB) and a gap junction uncoupling agent carbenoxolone (CAR--100 microM) on the response of neurons from two CS brainstem regions, the NTS and the LC. In NTS neurons, SNB decreased spontaneous firing rate (FR). We calculated the magnitude of the FR response to hypercapnic acidosis (HA; 15% CO2) using the Chemosensitivity Index (CI). The percentage of NTS neurons activated and CI were the same in the absence and presence of SNB. Blocking gap junctions with CAR did not significantly alter spontaneous FR. CAR did not alter the CI in NTS neurons and resulted in a small decrease in the percentage of activated neurons, which was most evident in NTS neurons from rats younger than postnatal day 10. In LC neurons, SNB resulted in an increase in spontaneous FR. As with NTS neurons, SNB did not alter the percentage of activated neurons or the CI in LC neurons. CAR resulted in a small increase in spontaneous FR in LC neurons. In contrast, CAR had a marked effect on the response of LC neurons to HA: a reduced percentage of CS LC neurons and decreased CI. In summary, both NTS and LC neurons appear to contain intrinsically CS neurons. CS neurons from the two regions receive different tonic input in slices (excitatory for NTS and inhibitory for LC); however, blocking chemical synaptic input does not affect the CS response in either region. In NTS neurons, gap junction coupling plays a small role in the CS response, but gap junctions play a major role in the chemosensitivity of many LC neurons.

  19. Gallium chloride effects on neonatal rat heart cells in culture, in standard and oxidative conditions.

    Science.gov (United States)

    Leperre, A; Millart, H; Prévost, A; Kantelip, J P; Lamiable, D; Collery, P

    1994-01-01

    The effects of gallium chloride (GaCl3) at 7.17, 28.68 and 114.7 microns (0.5, 2 and 8 mg/l of Ga3+) were checked in cardiac cells derived from 2-4 day-old newborn rats, cultured for 72 h in Eagle's minimum essential medium (MEM), enriched with 10% foetal calf serum (v/v) and 2 mM of glutamine at 37 degrees C, with 95% air plus 5% CO2. After 3 hours of standard culture conditions (MEM with glucose 5 mM), Ga treatment induced an increase of glycogen stores without any influence on ATP, ADP, and AMP concentrations. A slight and transient decrease in the beat rate was noted after 15 min of exposure to GaCl3 at all concentrations, whereas there was no difference in the beat rate nor in the cell contraction amplitude after 3 hours of exposure. After 1.5 h in conditions of oxidation (Tyrode solution without glucose, FeCl2 20 microM, ascorbic acid 0.2 mM), GaCl3 at 8 mg/l decreased the malondialdehyde (MDA) production as assessed by the decrease of intracellular concentrations and the decrease of its release in the supernatant. The decreased MDA production following oxidative stress, the increase in glycogen stores in normal oxygen concentrations, as well as the maintenance of ATP concentrations and the lack of any chronotropic effect induced by GaCl3 suggests a protective rather than a deleterious cardiac effect.

  20. Neonatal androgenization exacerbates alcohol-induced liver injury in adult rats, an effect abrogated by estrogen.

    Directory of Open Access Journals (Sweden)

    Whitney M Ellefson

    Full Text Available Alcoholic liver disease (ALD affects millions of people worldwide and is a major cause of morbidity and mortality. However, fewer than 10% of heavy drinkers progress to later stages of injury, suggesting other factors in ALD development, including environmental exposures and genetics. Females display greater susceptibility to the early damaging effects of ethanol. Estrogen (E2 and ethanol metabolizing enzymes (cytochrome P450, CYP450 are implicated in sex differences of ALD. Sex steroid hormones are developmentally regulated by the hypothalamic-pituitary-gonadal (HPG axis, which controls sex-specific cycling of gonadal steroid production and expression of hepatic enzymes. The aim of this study was to determine if early postnatal inhibition of adult cyclic E2 alters ethanol metabolizing enzyme expression contributing to the development of ALD in adulthood. An androgenized rat model was used to inhibit cyclic E2 production. Control females (Ctrl, androgenized females (Andro and Andro females with E2 implants were administered either an ethanol or isocalorically-matched control Lieber-DeCarli diet for four weeks and liver injury and CYP450 expression assessed. Androgenization exacerbated the deleterious effects of ethanol demonstrated by increased steatosis, lipid peroxidation, profibrotic gene expression and decreased antioxidant defenses compared to Ctrl. Additionally, CYP2E1 expression was down-regulated in Andro animals on both diets. No change was observed in CYP1A2 protein expression. Further, continuous exogenous administration of E2 to Andro in adulthood attenuated these effects, suggesting that E2 has protective effects in the androgenized animal. Therefore, early postnatal inhibition of cyclic E2 modulates development and progression of ALD in adulthood.

  1. Vitamin A supplementation redirects the flow of retinyl esters from peripheral to central organs of neonatal rats raised under vitamin A-marginal conditions.

    Science.gov (United States)

    Hodges, Joanna K; Tan, Libo; Green, Michael H; Ross, A Catharine

    2017-05-01

    Background: Vitamin A (VA; retinol) supplementation is used to reduce child mortality in countries with high rates of malnutrition. Existing research suggests that neonates (esters (CM-REs), retinol bound to retinol-binding protein (RBP-ROH), and total retinol were estimated in WinSAAM software.Results: VA supplementation redirected the flow of CM-REs from peripheral to central organs and accumulated mainly in the liver. The RBP-ROH released from the liver was acquired mainly by the peripheral tissues but not retained efficiently, causing repeated recycling of retinol between plasma and tissues (541 compared with 5 times in the supplemented group and control group, respectively) and its rapid turnover in all organs, except the brain and white adipose tissue. Retinol stores in the liver lasted for ∼2 wk before being gradually transferred to other organs.Conclusions: VA supplementation administered in a single high dose during the first month after birth is readily acquired but not retained efficiently in peripheral tissues of neonatal rats, suggesting that a more frequent, lower-dose supplementation may be necessary to maintain steady VA concentrations in rapidly developing neonatal tissues. © 2017 American Society for Nutrition.

  2. Oligodendrocyte transcription factor 1 overexpression promotes oligodendrocyte transcription factor 2 expression in the brains of neonatal rats exposed to hypoxia****☆

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Aijun Yang; Wenxing Jiang

    2011-01-01

    To examine the expression profiles of oligodendrocyte transcription factors 1 and 2 (Olig1 and Olig2) and the interaction between these two proteins, Olig1 was transfected into the lateral ventricles of neonatal rats subjected to hypoxia. Immunohistochemistry demonstrated that Olig2 was expressed throughout the nuclei in the brain, and expression increased at 3 days following hypoxia and was higher than levels at 7 days following Ad5-Olig1 transfection. Western blot revealed that Olig1 and Olig2 expression increased in Olig1-transfected brain cells 3 days after hypoxia, but Olig1 and Olig2 expression decreased at 7 days. These results indicate that Olig1 overexpression enhances Olig2 expression in brain tissues of hypoxia rats.

  3. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.

    Science.gov (United States)

    Donnelly, William T; Bartlett, Donald; Leiter, J C

    2016-07-01

    What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C

  4. Comparison of Therapeutic Effect of Anti-Cryptosporidium Nano-Nitazoxanide (NTZ with Free form of this Drug in Neonatal Rat

    Directory of Open Access Journals (Sweden)

    F. Sedighi

    2016-07-01

    Full Text Available Introduction & Objective: Cryptosporidiosis caused by Cryptosporidium, which is a protozoan parasite, has a worldwide distribution. The infection is through fecal-oral route, direct or indi-rect contact, food or water. The treatment of cryptosporidiosis is difficult and the anti-parasitic agents are not effective. The purpose of this study was encapsulation of nitazoxanide in solid lipid nano-particles (SLN and investigation of its anti-Cryptosporidium effect and its comparison with free drug in the neonatal rat. Materials & Methods: Nitazoxanide was encapsulated by HPH method with 2 mg/Kg concentra-tion in SLN nanoparticles. The oocysts were collected from calves and purified by sucrose floatation. A total of 72 Wistar neonatal rats were categorized in 6 groups of 12 rats including four infected groups treated by free drug, encapsulated nano drug, colloidal carriers without drug (SLN and olive oil; an infected control group and a healthy control group that received PBS. 5 × 105 of oocyts inoculated orally into the sample groups. Finally, intestine of each rat was homogenized in PBS by rotor and the homogenized material was passed through a sieve. Then, floated oocysts in sucrose solution were counted by hemocytometer. Results: Treatment by nitazoxanide significantly decreased the number of parasites in the treatment groups. This decrease at day 6 was more than day 3. Nano nitazoxanide had more effects on parasites than free drug. This difference at day 3 of treatment was not significant (p= 0.182 but at day 6 was statistically significant (P< 0.001. Conclusion: Using nano-nitazoxanide could be a more effective way in the treatment of Cryp-tosporidium infections. (Sci J Hamadan Univ Med Sci 2016; 23 (2:134-140

  5. Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia

    Directory of Open Access Journals (Sweden)

    Bitar Fadi F

    2006-07-01

    Full Text Available Abstract Background The aim of the study is to examine the effect of limited and prolonged hyperoxia on neonatal rat lung. This is done by examining the morphologic changes of apoptosis, the expression of ceramide, an important mediator of apoptosis, the expression of inflammatory mediators represented by IL-1β and the expression of 2 proto-oncogenes that appear to modulate apoptosis (Bax and Bcl-2. Methods Newborn rats were placed in chambers containing room air or oxygen above 90% for 7 days. The rats were sacrificed at 3, 7 or 14 days and their lungs removed. Sections were fixed, subjected to TUNEL, Hoechst, and E-Cadherin Staining. Sections were also incubated with anti-Bcl-2 and anti-Bax antisera. Bcl-2 and Bax were quantitated by immunohistochemistry. Lipids were extracted, and ceramide measured through a modified diacylglycerol kinase assay. RT-PCR was utilized to assess IL-1β expression. Results TUNEL staining showed significant apoptosis in the hyperoxia-exposed lungs at 3 days only. Co-staining of the apoptotic cells with Hoechst, and E-Cadherin indicated that apoptotic cells were mainly epithelial cells. The expression of Bax and ceramide was significantly higher in the hyperoxia-exposed lungs at 3 and 14 days of age, but not at 7 days. Bcl-2 was significantly elevated in the hyperoxia-exposed lungs at 3 and 14 days. IL-1β expression was significantly increased at 14 days. Conclusion Exposure of neonatal rat lung to hyperoxia results in early apoptosis documented by TUNEL assay. The early rise in Bax and ceramide appears to overcome the anti-apoptotic activity of Bcl-2. Further exposure did not result in late apoptotic changes. This suggests that apoptotic response to hyperoxia is time sensitive. Prolonged hyperoxia results in acute lung injury and the shifting balance of ceramide, Bax and Bcl-2 may be related to the evolution of the inflammatory process.

  6. Desnutrição neonatal e microbiota normal da cavidade oral em ratos Neonatal malnutrition and normal microbiota of the oral cavity in rats

    OpenAIRE

    Solange Maria Magalhães da Silva Porto; Marcelo Tavares Viana; Karla Melo Ferreira da Silva; Maria de Fátima Alves Diniz; Célia Maria Machado Barbosa de Castro

    2007-01-01

    OBJETIVO: Avaliar a influência da desnutrição neonatal sobre o padrão e o crescimento de bactérias aeróbias, da microbiota normal da cavidade oral, em ratos Wistar adultos. MÉTODOS: O material da cavidade oral foi coletado através de swabs embebidos em 40µL de solução salina estéril e colocados em tubos estéreis contendo 960µL de brain heart infusion. Posteriormente, fez-se homogeneização de cada uma amostra. Então, destes 1.000µL, retirou-se 1µL e este foi semeado em placas de Petri contendo...

  7. Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ in Neonatal Rat Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Ming-Ting Chou

    2012-01-01

    Full Text Available Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells.

  8. The role of subscapularis muscle denervation in the pathogenesis of shoulder internal rotation contracture after neonatal brachial plexus palsy: a study in a rat model.

    Science.gov (United States)

    Mascarenhas, Vasco V; Casaccia, Marcelo; Fernandez-Martin, Alejandra; Marotta, Mario; Fontecha, Cesar G; Haddad, Sleiman; Knörr, Jorge; Soldado, Francisco

    2014-12-01

    We assessed the role of subscapularis muscle denervation in the development of shoulder internal rotation contracture in neonatal brachial plexus injury. Seventeen newborn rats underwent selective denervation of the subscapular muscle. The rats were evaluated at weekly intervals to measure passive shoulder external rotation. After 4 weeks, the animals were euthanized. The subscapularis thickness was measured using 7.2T MRI axial images. The subscapularis muscle was then studied grossly, and its mass was registered. The fiber area and the area of fibrosis were measured using collagen-I inmunostained muscle sections. Significant progressive decrease in passive shoulder external rotation was noted with a mean loss of 58° at four weeks. A significant decrease in thickness and mass of the subscapularis muscles in the involved shoulders was also found with a mean loss of 69%. Subscapularis muscle fiber size decreased significantly, while the area of fibrosis remained unchanged. Our study shows that subscapularis denervation, per se, could explain shoulder contracture after neonatal brachial plexus injury, though its relevance compared to other pathogenic factors needs further investigation. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Activation of presynaptic and postsynaptic ryanodine-sensitive calcium stores is required for the induction of long-term depression at GABAergic synapses in the neonatal rat hippocampus.

    Science.gov (United States)

    Caillard, O; Ben-Ari, Y; Gaïarsa, J L

    2000-09-01

    The role of internal calcium stores in the induction of long-term depression at GABAergic synapses was investigated in the neonatal rat hippocampus. Whole-cell recordings of CA3 pyramidal neurons were performed on hippocampal slices from neonatal (2-4 d old) rats. In control conditions, tetanic stimulation (TS) evoked an NMDA-dependent long-term depression of GABA(A) receptor-mediated postsynaptic responses (LTD(GABA-A)). LTD(GABA-A) was prevented when the cells were loaded with ruthenium red, a blocker of Ca2+-induced Ca2+ release (CICR) stores, whereas loading the cells with heparin, a blocker of IP3-induced Ca2+ release stores, had no effect. The effects of ryanodine, another compound that interferes with CICR stores, were also investigated. Intracellular injection of ryanodine prevented the induction of LTD(GABA-A) only when the TS was preceded by depolarizing pulses that increase intracellular Ca2+ concentration. When applied in the bath, ryanodine prevented the induction of LTD(GABA-A). Altogether, these results suggest that ryanodine acts as a Ca2+-dependent blocker of CICR stores and that the induction of LTD(GABA-A) required the activation of both presynaptic and postsynaptic CICR stores.

  10. Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats.

    Science.gov (United States)

    Llorente, Ricardo; Arranz, Lorena; Marco, Eva-María; Moreno, Enrique; Puerto, Marta; Guaza, Carmen; De la Fuente, Mónica; Viveros, Maria-Paz

    2007-07-01

    Maternal deprivation [24h on postnatal day 9] might represent an animal model of schizophrenia and behavioural and neurochemical alterations observed in adulthood may be mediated by hippocampal impairments induced by abnormally increased glucocorticoids due to neonatal stress. We aimed to provide new data for psychoimmunoendocrine characterization of this animal model by evaluating its effects in adolescent rats of both genders. In previous studies we found that cannabinoid compounds counteracted the enhanced impulsivity of maternally deprived animals and that the cannabinoid receptor agonist WIN 55,212-2 showed neuroprotective properties in neonatal rats. So, we hypothesised that this compound could counteract at least some of the detrimental effects that we expected to find in maternally deprived animals. Accordingly, the drug was administered immediately after the maternal deprivation period. Maternally deprived males showed significantly decreased motor activity in the holeboard and the plus-maze. The cannabinoid agonist induced, exclusively in males, a significant anxiogenic-like effect, which was reversed by maternal deprivation. In the forced swimming test, both treatments independently induced depressive-like responses. Maternal deprivation reduced immunological function whereas the drug exerted tissue-dependent effects on the immune parameters analysed. Maternally deprived females showed reduced corticosterone levels whereas the cannabinoid agonist increased hormone concentration in all groups. In general, the results show detrimental effects of both treatments as well as intriguing interactions, notably in relation to emotional behaviour and certain immunological responses.

  11. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model.

    Science.gov (United States)

    Zhu, Furong; Zhang, Lulu; Ding, Yu-qiang; Zhao, Jingping; Zheng, Yingjun

    2014-05-01

    Several lines of evidence have suggested that the dysregulation of immune system is involved in the pathogenesis of schizophrenia. Microglia are the resident macrophage of the brain and the major player in innate immunity in the brain. We hypothesized that microglia activation may be closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (PD7), and they were separately treated with saline or minocycline for consecutive 3days. Behavioral changes (locomotor activity, social interaction and prepulse inhibition) were examined in adulthood, and the number of microglia was assessed using immunohistochemistry at PD9, PD21 and PD67. The adult rats in LPS-injected group showed obvious behavioral alterations (deficits in social behavior and prepulse inhibition) and a persistently dramatic increase of number of activated microglial cells in the hippocampus, cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, pretreatment with minocycline could significantly rescue the behavioral deficits and prevent microglia activation. Our results suggest that neonatal intrahippocampal LPS injection may serve as a potential schizophrenia animal model, and inhibition of microglia activation may be a potential treatment strategy for schizophrenia.

  12. Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Tao, Tian-Qi; Wang, Xiao-Reng; Liu, Mi; Xu, Fei-Fei; Liu, Xiu-Hua

    2015-03-01

    The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P apoptosis, increased expression of GRP78 and CHOP (P apoptosis through inhibition of the PERK/Nrf2 pathway.

  13. Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power.

    Science.gov (United States)

    Hairston, Ilana S; Peyron, Christelle; Denning, Daniel P; Ruby, Norman F; Flores, Judith; Sapolsky, Robert M; Heller, H Craig; O'Hara, Bruce F

    2004-04-01

    The sleeping brain differs from the waking brain in its electrophysiological and molecular properties, including the expression of growth factors and immediate early genes (IEG). Sleep architecture and homeostatic regulation of sleep in neonates is distinct from that of adults. Hence, the present study addressed the question whether the unique homeostatic response to sleep deprivation in neonates is reflected in mRNA expression of the IEG cFos, brain-derived nerve growth factor (BDNF), and basic fibroblast growth factor (FGF2) in the cortex. As sleep deprivation is stressful to developing rats, we also investigated whether the increased levels of corticosterone would affect the expression of growth factors in the hippocampus, known to be sensitive to glucocorticoid levels. At postnatal days 16, 20, and 24, rats were subjected to sleep deprivation, maternal separation without sleep deprivation, sleep deprivation with 2 h recovery sleep, or no intervention. mRNA expression was quantified in the cortex and hippocampus. cFos was increased after sleep deprivation and was similar to control level after 2 h recovery sleep irrespective of age or brain region. BDNF was increased by sleep deprivation in the cortex at P20 and P24 and only at P24 in the hippocampus. FGF2 increased during recovery sleep at all ages in both brain regions. We conclude that cortical BDNF expression reflects the onset of adult sleep-homeostatic response, whereas the profile of expression of both growth factors suggests a trophic effect of mild sleep deprivation.

  14. Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats.

    Science.gov (United States)

    Wang, Yujie; Wu, Changyi; Han, Bin; Xu, Fei; Mao, Mingfeng; Guo, Xiangyang; Wang, Jun

    2016-07-01

    Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigate the effect of Dex on neonatal propofol-induced neuroapoptosis and juvenile spatial learning/memory deficits. Propofol (30 mg/kg) was intraperiotoneally administered to 7‑day‑old Sprague Dawley rats (n=75) three times each day at 90 min intervals for seven consecutive days with or without Dex (75 µg/kg) treatment 20 min prior to propofol injection. Following repeated propofol exposure, reduced Akt and GSK‑3β phosphorylation, increased cleaved caspase‑3 expression levels, an increased Bax/Bcl‑2 ratio, and increased terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL)‑positive cells in the CA1 hippocampal subregion were observed. Morris Water Maze testing at postnatal day 29 also demonstrated spatial learning and memory deficits following propofol treatment compared with the control group. Notably, these changes were significantly attenuated by Dex pretreatment. The results of the current study demonstrated that Dex ameliorates the neurocognitive impairment induced by repeated neonatal propofol challenge in rats, partially via its anti‑apoptotic action and normalization of the disruption to the PI3K/Akt/GSK‑3β signaling pathway. The present study provides preliminary evidence demonstrating the safety of propofol on the neonatal brain and the potential use of dexmedetomidine pretreatment in pediatric patients.

  15. The regulatory effect of memantine on expression and synthesis of heat shock protein 70 gene in neonatal rat models with cerebral hypoxic ischemia

    Institute of Scientific and Technical Information of China (English)

    陈惠金; 刘志伟; 周泽汉; 蒋明华; 钱龙华; 吴圣楣

    2003-01-01

    Objective To evaluate the neuroprotective effect of memantine, a non-competitive antagonist at the N-methyl-D-aspartate receptor, against hypoxic ischemia (HI) by exploring its regulation on the expression and synthesis of heat shock protein 70 (HSP70) gene in neonatal rat models with cerebral HI. Methods Memantine was intraperitoneally injected at a dose of 20 mg/kg in neonatal rat models either before (PRE group) or after (POST group) induction of HI. The expression and synthesis of the HSP70 gene and its corresponding product were determined by rapid competitive PCR and immunohistochemistry, respectively. Results There was an increase in the expression of HSP70 mRNA two hours after induction of HI, which reached its peak at 48 hours, then decreased gradually. The same expression occurred at relatively low levels in the control group. Also, HSP70 synthesis was detected as early as 2h after HI, reached its peak between 48 and 72 hours, then declined over time. After memantine administration, the expression of the gene and its synthesis of the corresponding product decreased significantly during the time intervals 24-72 h for the gene and 48-72 h for the product compared to the HI group.Conclusion It was shown that HI is very sensitive to the expression of the HSP70 gene and synthesis of its corresponding product, which could be regulated by memantine. The latter may have the ability to reduce brain damage; thus decreased HSP70 mRNA expression could be a marker for HI. It is suggested that memantine can be a promising agent for neuroprotection against HI, although an overall and Abstract Objective assessment of memantine is required to see if it can be used on neonates clinically later on.

  16. Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex.

    Science.gov (United States)

    Lazcano, Zayda; Solis, Oscar; Díaz, Alfonso; Brambila, Eduardo; Aguilar-Alonso, Patricia; Guevara, Jorge; Flores, Gonzalo

    2015-06-01

    Neonatal prefrontal cortex (nPFC) lesions in rats could be a potential animal model to study the early neurodevelopmental abnormalities associated with the behavioral and morphological brain changes observed in schizophrenia. Morphological alterations in pyramidal neurons from the ventral hippocampus (VH) have been observed in post-mortem schizophrenic brains, mainly because of decreased dendritic arbor and spine density. We assessed the effects of nPFC-lesions on the dendritic morphology of neurons from the VH, basolateral-amygdala (BLA) and the nucleus accumbens (NAcc) in rats. nPFC lesions were made on postnatal day 7 (PD7), after dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at PD35 (prepubertal) and PD60 (adult) ages. We also evaluated the effects of PFC-lesions on locomotor activity caused by a novel environment. Adult animals with nPFC lesions showed a decreased spine density in pyramidal neurons from the VH and in medium spiny cells from the NAcc. An increased locomotion was observed in a novel environment for adult animals with a PFC-lesion. Our results indicate that PFC-lesions alter the neuronal dendrite morphology of the NAcc and the VH, suggesting a disconnection between these limbic structures. The locomotion paradigms suggest that dopaminergic transmission is altered in the PFC lesion model. This could help to understand the consequences of an earlier PFC dysfunction in schizophrenia. To evaluate possible dendritic changes in neonatal prefrontal cortex lesions in schizophrenia-related regions including nucleus accumbens, ventral hippocampus and basolateral amygdala, we used the Golgi-Cox stain samples at PD35 and PD70. Our results suggest that neonatal prefrontal cortex damage alters dendritic parameters in limbic regions, and this has potential implications for schizophrenia.

  17. The parity-related protection against breast cancer is compromised by cigarette smoke during rat pregnancy: observations on tumorigenesis and immunological defenses of the neonate.

    Science.gov (United States)

    Steinetz, Bernard G; Gordon, Terry; Lasano, Salamia; Horton, Lori; Ng, Sheung Pui; Zelikoff, Judith T; Nadas, Arthur; Bosland, Maarten C

    2006-06-01

    Early pregnancy is a powerful negative risk factor for breast cancer (BCa) in women. Pregnancy also protects rats against induction of BCa by carcinogens such as N-methyl-N-nitrosourea (MNU), making the parous rat a useful model for studying this phenomenon. Smoking during early pregnancy may lead to an increased risk of BCa in later life, possibly attributable to carcinogens in cigarette smoke (CS), or to reversal of the parity-related protection against BCa. To investigate these possibilities, 50-day-old timed first-pregnancy rats were exposed to standardized mainstream CS (particle concentration = 50 mg/m3) or to filtered air (FA) 4 h/day, Day 2-20 of gestation. Age-matched virgin rats were similarly exposed to CS or FA. At age 100 days, the CS or FA-exposed, parous and virgin rats were injected s.c. with MNU (50 mg/kg body wt), or with MNU vehicle. Mammary tumors (MTs) first appeared in virgin rats 9 weeks post-MNU injection. While no MTs were detected in FA-exposed parous rats until 18 weeks post-MNU, MTs appeared in the CS-exposed parous rats as early as 10 wks (P < 0.02). As no MTs developed in CS-exposed rats not injected with MNU, CS did not act as a direct mammary carcinogen. Serum prolactin concentration on Day 19 of pregnancy in CS-exposed dams was reduced by 50% compared with FA-exposed dams (P < 0.005). CS exposure during a pregnancy may thus 'deprotect' rats, enhancing their vulnerability to MNU-induced BCa. Prenatal CS exposure had no detectable effect on the immune responses of the pups examined at 3, 8 or 19 weeks of age. However, prolactin concentration in stomach contents (milk) of 3-day-old pups suckled by CS-exposed dams was decreased when compared with that of FA-exposed dams (P < 0.032). As milk-borne prolactin modulates development of the central nervous and immune systems of neonatal rats, CS exposure of the dams could adversely affect later maturation of these systems by reducing milk prolactin.

  18. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available BACKGROUND: Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine. CONCLUSIONS/SIGNIFICANCE: This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects

  19. A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats

    Science.gov (United States)

    McClelland, David; Evans, Rhian M; Barkworth, Louise; Martin, Duncan J; Scott, Roderick H

    2004-01-01

    Background Gabapentin and pregabalin have wide-ranging therapeutic actions, and are structurally related to the inhibitory neurotransmitter GABA. Gabapentin, pregablin and GABA can all modulate voltage-activated Ca2+ channels. In this study we have used whole cell patch clamp recording and fura-2 Ca2+ imaging to characterise the actions of pregabalin on the electrophysiological properties of cultured dorsal root ganglion (DRG) neurones from neonatal rats. The aims of this study were to determine whether pregabalin and gabapentin had additive inhibitory effects on high voltage-activated Ca2+ channels, evaluate whether the actions of pregabalin were dependent on GABA receptors and characterise the actions of pregabalin on voltage-activated potassium currents. Results Pregabalin (25 nM – 2.5 μM) inhibited 20–30% of the high voltage-activated Ca2+ current in cultured DRG neurones. The residual Ca2+ current recorded in the presence of pregabalin was sensitive to the L-type Ca2+ channel modulator, Bay K8644. Saturating concentrations of gabapentin failed to have additive effects when applied with pregabalin, indicating that these two compounds act on the same type(s) of voltage-activated Ca2+ channels but the majority of Ca2+ current was resistant to both drugs. The continual application of GABA, the GABAB receptor antagonist CGP52432, or intracellular photorelease of GTP-γ-S had no effect on pregabalin-induced inhibition of Ca2+ currents. Although clear inhibition of Ca2+ influx was produced by pregabalin in a population of small neurones, a significant population of larger neurones showed enhanced Ca2+ influx in response to pregabalin. The enhanced Ca2+ influx evoked by pregabalin was mimicked by partial block of K+ conductances with tetraethylammonium. Pregabalin produced biphasic effects on voltage-activated K+ currents, the inhibitory effect of pregabalin was prevented with apamin. The delayed enhancement of K+ currents was attenuated by pertussis toxin and by

  20. The histopathology of Candida albicans invasion in neonatal rat tissues and in the human blood-brain barrier in culture revealed by light, scanning, transmission and immunoelectron microscopy scanning

    OpenAIRE

    Lossinsky, A.S.; de Jong, A.; Fiala, M; Mukhtar, M; Buttle, K.F.; Ingram, M.

    2006-01-01

    The present studies examined the effects of Candida albicans yeast and hyphal morphologies on tissue pathologies and transmigration properties of the fungus in two experimental models: 1) an in vivo, neonatal rat model, and 2) a cell culture model of human brain microvascular endothelial cells (ECs) (BMVEC). We inoculated a hyphae-producing strain (CAI4-URA3) and a non-hyphae-producing strain (CAI4) of C. albicans into 4-10 day old rats and BMVEC cultures. ...

  1. Sevoflurane neurotoxicity in neonatal rats is related to an increase in the GABAA R α1/ GABAA R α2 ratio.

    Science.gov (United States)

    Xie, Si-Ning; Ye, Hong; Li, Jun-Fa; An, Li-Xin

    2017-08-26

    Exposure of neonatal rat to sevoflurane leads to neurodegeneration and deficits of spatial learning and memory in adulthood. However, the underlying mechanisms remain unclear. The type A γ-aminobutyric acid receptor (GABAA R) is a target receptor for sevoflurane. The present study intends to investigate the changes in GABAA R α1/α2 expression and its relationship with the neurotoxicity effect due to sevoflurane in neonatal rats. After a dose-response curve was constructed to determine minimum alveolar concentration (MAC) and safety was guaranteed in our 7-day-old neonatal rat pup mode, we conducted two studies among the following groups: (A) the control group; (B) the sham anesthesia group; and (C) the sevoflurane anesthesia group and all three groups were treated in the same way as the model. First, poly(ADP-ribose) polymerase-1 protein (PARP-1) expression was determined in the different brain areas at 6 hr after anesthesia. Second, the expression of PARP-1 and GABAA R α1/GABAA R α2 in the hippocampus area was tested by Western blotting at 6 hr, 24 hr, and 72 hr after anesthesia in all three groups. After 4 hr, with 0.8 MAC (2.1%) sevoflurane anesthesia, the PARP-1 expression was significantly higher in the hippocampus than the other brain areas (p < .05). Compared with Groups A and B, the expression of PARP-1 in the hippocampus of Group C significantly increased at 6 hr after sevoflurane exposure (216% ± 15%, p < .05), and the ratio of the α1/α2 subunit of GABAA R surged at 6 hr (126% ± 6%), 24 hr (127% ± 8%), and 72 hr (183% ± 22%) after sevoflurane exposure in the hippocampus (p < .05). Our study showed that sevoflurane exposure of 0.8 MAC (2.1%)/4 hr was a suitable model for 7-day-old rats. And the exposure to sevoflurane could induce the apoptosis of neurons in the early stage, which may be related to the transmission from GABAA R α2 to GABAA R α1. © 2017 Wiley Periodicals, Inc.

  2. Muscarinic excitatory and inhibitory mechanisms involved in afferent fibre-evoked depolarization of motoneurones in the neonatal rat spinal cord.

    Science.gov (United States)

    Kurihara, T.; Suzuki, H.; Yanagisawa, M.; Yoshioka, K.

    1993-01-01

    1. The involvement of acetylcholine and muscarinic receptors in spinal synaptic responses evoked by electrical and noxious sensory stimuli was investigated in the neonatal rat spinal cord in vitro. 2. Potentials were recorded extracellularly from a ventral root (L3-L5) of the isolated spinal cord, spinal cord-cutaneous nerve, and spinal cord-skin preparations of 1- to 4-day-old rats. Spinal reflexes were elicited by electrical stimulation of the ipsilateral dorsal root or the cutaneous saphenous nerve, or by noxious skin stimulation. 3. Single shock stimulation of supramaximum intensity of a dorsal root induced a mono-synaptic reflex in the corresponding ventral root. Bath-application of the muscarinic agonists, muscarine (0.3-30 microM) and (+)-cis-dioxolane (0.1-100 microM), produced an inhibition of the mono-synaptic reflex and a depolarization of motoneurones. Other muscarinic agonists, arecoline (10 nM-10 microM) and oxotremorine (10 nM-1 microM), inhibited the mono-synaptic reflex with little or no depolarization of motoneurones. Repetitive stimulation of the saphenous nerve at C-fibre strength induced a slow depolarizing response lasting about 30 s of the L3 ventral root. This slow ventral root potential (VRP) was also inhibited by arecoline (10 nM-10 microM) and oxotremorine (10 nM-1 microM). 4. In the spinal cord-saphenous nerve-skin preparation, a slow VRP was evoked by application of capsaicin (0.5 microM), bradykinin (3 microM), or noxious heat (47 degrees C) to skin. This slow VRP was depressed by the muscarinic agonists, arecoline (3 microM) and oxotremorine (1 microM). 5. Of the (+)-cis-dioxolane-induced inhibition of mono-synaptic reflex and motoneurone depolarization, the M2 antagonists, AF-DX 116 (0.1-1 microM) and methoctramine (100-300 nM), preferentially blocked the former response, whereas the M3 antagonists, 4-DAMP (3-10 nM) and p-F-HHSiD (0.3-3 microM), preferentially blocked the latter response. AF-DX 116 (0.1-1 microM) and methoctramine

  3. Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia.

    Science.gov (United States)

    Vázquez-Roque, Rubén Antonio; Ramos, Brenda; Tecuatl, Carolina; Juárez, Ismael; Adame, Anthony; de la Cruz, Fidel; Zamudio, Sergio; Mena, Raúl; Rockenstein, Edward; Masliah, Eliezer; Flores, Gonzalo

    2012-01-01

    Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms.

  4. Development of the insulin secretion mechanism in fetal and neonatal rat pancreatic B-cells: response to glucose, K+, theophylline, and carbamylcholine

    Directory of Open Access Journals (Sweden)

    A.C. Mendonça

    1998-06-01

    Full Text Available We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old, neonatal (3-day-old, and adult (90-day-old rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo and 200 µM carbamylcholine (Cch. No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively. High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.

  5. Prenatal exposure to vanilla or alcohol induces crawling after these odors in the neonate rat: The role of mu and kappa opioid receptor systems.

    Science.gov (United States)

    Gaztañaga, Mirari; Aranda-Fernández, P Ezequiel; Chotro, M Gabriela

    2015-09-01

    Rat fetuses can perceive chemosensory stimuli derived from their mother's diet, and they may learn about those stimuli. In previous studies we have observed that prenatal exposure to alcohol during the last days of gestation increases the acceptance and liking of an alcohol flavor in infant and adolescent rats. While these results were not found after prenatal exposure to vanilla, cineole or anise, suggesting that the pharmacological properties of alcohol, mediated by the opioid system, underlie the effects observed with this drug. Considering that other studies report enhanced acceptance of non-alcohol flavors experienced prenatally when subjects were tested before infancy, we explore the possibility of observing similar results if testing 1-day old rats exposed prenatally to vanilla. Using an "odor-induced crawling" testing procedure, it was observed that neonates exposed prenatally to vanilla or alcohol crawl for a longer distance towards the experienced odor than to other odors or than control pups. Blocking mu, but not kappa opioid receptors, reduced the attraction of vanilla odor to neonates exposed to vanilla in utero, while the response to alcohol in pups exposed prenatally to this drug was affected by both antagonists. Results confirm that exposure to a non-alcohol odor enhances postnatal responses to it, observable soon after birth, while also suggesting that the mu opioid receptor system plays an important role in generating this effect. The results also imply that with alcohol exposure, the prenatal opioid system is wholly involved, which could explain the longer retention of the enhanced attraction to alcohol following prenatal experience with the drug.

  6. Induction of pancreatic duct cells of neonatal rats into insulin-producing cells with fetal bovine serum: A natural protocol and its use for patch clamp experiments

    Institute of Scientific and Technical Information of China (English)

    San-Hua Leng; Fu-Er Lu

    2005-01-01

    AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study.METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine oells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels(KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique.RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to0.028±0.003, insulin secretion from 2.6±0.6to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L).In contrast, for the isolated adult pancreatic islet cells,both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011,insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancrearic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP KV, and KCA.CONCLUSION: Islet

  7. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals.

    Science.gov (United States)

    Tian, Tian; Ni, Hong; Sun, Bao-liang

    2015-10-01

    The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.

  8. Effects of perinatal protein malnutrition and fenfluramine action on food intake and neuronal activation in the hypothalamus and raphe nuclei of neonate rats.

    Science.gov (United States)

    Ferro Cavalcante, Taisy Cinthia; Marcelino da Silva, Amanda Alves; Amaral Almeida, Larissa Cavalcanti do; Tavares, Gabriel Araújo; de Farias Campina, Renata Cristinny; do Nascimento, Elizabeth; Lopes de Souza, Sandra

    2016-10-15

    In neonatal rats, hunger and satiety responses occur particularly via dehydration and gastric distention, respectively. The control of food intake in newborns is yet to be fully consolidated, particularly with respect to the participation of the hypothalamic nuclei and their relationship with the serotonergic pathway. Moreover, it is unclear how the environmental stressors in early life, like undernutrition, interfere in these events. Therefore, this study examined the serotonin-system's impact on food intake in rat neonates at postnatal day (P) 10 and P18 and the manner in which protein undernutrition during pregnancy and lactation interferes in this behavior. To accomplish this, Wistar rats were used, nutritionally manipulated by a diet having two protein levels, (8% and 17%) during pregnancy and lactation, to form the Control (n=10) and Low protein groups (n=10). At 10 and 18 postnatal days pups received an acute dose of fenfluramine (3mg/kg) or saline (0.9% NaCl) and subjected to milk consumption testing and then perfused to obtain the brains for the analysis of cell activation of the immunoreactive c-Fos in the hypothalamic and raphe nuclei. At 10days a reduction in weight gain was observed in both groups. On comparison of the neuronal activation for the paraventricular nucleus, an increased activation in response to fenfluramine was observed. At 18days, the weight gain percentage differed between the groups according to the nutritional manipulation, in which the control animals had no significant change while the undernourished presented increased weight gain with the use of fenfluramine. The marking of c-Fos in response to fenfluramine in the hypothalamic and raphe nuclei revealed, an especially lower activation of the PVN, MnR and DR compared intra-group. However when evaluating the effect of undernutrition, marking activation was observed to increase in all the nuclei analyzed, in the hypothalamus and raphe. Data from this study indicate that the action of

  9. The long-term effects of neonatal morphine administration on the pentylenetetrazol seizure model in rats: the role of hippocampal cholinergic receptors in adulthood.

    Science.gov (United States)

    Saboory, Ehsan; Gholami, Morteza; Zare, Samad; Roshan-Milani, Shiva

    2014-04-01

    Early life exposure to opiates may affect neuropathological conditions, such as epilepsy, during adulthood. We investigated whether neonatal morphine exposure affects pentylenetetrazol (PTZ)-induced seizures in adulthood. Male rats were subcutaneously injected with morphine or saline on postnatal days 8-14. During adulthood, each rat was assigned to 1 of the following 10 sub-groups: saline, nicotine (0.1, 0.5, or 1 μg), atropine (0.25 or 1 μg), oxotremorine M (0.1 or 1 μg), or mecamylamine (2 or 8 μg). An intrahippocampal infusion of the indicated compound was administered 30 min before seizure induction (80 mg/kg PTZ). Compared with the saline/oxotremorine (1 μg), saline/saline, and morphine/saline groups, the morphine/oxotremorine (1 μg) group showed a significantly increased latency to the first epileptic behavior. The duration of tonic-clonic seizures was significantly lower in the morphine/oxotremorine (1 μg) group compared to the saline/saline and morphine/saline groups. The severity of seizure was significantly decreased in the morphine/atropine (1 μg) group than in the saline/atropine (1 μg). Seizure severity was also decreased in the morphine/mecamylamine (2 μg) group than in the saline/mecamylamine (2 μg) group. Latency for death was significantly lower in the morphine/mecamylamine (2 μg) group compared with the saline/mecamylamine (2 μg) group. Mortality rates in the morphine/atropine (1 μg) and morphine/mecamylamine (2 μg) groups were significantly lower than those in the saline/atropine (1 μg) and saline/mecamylamine (2 μg) groups, respectively. Chronic neonatal morphine administration attenuated PTZ-induced seizures, reduced the mortality rate, and decreased the impact of the hippocampal cholinergic system on seizures and mortality rate in adult rats. Neonatal morphine exposure induces changes to μ-receptors that may lead to activation of GABAergic neurons in the hippocampus. This pathway may explain the anti-convulsant effects of

  10. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway.

    Science.gov (United States)

    Lai, Zhongmeng; Zhang, Liangcheng; Su, Jiansheng; Cai, Dongmiao; Xu, Qingxiu

    2016-01-01

    Volatile anesthetic postconditioning has been documented to provide neuroprotection in adult animals. Our aim was to investigate whether sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage (HIBD) rats, and whether the PI3K/Akt pathway and mitochondrial permeability transition pore (mPTP) opening participate in the effect. Seven-day-old Sprague-Dawley rats were subjected to brain HI and randomly allocated to 10 groups (n=24 each group) and treated as follows: (1) Sham, without hypoxia-ischemia; (2) HI/Control, received cerebral hypoxia-ischemia; (3) HI+Atractyloside (Atr), (4) HI+Cyclosporin A (CsA), (5) HI+sevoflurane (Sev), (6) HI+Sev+ LY294002 (LY), (7) HI+Sev+ L-NAME (L-N), (8) HI+Sev+ SB216763 (SB), (9) HI+Sev+Atr, and (10) HI+Sev+CsA. Twelve rats in each group underwent behavioral testing and their brains were harvested for hippocampus neuron count and morphology study. Brains of the other 12 animals were harvested 24h after intervention to examine the expression of Akt, p-Akt, eNOS, p-eNOS, GSK-3β, p-GSK-3β by Western bolting and mPTP opening. Sevoflurane postconditioning significantly improved the long-term cognitive performance of the rats, increased the number of surviving neurons in CA1 and CA3 hippocampal regions, and protected the histomorphology of the left hippocampus. These effects were abolished by inhibitors of PI3K/eNOS/GSK-3β. Although blocking mPTP opening simulated sevoflurane postconditioning-induced neuroprotection, it failed to enhance it. Sevoflurane postconditioning exerts a neuroprotective effect against HIBD in neonatal rats via PI3K/Akt/eNOS and PI3K/Akt/GSK-3β pathways, and blockage of mPTP opening may be involved in attenuation of histomorphological injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation

    Directory of Open Access Journals (Sweden)

    Li Lin

    2012-12-01

    Full Text Available Abstract Background Irritable bowel syndrome (IBS is characterized by chronic visceral hyperalgesia (CVH that manifested with persistent or recurrent abdominal pain and altered bowel movement. However, the pathogenesis of the CVH remains unknown. The aim of this study was to investigate roles of endogenous hydrogen sulfide (H2S producing enzyme cystathionine beta-synthetase (CBS and p65 nuclear factor-kappa B subunits in CVH. Results CVH was induced by neonatal maternal deprivation (NMD in male rats on postnatal days 2–15 and behavioral experiments were conducted at the age of 7–15 weeks. NMD significantly increased expression of CBS in colon-innervating DRGs from the 7th to 12th week. This change in CBS express is well correlated with the time course of enhanced visceromoter responses to colorectal distention (CRD, an indicator of visceral pain. Administration of AOAA, an inhibitor of CBS, produced a dose-dependent antinociceptive effect on NMD rats while it had no effect on age-matched healthy control rats. AOAA also reversed the enhanced neuronal excitability seen in colon-innervating DRGs. Application of NaHS, a donor of H2S, increased excitability of colon-innervating DRG neurons acutely dissociated from healthy control rats. Intrathecal injection of NaHS produced an acute visceral hyperalgesia. In addition, the content of p65 in nucleus was remarkably higher in NMD rats than that in age-matched controls. Intrathecal administration of PDTC, an inhibitor of p65, markedly reduced expression of CBS and attenuated nociceptive responses to CRD. Conclusion The present results suggested that upregulation of CBS expression, which is mediated by activation of p65, contributes to NMD-induced CVH. This pathway might be a potential target for relieving CVH in patients with IBS.

  12. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats.

    Science.gov (United States)

    Shi, Yiwei; Wang, Gang; Li, Jinyuan; Yu, Wenli

    2017-09-18

    Anesthesia neurotoxicity in developing brain has gained increasing attention. However, knowledge regarding its mitigating strategies remains scant. Sevoflurane, a commonly used anesthetic, is responsible for learning and memory deficits in neonates. Molecular hydrogen is reported to be a potential neuroprotective agent because of its antioxidative and anti-inflammatory activities. This study aimed to investigate the effect of hydrogen gas on sevoflurane neurotoxicity. The newborn rats were treated with sevoflurane and/or hydrogen gas for 2 h. Spatial recognition memory and fear memory were determined by Y-maze and fear conditioning tests at 10 weeks of age. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and proinflammatory cytokine levels were detected using western blot analysis. The data showed that the spatial recognition memory and fear memory of the rats treated with sevoflurane decreased compared with the control, and the cognitive function of the rats treated with sevoflurane and hydrogen gas significantly increased in comparison with treatment with sevoflurane alone. Moreover, hydrogen gas suppressed NF-κB phosphorylation and nuclear translocation and reduced the production of interleukin-1β, interleukin-6, and tumor necrosis factor-α following sevoflurane administration. Thus, the results proposed that hydrogen gas might protect against sevoflurane neurotoxicity by inhibiting NF-κB activation and proinflammatory cytokine release, providing a novel therapeutic strategy for anesthesia neurotoxicity.

  13. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats.

    Science.gov (United States)

    Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N

    2016-02-01

    Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter.

  14. Evaluation of spermatogenesis and fertility in F1 male rats after in utero and neonatal exposure to extremely low frequency electromagnetic fields

    Institute of Scientific and Technical Information of China (English)

    M. K. Chung; S. J. Lee; Y. B. Kim; S. C. Park; D. H. Shin; S. H. Kim; J. C. Kim

    2005-01-01

    Aim: To determine whether in utero and neonatal exposure to a 60 Hz extremely low frequency electromagnetic field (EMF) results in spermatotoxicity and reproductive dysfunction in the F1 offspring of rats. Methods: Age-matched,pregnant Sprague-Dawley rats were exposed continuously (21 h/day) to a 60 Hz EMF at field strengths of 0 (sham control), 5, 83.3 or 500 μT from day 6 of gestation through to day 21 of lactation. The experimentally generated magnetic field was monitored continuously (uninterrupted monitoring over the period of the study) throughout the study. Results: No exposure-related changes were found in exposed or sham-exposed animals with respect to the anogenital distance, preputial separation, testis weight, testicular histology, sperm count, daily sperm production,sperm motility, sperm morphology and reproductive capacity of F1 offspring. Conclusion: Exposure of SpragueDawley rats to a 60 Hz EMF at field strengths of up to 500 μT from day 6 of gestation to day 21 of lactation did not produce any detectable alterations in offspring spermatogenesis and fertility.

  15. TLR and NLRP3 inflammasome expression deregulation in macrophages of adult rats subjected to neonatal malnutrition and infected with methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Gomes de Morais, Natália; Barreto da Costa, Thacianna; Bezerra de Lira, Joana Maria; da Cunha Gonçalves de Albuquerque, Suênia; Alves Pereira, Valéria Rêgo; de Paiva Cavalcanti, Milena; Machado Barbosa de Castro, Célia Maria

    2017-01-01

    Nutritional aggression in critical periods may lead to epigenetic changes that affect gene expression. The aim of this study was to assess the effect of neonatal malnutrition on the expression of toll-like receptor (TLR)-2, TLR-4, and NLRP3 receptors, caspase-1 enzyme, and interleukin (IL)-1 β production in macrophages infected with methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) Staphylococcus aureus. Wistar rats (N = 24) were divided in two distinct groups: nourished (17% casein) and malnourished (8% casein). Four systems were established after the isolation of mononuclear cells: negative control, positive control, MRSA, and MSSA. The plates were incubated at 37°C for 24 h in humidified atmosphere and 5% carbon dioxide. Tests were performed after this period to analyze the expression of standard recognition receptors, caspase-1 enzyme, and the production of IL-1 β. Student's t test and analysis of variance were used in the statistical analysis; P Malnutrition reduced animal growth and the expression of TLR-2, TLR-4, and NLRP3 receptors, the caspase-1 enzyme, and the IL-1 β levels in macrophages infected with lipopolysaccharides in the present study. However, the interaction between the S. aureus and the macrophages promoted greater gene expression of receptors and enzymes. The neonatal malnutrition model compromised the expression of standard recognition receptors, of the caspase-1 enzyme as well as the production of IL-1 β. However, the S. aureus and neonatal malnutrition combination led to intense transcription of such innate immunity components. Therefore, the deregulation in the expression of TLR and NLRP3 receptors and of the caspase-1 enzyme may induce extensive tissue injury and favor the permanence and spread of these bacteria, especially those that are methicillin resistant. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats.

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; Vos, P De; Rooijen, van N.; Bonner-Weir, S; Weir, GC

    2003-01-01

    BACKGROUND: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  17. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; De Vos, P; Van Rooijen, N; Bonner-Weir, S; Weir, GC

    2003-01-01

    Background: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  18. Neonatal treatment with fluoxetine reduces depressive behavior induced by forced swim in adult rats Tratamento neonatal com fluoxetina reduz o comportameto depressivo induzido pelo nado forçado em ratos adultos

    Directory of Open Access Journals (Sweden)

    Cristiano Mendes-da-Silva

    2002-12-01

    Full Text Available Serotonin plays a role at the pathophysiology of depression in humans and in experimental models. The present study investigated the depressive behavior and the weigh evolution in adult rats (60 days treated from the 1st to the 21st postnatal day with fluoxetine, a selective serotonin reuptake inhibitor (10 mg/kg, sc, daily. The depressive behavior was induced by the forced swim test (FST. The animals were submitted to two sessions of FST: 1st session for 15 min and the 2nd session 24h later, for 5 min. During the 2nd session the Latency of the Attempt of Escape (LAE and Behavioral Immobility (BI were appraised. The Fluoxetine group when compared to the Control group, showed an increase in LAE and a decrease in BI. The neonatal administration of fluoxetine reduced the depressive behavior in adult rats, possibly by increase in the brain serotonergic activity. This alteration can be associated to process of neuroadaptation.Estudos em humanos e em modelos experimentais demonstram que a serotonina (5-HT participa da fisiopatologia da depressão. O presente estudo investigou o comportamento depressivo e a evolução ponderal de ratos adultos jovens (60 dias tratados do 1º ao 21º dia pós-natal com fluoxetina, um inibidor seletivo de recaptação da serotonina, (10 mg/kg, sc, diariamente. A depressão experimental foi induzida através do teste de nado forçado (NF. Os animais foram submetidos a duas sessões de NF, a primeira por 15 min e a segunda após 24 h, por 5 min. Durante os 5 min de NF a latência da tentativa de fuga (LTF e o tempo de imobilidade (TI foram avaliados. O grupo tratado com fluoxetina apresentou aumento da LTF e redução do TI comparado ao controle. A administração neonatal de fluoxetina reduziu o comportamento depressivo em ratos adultos, possivelmente em função do aumento da atividade serotoninérgica cerebral. Esta alteração poderá estar relacionada a processos neuroadaptativos.

  19. Efeito do tratamento com triptofano sobre parâmetros do comportamento alimentar em ratos adultos submetidos à desnutrição neonatal Effects of tryptophan on the eating behavior of adult rats with neonatal malnutrition

    Directory of Open Access Journals (Sweden)

    Judelita Carvalho-Santos

    2010-08-01

    period. The mean relative food intake and mean relative weight gain were then determined. The statistical analyses were done by the Student's t-test and ANOVA, followed by the Tukey test, with p<0.05. RESULTS: During the first 70 days of life, pups from protein-malnourished damns remained lighter than pups from well-nourished damns (p<0.01. Well-nourished rats treated with tryptophan (M=6.88, SD=0.05 ate less than those given saline (M=7.27, SD=0.08 (p<0.01 but weight was unaffected. No difference was found for the malnourished rats. CONCLUSION: In this study, neonatal protein restriction affected weight gain in rats. Furthermore, early malnutrition made adult rats resistant to the inhibitory effects of tryptophan on food intake.

  20. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae.

    Science.gov (United States)

    Barichello, Tatiana; Lemos, Joelson C; Generoso, Jaqueline S; Carradore, Mirelle M; Moreira, Ana Paula; Collodel, Allan; Zanatta, Jessiele R; Valvassori, Samira S; Quevedo, João

    2013-03-01

    Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons. Neonate Wistar rats, received either 10μL of sterile saline as a placebo or an equivalent volume of GBS suspension at a concentration of 1×10(6)cfu/mL. Sixty days after induction of meningitis, the animals underwent behavioral tests, after were killed and the hippocampus and cortex were retired for analyze of the BDNF and NGF levels. In the open-field demonstrated no difference in motor, exploratory activity and habituation memory between the groups. The step-down inhibitory avoidance, when we evaluated the long-term memory at 24h after training session, we found that the meningitis group had a decrease in aversive memory when compared with the long-term memory test of the sham group. BDNF levels decreased in hippocampus and cortex; however the NGF levels decreased only in hippocampus. These findings suggest that the meningitis model could be a good research tool for the study of the biological mechanisms involved in the behavioral alterations secondary to GBS meningitis.

  1. Progesterone treatment before experimental hypoxia-ischemia enhances the expression of glucose transporter proteins GLUT1 and GLUT3 in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Xinjuan Li; Hua Han; Ruanling Hou; Linyu Wei; Guohong Wang; Chaokun Li; Dongliang Li

    2013-01-01

    Progesterone is an efficient candidate for treating stroke and traumatic brain damage.The current study was designed to investigate the effects of progesterone on glucose transporter proteins (GLUT1 and GLUT3) during hypoxic-ischemic injury in a neonatal rat model.We demonstrated strong staining for GLUT1 in the walls of blood vessels and GLUT3 immunoreactivity in hippocampal neurons after hypoxiaischemia.Hypoxia-ischemia elevated GLUT1 and GLUT3 at both the mRNA and protein levels in the hippocampus,and pre-treatment with progesterone (8 mg/kg) further enhanced their accumulation until 24 h after hypoxic-ischemic injury.These results showed that progesterone treatment induced the accumulation of both GLUT1 and GLUT3 transporters,and an energy-compensation mechanism may be involved in the neuroprotective effect of progesterone during hypoxic-ischemic injury after cerebral ischemic attacks.

  2. The role of muscle imbalance in the pathogenesis of shoulder contracture after neonatal brachial plexus palsy: a study in a rat model.

    Science.gov (United States)

    Soldado, Francisco; Fontecha, Cesar G; Marotta, Mario; Benito, David; Casaccia, Marcelo; Mascarenhas, Vasco V; Zlotolow, Dan; Kozin, Scott H

    2014-07-01

    An internal rotation contracture of the shoulder is common after neonatal brachial plexus injuries due to subscapularis shortening and atrophy. It has been explained by 2 theories: muscle denervation and muscle imbalance between the internal and external rotators of the shoulder. The goal of this study was to test the hypothesis that muscle imbalance alone could cause subscapularis changes and shoulder contracture. We performed selective neurectomy of the suprascapular nerve in 15 newborn rats to denervate only the supraspinatus and the infraspinatus muscles, leaving the subscapularis muscle intact. After 4 weeks, passive shoulder external rotation was measured and a 7.2-T magnetic resonance imaging scan of the shoulders was used to determine changes in the infraspinatus and subscapularis muscles. The subscapularis muscle was weighed to determine the degree of mass loss. An additional group of 10 newborn rats was evaluated to determine the sectional muscle fiber size and muscle area of fibrosis by use of images from type I collagen immunostaining. There was a significant decrease in passive shoulder external rotation, with a mean loss of 66°; in the thickness of the denervated infraspinatus, with a mean loss of 40%; and in the thickness and weight of the non-denervated subscapularis, with mean losses of 28% and 25%, respectively. No differences were found in subscapularis muscle fiber size and area of fibrosis between shoulders after suprascapular nerve injury. Our study supports the theory that shoulder muscle imbalance is a cause of shoulder contracture in patients with neonatal brachial plexus palsy. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  3. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    Science.gov (United States)

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-03

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female