WorldWideScience

Sample records for neonatal mouse lung

  1. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    Science.gov (United States)

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  2. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation.  Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children.......  Results: The neonatal forced expiratory volume at 0.5 seconds was inversely associated with hs-CRP (β-coefficient, −0.12; 95% CI, −0.21 to −0.04; P approach, including hs-CRP, IL-6...

  3. The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure.

    Science.gov (United States)

    Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D

    2014-09-06

    Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an

  4. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  5. Do neonatal mouse hearts regenerate following heart apex resection?

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Ganesalingam, Suganya; Jensen, Charlotte Harken

    2014-01-01

    The mammalian heart has generally been considered nonregenerative, but recent progress suggests that neonatal mouse hearts have a genuine capacity to regenerate following apex resection (AR). However, in this study, we performed AR or sham surgery on 400 neonatal mice from inbred and outbred...

  6. Neonatal opaque right lung: delayed fluid resorption

    International Nuclear Information System (INIS)

    Swischuk, L.E.; Hayden, K.; Richardson, J.

    1981-01-01

    Eight newborn infants with opaque right lungs were examined. Clinically, the main problem associated with the opaque right lung is mild respiratory distress, and radiographyically, the findings consist of (a) a totally opaque right lung, (b) a semiopaque right lung, or (c) an opaque right upper lobe only. These findings are usually interpreted as representing pneumonia, empyema, or hydrochlothorax, but the fact that they clear within 24 to 48 hours indicates that none of these diseases is the cause. It is thought that neonatal opaque right lung results from the transient retention of normal fetal fluid in the right lung

  7. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    Science.gov (United States)

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Prenatal determinants of neonatal lung function in high-risk newborns

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Loland, Lotte; Holst, Klaus Kähler

    2009-01-01

    newborns, the Copenhagen Prospective Study on Asthma in Childhood, in a single-center research clinic dedicated solely to this longitudinal birth cohort study. Lung function was determined at 1 month of age by infant spirometry (the raised volume rapid thoraco-abdominal compression technique) and bronchial...... had 7% lower baseline forced expiratory volume at 0.5 second. Sex or parental atopic disease did not affect the neonatal lung function and bronchial responsiveness. Maternal intake of paracetamol during the third trimester was associated with doubling of the bronchial responsiveness in the neonates...

  9. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    Science.gov (United States)

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  10. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  11. Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology

    International Nuclear Information System (INIS)

    Pacurari, M.; Qian, Y.; Porter, D.W.; Wolfarth, M.; Wan, Y.; Luo, D.; Ding, M.; Castranova, V.; Guo, N.L.

    2011-01-01

    Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n = 80) exposed to 0, 10, 20, 40, or 80 μg of MWCNT by pharyngeal aspiration at 7 and 56 days post-exposure using quantitative PCR assays. At 7 and 56 days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7 days post-exposure were attenuated at 56 days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs. - Research highlights: → Multi-Walled Carbon Nanotubes affect lung cancer biomarkers in mouse lungs. → The results suggest potentially harmful effects of MWCNT exposure on human lungs. → The results could potentially be used

  12. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    Science.gov (United States)

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-04-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy.

  13. Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung.

    Directory of Open Access Journals (Sweden)

    Felix R Stahl

    Full Text Available Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8(+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming "nodular inflammatory foci" (NIF in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.

  14. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  15. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    Science.gov (United States)

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  16. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    Science.gov (United States)

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to methacholine was assessed using the in vitro living lung slice preparation. Results One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 weeks (at P21) after CPAP treatment ended. 4 days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 days) CPAP treatment. The effects of 7 days of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. Conclusion These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants. PMID:25950451

  17. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    Science.gov (United States)

    McGrath-Morrow, Sharon A; Hayashi, Madoka; Aherrera, Angela; Lopez, Armando; Malinina, Alla; Collaco, Joseph M; Neptune, Enid; Klein, Jonathan D; Winickoff, Jonathan P; Breysse, Patrick; Lazarus, Philip; Chen, Gang

    2015-01-01

    Electronic cigarette (E-cigarettes) emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth. Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG) or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI) method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml). After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (pE-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  18. The risk of X-ray examinations of the lungs in neonates

    DEFF Research Database (Denmark)

    Arrøe, M

    1991-01-01

    X-ray examinations of the lungs is an important element in the evaluation of the neonates and their respiratory function. It is often necessary to perform a large number of X-ray examinations depending upon the infant's birthweight, gestational age and respiratory problems. To estimate the risk o....... It is concluded, that even using the latest increased risk factors, the radiation risk of repeated X-ray examinations of the chest in prematures will be very low considering the benefit for the infant.......X-ray examinations of the lungs is an important element in the evaluation of the neonates and their respiratory function. It is often necessary to perform a large number of X-ray examinations depending upon the infant's birthweight, gestational age and respiratory problems. To estimate the risk...

  19. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Sharon A McGrath-Morrow

    Full Text Available Electronic cigarette (E-cigarettes emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth.Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml. After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2. These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  20. The risk of X-ray examinations of the lungs in neonates

    International Nuclear Information System (INIS)

    Arroee, M.

    1991-01-01

    X-ray examinations of the lungs is an important element in the evaluation of the neonates and their respiratory function. It is often necessary to perform a large number of X-ray examinations depending upon the infant's birthweight, gestational age and respiratory problems. To estimate the risk of X-ray examinations of the lungs the radiation dose to 18 infants at the Neonatal Intensive Care Univ, Hvidovre Hospital, was measured by means of the thermoluminescent dosimeter placed on the nipple of the infant. The radiation dose to various organs was estimated and the risk weighted whole body radiation dose calculated to 40 microsievert per examination (AP- and lateral). Using the latest increased risk factors this means an excess cancer mortality of 5x10 -5 for boys abd 11x10 -5 for girls per millisievert, corresponding to 25 X-ray examinations (AP- and lateral) of the lungs. It is concluded, that even using the latest increased risk factors, the radiation risk of repeated X-ray examinations of the chest in prematures will be very low considering the benefit for the infant. (au)

  1. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    Directory of Open Access Journals (Sweden)

    Lominiki Slawo

    2011-03-01

    Full Text Available Abstract Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM. The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs, in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP, non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes.

  2. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    Science.gov (United States)

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group ( P fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  3. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  4. Mast cells and exosomes in hyperoxia-induced neonatal lung disease.

    Science.gov (United States)

    Veerappan, A; Thompson, M; Savage, A R; Silverman, M L; Chan, W S; Sung, B; Summers, B; Montelione, K C; Benedict, P; Groh, B; Vicencio, A G; Peinado, H; Worgall, S; Silver, R B

    2016-06-01

    Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2 ) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2 Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD. Copyright © 2016 the American Physiological Society.

  5. Point of Care Neonatal Ultrasound - Head, Lung, Gut and Line Localization.

    Science.gov (United States)

    Rath, Chandra; Suryawanshi, Pradeep

    2016-10-08

    Knowledge and skills of heart, head, lung, gut and basic abdominal ultrasound is of immense utility to clinicians in their day-to-day patient management, and in acute events, in the absence of specialist service back-up. This review examines the potential role of clinician-performed ultrasound in the neonatal intensive care unit. The bibliographic search of English-language literature was performed electronically using PubMed and EMBASE databases for the different topics we have covered under this review. Bedside head ultrasound can be used to identify and screen for intraventricular hemorrhage, periventricular leukomalacia and post-hemorrhagic ventricular dilatation. It is also a useful adjuvant tool in the evaluation of hypoxic ischemic encephalopathy. The relatively new lung ultrasound technique is useful in identifying transient tachypnea, pneumonia, pneumothorax, fluid overload and pleural effusion. Gut ultrasound is useful in identifying necrotizing enterocolitis and probably is better than X-ray in prognostication. Ultrasound is also useful in identifying vascular line positions without radiation exposure. Ultrasound performed by the clinician has an extensive role in the neonatal intensive care unit. Basic ultrasound knowledge of head, lung and gut is a useful supplement to clinical decision-making.

  6. A low cost, simplified, and scaleable pneumotachograph and face mask for neonatal mouse respiratory measurements.

    Science.gov (United States)

    Sun, Jenny J; Nanu, Roshan; Ray, Russell S

    2017-07-01

    Neonatal respiratory disorders are a leading cause of perinatal mortality due to complications resulting from premature births and prenatal exposure to drugs of abuse, but optimal treatments for these symptoms are still unclear due to a variety of confounds and risk factors. Mouse models present an opportunity to study the underlying mechanisms and efficacy of potential treatments of these conditions with controlled variables. However, measuring respiration in newborn mice is difficult and commercial components are expensive and often require modification, creating a barrier and limiting our understanding of the short and long-term effects of birth complications on respiratory function. Here, we present an inexpensive and simple flow through pneumotachograph and face mask design that can be easily scaled for parallel, high-throughput assays measuring respiration in neonatal mouse pups. The final apparatus consists of three main parts: a water-jacketed chamber, an integrated support tray for the pup, and a pneumotachograph consisting of a two side-arm air channel that is attached to a pressure transducer. The pneumotach showed a linear response and clean, steady respiratory traces in which apneas and sighs were clearly visible. Administration of caffeine in P0.5 CD1 wildtype neonates resulted in an increase in tidal volume, minute ventilation, and minute ventilation normalized to oxygen consumption as well as a decrease in periodic instability. The described methods offer a relatively simple and inexpensive approach to constructing a pneumotachograph for non-invasive measurements of neonatal mouse respiration, enhancing accessibility and enabling the high-throughput and parallel characterizations of neonatal respiratory disorders and potential pharmacological therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  8. Lung abscess due to non-tuberculous, non-Mycobacterium fortuitum in a neonate.

    Science.gov (United States)

    Glatstein, Miguel; Scolnik, Dennis; Bensira, Liat; Domany, Keren Armoni; Shah, Mansi; Vala, Snehal

    2012-10-01

    Although Mycobacterium fortuitum (MF) is a non-tuberculous mycobacterium that rarely causes disease, there are reported cases of pneumonia, lung abscess, and empyema in subjects with predisposing lung disease. We report a neonate, without predisposing disease or risk factors, who manifested pneumonia and lung abscess. The patient was initially treated with amoxicillin-clavulanic acid and gentamycin, and subsequently with piperazilin, tazobactam, and vancomycin when there was no improvement. Pleural nodules were detected on computed tomography, and microbiology revealed MF in the absence of other pathogens and a week later the organism was identified in culture as MF, confirmed on four separate samples. The MF was sensitive to amikacin and clarithromycin and the patient was continued on oral clarithromycin for two more weeks until full recovery. To our knowledge, this is the first reported case of MF abscess in a neonate. MF should be sought in similar patients, especially when microbiology fails to detect the usual pathogens, and when the clinical picture is unclear. Copyright © 2012 Wiley Periodicals, Inc.

  9. Appropriate antibiotic therapy improves Ureaplasma sepsis outcome in the neonatal mouse.

    Science.gov (United States)

    Weisman, Leonard E; Leeming, Angela H; Kong, Lingkun

    2012-11-01

    Ureaplasma causes sepsis in human neonates. Although erythromycin has been the standard treatment, it is not always effective. No published reports have evaluated Ureaplasma sepsis in a neonatal model. We hypothesized that appropriate antibiotic treatment improves Ureaplasma sepsis in a neonatal mouse model. Two ATCC strains and two clinical strains of Ureaplasma were evaluated in vitro for antibiotic minimum inhibitory concentration (MIC). In addition, FVB albino mice pups infected with Ureaplasma were randomly assigned to saline, erythromycin, or azithromycin therapy and survival, quantitative blood culture, and growth were evaluated. MICs ranged from 0.125 to 62.5 µg/ml and 0.25 to 1.0 µg/ml for erythromycin and azithromycin, respectively. The infecting strain and antibiotic selected for treatment appeared to affect survival and bacteremia, but only the infecting strain affected growth. Azithromycin improved survival and bacteremia against each strain, whereas erythromycin was effective against only one of four strains. We have established a neonatal model of Ureaplasma sepsis and observed that treatment outcome is related to infecting strain and antibiotic treatment. We speculate that appropriate antibiotic selection and dosing are required for effective treatment of Ureaplasma sepsis in neonates, and this model could be used to further evaluate these relationships.

  10. Oxygen titration strategies in chronic neonatal lung disease.

    Science.gov (United States)

    Primhak, Robert

    2010-09-01

    The history of oxygen therapy in neonatology has been littered with error. Controversies remain in a number of areas of oxygen therapy, including targets and strategies in supplemental oxygen therapy in Chronic Neonatal Lung Disease (CNLD). This article reviews some of these controversies, and makes some recommendations based on the available evidence. In graduates of neonatal units who are left with CNLD, oxygen saturation should be kept above 93-95%, with levels below 90% being avoided as far as possible. Titration of oxygen should be done using oximetry recordings which include periods of different activities. Weaning of oxygen supplementation should only be done based on satisfactory recordings during a trial of a lower flow. There is insufficient evidence to say whether weaning for increasing hours a day or stepwise weaning to a continuous lower flow is a better method. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The Role of Serotonin Transporter in Human Lung Development and in Neonatal Lung Disorders

    Directory of Open Access Journals (Sweden)

    E. C. C. Castro

    2017-01-01

    Full Text Available Introduction. Failure of the vascular pulmonary remodeling at birth often manifests as pulmonary hypertension (PHT and is associated with a variety of neonatal lung disorders including a uniformly fatal developmental disorder known as alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV. Serum serotonin regulation has been linked to pulmonary vascular function and disease, and serotonin transporter (SERT is thought to be one of the key regulators in these processes. We sought to find evidence of a role that SERT plays in the neonatal respiratory adaptation process and in the pathomechanism of ACD/MPV. Methods. We used histology and immunohistochemistry to determine the timetable of SERT protein expression in normal human fetal and postnatal lungs and in cases of newborn and childhood PHT of varied etiology. In addition, we tested for a SERT gene promoter defect in ACD/MPV patients. Results. We found that SERT protein expression begins at 30 weeks of gestation, increases to term, and stays high postnatally. ACD/MPV patients had diminished SERT expression without SERT promoter alteration. Conclusion. We concluded that SERT/serotonin pathway is crucial in the process of pulmonary vascular remodeling/adaptation at birth and plays a key role in the pathobiology of ACD/MPV.

  12. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    International Nuclear Information System (INIS)

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-01-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain

  14. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  15. Mouse lung adhesion assay for Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K A; Freer, J H [Department of Microbiology, Alexander Stone Building, Bearsden, Glasgow, Scotland

    1982-03-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 ..mu..Ci (37 K Bq) of (/sup 14/C)glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation.

  16. Mouse lung adhesion assay for Bordetella pertussis

    International Nuclear Information System (INIS)

    Burns, K.A.; Freer, J.H.

    1982-01-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 μCi (37 K Bq) of [ 14 C]glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation. (Auth.)

  17. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  18. A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants.

    Science.gov (United States)

    Cai, Jun; Tuong, Chi Minh; Gozal, David

    2011-09-15

    A neonatal mouse model of intermittent hypoxia (IH) simulating the recurring hypoxia/reoxygenation episodes of apnea of prematurity (AOP) was developed. C57BL/6 P2 pups were culled for exposure to either intermittent hypoxia or intermittent air as control. The IH paradigms consisted of alternation cycles of 20.9% O2 and either 8.0% or 5.7% O2 every 120 or 140s for 6h a day during daylight hours from day 2 to day 10 postnatally, i.e., roughly equivalent to human brain development in the perinatal period. IH exposures elicited modest to severe decrease in oxygen saturation along with bradycardia in neonatal mice, which were severity-dependent. Hypomyelination in both central and peripheral nervous systems was observed despite the absence of visible growth retardation. The neonatal mouse model of IH in this study partially fulfills the current diagnostic criteria with features of AOP, and provides opportunities to reproduce in rodents some of the pathophysiological changes associated with this disorder, such as alterations in myelination. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  20. Protective effect of enterovirus‑71 (EV71) virus‑like particle vaccine against lethal EV71 infection in a neonatal mouse model.

    Science.gov (United States)

    Cao, Lei; Mao, Fengfeng; Pang, Zheng; Yi, Yao; Qiu, Feng; Tian, Ruiguang; Meng, Qingling; Jia, Zhiyuan; Bi, Shengli

    2015-08-01

    Enterovirus-71 (EV71) is a viral pathogen that causes severe cases of hand, foot and mouth disease (HFMD) among young children, with significant mortality. Effective vaccines against HFMD are urgently required. Several EV71 virus-like particle (VLP) vaccine candidates were found to be protective in the neonatal mouse EV71 challenge model. However, to what extent the VLP vaccine protects susceptible organs against EV71 infection in vivo has remained elusive. In the present study, the comprehensive immunogenicity of a potential EV71 vaccine candidate based on VLPs was evaluated in a neonatal mouse model. Despite lower levels of neutralizing antibodies to EV71 in the sera of VLP-immunized mice compared with those in mice vaccinated with inactivated EV71, the VLP-based vaccine was shown to be able to induce immunoglobulin (Ig)G and IgA memory-associated cellular immune responses to EV71. Of note, the EV71 VLP vaccine candidate was capable of inhibiting viral proliferation in cardiac muscle, skeletal muscle, lung and intestine of immunized mice and provided effective protection against the pathological damage caused by viral attack. In particular, the VLP vaccine was able to inhibit the transportation of EV71 from the central nervous system to the muscle tissue and greatly protected muscle tissue from infection, along with recovery from the viral infection. This led to nearly 100% immunoprotective efficacy, enabling neonatal mice delivered by VLP-immunized female adult mice to survive and grow with good health. The present study provided valuable additional knowledge of the specific protective efficacy of the EV71 VLP vaccine in vivo, which also indicated that it is a promising potential candidate for being developed into an EV71 vaccine.

  1. Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity

    International Nuclear Information System (INIS)

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-01-01

    The carcinogenic mycotoxin aflatoxin B 1 (AFB 1 ) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G → T transversion mutation in K-ras, an early event in AFB 1 -induced mouse lung carcinogenesis, is thought to result from AFB 1 -8,9-exo-epoxide binding to DNA to form AFB 1 -N 7 -guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB 1 carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB 1 tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB 1 . Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB 1 group (8.81 ± 3.64, n = 47) was greater than that of the group treated with AFB 1 alone (7.05 ± 3.45, n = 42) (P 1 were larger than those from mice treated with AFB 1 alone (P 1 and PEG-CAT + AFB 1 groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [ 3 H]AFB 1 into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB 1 carcinogenicity in mouse lung despite preventing DNA oxidation

  2. Neonatal Death and Heart Failure in Mouse with Transgenic HSP60 Expression

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chen

    2015-01-01

    Full Text Available Mitochondrial heat shock proteins, such as HSP60, are chaperones responsible for the folding, transport, and quality control of mitochondrial matrix proteins and are essential for maintaining life. Both prosurvival and proapoptotic roles have been proposed for HSP60, and HSP60 is reportedly involved in the initiation of autoimmune, metabolic, and cardiovascular diseases. The role of HSP60 in pathogenesis of these diseases remains unclear, partly because of the lack of mouse models expressing HSP60. In this study we generated HSP60 conditional transgenic mice suitable for investigating in vivo outcomes by expressing HSP60 at the targeted organ in disease models. Ubiquitous HSP60 induction in the embryonic stage caused neonatal death in mice at postnatal day 1. A high incidence of atrial septal defects was observed in HSP60-expressing mice, with increased apoptosis and myocyte degeneration that possibly contributed to massive hemorrhage and sponge-like cardiac muscles. Our results showed that neonatal heart failure through HSP60 induction likely involves developmental defects and excessive apoptosis. The conditional HSP60 mouse model is useful for studying crucial biological questions concerning HSP60.

  3. Effects of Conventional Mechanical Ventilation Performed by Two Neonatal Ventilators on the Lung Functions of Rabbits with Meconium-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Mokra D

    2016-12-01

    Full Text Available Severe meconium aspiration syndrome (MAS in the neonates often requires a ventilatory support. As a method of choice, a conventional mechanical ventilation with small tidal volumes (VT<6 ml/kg and appropriate ventilatory pressures is used. The purpose of this study was to assess the short-term effects of the small-volume CMV performed by two neonatal ventilators: Aura V (Chirana Stara Tura a.s., Slovakia and SLE5000 (SLE Ltd., UK on the lung functions of rabbits with experimentally-induced MAS and to estimate whether the newly developed neonatal version of the ventilator Aura V is suitable for ventilation of the animals with MAS.

  4. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  5. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    Science.gov (United States)

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  6. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    Directory of Open Access Journals (Sweden)

    Jaya Chilakapati

    2015-06-01

    Full Text Available The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid concentrations but no clear dose-related increases in DEG numbers.

  7. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  8. Anti-EGFR therapy radiosensitizes human lung adenocarcinoma xenograft in nude mouse

    International Nuclear Information System (INIS)

    Wang Hui; Li Tianran; Tian Jiahe; Qu Baolin; Zhu Hui

    2008-01-01

    Objective: To investigate the effect of Gefitinib on radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. Methods: Human lung adenocarcinoma cell line A549 was used to establish nude mouse xenograft tumor model. The mice were derided into 4 groups: control, irradiation alone, Gefinitib alone and radiation combined with Genifitib. Radiation schedule was 3 fractions of 5 Gy, once daily. Gefitinib was daily administered by gavage at 100 mg/(kg·day -1 ) for 14 days. In the combination group, radiotherapy was performed 2 hours after Gefitinib administration. Tumor diameter was measured every other day. Percentage of tumor growth inhibition, growth delay time and regrowth delay time were evaluated. Results: For A549 xenografts in radiation alone, gefitinib alone and combination therapy groups, the percentage of tumor growth inhibition was 22.7%, 12.4% and 38.2%, respectively (F=25.75, P=0.000). Tumor growth delay time was 6.0, 7.8 and 21.6 days, respectively (F=70.49, P=0.000). Tumor regrowth delay time in combination therapy and irradiation alone groups was 23.4 and 10.2 days. (F=174.24, P= 0.000). Sensitizing enhancement ratio of combination group was 1.5 in growth and 1.7 in regrowth. Conclusions: Anti-EGFR therapy enhances the radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. (authors)

  9. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    Science.gov (United States)

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  10. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    NARCIS (Netherlands)

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic

  11. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    Science.gov (United States)

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation

  12. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    International Nuclear Information System (INIS)

    Alsuwaidi, Ahmed R.; Albawardi, Alia; Almarzooqi, Saeeda; Benedict, Sheela; Othman, Aws R.; Hartwig, Stacey M.; Varga, Steven M.; Souid, Abdul-Kader

    2014-01-01

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O 2 consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection

  13. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Benedict, Sheela, E-mail: sheela.benedict@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Othman, Aws R., E-mail: aws.rashad@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Hartwig, Stacey M., E-mail: stacey-hartwig@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Varga, Steven M., E-mail: steven-varga@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Souid, Abdul-Kader, E-mail: asouid@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.

  14. Effect of endotoxin and allergens on neonatal lung function and infancy respiratory symptoms and eczema

    NARCIS (Netherlands)

    Abbing-Karahagopian, V.; Gugten, A.C. van der; Ent, C.K. van der; Uiterwaal, C.; Jongh, M. de; Oldenwening, M.; Brunekreef, B.; Gehring, U.

    2012-01-01

    BACKGROUND Exposure to endotoxin and allergens in house dust has been found to be associated with childhood wheeze and asthma. Neonatal lung function is rarely examined in relation to this exposure. OBJECTIVES To assess the association between exposure to endotoxin, house dust mite and cat

  15. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Science.gov (United States)

    Donovan, Chantal; Royce, Simon G; Vlahos, Ross; Bourke, Jane E

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  16. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The bacterial endotoxin, lipopolysaccharide (LPS has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  17. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    Science.gov (United States)

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  18. Retained fetal lung fluid in two neonates with congenital absence of the pulmonary valve and tetralogy of fallot

    International Nuclear Information System (INIS)

    Strife, J.L.; Towbin, R.B.; Francis, P.; Kuhn, J.P.

    1981-01-01

    Chest radiographs obtained at birth in two neonates with absent pulmonary valve and tetralogy of Fallot demonstrated asymmetrical lung aeration. This finding was attributed to delay in resorption of fetal lung fluid. It is postulated that in the initial hours of life, the dilated pulmonary artery compressed the bronchus and delayed egress of fetal lung fluid. Over a 24-hour interval, the fluid was resorbed, resulting in the more typical pattern of hyperinflated lung and markedly dilated pulmonay artery. These cases are presumably the first of their kind to be reported

  19. Retained fetal lung fluid in two neonates with congenital absence of the pulmonary valve and tetralogy of fallot

    Energy Technology Data Exchange (ETDEWEB)

    Strife, J.L.; Towbin, R.B.; Francis, P.; Kuhn, J.P.

    1981-12-01

    Chest radiographs obtained at birth in two neonates with absent pulmonary valve and tetralogy of Fallot demonstrated asymmetrical lung aeration. This finding was attributed to delay in resorption of fetal lung fluid. It is postulated that in the initial hours of life, the dilated pulmonary artery compressed the bronchus and delayed egress of fetal lung fluid. Over a 24-hour interval, the fluid was resorbed, resulting in the more typical pattern of hyperinflated lung and markedly dilated pulmonay artery. These cases are presumably the first of their kind to be reported.

  20. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  1. Pressure oscillation delivery to the lung: Computer simulation of neonatal breathing parameters.

    Science.gov (United States)

    Al-Jumaily, Ahmed M; Reddy, Prasika I; Bold, Geoff T; Pillow, J Jane

    2011-10-13

    Preterm newborn infants may develop respiratory distress syndrome (RDS) due to functional and structural immaturity. A lack of surfactant promotes collapse of alveolar regions and airways such that newborns with RDS are subject to increased inspiratory effort and non-homogeneous ventilation. Pressure oscillation has been incorporated into one form of RDS treatment; however, how far it reaches various parts of the lung is still questionable. Since in-vivo measurement is very difficult if not impossible, mathematical modeling may be used as one way of assessment. Whereas many models of the respiratory system have been developed for adults, the neonatal lung remains essentially ill-described in mathematical models. A mathematical model is developed, which represents the first few generations of the tracheo-bronchial tree and the 5 lobes that make up the premature ovine lung. The elements of the model are derived using the lumped parameter approach and formulated in Simulink™ within the Matlab™ environment. The respiratory parameters at the airway opening compare well with those measured from experiments. The model demonstrates the ability to predict pressures, flows and volumes in the alveolar regions of a premature ovine lung. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Multitracer Stable Isotope Quantification of Arginase and Nitric Oxide Synthase Activity in a Mouse Model of Pseudomonas Lung Infection

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    2014-01-01

    Full Text Available Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.

  3. Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one

    Directory of Open Access Journals (Sweden)

    Hartshorne Geraldine M

    2007-07-01

    Full Text Available Abstract Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose polymerase (PARP-1, an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs using TUNEL. 1960 oocytes produced analysable results. Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8% or compressed (21.2% axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusion Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential.

  4. Morphological Lesions in Mouse Liver and Lungs After Lung Exposure to Carbon Nanotubes

    DEFF Research Database (Denmark)

    Szarek, J.; Mortensen, Alicja; Jackson, P.

    2013-01-01

    Introduction: Engineered nanoparticles are smaller than 100 nm in at least one direction and designed to improve or achieve new physicochemical properties. Consequently, toxicological properties may also change. Carbon nanotubes have attracted industrial interest due to their unique properties....... Materials and Methods: One day before mating, 30 mice (C57BL/6BomTac, Taconic Europe, Denmark) were given 67 μg multi-walled carbon nanotubes (NM-400, Nanocyl, Belgium) intratracheally (group A). A further 30 control mice (group B) received vehicle (Millipore water with 2% mouse serum). Lungs and liver were...... taken from six animals from each group for histopathological examination (haematoxylin and eosin staining) 6 weeks (A1, B1 group) and 4 months (A2, B2) after exposure. Results: Lungs in A1 mice showed bronchiolar subepithelial oedema and perivascular oedema and sporadic hyperaemia and the presence...

  5. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    International Nuclear Information System (INIS)

    Huang, L.; Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C.; Yu, X.F.; Zhang, W.Y.

    2015-01-01

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain

  6. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); The 208th Hospital of PLA, Changchun (China); Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Yu, X.F. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Zhang, W.Y. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China)

    2015-03-27

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.

  7. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  8. Synchrotron microradiography study on acute lung injury of mouse caused by PM2.5 aerosols

    International Nuclear Information System (INIS)

    Tong Yongpeng; Zhang Guilin; Li Yan; Tan Mingguan; Wang Wei; Chen Jianmin; Hwu Yeukuang; Hsu, Pei-Chebg; Je, Jung Ho; Margaritondo, Giorgio; Song Weiming; Jiang, Rongfang; Jiang Zhihai

    2006-01-01

    In order to investigate FeSO 4 , ZnSO 4 (the two of main metal compositions of Shanghai PM 2.5 (particle matter with those aerodynamical diameter 2.5 aerosol particles, FeSO 4 , ZnSO 4 and their mixtures were instilled intratracheally into mouse lungs for experiment. By 2 days after instillation, the live mice were checked in vivo by synchrotron refractive index microradiography. In addition after extracted and examined by dissection, the right lobes of lung were fixed by formalin, then imaged by synchrotron microradiography again. Corresponding parts of those lung tissues were embedded in paraffin for histopathologic study. The synchrotron X-ray microradiographs of live mouse lung showed different lung texture changes after instilled with different toxic solutions. Hemorrhage points in lung were observed more from those mice instilled by FeSO 4 contained toxin solutions groups. Bronchial epithelial hyperplasia can be observed in ZnSO 4 contained solution-instilled groups from histopathologic analysis. It was found that the acute lung injury of mice caused by solution of PM 2.5 + FeSO 4 + ZnSO 4 was more serious than other toxin solutions. Results suggested that FeSO 4 mainly induced hemorrhage and ZnSO 4 mainly induced inflammation and bronchiolar epithelial hyperplasia in the early toxicological effects of PM 2.5

  9. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    OpenAIRE

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to...

  10. Immunohistochemical analysis of Clara cell secretory protein expression in a transgenic model of mouse lung carcinogenesis

    International Nuclear Information System (INIS)

    Hicks, Sarah M.; Vassallo, Jeffrey D.; Dieter, Matthew Z.; Lewis, Cindy L.; Whiteley, Laurence O.; Fix, Andrew S.; Lehman-McKeeman, Lois D.

    2003-01-01

    Immunohistochemical methods have been widely used to determine the histogenesis of spontaneous and chemically-induced mouse lung tumors. Typically, antigens for either alveolar Type II cells or bronchiolar epithelial Clara cells are studied. In the present work, the morphological and immunohistochemical phenotype of a transgenic mouse designed to develop lung tumors arising from Clara cells was evaluated. In this model, Clara cell-specific transformation is accomplished by directed expression of the SV40 large T antigen (TAg) under the mouse Clara cell secretory protein (CC10) promoter. In heterozygous mice, early lesions at 1 month of age consisted of hyperplastic bronchiolar epithelial cells. These progressed to adenoma by 2 months as proliferating epithelium extended into adjacent alveolar spaces. By 4 months, a large portion of the lung parenchyma was composed of tumor masses. Expression of constitutive CC10 was diminished in transgenic animals at all time points. Only the occasional cell or segment of the bronchiolar epithelium stained positively for CC10 by immunohistochemistry, and all tumors were found to be uniformly negative for staining. These results were corroborated by Western blotting, where CC10 was readily detectable in whole lung homogenate from nontransgenic animals, but not detected in lung from transgenic animals at any time point. Tumors were also examined for expression of surfactant apoprotein C (SPC), an alveolar Type II cell-specific marker, and found to be uniformly negative for staining. These results indicate that, in this transgenic model, expression of CC10, which is widely used to determine whether lung tumors arise from Clara cells, was reduced and subsequently lost during Clara cell tumor progression

  11. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

    OpenAIRE

    Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-wen; Wang, Hsiang-Tsui; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Chen, Lung-Chi; Tang, Moon-shong

    2018-01-01

    Significance E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indica...

  12. Regional differences in the prostate of the neonatally estrogenized mouse

    International Nuclear Information System (INIS)

    Pylkkaenen, L.S.; Santti, R.; Newbold, R.; McLachlan, J.A.

    1991-01-01

    Neonatal estrogenization of the mouse with diethylstilbestrol resulted in time-of-exposure and dose-dependent inhibition of the growth of the prostatic lobes observed at the age of 2 mon. The critical time was the days 1-6 of postnatal life. In neonatally estrogenized (neoDES) mice, responses to 5 alpha-dihydrotestosterone in terms of nuclear 3H-thymidine labelling were altered concomitantly with the inhibition of growth and were in accordance with changes in the relative volumes of epithelium, glandular lumina, and interacinar stroma. Secondary estrogen treatment of neoDES mice with 17 beta-estradiol did not increase 3H-thymidine labelling in the prostate of control or neoDES mice. However, it induced squamous epithelial metaplasia in periurethral collecting ducts and proximal parts of coagulating glands of neoDES animals. In control mice only slight epithelial hyperplasia could be observed after similar treatment. Estrogen receptors, located immunocytochemically in nuclei of stromal cell, corresponded with the sites of increased estrogen sensitivity, observed as metaplastic transformation. When the neoDES animals aged, epithelial hyperplasia and dysplasia could be observed at distinct prostatic sites, ie, the periurethral collecting ducts and the coagulating glands and periurethral glands, and stromal inflammation become more extensive. Almost identical location of the epithelial changes and the altered estrogen response is suggestive of causal relationship

  13. A neonatal murine model for evaluation of enterovirus E HY12 virus infection and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Xiaochun Gai

    Full Text Available HY12 viruses are enteroviruses recently isolated from cattle characterized by severe respiratory and digestive disease with high morbidity and mortality in China. While the viruses exhibit unique biological and molecular characters distinct from known enterovirus E, the pathogenicity and viral pathogenesis remains largely unknown.Neonatal mice of Balb/C, ICR, and Kunming strain are infected with HY12 to determine the susceptible mouse strain. The minimal infection dose, the virus infection routes, the pathogenicity and tissue tropism for HY12 were determined by infecting susceptible mice with HY12 viruses, and confirmed by different approaches including virus isolation and recovery, virus detection, histopathology, and immunohistochemistry.A murine model for HY12 infection was successfully established and employed to investigate the pathogenicity of HY12 viruses. ICR mouse strain is the most susceptible strain for HY12 infection with a minimal infective dose as 2×106TCID50/mouse. HY12 viruses have the capability of infecting ICR suckling mice via all infection routes including intranasal administration, oral administration, intraperitoneal injection, subcutaneous injection, and intramuscular injection, which are confirmed by the isolation and recovery of viruses from HY12-infected mice; detection of viruses by RT-PCR; observations of pathological lesions and inflammatory cell infiltrations in the intestine, lung, liver, and brain; uncovering of HY12 virus antigens in majority of tissues, especially in intestine, lung, and infected brain of mice by immunohistochemistry assay.A neonatal murine model for HY12 infection is successfully established for determining the susceptible mouse strain, the minimal infective dose, the infection route, the viral pathogenicity and the tropism of HY12, thus providing an invaluable model system for elucidating the pathogenesis of HY12 viruses and the elicited immunity.

  14. Synchrotron microradiography study on acute lung injury of mouse caused by PM{sub 2.5} aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang Guilin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)]. E-mail: glzhang@sinap.ac.cn; Li Yan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Tan Mingguan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen Jianmin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu Yeukuang [Institute of Physics, Academia Sinica, Nankang, Taipei (China); Hsu, Pei-Chebg [Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan (China); Je, Jung Ho [Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Margaritondo, Giorgio [Faculte des sciences de base, CH-1015 Lausanne, Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland); Song Weiming [School of Public Health, Fudan University, Shanghai 200032 (China); Jiang, Rongfang [School of Public Health, Fudan University, Shanghai 200032 (China); Jiang Zhihai [School of Public Health, Fudan University, Shanghai 200032 (China)

    2006-05-15

    In order to investigate FeSO{sub 4}, ZnSO{sub 4} (the two of main metal compositions of Shanghai PM{sub 2.5} (particle matter with those aerodynamical diameter <2.5 {mu}m)) effects on acute lung injury, six solutions contained PM{sub 2.5} aerosol particles, FeSO{sub 4}, ZnSO{sub 4} and their mixtures were instilled intratracheally into mouse lungs for experiment. By 2 days after instillation, the live mice were checked in vivo by synchrotron refractive index microradiography. In addition after extracted and examined by dissection, the right lobes of lung were fixed by formalin, then imaged by synchrotron microradiography again. Corresponding parts of those lung tissues were embedded in paraffin for histopathologic study. The synchrotron X-ray microradiographs of live mouse lung showed different lung texture changes after instilled with different toxic solutions. Hemorrhage points in lung were observed more from those mice instilled by FeSO{sub 4} contained toxin solutions groups. Bronchial epithelial hyperplasia can be observed in ZnSO{sub 4} contained solution-instilled groups from histopathologic analysis. It was found that the acute lung injury of mice caused by solution of PM{sub 2.5} + FeSO{sub 4} + ZnSO{sub 4} was more serious than other toxin solutions. Results suggested that FeSO{sub 4} mainly induced hemorrhage and ZnSO{sub 4} mainly induced inflammation and bronchiolar epithelial hyperplasia in the early toxicological effects of PM{sub 2.5}.

  15. Modification of radiation damage in mouse lung by DNA-binding radioprotectors

    International Nuclear Information System (INIS)

    Budd, R.; D'Abrew, S.; Coultas, P.; Martin, R.F.

    1996-01-01

    Full text: The limited diffusion of Hoechst 33342 through cell layers, which has been exploited in mapping the location of cells in multi-cellular spheroids, and in vivo, reflects a general characteristic of DNA-ligands. This property may confer special advantages on DNA-binding radioprotectors in the context of radiotherapy, where it is important to minimise delivery of the radioprotector to the tumour. For example, one might expect limited diffusion to capillaries and systemic uptake following topical application to epithelial cells, which can be dose-limiting tissues in radiotherapy. These potential applications will require delivery of sufficient concentrations of the DNA-binding radioprotectors to cells in vivo. In this context, the findings of Young and Hill, who could not detect any radioprotective effect in an in vivo setting, is of concern. We have re-examined this question by investigating radioprotection in the mouse lung model. A single intravenous injection of Hoechst 33342 (80mg/kg) given 30min prior to the lung irradiation, extends the radiation dose required for death in 50% of mice at 16 weeks post irradiation, from 19Gy to 23Gy (ie: a DMF of 1.2). This is similar to the extent of radioprotection reported by Travis et al for WR2721 (300 mg/kg) in this model. These results auger well for the potential of the more potent radioprotectors, and indeed preliminary experiments with methylproamine in the mouse lung model suggests a DMF of 1.35

  16. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  17. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  18. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Lockamy, Virginia [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Zhou, Lin [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Xue, Christine; LeBlanc, Justin [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Glenn, Shonna [Xstrahl, Inc, Suwanee, Georgia (United States); Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lu, You [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Lu, Bo, E-mail: bo.lu@jefferson.edu [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-11-01

    Purpose: To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials: A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results: The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions: It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics.

  19. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    International Nuclear Information System (INIS)

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma

  20. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  1. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  2. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  3. Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quantitative Combinatorial Omics Approach

    Directory of Open Access Journals (Sweden)

    Maciej M. Lalowski

    2018-04-01

    Full Text Available The heart of a newborn mouse has an exceptional capacity to regenerate from myocardial injury that is lost within the first week of its life. In order to elucidate the molecular mechanisms taking place in the mouse heart during this critical period we applied an untargeted combinatory multiomics approach using large-scale mass spectrometry-based quantitative proteomics, metabolomics and mRNA sequencing on hearts from 1-day-old and 7-day-old mice. As a result, we quantified 1.937 proteins (366 differentially expressed, 612 metabolites (263 differentially regulated and revealed 2.586 differentially expressed gene loci (2.175 annotated genes. The analyses pinpointed the fructose-induced glycolysis-pathway to be markedly active in 1-day-old neonatal mice. Integrated analysis of the data convincingly demonstrated cardiac metabolic reprogramming from glycolysis to oxidative phosphorylation in 7-days old mice, with increases of key enzymes and metabolites in fatty acid transport (acylcarnitines and β-oxidation. An upsurge in the formation of reactive oxygen species and an increase in oxidative stress markers, e.g., lipid peroxidation, altered sphingolipid and plasmalogen metabolism were also evident in 7-days mice. In vitro maintenance of physiological fetal hypoxic conditions retained the proliferative capacity of cardiomyocytes isolated from newborn mice hearts. In summary, we provide here a holistic, multiomics view toward early postnatal changes associated with loss of a tissue regenerative capacity in the neonatal mouse heart. These results may provide insight into mechanisms of human cardiac diseases associated with tissue regenerative incapacity at the molecular level, and offer a prospect to discovery of novel therapeutic targets.

  4. Lipid peroxidation in radiation pneumonitis in mouse lung and its preventation

    International Nuclear Information System (INIS)

    Kodama, Akihisa; Tsujino, Kayoko; Kono, Michio

    1998-01-01

    Lipid peroxidation of the lung in irradiated C57BL6J mice was analyzed by gas chromatography. Among six major fatty acids in the mouse lung tissue, the amounts of two unsaturated fatty acids, arachidonic acid and DHA reduced one day after irradiation, and then recovered up to the level of in the control group four weeks after irradiation. In contrast, the amounts of stearic and palmitic acid did not change significantly. The mice fed with vitamin E-enriched food showed no significant changes of fatty acids which were compatible with pathophysiological findings 4 weeks after irradiation. Reduction of both arachidonic acid and DHA following lipid peroxidation in lung tissue, was assumed to play an important role in development of radiation pneumonitis. Vitamin E seems to enable to prevent or reduce the occurrence and progression of radiation pneumonitis, but as a radical scavenger, it may also weaken the anti-tumor growth effect of low linear energy transfer (LET) irradiation as photon. (author)

  5. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  6. Establishment of Orthotopic Xuanwei Lung Cancer SCID Mouse Model 
and Analysis of Biological Properties

    Directory of Open Access Journals (Sweden)

    Yongchun ZHOU

    2012-08-01

    Full Text Available Background and objective The incidence of Xuanwei lung cancer ranks first in China, and its pathogenesis requires in-depth investigation. This study aims to establish an orthotopic Xuanwei lung cancer severe combined immunodeficiency (SCID mouse model and to provide a basic experimental platform for further study. Methods The Xuanwei lung cancer cell line XWLC-05 was inoculated into the lung tissue of SCID mice in high and low doses. The tumor formation rates, tumor characteristics, spontaneous metastases, and survival times of the mice were observed, taking a subcutaneously transplanted tumor as control. Results The tumor formation rates of the orthotopic transplantation of lung cancer cells in high and low doses were 81% and 83%, respectively, among which mice in the high-dose group appeared cachectic on day 13. Extensive invasion and adhesion were observed in the contralateral lung and thoracic cavity, but no distant metastasis was exhibited. Mice with low-dose cells in the orthotopic transplantation group appeared cachectic and distant metastasis occurred on day 25. The tumor formation rates in the subcutaneous inoculation group by the high and low doses of cells were 100% and 94.5%, respectively, and no distant metastasis was observed. The rate of metastasis within the orthotopic transplantation group and between the orthotopic and subcutaneous inoculation groups showed a significant difference (P<0.05. A significant difference was indicated by the survival rate within and between the groups (P<0.001. Conclusion We successfully established an orthotopic XWLC SCID mouse model, which lays the foundation for a more in-depth study.

  7. Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Science.gov (United States)

    Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua

    2011-01-01

    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613

  8. Proliferating cell nuclear antigen (PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

    Directory of Open Access Journals (Sweden)

    Bo Xu

    Full Text Available Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA, a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

  9. Role of transabdominal ultrasound of lung bases and follow-up in premature neonates with respiratory distress soon after birth

    International Nuclear Information System (INIS)

    Ahuja, Chirag Kamal; Saxena, Akshay Kumar; Sodhi, Kushaljeet Singh; Kumar, Praveen; Khandelwal, Niranjan

    2012-01-01

    Chest radiography has been the traditional method of diagnostic evaluation of patients of hyaline membrane disease (HMD). Lung sonography (USG) has been lately explored as an alternative modality. To explore the application of transabdominal USG of lung bases (TASL) in the evaluation of HMD in premature neonates with respiratory distress soon after birth. Tertiary care institutional setup. Study duration–18 months. Follow-up–variable, up to 1 month. Prospective descriptive study. Eighty-eight consecutive patients admitted in the neonatal intensive care unit (NICU) with gestational age <32 weeks having respiratory distress within 6 h of birth were enrolled. The diagnosis of HMD was made if the patient had negative gastric shake test and/or suggestive chest radiograph. TASL was performed in all patients within the first 24 h of life and biweekly subsequently. USG was interpreted as normal, HMD pattern, or broncho-pulmonary dysplasia (BPD) pattern. Biweekly follow-up was done for patients showing HMD till normalization of the sonographic HMD pattern, development of the sonographic BPD pattern, or death/discharge of the neonate from the hospital. TASL showed 85.7% sensitivity, 75% specificity, 88.88% positive predictive value, and 69.2% negative predictive value for the diagnosis of HMD. The abnormal sonographic findings on day 14 had 94.1% accuracy for prediction of eventual occurrence of clinical BPD. TASL is complementary to chest radiograph in the diagnosis of HMD. It is also useful for the early prediction of BPD with the potential of reducing the cumulative radiation dose to these neonates

  10. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    International Nuclear Information System (INIS)

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W.

    2005-01-01

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of IκBα, Fas, Bcl-X L , TNFα, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease

  11. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    Science.gov (United States)

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    International Nuclear Information System (INIS)

    Ti Dongdong; Deng Zihui; Xue Hui; Wang Luhuan; Lin Ji; Yan Guangtao

    2008-01-01

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  13. Neonatal congenital lung tumors - the importance of mid-second-trimester ultrasound as a diagnostic clue

    International Nuclear Information System (INIS)

    Waelti, Stephan L.; Garel, Laurent; Rypens, Francoise; Dubois, Josee; Dal Soglio, Dorothee; Messerli, Michael

    2017-01-01

    The differential diagnosis for primary lung masses in neonates includes a variety of developmental abnormalities; it also consists of the much rarer congenital primary lung tumors: cystic pleuropulmonary blastoma (cystic PPB), fetal lung interstitial tumor (FLIT), congenital peribronchial myofibroblastic tumor (CPMT), and congenital fibrosarcoma. Radiologic differentiation between malformations and tumors is often very challenging. The objective was to establish distinctive features between developmental pulmonary abnormalities and primary lung tumors. We conducted a retrospective study of 135 congenital lung lesions at a university mother and child center over a period of 10 years (2005-2015). During this time, we noted four tumors (two cystic PPBs and two FLITs) and 131 malformations. We recorded the following parameters: timing of conspicuity in utero (mid-second trimester, third trimester, or not seen prenatally), presence of symptoms at birth, prenatal and perinatal radiologic findings, and either histological diagnoses by pathology or follow-up imaging in non-operated cases. All lesions except the four tumors were detected during mid-second-trimester ultrasound. In none of the tumors was any pulmonary abnormality found on the mid-second-trimester sonogram, contrary to the developmental pulmonary abnormalities. The timing of conspicuity in utero appears to be a key feature for the differentiation between malformations and tumors. Lesions that were not visible at the mid-second-trimester ultrasound should be considered as tumor. A cystic lung lesion in the context of a normal mid-second-trimester ultrasound is highly suggestive of a cystic PPB. Differentiating the types of solid congenital lung tumors based upon imaging features is not yet feasible. (orig.)

  14. Neonatal congenital lung tumors - the importance of mid-second-trimester ultrasound as a diagnostic clue

    Energy Technology Data Exchange (ETDEWEB)

    Waelti, Stephan L.; Garel, Laurent; Rypens, Francoise; Dubois, Josee [University of Montreal, Department of Medical Imaging, Sainte-Justine Hospital, Quebec (Canada); Dal Soglio, Dorothee [University of Montreal, Department of Pathology, Sainte-Justine Hospital, Quebec (Canada); Messerli, Michael [University Hospital Zurich, University of Zurich, Department of Nuclear Medicine, Zurich (Switzerland)

    2017-12-15

    The differential diagnosis for primary lung masses in neonates includes a variety of developmental abnormalities; it also consists of the much rarer congenital primary lung tumors: cystic pleuropulmonary blastoma (cystic PPB), fetal lung interstitial tumor (FLIT), congenital peribronchial myofibroblastic tumor (CPMT), and congenital fibrosarcoma. Radiologic differentiation between malformations and tumors is often very challenging. The objective was to establish distinctive features between developmental pulmonary abnormalities and primary lung tumors. We conducted a retrospective study of 135 congenital lung lesions at a university mother and child center over a period of 10 years (2005-2015). During this time, we noted four tumors (two cystic PPBs and two FLITs) and 131 malformations. We recorded the following parameters: timing of conspicuity in utero (mid-second trimester, third trimester, or not seen prenatally), presence of symptoms at birth, prenatal and perinatal radiologic findings, and either histological diagnoses by pathology or follow-up imaging in non-operated cases. All lesions except the four tumors were detected during mid-second-trimester ultrasound. In none of the tumors was any pulmonary abnormality found on the mid-second-trimester sonogram, contrary to the developmental pulmonary abnormalities. The timing of conspicuity in utero appears to be a key feature for the differentiation between malformations and tumors. Lesions that were not visible at the mid-second-trimester ultrasound should be considered as tumor. A cystic lung lesion in the context of a normal mid-second-trimester ultrasound is highly suggestive of a cystic PPB. Differentiating the types of solid congenital lung tumors based upon imaging features is not yet feasible. (orig.)

  15. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    Science.gov (United States)

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  16. Genotypic and phenotypic characterization of the Sdccag8Tn(sb-Tyr2161B.CA1C2Ove mouse model.

    Directory of Open Access Journals (Sweden)

    Katie Weihbrecht

    Full Text Available Nephronophthisis-related ciliopathies (NPHP-RC are a group of disorders that present with end-stage renal failure in childhood/adolescence, kidney cysts, retinal degeneration, and cerebellar hypoplasia. One disorder that shares clinical features with NPHP-RC is Bardet-Biedl Syndrome (BBS. Serologically defined colon cancer antigen 8 (SDCCAG8; also known as NPHP10 and BBS16 is an NPHP gene that is also associated with BBS. To better understand the patho-mechanisms of NPHP and BBS caused by loss of SDCCAG8 function, we characterized an SDCCAG8 mouse model (Sdccag8Tn(sb-Tyr2161B.CA1C2Ove generated by Sleeping Beauty Transposon (SBT-mediated insertion mutagenesis. Consistent with the previously reported, independent SDCCAG8 mouse models, our mutant mice display pre-axial polydactyly in their hind limbs. In addition, we report patterning defects in the secondary palate, brain abnormalities, as well as neonatal lethality associated with developmental defects in the lung in our mouse model. The neonatal lethality phenotype is genetic background dependent and rescued by introducing 129S6/SvEvTac background. Genetic modifier(s responsible for this effect were mapped to a region between SNPs rs3714172 and rs3141832 on chromosome 11. While determining the precise genetic lesion in our mouse model, we found that SBT insertion resulted in a deletion of multiple exons from both Sdccag8 and its neighboring gene Akt3. We ascribe the patterning defects in the limb and the secondary palate as well as lung abnormalities to loss of SDCCAG8, while the developmental defects in the brain are likely due to the loss of AKT3. This mouse model may be useful to study features not observed in other SDCCAG8 models but cautions are needed in interpreting data.

  17. The kinetics of repair in mouse lung after fractionated irradiation

    International Nuclear Information System (INIS)

    Travis, E.L.; Thames, H.D.; Watkins, T.L.; Kiss, I.

    1987-01-01

    The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137 Cs γ-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. Data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (Tsub(1/2)) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. Rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. Tsub(1/2) was 0.6 h (95% c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95% c.1. 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h at least for the pneumonitis phase of damage. If extrapolated to humans, these results imply that treatments with multiple fractions per day involving the lung will not be limited by the necessity for interfraction intervals much longer than 6 h. (author)

  18. An optimized, fast-to-perform mouse lung infection model with the human pathogen Chlamydia trachomatis for in vivo screening of antibiotics, vaccine candidates and modified host-pathogen interactions.

    Science.gov (United States)

    Dutow, Pavel; Wask, Lea; Bothe, Miriam; Fehlhaber, Beate; Laudeley, Robert; Rheinheimer, Claudia; Yang, Zhangsheng; Zhong, Guangming; Glage, Silke; Klos, Andreas

    2016-03-01

    Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  20. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung.

    Science.gov (United States)

    Xenariou, Stefania; Liang, Hai-Dong; Griesenbach, Uta; Zhu, Jie; Farley, Raymond; Somerton, Lucinda; Singh, Charanjit; Jeffery, Peter K; Scheule, Ronald K; Cheng, Seng H; Geddes, Duncan M; Blomley, Martin; Alton, Eric W F W

    2010-01-01

    The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.

  1. Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Directory of Open Access Journals (Sweden)

    Daly Melissa

    2006-08-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. Methods To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. Results RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. Conclusion Neonatal RSV exposure results in long term

  2. LungMAP: The Molecular Atlas of Lung Development Program.

    Science.gov (United States)

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  3. Imaging findings of bronchial atresia in fetuses, neonates and infants

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, Leonor; Meuli, Reto [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Diagnostic and Interventional Radiology, Lausanne (Switzerland); Vial, Yvan [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Obstetrics and Gynecology, Lausanne (Switzerland); Gengler, Carole [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Pathology, Lausanne (Switzerland)

    2016-03-15

    Congenital lung malformations are increasingly detected before birth. However, bronchial atresia is rarely identified in utero and not always recognized in neonates. There are two types of atresia: (1) proximal, located at the level of the mainstem or the proximal lobar bronchi, which is extremely rare and usually lethal during pregnancy, causing a tremendous volume increase of the distal involved lung with secondary hypoplasia of the normal lung, and (2) peripheral, located at the segmental/subsegmental bronchial level, which may present as an isolated lesion or as part of a complex congenital malformation. Prenatal findings are mostly nonspecific. Postnatal exams show overinflated lung areas and focal bronchial dilations. The typical fluid-filled bronchoceles are not always observed in neonates but develop progressively in the first months of life. This pictorial essay describes the spectrum of imaging findings of bronchial atresia in fetuses, neonates and infants. (orig.)

  4. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy.

    Science.gov (United States)

    Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre

    2012-01-01

    To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.

  5. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    International Nuclear Information System (INIS)

    Pereira Garcia, Monica; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; Cesar Morais, Paulo; Azevedo, Ricardo Bentes

    2005-01-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner

  6. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    Science.gov (United States)

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been

  7. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...

  8. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    Science.gov (United States)

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  9. Detection of retinoblastoma gene deletions in spontaneous and radiation-induced mouse lung adenocarcinomas by polymerase chain reaction

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma gene using histological sections from radiation-induced and spontaneous tumors as the DNA source. Six mouse Rb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mouse Rb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (5.69 Gy 60 Co γ rays or 0.6 Gy JANUS neutrons, which have been found to have approximately equal radiobiological effectiveness) were analyzed for mouse Rb deletions. Tumors in 6 neutron-irradiated mice had no mouse Rb deletions. However, 1 of 6 tumors from γ-irradiated mice (17%) and 6 of 18 spontaneous tumors from unirradiated mice (33%) showed a deletion in one or both mouse Rb alleles. All deletions detected were in the 5' region of the mouse Rb gene. 36 refs., 2 figs., 2 tabs

  10. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  11. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  12. Interpretation of neonatal chest radiography

    International Nuclear Information System (INIS)

    Yoon, Hye Kyung

    2016-01-01

    Plain radiographs for infants in the neonatal intensive care unit are obtained using the portable X-ray equipment in order to evaluate the neonatal lungs and also to check the position of the tubes and catheters used for monitoring critically-ill neonates. Neonatal respiratory distress is caused by a variety of medical or surgical disease conditions. Clinical information about the gestational week, respiratory symptoms, and any events during delivery is essential for interpretation of the neonatal chest radiographs. Awareness of common chest abnormality in the prematurely born or term babies is also very important for chest evaluation in the newborn. Furthermore, knowledge about complications such as air leaks and bronchopulmonary dysplasia following treatment are required to accurately inform the clinicians. The purpose of this article was to briefly review radiographic findings of chest diseases in newborns that are relatively common in daily practice

  13. Interpretation of neonatal chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye Kyung [Dept. of Radiology, Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2016-05-15

    Plain radiographs for infants in the neonatal intensive care unit are obtained using the portable X-ray equipment in order to evaluate the neonatal lungs and also to check the position of the tubes and catheters used for monitoring critically-ill neonates. Neonatal respiratory distress is caused by a variety of medical or surgical disease conditions. Clinical information about the gestational week, respiratory symptoms, and any events during delivery is essential for interpretation of the neonatal chest radiographs. Awareness of common chest abnormality in the prematurely born or term babies is also very important for chest evaluation in the newborn. Furthermore, knowledge about complications such as air leaks and bronchopulmonary dysplasia following treatment are required to accurately inform the clinicians. The purpose of this article was to briefly review radiographic findings of chest diseases in newborns that are relatively common in daily practice.

  14. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  15. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Science.gov (United States)

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. High Frequency of Interactions between Lung Cancer Susceptibility Genes in the Mouse : Mapping of Sluc5 to Sluc14

    NARCIS (Netherlands)

    Fijneman, Remond J.A.; Jansen, Ritsert C.; Valk, Martin A. van der; Demant, Peter

    1998-01-01

    Although several genes that cause monogenic familial cancer syndromes have been identified, susceptibility to sporadic cancer remains unresolved. Animal experiments have demonstrated multigenic control of tumor susceptibility. Recently, we described four mouse lung cancer susceptibility (Sluc) loci,

  17. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  18. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model

    International Nuclear Information System (INIS)

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S.; Micale, Rosanna T.; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Highlights: • Cigarette smoke and ethanol are known to synergize in the upper aerodigestive tract. • Their interactions in the lower respiratory tract have poorly been explored. • Prenatal and postnatal treatments of mice with ethanol caused pulmonary alterations. • However, ethanol attenuated smoke-induced preneoplastic and neoplastic lesions in lung. • The interaction between smoke and alcohol depends on life stage and target tissue. - Abstract: Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol

  19. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  20. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.

    Directory of Open Access Journals (Sweden)

    Paul D Bozyk

    Full Text Available In bronchopulmonary dysplasia (BPD, alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.

  1. Elevated platelet-derived growth factor-BB concentrations in premature neonates who develop chronic lung disease

    Directory of Open Access Journals (Sweden)

    Adcock Kim G

    2004-06-01

    Full Text Available Abstract Background Chronic lung disease (CLD in the preterm newborn is associated with inflammation and fibrosis. Platelet-derived growth factor-BB (PDGF-BB, a potent chemotactic growth factor, may mediate the fibrotic component of CLD. The objectives of this study were to determine if tracheal aspirate (TA concentrations of PDGF-BB increase the first 2 weeks of life in premature neonates undergoing mechanical ventilation for respiratory distress syndrome (RDS, its relationship to the development of CLD, pulmonary hemorrhage (PH and its relationship to airway colonization with Ureaplasma urealyticum (Uu. Methods Infants with a birth weight less than 1500 grams who required mechanical ventilation for RDS were enrolled into this study with parental consent. Tracheal aspirates were collected daily during clinically indicated suctioning. Uu cultures were performed on TA collected in the first week of life. TA supernatants were assayed for PDGF-BB and secretory component of IgA concentrations using ELISA techniques. Results Fifty premature neonates were enrolled into the study. Twenty-eight infants were oxygen dependent at 28 days of life and 16 infants were oxygen dependent at 36 weeks postconceptual age. PDGF-BB concentrations peaked between 4 and 6 days of life. Maximum PDGF-BB concentrations were significantly higher in infants who developed CLD or died from respiratory failure. PH was associated with increased risk of CLD and was associated with higher PDGF-BB concentrations. There was no correlation between maximum PDGF-BB concentrations and Uu isolation from the airway. Conclusions PDGF-BB concentrations increase in TAs of infants who undergo mechanical ventilation for RDS during the first 2 weeks of life and maximal concentrations are greater in those infants who subsequently develop CLD. Elevation in lung PDGF-BB may play a role in the development of CLD.

  2. Ethamsylate and lung permeability in ventilated immature newborn rabbits.

    Science.gov (United States)

    Amato, M; Sun, B; Robertson, B

    1994-01-01

    The leakage of proteins in the immature neonatal lung can reduce the effect of exogenous surfactant. The effect of ethamsylate, a more specific prostaglandin inhibitor than indomethacin and aspirin-like drugs, on alveolar albumin leak was studied in a group of 27 immature newborn rabbits (gestational age 27 days). A pilot study was carried out using 4 animals and low-dose ethamsylate (10 mg/kg). A second group of animals (n = 12) received at birth, by intravenous injection, ethamsylate (50 mg/kg) and 10% human albumin (7 ml/kg). Animals not receiving ethamsylate (n = 11) served as control group. After 30 min of artificial ventilation with standard tidal volume (10 ml/kg) the lungs were lavaged and the amount of human albumin in lung lavage fluid was determined by immunodiffusion. No statistically significant differences were found in lung-thorax compliance and vascular to alveolar albumin leak between ethamsylate-treated animals and controls (p > 0.5). However, there was a statistically significant negative correlation between protein leak and lung compliance (r = -0.41; p ethamsylate administration on neonatal lung permeability in the immature neonate confirming that lung permeability is inversely related to compliance.

  3. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    Science.gov (United States)

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induction of MHC-mismatched Mouse Lung Allograft Acceptance with Combined Donor Bone Marrow: Lung Transplant using a 12-Hour Nonmyeloablative Conditioning Regimen

    Science.gov (United States)

    Vulic, Ante; Panoskaltsis-Mortari, Angela; McDyer, John F.; Luznik, Leo

    2016-01-01

    Background Despite broad and intense conventional immunosuppression, long-term survival after lung transplantation lags behind that for other solid organ transplants, primarily because of allograft rejection. Therefore, new strategies to promote lung allograft acceptance are urgently needed. The purpose of the present study was to induce allograft tolerance with a protocol compatible with deceased donor organ utilization. Methods Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated a conditioning regimen consisting of pretransplant T cell depletion, low dose total body irradiation and posttransplant (donor) bone marrow and splenocyte infusion followed by posttransplantation cyclophosphamide (PTTT-PTB/PTCy). Results Our results show that C57BL/6 recipients of BALB/c lung allografts undergoing this complete short-duration nonmyeloablative conditioning regimen had durable lung allograft acceptance. Mice that lacked 1 or more components of this regimen exhibited significant graft loss. Mechanistically, animals with lung allograft acceptance had established higher levels of donor chimerism, lymphocyte responses which were attenuated to donor antigens but maintained to third-party antigens, and clonal deletion of donor-reactive host Vβ T cells. Frequencies of Foxp3+ T regulatory cells were comparable in both surviving and rejected allografts implying that their perturbation was not a dominant cell-regulatory mechanism. Donor chimerism was indispensable for sustained tolerance, as evidenced by acute rejection of allografts in established chimeric recipients of PTTT-PTB/PTCy following a chimerism-ablating secondary recipient lymphocyte infusion. Conclusion Together, these data provide proof-of-concept for establishing lung allograft tolerance with tandem donor bone marrow transplantation (BMT) using a short-duration nonmyeloablative conditioning regimen and PTCy. PMID:27861294

  5. Prenatal and postnatal genetic influence on lung function development

    DEFF Research Database (Denmark)

    Kreiner-Møller, Eskil; Bisgaard, Hans; Bønnelykke, Klaus

    2014-01-01

    BACKGROUND: It is unknown to what extent adult lung function genes affect lung function development from birth to childhood. OBJECTIVE: Our aim was to study the association of candidate genetic variants with neonatal lung function and lung function development until age 7 years. METHODS: Lung fun...

  6. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Cormier Stephania A

    2009-07-01

    Full Text Available Abstract Background Atrial natriuretic peptide (ANP and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126 of pro-atrial natriuretic factor (proANF and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD, another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma. Methods A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2 through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid. Results pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation. Conclusion VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.

  7. Failure of the cultivated mushroom (Agaricus bisporus) to induce tumors in the A/J mouse lung tumor model

    DEFF Research Database (Denmark)

    Pilegaard, Kirsten; Kristiansen, E.; Meyer, Otto A.

    1997-01-01

    We studied whether the cultivated mushroom (Agaricus bisporus) or 4-(carboxy)phenylhydrazine (CP) induce lung adenomas in the A/J mouse lung tumor model. For 26 weeks female mice were fed a semisynthetic diet where 11 or 22% of the diet was replaced by freeze-dried mushrooms. The intake...... of the mushroom diets was equivalent to an intake of agaritine, the major phenylhydrazine derivative occurring in the mushroom, of 92 or 166 mg/kg body weight per day. The intake of CP was 106 mg/kg body weight per day. Neither the;freeze-dried mushroom nor CP induced statistically significant increased numbers...

  8. Persistent scarring and dilated cardiomyopathy suggest incomplete regeneration of the apex resected neonatal mouse myocardium

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Jensen, Charlotte Harken; Baun, Christina

    2016-01-01

    Heart damage in mammals is generally considered to result in scar formation, whereas zebrafish completely regenerate their hearts following an intermediate and reversible state of fibrosis after apex resection (AR). Recently, using the AR procedure, one-day-old mice were suggested to have full...... capacity for cardiac regeneration as well. In contrast, using the same mouse model others have shown that the regeneration process is incomplete and that scarring still remains 21days after AR. The present study tested the hypothesis that like in zebrafish, fibrosis in neonatal mammals could...... be an intermediate response before the onset of complete heart regeneration. Myocardial damage was performed by AR in postnatal day 1 C57BL/6 mice, and myocardial function and scarring assessed at day 180 using F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) and histology, respectively. AR mice...

  9. Neurotrophins expression is decreased in lungs of human infants with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    O'Hanlon LD

    2014-02-01

    Full Text Available Lynn D O'Hanlon, Sherry M Mabry, Ikechukwu I EkekezieChildren's Mercy Hospitals/University of Missouri-Kansas City School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Kansas City, MO, USAObjectives: To evaluate neurotrophin (NT (nerve growth factor [NGF], NT-3, and brain-derived neurotrophic factor [BDNF] expression in autopsy lung tissues of human congenital diaphragmatic hernia (CDH infants versus that of infants that expired with: 1 "normal" lungs (controls; 2 chronic lung disease (CLD; and 3 pulmonary hypertension (PPHN.Hypothesis: NT expression will be significantly altered in CDH lung tissue compared with normal lung tissue and other neonatal lung diseases.Study design: Immunohistochemical studies for NT proteins NGF, BDNF, and NT-3 were applied to human autopsy neonatal lung tissue samples.Subject selection: The samples included a control group of 18 samples ranging from 23-week gestational age to term, a CDH group of 15 samples, a PPHN group of six samples, and a CLD group of 12 samples.Methodology: The tissue samples were studied, and four representative slide fields of alveoli/saccules and four of bronchioles were recorded from each sample. These slide fields were then graded (from 0 to 3 by three blinded observers for intensity of staining.Results: BDNF, NGF, and NT-3 immunostaining intensity scores were significantly decreased in the CDH lung tissue (n=15 compared with normal neonatal lung tissue (n=18 (P<0.001. The other neonatal pulmonary diseases that were studied, CLD and PPHN, were much less likely to be affected and were much more variable in their neurotrophin expression.Conclusion: NT expression is decreased in CDH lungs. The decreased expression of NT in CDH lung tissue may suggest they contribute to the abnormality in this condition.Keywords: nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, neurotrophin-3, NT-3, chronic lung disease, persistent pulmonary hypertension, lung

  10. Lung ultrasonography to diagnose pneumothorax of the newborn.

    Science.gov (United States)

    Liu, Jing; Chi, Jing-Han; Ren, Xiao-Ling; Li, Jie; Chen, Ya-Juan; Lu, Zu-Lin; Liu, Ying; Fu, Wei; Xia, Rong-Ming

    2017-09-01

    To explore the reliability and accuracy of lung ultrasound for diagnosing neonatal pneumothorax. This study was divided into two phases. (1) In the first phase, from January 2013 to June 2015, 40 patients with confirmed pneumothorax had lung ultrasound examinations performed to identify the sonographic characteristics of neonatal pneumothorax. (2) In the second phase, from July 2015 to August 2016, lung ultrasound was undertaken on 50 newborn infants with severe lung disease who were suspected of having pneumothorax, to evaluate the sonographic accuracy and reliability to diagnose pneumothorax. (1) The main ultrasonic manifestations of pneumothorax are as follows: ① lung sliding disappearance, which was observed in all patients (100%); ② the existence of the pleural line and the A-line, which was also observed in all patients (100%); ③ the lung point, which was found in 75% of the infants with mild-moderate pneumothorax but not found to exist in 25% of the severe pneumothorax patients; ④ the absence of B-lines in the area of the pneumothorax (100% of the pneumothorax patients); and ⑤ no lung consolidation existed in the area of the pneumothorax (100% of the pneumothorax patients). (2) The accuracy and reliability of the lung sonographic signs of lung sliding disappearance as well as the existence of the pleural line and the A-line in diagnosing pneumothorax were as follows: 100% sensitivity, 100% specificity, 100% positive predictive value, and 100% negative predictive value. When the lung point exists, the diagnosis is mild-moderate pneumothorax, whereas if no lung point exists, the diagnosis is severe pneumothorax. Lung ultrasound is accurate and reliable in diagnosing and ruling out neonatal pneumothorax and, in our study, was found to be as accurate as chest X-ray. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  12. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  13. Ventilation-perfusion scans in neonatal regional pulmonary emphysema complicating ventilatory assistance

    International Nuclear Information System (INIS)

    Leonidas, J.C.; Moylan, F.M.B.; Kahn, P.C.; Ramenofsky, M.L.

    1978-01-01

    Two cases of ventilator-related neonatal lobar overexpansion with similar radiographic appearance, but probably different pathogenesis, are presented. In one infant, persistent interstitial lobar emphysema was confirmed by markedly decreased perfusion shown on scintigraphy; this information was of great value in predicting the beneficial effect of lobectomy. In the other case, ventilation and perfusion scans indicated functional value of the emphysematous lobe and correctly suggested conservative management. Radioisotope lung scans may provide valuable information regarding lung function in regional pulmonary emphysema associated with assisted ventilation in neonatal respiratory distress syndrome, and thus determine patient management

  14. Lung Ultrasound Findings in Congenital Pulmonary Airway Malformation.

    Science.gov (United States)

    Yousef, Nadya; Mokhtari, Mostafa; Durand, Philippe; Raimondi, Francesco; Migliaro, Fiorella; Letourneau, Alexandra; Tissières, Pierre; De Luca, Daniele

    2018-05-01

     Congenital pulmonary airway malformation (CPAM) is a group of rare congenital malformations of the lung and airways. Lung ultrasound (LU) is increasingly used to diagnose neonatal respiratory diseases since it is quick, easy to learn, and radiation-free, but no formal data exist for congenital lung malformations. We aimed to describe LU findings in CPAM neonates needing neonatal intensive care unit (NICU) admission and to compare them with a control population.  A retrospective review of CPAM cases from three tertiary academic NICUs over 3 years (2014-2016) identified five patients with CPAM who had undergone LU examination. LU was compared with chest radiograms and computed tomography (CT) scans that were used as references.  CPAM lesions were easily identified and corresponded well with CT scans; they varied from a single large cystic lesion, multiple hypoechoic lesions, and/or consolidation. The first two LU findings have not been described in other respiratory conditions and were not found in controls.  We provide the first description of LU findings in neonates with CPAM. LU may be used to confirm antenatally diagnosed CPAM and to suspect CPAM in infants with respiratory distress if cystic lung lesions are revealed. Further studies are necessary to define the place of LU in the management of CPAM. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Urinary volatile compounds as biomarkers for lung cancer: a proof of principle study using odor signatures in mouse models of lung cancer.

    Directory of Open Access Journals (Sweden)

    Koichi Matsumura

    2010-01-01

    Full Text Available A potential strategy for diagnosing lung cancer, the leading cause of cancer-related death, is to identify metabolic signatures (biomarkers of the disease. Although data supports the hypothesis that volatile compounds can be detected in the breath of lung cancer patients by the sense of smell or through bioanalytical techniques, analysis of breath samples is cumbersome and technically challenging, thus limiting its applicability. The hypothesis explored here is that variations in small molecular weight volatile organic compounds ("odorants" in urine could be used as biomarkers for lung cancer. To demonstrate the presence and chemical structures of volatile biomarkers, we studied mouse olfactory-guided behavior and metabolomics of volatile constituents of urine. Sensor mice could be trained to discriminate between odors of mice with and without experimental tumors demonstrating that volatile odorants are sufficient to identify tumor-bearing mice. Consistent with this result, chemical analyses of urinary volatiles demonstrated that the amounts of several compounds were dramatically different between tumor and control mice. Using principal component analysis and supervised machine-learning, we accurately discriminated between tumor and control groups, a result that was cross validated with novel test groups. Although there were shared differences between experimental and control animals in the two tumor models, we also found chemical differences between these models, demonstrating tumor-based specificity. The success of these studies provides a novel proof-of-principle demonstration of lung tumor diagnosis through urinary volatile odorants. This work should provide an impetus for similar searches for volatile diagnostic biomarkers in the urine of human lung cancer patients.

  16. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  17. Double-hit mouse model of cigarette smoke priming for acute lung injury.

    Science.gov (United States)

    Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana; Lomas-Neira, Joanne; Chen, Yaping; Ayala, Alfred; Rounds, Sharon; Lu, Qing

    2017-01-01

    Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals.

  18. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  19. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Science.gov (United States)

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  20. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    2007-08-01

    Full Text Available The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer.To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations.These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  1. Serial micro-CT assessment of the therapeutic effects of rosiglitazone in a bleomycin-induced lung fibrosis mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Jung; Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Lee, Young Sun; Jung, Myung Ja; Kwon, Keun Sang [Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju (Korea, Republic of)

    2014-08-15

    The aim of this study was to assess the therapeutic effects of rosiglitazone with serial micro-CT findings before and after rosiglitazone administration in a lung fibrosis mouse model induced with bleomycin. We instilled the bleomycin solution directly into the trachea in twenty mice (female, C57BL/6 mice). After the instillation with bleomycin, mice were closely observed for 3 weeks and then all mice were scanned using micro-CT without sacrifice. At 3 weeks, the mice were treated with rosiglitazone on days 21 to 27 if they had abnormal CT findings (n = 9, 45%). For the mice treated with rosiglitazone, we performed micro-CT with mouse sacrifice 2 weeks after the rosiglitazone treatment completion. We assessed the abnormal CT findings (ground glass attenuation, consolidation, bronchiectasis, reticular opacity, and honeycombing) using a five-point scale at 3 and 6 weeks using Wilcoxon-signed ranked test. The micro-CT findings were correlated with the histopathologic results. One out of nine (11.1%) mice improved completely. In terms of consolidation, all mice (100%) showed marked decrease from 3.1 ± 1.4 at 3 weeks to 0.9 ± 0.9 at 6 weeks (p = 0.006). At 6 weeks, mild bronchiectasis (n = 6, 66.7%), mild reticular opacity (n 7, 77.8%) and mild honeycomb patterns (n = 3, 33.3%) appeared. A serial micro-CT enables the evaluation of drug effects in a lung fibrosis mouse model.

  2. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  3. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Saber, Anne T.; Williams, Andrew

    2015-01-01

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instil...

  4. The Preterm Lung and Airway: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Richard J. Martin

    2013-08-01

    Full Text Available The tremendous advancement that has occurred in neonatal intensive care over the last 40–50 years can be largely attributed to greater understanding of developmental pathobiology in the newborn lung. Nonetheless, this improved survival from respiratory distress syndrome has been associated with continuing longer-term morbidity in the form of bronchopulmonary dysplasia (BPD. As a result, neonatal lung injury is a renewed focus of scientific interest. The onset of such an injury may begin in the delivery room, and this has generated interest in minimizing oxygen therapy and aggressive ventilatory support during the transition from fetal to neonatal lung. Fortunately, antenatal steroid therapy and selective use of surfactant therapy are now widely practiced, although fine tuning of this therapy for selected populations is ongoing. Newer therapeutic approaches address many aspects of BPD, including the pro-inflammatory component that characterizes this disorder. Finally, there is a greater need to understand the epidemiology and pathogenesis of the longer-term respiratory morbidity, most notably asthma, that persists in the preterm survivors of neonatal intensive care.

  5. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    International Nuclear Information System (INIS)

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M.

    1991-01-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed

  6. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  7. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    Science.gov (United States)

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  8. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  9. The role of mammary gland on 131-I uptake by neonatal of wistar mice

    International Nuclear Information System (INIS)

    Darussalam, M.; Soedjono, I.; Ilyas, R.

    1988-01-01

    The aim of this investigation was to know the role of mammary gland of Wistar mice in transfering Iodine (I) to neonatal that fit in the role of I itself, and the degree of neonate need to I. Twenty four albino Wistar mouse post natal, were divided into 4 groups of six mouse for each, based on the interval observation. Each mice was given per oral 0.25 ml Na131-I with the activity of 300 uCi. The observation were pointed to tissues and organs such as: blood, liver, kidney, digestion cannal, tiroid gland, lymphe, mammary gland and urine; where as for neonatal: blood, kidney, digestion cannal, and the tiroid gland. The resuls show thet the high 131-I repentions were bound on tiroid gland (between 5.72 and 21.76 %) and on mammary gland (batween 9.30 and 21.90 %) of Wistar mice at lactation period in line with the increasing of mammary gland function and increasing the need of iodine for neonatal. In uptake of 131-I the thyroid gland of neonatal seemed superior compared to tissue or other neonatal organs. (author). 5 refs, 2 figs, 4 tabs

  10. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    Directory of Open Access Journals (Sweden)

    Katri Koli

    Full Text Available Idiopathic pulmonary fibrosis (IPF is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  11. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    Science.gov (United States)

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  12. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  13. CMV infection associated with severe lung involvement and persistent pulmonary hypertension of the newborn (PPHN) in two preterm twin neonates.

    Science.gov (United States)

    Manzoni, Paolo; Vivalda, Mauro; Mostert, Michael; Priolo, Claudio; Galletto, Paolo; Gallo, Elena; Stronati, Mauro; Gili, Renata; Opramolla, Anna; Calabrese, Sara; Tavella, Elena; Luparia, Martina; Farina, Daniele

    2014-09-01

    The diagnosis of congenital CMV is usually guided by a number of specific symptoms and findings. Unusual presentations may occur and diagnosis is challenging due to uncommon or rare features. Here we report the case of two preterm, extremely low birthweight, 28-week gestational age old twin neonates with CMV infection associated with severe lung involvement and persistent pulmonary hypertension of the newborn (PPHN). They were born to a HIV-positive mother, hence they underwent treatment with zidovudine since birth. Both infants featured severe refractory hypoxemia, requiring high-frequency ventilation, inhaled nitric oxide and inotropic support, with full recovery after 2 months. Treatment with ganciclovir was not feasible due the concomitant treatment with zidovudine and the risk of severe, fatal toxicity. Therefore administration of intravenous hyperimmune anti-CMV immunoglobulin therapy was initiated. Severe lung involvement at birth and subsequent pulmonary hypertension are rarely described in preterm infants as early manifestations of CMV congenital disease. In the two twin siblings here described, the extreme prematurity and the treatment with zidovudine likely worsened immunosuppression and ultimately required a complex management of the CMV-associated lung involvement. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Prenatal and neonatal adaptations with a focus on the respiratory system.

    Science.gov (United States)

    Vannucchi, C I; Silva, L C G; Lúcio, C F; Regazzi, F M; Veiga, G A L; Angrimani, D S

    2012-12-01

    Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55 days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1 h of life, which leads to a shift in the blood acid-base status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour. © 2012 Blackwell Verlag GmbH.

  15. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    International Nuclear Information System (INIS)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna; Steele, Vernon E.; De Flora, Silvio

    2011-01-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m 3 of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were measured by 32 P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  16. Palivizumab use in preterm neonates.

    LENUS (Irish Health Repository)

    Kingston, S

    2010-05-01

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants. Palivizumab is an immunoprophylactic agent for RSV prevention in preterm infants and those with neonatal chronic lung disease. This study examines its use across neonatal units in Ireland. A questionnaire was administered to one Consultant Neonatologist or Paediatrician in each of the 20 maternity centres in Ireland about their guidelines for Palivizumab administration. There is variation in administration of Palivizumab with little consistency found between protocols reported in terms of age and presence of chronic lung disease. Ten centres have in house protocols, 3 centres use the American Academy of Paediatrics (AAP) guidelines, 2 centres prefer the UK Joint Committee on Vaccination and Immunisation (JCVI) guidelines and 3 centres do not have a set protocol. Four participants felt its use has impacted on hospital admissions and 61% believe its use is cost effective. The budgetary implication for immunoprophylaxis with Palivizumab in Ireland is estimated at 1.5 to 2 million euros annually. Given current pharmacoeconomic constraints there is a need to implement a national protocol on RSV immunoprophylaxis.

  17. Palivizumab use in preterm neonates.

    LENUS (Irish Health Repository)

    Kingston, S

    2012-01-31

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants. Palivizumab is an immunoprophylactic agent for RSV prevention in preterm infants and those with neonatal chronic lung disease. This study examines its use across neonatal units in Ireland. A questionnaire was administered to one Consultant Neonatologist or Paediatrician in each of the 20 maternity centres in Ireland about their guidelines for Palivizumab administration. There is variation in administration of Palivizumab with little consistency found between protocols reported in terms of age and presence of chronic lung disease. Ten centres have in house protocols, 3 centres use the American Academy of Paediatrics (AAP) guidelines, 2 centres prefer the UK Joint Committee on Vaccination and Immunisation (JCVI) guidelines and 3 centres do not have a set protocol. Four participants felt its use has impacted on hospital admissions and 61% believe its use is cost effective. The budgetary implication for immunoprophylaxis with Palivizumab in Ireland is estimated at 1.5 to 2 million euros annually. Given current pharmacoeconomic constraints there is a need to implement a national protocol on RSV immunoprophylaxis.

  18. Formation of DNA adducts in mouse tissues after 1-nitropyrene administration

    International Nuclear Information System (INIS)

    Mitchell, C.E.

    1986-01-01

    DNA adducts were isolated and characterized in mouse lung, liver and kidney after intratracheal instillation of [ 3 H]-1-nitropyrene (1-NP). HPLC analysis of the enzymatically digested DNA indicated the presence of multiple DNA adducts in mouse lung, liver and kidney. These results indicate that DNA adducts of 1-NP are formed in mouse lung, liver and kidney after intratracheal instillation of 1-NP; the HPLC profiles of the multiple adducts suggests that adducts may be formed via metabolic pathways that involve both nitroreduction and ring-oxidation. 6 references, 1 figure

  19. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity.

    Science.gov (United States)

    De Luca, Daniele; van Kaam, Anton H; Tingay, David G; Courtney, Sherry E; Danhaive, Olivier; Carnielli, Virgilio P; Zimmermann, Luc J; Kneyber, Martin C J; Tissieres, Pierre; Brierley, Joe; Conti, Giorgio; Pillow, Jane J; Rimensberger, Peter C

    2017-08-01

    Acute respiratory distress syndrome (ARDS) is undefined in neonates, despite the long-standing existing formal recognition of ARDS syndrome in later life. We describe the Neonatal ARDS Project: an international, collaborative, multicentre, and multidisciplinary project which aimed to produce an ARDS consensus definition for neonates that is applicable from the perinatal period. The definition was created through discussions between five expert members of the European Society for Paediatric and Neonatal Intensive Care; four experts of the European Society for Paediatric Research; two independent experts from the USA and two from Australia. This Position Paper provides the first consensus definition for neonatal ARDS (called the Montreux definition). We also provide expert consensus that mechanisms causing ARDS in adults and older children-namely complex surfactant dysfunction, lung tissue inflammation, loss of lung volume, increased shunt, and diffuse alveolar damage-are also present in several critical neonatal respiratory disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  1. Development of Mouse Lung Deposition Models

    Science.gov (United States)

    2015-07-01

    foot-pound-force gallon (U.S. liquid ) inch jerk joule/kilogram (J/kg) radiation dose absorbed kilotons kip (1000 lbf) kip/inch (ksi...AND PHYSIOLOGY PARAMETERS Lung ventilation is driven by the difference in pressure between the pleural space and the outside environment. The... pleural pressure 8 variation. However, lung expansion and contraction is uniform in rodents because rodents are typically positioned horizontally

  2. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    Science.gov (United States)

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  3. [Diagnosis of pulmonary hemorrhage of the newborn infants using lung ultrasonography].

    Science.gov (United States)

    Liu, J; Fu, W; Chen, S W; Wang, Y

    2017-01-02

    Objective: To investigate the accuracy and reliability of lung ultrasound in diagnosis of pulmonary hemorrhage of the newborn infants. Method: From January 2014 to May 2016, 142 neonates from the Army General Hospital of the Chinese PLA were enrolled in the study. They were divided into two groups: a study group of 42 neonates, who were diagnosed with pulmonary hemorrhage according to their medical history, clinical manifestations and chest X-ray findings, and a control group of 100 neonates with no lung disease. All subjects underwent bedside lung ultrasound in a quiet state in a supine, lateral or prone posture, performed by a single experienced physician. The ultrasound findings were compared between the two groups.Fisher's exact test was uesd for comparison between two groups. Result: The lung ultrasound main findings associated with pulmonary hemorrhage included: (1) Shred sign: which was seen in 40 patients(95%). (2) Lung consolidation with air bronchograms: which were seen in 35 patients(83%). (3) Pleural effusion: which was seen in 34 infants(81%), pleurocentesis confirmed that the fluid was really bleeding.(4)Atelectasis: which was seen in 14 cases(33%). (5) Pleural line abnormalities and disappearing A-lines with an incidence of 100%. (6) Alveolar-interstitial syndrome: 5 patients(12%)had the main manifestations of alveolar-interstitial syndrome. The above signs were not seen in normal controls (all P hemorrhage, which is suitable for routine application for the diagnosis of pulmonary hemorrhage in the neonatal intensive care unit.

  4. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antonini James M

    2010-06-01

    Full Text Available Abstract Background Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6 mice and a trend for increased tumor incidence after stainless steel (SS fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant or non-carcinogenic (iron abundant metal-containing welding fumes at the transcriptome level. Methods Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS, Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done. Results Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as CCL3, CCL4, CXCL2, and MMP12 in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as S100A8, S100A9 and

  5. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain.

    Science.gov (United States)

    Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G

    2017-06-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.

  6. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  7. Assessment of volume and leak measurements during CPAP using a neonatal lung model

    International Nuclear Information System (INIS)

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen and Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2–10 ml, 20–100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error ±SD was 3.5 ± 2.6% (2–10 ml) and 5.9 ± 0.7% (20–60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F i O 2 caused the measured tidal volume to increase by up to 25% (F i O 2 = 1.0). The relative error ±SD of the leak measurements was −0.2 ± 11.9%. For leaks >19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F i O 2 >0.4 and for leaks >19%, a numerical correction of the displayed volume should be performed

  8. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I [Henry Ford Health System, Detroit, MI (United States); Sethi, S [Karmanos Cancer Center, Detroit, MI (United States); Klein, M [Children' s Hospital of Michigan, Detroit, MI (United States)

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  9. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    International Nuclear Information System (INIS)

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-01-01

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  10. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  11. Establishment of A Malignant Pleural Effusion Mouse Model with Lewis Lung 
Carcinoma Cell Lines Expressing Enhanced Green Fluorescent Protein

    Directory of Open Access Journals (Sweden)

    Xingqun MA

    2012-06-01

    Full Text Available Background and objective Malignant pleural effusion (MPE is a poor prognosis factor in patients with advanced lung cancer. The aim of this study is to establish a mouse model of MPE using Lewis lung carcinoma (LLC cell lines expressing enhanced green fluorescent protein (EGFP. Methods The mouse model was created by injecting LLC-EGFP cells directly into the pleural cavity of mice that were sacrificed periodically. The dynamic growth and metastasis of tumor cells were screened using in vivo fluorescence imaging. The remaining mice were subjected to transverse computed tomography (CT imaging periodically to analyze the formation rate of pleural effusion. The survival rate and tumor metastasis were also observed. Pleural fluid was gently aspirated using a 1 mL syringe and its volume was measured. When two or more mice bore pleural effusion at the same time, we calculated the average volume. The correlation of pleural effusion with the integrated optical density (IOD were analyzed. Results Four days after the inoculation of LLC-EGFP cells, green fluorescence was observed by opening the chest wall. The tumor formation rate was 100%, and the IOD gradually increased after inoculation. The metastasis sites were mediastinal, and the hilar lymph nodes were contralateral pleural as well as pericardial. The metastasis rates were 87%, 73% and 20%, respectively. The CT scan revealed that the formation rates of pleural effusion on days 7, 14 and 21 were 13%, 46% and 53%, respectively. The average volume of pleural effusion increased obviously on day 10 and peaked on day 16 with a value of 0.5 mL. The mean survival time of nude mice was 28.8 days. The volume of pleural effusion and IOD were significantly correlated (r=0.91, P<0.000,1. Conclusion A mouse model of lung cancer malignant pleural effusion was successfully established by injecting LLC lines expressing EGFP into the pleural cavity under a microscope. The model can enable dynamic observations of the

  12. Repair capacity of mouse lung after total body irradiation alone or combined with cyclophosphamide

    International Nuclear Information System (INIS)

    Safwat, Akmal; Bentzen, Soeren M.; Nielsen, Ole S.; Mahmoud, Hossam K.; Overgaard, Jens

    1996-01-01

    Purpose. Cyclophosphamide (CTX) combined with fractionated total body irradiation (TBI) is frequently used in the conditioning of patients prior to bone marrow transplantation (BMT). This study was performed to investigate the effect of CTX on the repair capacity of lung tissue after TBI in a mouse model for BMT. Materials and methods. TBI was given as a single fraction, 3 fractions in 3 days (Fx 3) or 9 fractions in 3 days (Fx 9) either alone or 24 h after a single dose of CTX. The single fraction TBI was given at either high dose rate (HDR) of 0.71 Gy/min or low dose rate (LDR) of 0.08 Gy/min. All mice were transplanted 4-6 h after the last TBI fraction. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days. The repair capacity of lung tissue was estimated using the direct analysis method with the probability of reaching the end point described by a logistic formulation of the linear quadratic model. Results. The VR data confirmed the high repair capacity of lung tissue with an α/β ratio of 4.4 Gy though with a wide 95% confidence interval (CI = 0.03-10.5). Giving CTX before fractionated TBI marked reduced the doses needed to cause response in 50% of the animals. The sparing effect of using fractionated TBI was still evident in the combined CTX-TBI schedules. The estimated α/β ratio was 1.6 Gy (CI = 0.01-4.7) which is within the range of values reported after thoracic radiation only. On the other hand, the sparing effect seen in going from single fraction HDR to LDR was completely abolished when CTX was given 24 h before TBI. The same pattern was repeated when lethality between 28-180 days was used. Yet, the use of lethality to estimate lung damage in a TBI model, markedly underestimated the repair capacity. Conclusions. These results confirm the high repair capacity of lung tissue after TBI and emphasize the value of using a specific end point in testing lung damage after TBI. It also shows that there can be a negative

  13. Pulmonary Changes in Preterm Neonates with Hyaline Membrane Disease (a Clinicomorphological Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2009-01-01

    Full Text Available Objective: to reveal lung morphological changes in preterm neonatal infants with hyaline membrane disease (HMD in the use of exogenous surfactants and artificial ventilation. Materials and methods. Case histories and autopsy protocols were analyzed in 90 preterm neonates who had died from severe respiratory failure. All the neonates were divided into 4 groups: 1 20 (22.2% infants who had received the exogenous surfactant Curosurf in the combined therapy of HMD; 2 19 (21.1% babies with HMD who had taken Surfactant BL; 3 25 (27.8% surfactant-untreated infants who had died from HMD; 4 26 (28.9% very preterm neonates with extremely low birth weight who had died within the first hour of life. The lungs were histologically and morphometrically examined. Results. The study demonstrated the specific course of HMD when exogenous surfactants and artificial ventilation were used. The contributors to the development of the disease are intranatal amniotic fluid aspiration and intranatal fetal hypoxia. Conclusion. Artificial ventilation and the use of exogenous surfactants do not block the generation of hyaline membranes. The latter differ in formation time, form, and location. The differences in a cell response to hyaline membranes were found in the neonatal infants receiving exogenous surfactants. The characteristic morphological signs of the disease for all the neonates enrolled in the study are alveolar and bronchial epithelial damages and microcirculatory disorders. Key words: preterm neonatal infants, hyaline membrane disease, exogenous surfactants, artificial ventilation, histology, morphometry.

  14. Post-neonatal drop in alveolar SP-A expression

    DEFF Research Database (Denmark)

    Stray-Pedersen, Arne; Vege, Ashild; Stray-Pedersen, Asbjorg

    2008-01-01

    BACKGROUND: Surfactant protein A (SP-A) is synthesized in the lung and is a part of the innate immune system. The aim of this study was to evaluate the expression of SP-A in lung tissue from fetuses, infants, children and adults with special regard to sudden infant death syndrome (SIDS). METHODS......: A total of 160 cases were studied; 19 fetuses and neonates, 59 SIDS and 49 explained infant deaths below 1 year of age, 19 toddlers and 14 adults. Immunohistochemical detection of SP-A using monoclonal antibodies was performed by microscopy of lung tissue specimens collected at autopsy. A scoring system...

  15. Role of Aquaporin-4 in Airspace-to-Capillary Water Permeability in Intact Mouse Lung Measured by a Novel Gravimetric Method

    Science.gov (United States)

    Song, Yuanlin; Ma, Tonghui; Matthay, Michael A.; Verkman, A.S.

    2000-01-01

    The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (Jv) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. Jv in wild-type mice varied linearly with osmotic gradient size (4.4 × 10−5 cm3 s−1 mOsm−1) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H2O outflow pressure, the filtration coefficient was 4.7 cm3 s−1 mOsm−1 and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. Jv were (cm3 s−1 mOsm−1 × 10−5, SEM, n = 7–12 mice): 3.8 ± 0.4 (wild type), 0.35 ± 0.02 (AQP1 null), 3.7 ± 0.4 (AQP4 null), and 0.25 ± 0.01 (AQP1/AQP4 null). The significant reduction in P f in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 ± 0.2-fold (SEM, five mice) reduced P f in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish

  16. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  17. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  18. Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2 and MNX1 Mutations as Causes of Neonatal Diabetes in Man

    Science.gov (United States)

    Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.

    2014-01-01

    Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943

  19. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population

    Science.gov (United States)

    Yin, Xiaojuan; Meng, Fanping; wang, Yan; Xie, Lu; Kong, Xiangyong; Feng, Zhichun

    2013-01-01

    Objective: To determine whether the SP-B deficiency and gene mutations in exon 4 is associated with neonatal RDS in China Han ethnic population. Methods: The study population consisted of 40 neonates with RDS and 40 neonates with other diseases as control in China Han ethnic population. We Compared SP-B expression in lung tissue and bronchoalveolar lavage fluid with immunoblotting, and analyzed mutations in the SP-B gene with polymerase chain reaction (PCR) and gene sequencing. Results: In RDS group, low mature Surfactant protein B was found in both lung tissue and bronchoalveolar lavage fluid in 8 neonates. In control group, only 4 neonates with low mature Surfactant protein B in both lung tissue and bronchoalveolar lavage fluid. In RDS group, 20 neonates were found to have mutations in exon 4, 12 homozygous mutations with C/C genotype and 8 heterozygous mutations with C/T genotype in surfactant protein B gene+1580 polymorphism. There were 8 cases mutations in control group, 1 in C/C and 7 in C/T genotype. The frequency of homozygotes with C/C genotype was 0.3 and frequency of heterozygotes with C/T genotype was 0.02 in RDS group. In control group, frequency of homozygotes with C/C genotype was 0.025 and frequency of heterozygote with C/T genotype was 0.175. Conclusion: Low mature Surfactant protein B is associated with the pathogenesis of neonatal respiratory distress syndrome (RDS) in China Han ethnic population. Mutations in exon 4 of the surfactant protein B gene demonstrate an association between homozygous mutations with C/C genotype in SP-B gene and neonatal RDS. PMID:23330012

  20. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  2. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  3. Development of electrocardiogram intervals during growth of FVB/N neonate mice

    Science.gov (United States)

    2010-01-01

    Background Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. Results We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. Conclusions We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies. PMID:20735846

  4. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    Science.gov (United States)

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  5. Testing lung cancer drugs and therapies in mice

    Science.gov (United States)

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  6. The innate immune response to lower respiratory tract E. Coli infection and the role of the CCL2-CCR2 axis in neonatal mice.

    Science.gov (United States)

    McGrath-Morrow, Sharon A; Ndeh, Roland; Collaco, Joseph M; Poupore, Amy K; Dikeman, Dustin; Zhong, Qiong; Singer, Benjamin D; D'Alessio, Franco; Scott, Alan

    2017-09-01

    Neonates have greater morbidity/mortality from lower respiratory tract infections (LRTI) compared to older children. Lack of conditioning of the pulmonary immune system due to limited environmental exposures and/or infectious challenges likely contributes to the increase susceptibility in the neonate. In this study, we sought to gain insights into the nature and dynamics of the neonatal pulmonary immune response to LRTI using a murine model. Wildtype (WT) and Ccr2 -/- C57BL/6 neonatal and juvenile mice received E. coli or PBS by direct pharyngeal aspiration. Flow cytometry was used to measure immune cell dynamics and identify cytokine-producing cells. Real-time PCR and ELISA were used to measure cytokine/chemokine expression. Innate immune cell recruitment in response to E. coli-induced LRTI was delayed in the neonatal lung compared to juvenile lung. Lung clearance of bacteria was also significantly delayed in the neonate. Ccr2 -/- neonates, which lack an intact CCL2-CCR2 axis, had higher mortality after E. coli challenged than Ccr2 +/+ neonates. A greater percentage of CD8 + T cells and monocytes from WT neonates challenged with E. coli produced TNF compared to controls. The pulmonary immune response to E. coli-induced LRTI differed significantly between neonatal and juvenile mice. Neonates were more susceptible to increasing doses of E. coli and exhibited greater mortality than juveniles. In the absence of an intact CCL2-CCR2 axis, susceptibility to LRTI-induced mortality was further increased in neonatal mice. Taken together these findings underscore the importance of age-related differences in the innate immune response to LRTI during early stages of postnatal life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Patient dose in neonatal units

    International Nuclear Information System (INIS)

    Smans, K.; Struelens, L.; Smet, M.; Bosmans, H.; Vanhavere, F.

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is therefore the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Hence, knowledge of the patient dose is necessary to justify the exposures. A study to assess the patient doses was started at the neonatal intensive care unit (NICU) of the Univ. Hospital in Leuven. Between September 2004 and September 2005, prematurely born babies underwent on average 10 X-ray examinations in the NICU. In this sample, the maximum was 78 X-ray examinations. For chest radiographs, the median entrance skin dose was 34 μGy and the median dose area product was 7.1 mGy.cm 2 . By means of conversion coefficients, the measured values were converted to organ doses. Organ doses were calculated for three different weight classes: extremely low birth weight infants ( 2500 g). The doses to the lungs for a single chest radiograph for infants with extremely low birth weights, low birth weights and normal birth weights were 24, 25 and 32 μGy, respectively. (authors)

  8. Mastic Oil Inhibits the Metastatic Phenotype of Mouse Lung Adenocarcinoma Cells

    International Nuclear Information System (INIS)

    Loutrari, Heleni; Magkouta, Sophia; Papapetropoulos, Andreas; Roussos, Charis

    2011-01-01

    Mastic oil from Pistacia lentiscus variation chia, a natural combination of bioactive terpenes, has been shown to exert anti-tumor growth effects against a broad spectrum of cancers including mouse Lewis lung adenocarcinomas (LLC). However, no studies have addressed its anti-metastatic actions. In this study, we showed that treatment of LLC cells with mastic oil within a range of non-toxic concentrations (0.01–0.04% v/v): (a) abrogated their Matrigel invasion and migration capabilities in transwell assays; (b) reduced the levels of secreted MMP-2; (c) restricted phorbol ester-induced actin remodeling and (d) limited the length of neo-vessel networks in tumor microenvironment in the model of chick embryo chorioallantoic membrane. Moreover, exposure of LLC and endothelial cells to mastic oil impaired their adhesive interactions in a co-culture assay and reduced the expression of key adhesion molecules by endothelial cells upon their stimulation with tumor necrosis factor-alpha. Overall, this study provides novel evidence supporting a multipotent role for mastic oil in prevention of crucial processes related to cancer metastasis

  9. Validation of Tuba1a as Appropriate Internal Control for Normalization of Gene Expression Analysis during Mouse Lung Development

    Directory of Open Access Journals (Sweden)

    Aditi Mehta

    2015-02-01

    Full Text Available The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4 was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC and Clara cell-specific 10 kDA protein (Scgb1a1, normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.

  10. Resuscitation of the Newborn: AN IMPROVED NEONATAL ...

    African Journals Online (AJOL)

    This places a unique demand on a resuscitator which can be used safely at birth. It must be able to achieve such pressures without injuring the lungs; yet once the FRC has been established, it must be able to adapt itself to the differing ventilatory requirements, without altering the blood chemistry of the neonate. S. Afr. Med.

  11. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV closely resembles lung cancer in sheep infected with JSRV

    Directory of Open Access Journals (Sweden)

    York Denis

    2006-12-01

    Full Text Available Abstract Background Jaagsiekte sheep retrovirus (JSRV causes a lethal lung cancer in sheep and goats. Expression of the JSRV envelope (Env protein in mouse lung, by using a replication-defective adeno-associated virus type 6 (AAV6 vector, induces tumors resembling those seen in sheep. However, the mouse and sheep tumors have not been carefully compared to determine if Env expression alone in mice can account for the disease features observed in sheep, or whether additional aspects of virus replication in sheep are important, such as oncogene activation following retrovirus integration into the host cell genome. Results We have generated mouse monoclonal antibodies (Mab against JSRV Env and have used these to study mouse and sheep lung tumor histology. These Mab detect Env expression in tumors in sheep infected with JSRV from around the world with high sensitivity and specificity. Mouse and sheep tumors consisted mainly of well-differentiated adenomatous foci with little histological evidence of anaplasia, but at long times after vector exposure some mouse tumors did have a more malignant appearance typical of adenocarcinoma. In addition to epithelial cell tumors, lungs of three of 29 sheep examined contained fibroblastic cell masses that expressed Env and appeared to be separate neoplasms. The Mab also stained nasal adenocarcinoma tissue from one United States sheep, which we show was due to expression of Env from ovine enzootic nasal tumor virus (ENTV, a virus closely related to JSRV. Systemic administration of the AAV6 vector encoding JSRV Env to mice produced numerous hepatocellular tumors, and some hemangiomas and hemangiosarcomas, showing that the Env protein can induce tumors in multiple cell types. Conclusion Lung cancers induced by JSRV infection in sheep and by JSRV Env expression in mice have similar histologic features and are primarily characterized by adenomatous proliferation of peripheral lung epithelial cells. Thus it is

  12. Congenital cystic lung malformations

    International Nuclear Information System (INIS)

    Stoever, B.; Scheer, I.; Bassir, C.; Chaoui, R.; Henrich, W.; Schwabe, M.; Wauer, R.

    2006-01-01

    Purpose: The aim of the study concerning congenital cystic lung malformations was to evaluate prenatal diagnoses postnatally to determine prognostic factors as well as to define optimized perinatal management. Materials and Methods: The study is based on 45 prenatal ultrasound examinations depicting fetal cystic lung lesions. 32 of the mothers had follow-up examinations. 5 pregnancies were terminated due to CCAM and additional malformations. Complete regression of the lesions was seen prenatally in 8 cases and postnatally in 5 children. Results: Surgical intervention due to respiratory insufficiency was necessary in 4 neonates. According to the imaging results, CCAM was present in 4 cases and sequestration in 7 patients. No correlation between the imaging findings and the surgical results was found in 3 children: One child suffered from rhadomyoid dysplasia, and in the case of the second child, a left-sided hernia of the diaphragm and additional sequestration were detected. The third child showed AV malformation. The cystic lesions of the 14 children operated upon were proven histologically. The degree of accuracy in the present study was high. Conclusion: Precise perinatal management is warranted in order to determine according to the clinical relevance surgical intervention and to prevent complications after the first year of life. This is performed during the neonatal period for respiratory insufficient neonates and within the first year of life for clinically stable children. (orig.)

  13. Exogenous hydrogen sulfide (H2S protects alveolar growth in experimental O2-induced neonatal lung injury.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available Bronchopulmonary dysplasia (BPD, the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT. Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S, carbon monoxide and nitric oxide (NO, belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD.We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino phosphinodithioate to study its lung protective potential in vitro and in vivo.In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation.H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.

  14. Differential diagnosis of inflammatory lung affections by x-ray in children

    Energy Technology Data Exchange (ETDEWEB)

    Faerber, D.

    1980-01-01

    As a consequence of the rise in neonatal infections by ..beta..-streptococci the clinical respiratory distress syndrome in neonates is becoming increasingly important for differential diagnosis. The present paper reports on special problems in differential X-ray diagnosis of ..beta..-streptococcus pneumonia as compared to inflammatory lung affections attributable to various causes.

  15. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse

    International Nuclear Information System (INIS)

    Miller, S.C.

    1981-01-01

    The possibility that intact cells may migrate from ingested colostrum and milk into the gut wall of the nursing neonate has been tested directly by means of radioautographic techniques. [ 3 H]Thymidine was continuously infused into female mice throughtout the last 6 days of their pregnancy. Upon delivery, their fully [ 3 H]thymidine-labelled litters were removed and given to nurse from unlabelled surrogate mothers whose own litters were borne simultaneously. These unlabelled litters were similarly removed immediately upon birth and given to the [ 3 H]thymidine-infused mothers to nurse. Infants labelled during gestation and mothers labelled during pregnancy continued to receive thrice-daily injections of isotope for 1-14 days and 1-18 h, respectively, after delivery. The stomach and adjacent portion of small intestine were removed from unlabelled infants nursing from labelled surrogate mothers at intervals of 1-18 h after beginning to suckle, the same tissues were removed from labelled infants nursing from unlabelled surrogate mothers and similarly prepared for radioautography. The results indicate that transepithelial migration of intact cells of the colostrum and milk does not appear to be the method by which immunological functions are adoptively transferred to the nursing neonatal mouse. (Auth.)

  16. Cu filtration for dose reduction in neonatal chest imaging

    International Nuclear Information System (INIS)

    Smans, K.; Struelens, L.; Smet, M.; Bosmans, H.; Vanhavere, F.

    2010-01-01

    As neonatal chest images are frequently acquired to investigate the life-threatening lung diseases in prematurely born children, their optimisation in terms of X-ray exposure is required. The aim of this study was to investigate whether such dose-optimisation studies could be performed using a Monte Carlo computer model. More specifically, a Monte Carlo computer model was used to investigate the influence of Cu filtration on image quality and dose in neonatal chest imaging. Monte Carlo simulations were performed with the MCNPX code and used with voxel models representing prematurely born babies (590 and 1910 g). Physical image quality was derived from simulated images in terms of the signal difference-to-noise ratio and signal-to-noise ratio (SNR). To verify the simulation results, measurements were performed using the Gammex 610 Neonatal Chest Phantom, which represents a 1-2 kg neonate. A figure of merit was used to assist in evaluating the optimum balance between the image quality and the patient dose. The results show that the Monte Carlo computer model to investigate dose and image quality works well and can be used in dose-optimisation studies for real clinical practices. Furthermore, working at a specific constant incident air kerma (K a,I ), additional filtration proved to increase SNR with 30%, whereas working at a specific constant detector dose, extra Cu filtration reduces the lung dose with 25%. Optimum balance between patient dose and image quality is found to be 60 kVp (using extra filtration). (authors)

  17. Septicemic pasteurellosis in free-ranging neonatal pronghorn in Oregon

    Science.gov (United States)

    Dunbar, Michael R.; Wolcott, Mark J.; Rimler, R.B.; Berlowski, Brenda M.

    2000-01-01

    As part of a study to determine the cause(s) of population decline and low survival of pronghorn (Antilocapra americana) neonates on Hart Mountain National Antelope Refuge (HMNAR), Oregon (USA), 55 of 104 neonates captured during May 1996 and 1997 were necropsied (n = 28, 1996; n = 27, 1997) to determine cause of death. Necropsies were conducted on fawns that died during May, June, or July of each year. The objectives of this study were to report the occurrence and pathology of pasteurellosis in neonates and determine if the isolated strain of Pasteurella multocida was unique. Septicemic pasteurellosis, caused by P. multocida, was diagnosed as the cause of death for two neonates in May and June 1997. Necropsy findings included widely scattered petechial and ecchymotic hemorrhages found over a large portion of the subcutaneous tissue, meninges of the brain, epicardium, skeletal muscle, and serosal surface of the thorasic and abdominal cavities. Histological examination of lung tissues revealed diffuse congestion and edema and moderate to marked multifocal infiltrate of macrophages, neutrophils, and numerous bacteria within many terminal bronchioles and alveoli. Pasteurella multocida serotypes A:3,4, and B:1 were isolated from several tissues including lung, intestinal, thorasic fluid, and heart blood. Each B:1 isolate had DNA restriction endonuclease fingerprint profiles distinct from isolates previously characterized from domestic cattle, swan (Olor spp.), moose (Alces alces), and pronghorn from Montana (USA). This is the first report of pasteurellosis in pronghorn from Oregon and the B:1 isolates appear to be unique in comparison to DNA fingerprint profiles from selected domestic and wild species.

  18. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection

    DEFF Research Database (Denmark)

    Song, Zhijun; Wu, Hong; Ciofu, Oana

    2003-01-01

    . The effect of alginate production on pathogenicity was investigated by using an acute lung infection mouse model that compared a non-mucoid P. aeruginosa strain, PAO1, to its constitutive alginate-overproducing derivative, Alg(+) PAOmucA22, and an alginate-defective strain, Alg(-) PAOalgD. Bacterial......Pseudomonas aeruginosa is an opportunistic respiratory pathogen that accounts for most of the morbidity and mortality in cystic fibrosis (CF) patients. In CF-affected lungs, the bacteria undergo conversion from a non-mucoid to a non-tractable mucoid phenotype, due to overproduction of alginate...... suspensions were instilled into the left bronchus and examined 24 and 48 h post-infection. The highest bacterial loads and the most severe lung pathology were observed with strain Alg(-) PAOalgD at 24 h post-infection, which may have been due to an increase in expression of bacterial elastase by the mutant...

  19. Surfactant from neonatal to pediatric ICU: bench and bedside evidence.

    Science.gov (United States)

    Boet, A; Brat, R; Aguilera, S S; Tissieres, P; De Luca, D

    2014-12-01

    Surfactant is a cornerstone of neonatal critical care for the treatment of respiratory distress syndrome of preterm babies. However, other indications have been studied for various clinical conditions both in term neonates and in children beyond neonatal age. A high degree of evidence is not yet available in some cases and this is due to the complex and not yet totally understood physiopathology of the different types of pediatric and neonatal lung injury. We here summarise the state of the art of the bench and bedside knowledge about surfactant use for the respiratory conditions usually cared for in neonatal and pediatric intensive care units. Future research direction will also be presented. On the whole, surfactant is able to improve oxygenation in infection related respiratory failure, pulmonary hemorrhage and meconium aspiration syndrome. Bronchoalveolar lavage with surfactant solution is currently the only means to reduce mortality or need for extracorporeal life support in neonates with meconium aspiration. While surfactant bolus or lavage only improves the oxygenation and ventilatory requirements in other types of postneonatal acute respiratory distress syndrome (ARDS), there seems to be a reduction in the mortality of small infants with RSV-related ARDS.

  20. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes.

    Science.gov (United States)

    Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil

    2017-02-01

    The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.

  1. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  2. Characteristics of Neonatal Pneumothorax in Saudi Arabia: Three Years’ Experience

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al Matary

    2017-03-01

    Full Text Available Objectives: To identify the incidence, clinical characteristics, predisposing factors, morbidity, and mortality among hospitalized neonates with pneumothorax. Methods: The records of 2 204 infants admitted to the neonatal intensive care unit at King Fahad Medical City, Saudi Arabia, between 2011 and 2014 were reviewed. All newborns hospitalized in the neonatal intensive care unit with pneumothorax were included in the study. Participants were evaluated for baseline characteristics, predisposing factors of neonatal pneumothorax (NP, accompanying disorders, and mortality. Results: Pneumothorax was diagnosed in 86 patients, with an incidence of 3.9%. The most common predisposing factors of NP were bag mask ventilation, followed by hypoplastic lung disease, and mechanical ventilation. Twenty-five (29.1% newborns with pneumothorax died. The most common accompanying disorder was premature rupture of membrane. On multivariate analysis, pulmonary hemorrhage, a birth weight < 2 500 g, and low Apgar score (< 7 at one minute were independently associated with mortality. Conclusions: This study highlights the extent of NP problems among hospitalized neonates and the most common predisposing factors of NP.

  3. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    Science.gov (United States)

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  4. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    Science.gov (United States)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  5. Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model.

    Science.gov (United States)

    Tremblay, Sophie; Pai, Alex; Richter, Lindsay; Vafaei, Rod; Potluri, Praneetha; Ellegood, Jacob; Lerch, Jason P; Goldowitz, Daniel

    2017-11-01

    Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate.

    Science.gov (United States)

    Raimondi, Francesco; Rodriguez Fanjul, Javier; Aversa, Salvatore; Chirico, Gaetano; Yousef, Nadya; De Luca, Daniele; Corsini, Iuri; Dani, Carlo; Grappone, Lidia; Orfeo, Luigi; Migliaro, Fiorella; Vallone, Gianfranco; Capasso, Letizia

    2016-08-01

    To evaluate the accuracy of lung ultrasound for the diagnosis of pneumothorax in the sudden decompensating patient. In an international, prospective study, sudden decompensation was defined as a prolonged significant desaturation (oxygen saturation pneumothorax was detected in 26 (62%). Lung ultrasound accuracy in diagnosing pneumothorax was as follows: sensitivity 100%, specificity 100%, positive predictive value 100%, and negative predictive value 100%. Clinical evaluation of pneumothorax showed sensitivity 84%, specificity 56%, positive predictive value 76%, and negative predictive value 69%. After sudden decompensation, a lung ultrasound scan was performed in an average time of 5.3 ± 5.6 minutes vs 19 ± 11.7 minutes required for a chest radiography. Emergency drainage was performed after an ultrasound scan but before radiography in 9 cases. Lung ultrasound shows high accuracy in detecting pneumothorax in the critical infant, outperforming clinical evaluation and reducing time to imaging diagnosis and drainage. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  8. Current Trends in Neonatal Tracheostomy.

    Science.gov (United States)

    Isaiah, Amal; Moyer, Kelly; Pereira, Kevin D

    2016-08-01

    The indications for neonatal tracheostomy may have changed with current noninvasive respiratory therapies compared with previous decades. To study the current trends in neonatal tracheostomy and identify the primary indication for the procedure and risk factors for failed extubation. This retrospective medical record review included 47 neonates who underwent tracheostomy from January 1, 2009, to December 31, 2013, at the University of Maryland Children's Hospital. Group 1 included infants undergoing tracheostomy for the primary indication of upper airway obstruction; group 2, infants with primary pulmonary disease. Data on weight, gestational age, comorbid conditions, congenital abnormalities, complications, outcomes, and indications for tracheostomy were compared statistically between groups. Differences in gestational age, birth weight, and age at tracheostomy. Among the 47 infants included in the study (30 boys; 17 girls, mean [SD] age, 113 [73] days), 31 (66%) demonstrated anatomical causes of airway obstruction, and 16 (34%) had significant pulmonary disease. Among infants with anatomical causes, subglottic stenosis represented the largest group (11 of 31 [35%]). The mean age at the time of tracheostomy was significantly lower in the group with airway obstruction (98.9 vs 146.9 days; difference, 48 [95% CI, 4.8-91.2] days; P = .04). No procedure-related morbidity or mortality was encountered. Anatomical upper airway obstruction may be returning as the most common indication for a neonatal tracheostomy, thereby supporting the belief that current respiratory therapies have lowered the burden of chronic lung disease and the need for prolonged ventilatory care.

  9. Thoracic radiography in the neonatal foal: a preliminary report

    International Nuclear Information System (INIS)

    Lamb, C.R.; O'Callaghan, M.W.; Paradis, M.R.

    1990-01-01

    Thoracic radiographs from 22 neonatal foals were reviewed to investigate the radiographic appearance of the thorax in normal, immature, and septicemic foals, and in foals with neonatal respiratory distress syndrome. The size and radiographic appearance of intrathoracic structures and abnormal lung opacities were evaluated. The craniocaudal and apicobasilar dimensions of the heart were 5.6–6.3 and 6.7–7.8 times the length of a midthoracic vetebral body, respectively, in normal, immature and septicemic foals. Apicobasilar measurements were greater (8.0–8.7) in the foals with respiratory distress syndrome. Normal foals had clear lung fields within 12 hours of birth. A more marked interstitial pattern was observed in immature and septicemic foals compared to normals. Diffuse air–space (alveolar) pattern with air bronchograms was seen in foals with respiratory distress syndrome. It was concluded from this series that thoracic radiographs taken 24–48 hours after birth may aid differentiation of normal foals, septicemic or immature foals, and foals with respiratory distress syndrome

  10. Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis

    International Nuclear Information System (INIS)

    Hu, Xin; Fernandes, Jolyn; Jones, Dean P.; Go, Young-Mi

    2017-01-01

    Highlights: • Low-dose Cd stimulates differentiation of human lung fibroblast to myofibroblast. • Cd-stimulated fibrosis signaling involves activation of SMAD transcription factor. • Low-dose Cd intake in mice activates myofibroblast differentiation. - Abstract: Increasing evidence suggests that Cd at levels found in the human diet can cause oxidative stress and activate redox-sensitive transcription factors in inflammatory signaling. Following inflammation, tissue repair often involves activation of redox-sensitive transcription factors in fibroblasts. In lungs, epithelial barrier remodeling is required to restore gas exchange and barrier function, and aberrant myofibroblast differentiation leads to pulmonary fibrosis. Contributions of exogenous exposures, such as dietary Cd, to pulmonary fibrosis remain inCompletely defined. In the current study, we tested whether Cd activates fibrotic signaling in human fetal lung fibroblasts (HFLF) at micromolar and submicromolar Cd concentrations that do not cause cell death. Exposure of HFLF to low-dose Cd (≤1.0 μM) caused an increase in stress fibers and increased protein levels of myofibroblast differentiation markers, including α-smooth muscle actin (α-SMA) and extra-domain-A-containing fibronectin (ED-A-FN). Assay of transcription factor (TF) activity using a 45-TF array showed that Cd increased activity of 12 TF, including SMAD2/3/4 (mothers against decapentaplegic homolog) signaling differentiation and fibrosis. Results were confirmed by real-time PCR and supported by increased expression of target genes of SMAD2/3/4. Immunocytochemistry of lungs of mice exposed to low-dose Cd (0.3 and 1.0 mg/L in drinking water) showed increased α-SMA protein level with lung Cd accumulation similar to lung Cd in non-smoking humans. Together, the results show that relatively low Cd exposures stimulate pulmonary fibrotic signaling and myofibroblast differentiation by activating SMAD2/3/4-dependent signaling. The results

  11. Biochemical changes in mouse lung after subcutaneous injection of the sulfur mustard 2-chloroethyl 4-chlorobutyl sulfide.

    Science.gov (United States)

    Elsayed, Nabil M; Omaye, Stanley T

    2004-07-01

    Sulfur mustard (HD) is a vesicant-type chemical warfare agent (CWA) introduced in World War I which continues to be produced, stockpiled, and occasionally deployed by some countries, and could be used potentially by terrorists. Exposure to HD can cause erythema, blisters, corneal opacity, and airway damage. We have reported previously that subcutaneous (SC) injection of immunodeficient athymic nude mice with the half mustard butyl 2-chloroethyl sulfide (BCS) causes systemic biochemical changes in several organs distal to the exposure site. In the present study, we examined the response of non-immunodeficient Swiss Webster mice to the mustard, 2-chloroethyl 4-chlorobutyl sulfide (CECBS). In a pilot study, we found that a single SC injection of 20-25 microl/mouse causes death within 24h. Consequently, we used 5 microl/mouse (approx. 0.017 mg/kg body weight) of neat CECBS or an equal volume of saline as control. We examined the lungs after 1, 24, and 48 h for biochemical changes including total and oxidized glutathione, protein, DNA, and lipid peroxidation contents in tissue homogenate, and superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, and glutathione S-transferases activities in the cytosol. After 1h and/or 24h, we found statistically significant changes that were resolved by 48 h. These changes mimicked those of HD and BCS and were generally consistent with free radical-mediated oxidative stress. The implications of these observations are two-fold. First, dermal exposure to low-dose mustard gas could elicit systemic changes impacting distal organs such as the lungs. It also suggests that antioxidants could potentially modulate the response and reduce the damage. Second, although the use of known CWAs such as HD is prohibited, analogs that are not recognized as agents are as toxic and could be dangerous if acquired and used by potential terrorists.

  12. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Monego, Simeone dal [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Larsson, Emanuel [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); University of Trieste, Trieste (Italy); Linköping University, SE-581 83 Linkoeping (Sweden); Mohammadi, Sara [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); Krenkel, Martin [University of Göttingen, Göttingen (Germany); Garrovo, Chiara; Biffi, Stefania [IRCCS Burlo Garofolo, Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Markus, Andrea [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Napp, Joanna [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Salditt, Tim [University of Göttingen, Göttingen (Germany); Accardo, Agostino [University of Trieste, Trieste (Italy); Alves, Frauke [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Tromba, Giuliana [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy)

    2015-01-01

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  13. Safe excipient exposure in neonates and small children - protocol for the SEEN project

    DEFF Research Database (Denmark)

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell

    2017-01-01

    INTRODUCTION: The pharmacokinetics of excipients in neonates differs from that of older children. In a recent pan--European survey, two thirds of neonates received at least one potentially harmful excipient, such as ethanol and benzoates. The content of sweeteners varied by route of administration...... (more common by enteral than parenteral route), and regional differences were revealed. The survey did not identify if the content of excipients was more pronounced in medications prescribed for specific medical diseases, e.g. more common in cardiovascular conditions than lung diseases. Furthermore......, the quantitative amount of e.g. ethanol in the multi-medicated neonate has not been investigated. The aim of the present study was to quantify the total amount of excipients administered to poly-medicated neonatal and paediatric patients during hospitalisation; and to investigate if any particular medical diseases...

  14. The tap test- an accurate First-line test for fetal lung maturity testing ...

    African Journals Online (AJOL)

    Objective. To determine the accuracy of near-patient and laboratory- based fetal lung maturity tests in predicting the need for neonatal ventilation. Design. A prospective descriptive study. Subjects. One hundred high-risk obstetric patients where confirmation of fetal lung maturity would initiate delivery. Methods. Fetal weight ...

  15. Lactoferrin and neonatology - role in neonatal sepsis and necrotizing enterocolitis: present, past and future.

    Science.gov (United States)

    Sharma, Deepak; Shastri, Sweta

    2016-03-01

    Neonatal sepsis and necrotizing enterocolitis (NEC) are two most important neonatal problems in nursery which constitute the bulk of neonatal mortality and morbidity. Inflammatory mediators secondary to sepsis and NEC increases morbidity, by affecting various system of body like lung, brain and eye, thus causing long term implications. Lactoferrin (LF) is a component of breast milk and multiple actions that includes antimicrobial, antiviral, anti-fungal and anti-cancer and various other actions. Few studies have been completed and a number of them are in progress for evaluation of efficacy and safety of LF in the prevention of neonatal sepsis and NEC in field of neonatology. In future, LF prophylaxis and therapy may have a significant impact in improving clinical outcomes of vulnerable preterm neonates. This review analyse the role of lactoferrin in prevention of neonatal sepsis and NEC, with emphasis on mechanism of action, recent studies and current studies going on around the globe.

  16. In vitro surfactant and perfluorocarbon aerosol deposition in a neonatal physical model of the upper conducting airways.

    Directory of Open Access Journals (Sweden)

    Estibalitz Goikoetxea

    Full Text Available OBJECTIVE: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. METHODS: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD, were measured at different driving pressures (4-7 bar. Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. RESULTS: The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65% was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar. CONCLUSION: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

  17. Specific Features of Neonatal Artificial Ventilation in Different Stages of Correction of Visceroabdominal Disproportion

    Directory of Open Access Journals (Sweden)

    D. V. Dmitriyev

    2010-01-01

    Full Text Available Objective: to optimize artificial ventilation on the basis of studies of lung mechanical properties in neonatal infants with visceroabdominal disproportion in the perioperative period. Subjects and methods. The investigation enrolled 57 neonates, including 42 (73.7% with gastroschisis and 15 (26.3% with omphalocele. All the patients received intensive care, artificial ventilation using a Bear Cub apparatus in the control modes by the volume (A/C, SIMV/PSV with continuous monitoring of hemodynamics and respiratory mechanics (dynamic compliance, resistance, pressure-volume loop, and flow-volume by applying a graphics monitor. Intraabdominal pressure (IAP was measured by the Crohn method. Results. The investigation showed an association between the changes in IAP in different stages of the study and those in respiratory parameters in newborns. Preoperative adaptation of the respiratory system was noted in all the neonates. Within the first 24 hours of the first-stage correction of visceroabdominal disproportion, both groups showed a gradual reduction in dynamic compliance by 3.4 times, a rise in resistance by 2.42 times with PIP being increased up to high figures — 20—22 cm H2O, as well as maximum value changes on the graphics monitor. The mechanical properties of the lung returned to relatively normal values at 72 hours of extension. Conclusion. Elevation of IAP to high values causes changes in respiratory mechanics and is a rather informative criterion for correction of ventilation parameters. Furthermore, a marked perioperative IAP increase (more than 10—11 mm Hg maximally affects the mechanical properties of the lung in neonatal infants with visceroab-dominal disproportion. Key words: visceroabdominal disproportion, intraabdominal pressure, compliance, respiratory mechanics, resistance.

  18. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy.

    Directory of Open Access Journals (Sweden)

    Irma Schabussova

    Full Text Available BACKGROUND: The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. METHODS: BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. RESULTS: Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. CONCLUSION: Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway

  19. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis.

    Science.gov (United States)

    Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D; Kim, Marianne M; Summer, Ross; Kim, Kwang Chul

    2017-11-25

    MUC1 (MUC in human and Muc in animals) is a membrane-tethered mucin expressed on the apical surface of lung epithelial cells. However, in the lungs of patients with interstitial lung disease, MUC1 is aberrantly expressed in hyperplastic alveolar type II epithelial (ATII) cells and alveolar macrophages (AM), and elevated levels of extracellular MUC1 are found in bronchoalveolar lavage (BAL) fluid and the serum of these patients. While pro-fibrotic effects of extracellular MUC1 have recently been described in cultured fibroblasts, the contribution of MUC1 to the pathobiology of pulmonary fibrosis is unknown. In this study, we hypothesized that MUC1 deficiency would reduce susceptibility to pulmonary fibrosis in a mouse model of silicosis. We employed human MUC1 transgenic mice, Muc1 deficient mice and wild-type mice on C57BL/6 background in these studies. Some mice received a one-time dose of crystalline silica instilled into their oropharynx in order to induce pulmonary fibrosis and assess the effects of Muc1 deficiency on fibrotic and inflammatory responses in the lung. As previously described in other mouse models of pulmonary fibrosis, we found that extracellular MUC1 levels were markedly increased in whole lung tissues, BALF and serum of human MUC1 transgenic mice after silica. We also detected an increase in total MUC1 levels in the lungs of these mice, indicating that production as well as release contributed to elevated levels after lung injury. Immunohistochemical staining revealed that increased MUC1 expression was mostly confined to ATII cells and AMs in areas of fibrotic remodeling, illustrating a pattern similar to the expression of MUC1 in human fibrotic lung tissues. However, contrary to our hypothesis, we found that Muc1 deficiency resulted in a worsening of fibrotic remodeling in the mouse lung as judged by an increase in number of silicotic nodules, an increase in lung collagen deposition and an increase in the severity of pulmonary inflammation

  20. The CT appearances of delayed amniotic fluid clearance from the lungs in an infant with absent pulmonary valve and congenital lobar emphysema

    International Nuclear Information System (INIS)

    Fink, A. Michelle; Edis, Brian; Massie, John

    2005-01-01

    Congenital lobar emphysema (CLE) is a cause of severe neonatal respiratory distress. Overexpansion of the affected pulmonary lobe in the fetus is due to narrowing of the airway, with a resultant 'ball-valve' effect. At birth, there may be delayed clearance of fetal lung fluid. Early chest radiographs show opacification of the hyperexpanded lobe. The CT findings in the immediate neonatal period have not been previously reported. We describe the imaging in a neonate with tetralogy of Fallot and absent pulmonary valve with secondary CLE. CT demonstrates the hyperexpanded lobe with initial thickening of the interlobular septa and alveolar ground glass attenuation, with subsequent clearing. This resorption of fetal lung fluid via the pulmonary interstitium should not be confused with interstitial lung disease. (orig.)

  1. The CT appearances of delayed amniotic fluid clearance from the lungs in an infant with absent pulmonary valve and congenital lobar emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Fink, A. Michelle [Royal Children' s Hospital, Department of Medical Imaging, Parkville, Victoria (Australia); University of Melbourne, Melbourne, Victoria (Australia); Edis, Brian [Royal Children' s Hospital, Department of Cardiology, Parkville, Victoria (Australia); Massie, John [University of Melbourne, Melbourne, Victoria (Australia); Royal Children' s Hospital, Department of Respiratory Medicine, Parkville, Victoria (Australia); Murdoch Children' s Research Institute, Melbourne, Victoria (Australia)

    2005-09-01

    Congenital lobar emphysema (CLE) is a cause of severe neonatal respiratory distress. Overexpansion of the affected pulmonary lobe in the fetus is due to narrowing of the airway, with a resultant 'ball-valve' effect. At birth, there may be delayed clearance of fetal lung fluid. Early chest radiographs show opacification of the hyperexpanded lobe. The CT findings in the immediate neonatal period have not been previously reported. We describe the imaging in a neonate with tetralogy of Fallot and absent pulmonary valve with secondary CLE. CT demonstrates the hyperexpanded lobe with initial thickening of the interlobular septa and alveolar ground glass attenuation, with subsequent clearing. This resorption of fetal lung fluid via the pulmonary interstitium should not be confused with interstitial lung disease. (orig.)

  2. MRI of normal and pathological fetal lung development

    International Nuclear Information System (INIS)

    Kasprian, Gregor; Balassy, Csilla; Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided

  3. MRI of normal and pathological fetal lung development

    Energy Technology Data Exchange (ETDEWEB)

    Kasprian, Gregor [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: gregor.kasprian@meduniwien.ac.at; Balassy, Csilla [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Prayer, Daniela [University Clinic of Radiodiagnostics, Medical University of Vienna (Austria)

    2006-02-15

    Normal fetal lung development is a complex process influenced by mechanical and many biochemical factors. In addition to ultrasound, fetal magnetic resonance imaging (MRI) constitutes a new method to investigate this process in vivo during the second and third trimester. The techniques of MRI volumetry, assessment of signal intensities, and MRI spectroscopy of the fetal lung have been used to analyze this process and have already been applied clinically to identify abnormal fetal lung growth. Particularly in conditions such as oligohydramnios and congenital diaphragmatic hernia (CDH), pulmonary hypoplasia may be the cause of neonatal death. A precise diagnosis and quantification of compromised fetal lung development may improve post- and perinatal management. The main events in fetal lung development are reviewed and MR volumetric data from 106 normal fetuses, as well as different examples of pathological lung growth, are provided.

  4. Surfactant Apoprotein D in Preterm Neonates with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    S. A. Perepelitsa

    2009-01-01

    Full Text Available Objective: to study the production of surfactant apoprotein D in preterm neonates with acute respiratory distress syndrome (ARDS during artificial ventilation (AV. Subjects and methods. The paper presents the results of studying the production of surfactant protein D (SP-D in various biological fluids in 44 preterm neonates. Two groups of newborn infants were identified according to the clinical manifestations of ARDS. The study group comprised 25 infants with the severe course of the disease, in this connection the preventive administration of the exogenous surfactant Curosurf and AV were made in all the neonates at birth. The control group included 19 preterm babies without signs of ARDS. Results. The study has demonstrated that in parturients and preterm neonatal infants, surfactant apoprotein D is detectable in various biological fluids: amniotic fluid, the gastric aspirate obtained just after birth, residual umbilical cord blood, serum following 8 hours of birth, and bronchoalveolar fluid. Despite the low gestational age of the neonates, the lung surfactant system is able to produce SP-D, as evidenced by its high content in the amniotic fluid and residual umbilical cord blood of preterm neonates. The production of apoprotein D in preterm neonates considerably reduces in the next few hours after birth. Conclusion. The findings suggest that fetal tissues generate SP-D, which improves pulmonary gas exchange in preterm neonates in the first hours after birth and that alveolar-capillary membrane dysfunctions are transient in the neonates on AV. Key words: preterm neonates, acute respiratory distress syndrome, surfactant, surfactant apoprotein D.

  5. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    Science.gov (United States)

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  6. Congenital lobar emphysema in neonates: Anaesthetic challenges

    Directory of Open Access Journals (Sweden)

    Mridu Paban Nath

    2011-01-01

    Full Text Available Congenital lobar emphysema (CLE is a potentially reversible, though possibly life-threatening, cause of respiratory distress in the neonate. It poses dilemma in diagnosis and management. We are presenting a 6-week-old baby who presented with a sudden onset of respiratory distress related to CLE affecting the left upper lobe. Lobectomy was performed under general anaesthesia with one lung ventilation. The details of anaesthetic challenges and management are described here.

  7. The impact of vitamin D on fetal and neonatal lung maturation

    DEFF Research Database (Denmark)

    Lykkedegn, Sine; Sorensen, Grith Lykke; Beck-Nielsen, Signe Sparre

    2015-01-01

    Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) are major complications to preterm birth. Hypovitaminosis D is prevalent in pregnancy. We systematically reviewed the evidence of the impact of vitamin D on lung development, surfactant synthesis, RDS and BPD searching Pub......Med, Embase and Cochrane databases with the terms vitamin D AND (surfactant OR lung maturation OR lung development OR respiratory distress syndrome OR fetal lung OR prematurity OR bronchopulmonary dysplasia). Three human studies, ten animal studies, two laboratory studies and one combined animal...... and laboratory study were included. Human evidence was sparse allowing no conclusions. BPD was not associated with vitamin D receptor (VDR) polymorphism in a fully adjusted analysis. Animal and laboratory studies showed substantial positive effects of vitamin D on the ATII cell, fibroblast proliferation...

  8. Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection.

    Science.gov (United States)

    Sousa, Anastácio Q; Cavalcante, Diane I M; Franco, Luciano M; Araújo, Fernanda M C; Sousa, Emília T; Valença-Junior, José Telmo; Rolim, Dionne B; Melo, Maria E L; Sindeaux, Pedro D T; Araújo, Marialva T F; Pearson, Richard D; Wilson, Mary E; Pompeu, Margarida M L

    2017-07-01

    Postmortem examination of 7 neonates with congenital Zika virus infection in Brazil revealed microcephaly, ventriculomegaly, dystrophic calcifications, and severe cortical neuronal depletion in all and arthrogryposis in 6. Other findings were leptomeningeal and brain parenchymal inflammation and pulmonary hypoplasia and lymphocytic infiltration in liver and lungs. Findings confirmed virus neurotropism and multiple organ infection.

  9. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    International Nuclear Information System (INIS)

    Mohammadi, Sara; Larsson, Emanuel; Alves, Frauke; Dal Monego, Simeone; Biffi, Stefania; Garrovo, Chiara; Lorenzon, Andrea; Tromba, Giuliana; Dullin, Christian

    2014-01-01

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging

  10. Histopathological alterations in neonate after in utero irradiation of rats

    International Nuclear Information System (INIS)

    Abdel Gawad, I.I.

    2000-01-01

    Series of experiments were performed to study the histopathological changes induced in embryonic tissue during various stages of gestation in female rats after gamma irradiation. Pregnant rats were exposed to doses 0.5, 1,2 and 3 Gy on 9 th 12 th and 15 th days of gestation. Histopathological changes were detected in tissues of neonates, namely, liver ileum, kidney, brain, spleen, suprarenal, thymus, lungs and heart. These tissues showed variable degrees of radiation induced tissue changes. For quantifying these changes arbitrary scores were formulated to assess the type and severity of changes observed tissues of thirty six neonates randomly selected after radiation exposure of pregnant animals as scheduled

  11. Lung cancer during pregnancy: A narrative review

    Directory of Open Access Journals (Sweden)

    Sotirios Mitrou

    2016-07-01

    Full Text Available Lung cancer, the leading cause of cancer deaths in males for decades, has recently become one of commonest causes for women too. As women delay the start of their family, the co-existence of cancer and pregnancy is increasingly observed. Nevertheless, lung cancer during pregnancy remains a rather uncommon condition with less than 70 cases published in recent years. Non-small cell lung carcinoma is the commonest type accounting for about 85% of all cases. Overall survival rates are low. Chemotherapy and/or targeted treatment have been used with poor outcomes. The disease has been also found to affect the products of conception with no short- or long-term consequences for the neonate. This article is referring to a narrative review of lung cancers diagnosed in pregnant women around the world.

  12. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    Science.gov (United States)

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  13. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    Directory of Open Access Journals (Sweden)

    Dong Kyung Sung

    Full Text Available The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t. versus intravenous (i.v. MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5 or i.v. (2×10(6 route at postnatal day (P 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV, indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus

  14. Shenfu injection provides protection for perinatal asphyxia in neonates

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-03-01

    Full Text Available This study aimed to investigate the efficacy of shenfu injection for the protection of neonates with asphyxia. Eighty neonates with asphyxia were randomly divided into two groups, treatment group and control group (n=40. Both groups received interventions such as ventilation, oxygen, and circulation support. Treatment group was administrated with shenfu injection additionally. Serum levels of creatine kinase, alanine aminotransferase, aspartate aminotransferase, creatinine, and neuron-specific enolase were significantly lower but the oxygenation index was significantly higher in treatment group on day 7 and day 14. The neurobehavioral score was significantly higher in treatment group than in control group. On the 14th day, the survival rate of treatment group (77.5% was higher than that of control group (55%. Shenfu injection could protect the function of the brain, heart, lung, liver and kidney by attenuating ischemia reperfusion after severe asphyxia resuscitation, improve neurobehavioral ability and increase the survival of neonates.

  15. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    Science.gov (United States)

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Neonatal irradiation sensitizes mice to delayed pulmonary challenge.

    Science.gov (United States)

    Johnston, Carl J; Manning, Casey M; Rangel-Moreno, Javier; Randall, Troy D; Hernady, Eric; Finkelstein, Jacob N; Williams, Jacqueline P

    2013-04-01

    Significant differences exist between the physiology of the immature, neonatal lung compared to that of the adult lung that may affect acute and late responses to irradiation. Identifying these differences is critical to developing successful mitigation strategies for this special population. Our current hypothesis proposes that irradiation during the neonatal period will alter developmental processes, resulting in long-term consequences, including altered susceptibility to challenge with respiratory pathogens. C57BL/6J mice, 4 days of age, received 5 Gy whole-body irradiation. At subsequent time points (12, 26 and 46 weeks postirradiation), mice were intranasally infected with 120 HAU of influenza A virus. Fourteen days later, mice were sacrificed and tissues were collected for examination. Morbidity was monitored following changes in body weight and survival. The magnitude of the pulmonary response was determined by bronchoalveolar lavage, histological examination and gene expression of epithelial and inflammatory markers. Viral clearance was assessed 7 days post-influenza infection. Following influenza infection, irradiated animals that were infected at 26 and 46 weeks postirradiation lost significantly more weight and demonstrated reduced survival compared with those infected at 12 weeks postirradiation, with the greatest deleterious effect seen at the late time point. The results of these experiments suggest that radiation injury during early life may affect the lung's response to a subsequent pathogenic aerial challenge, possibly through a chronic and progressive defect in the immune system. This finding may have implications for the development of countermeasures in the context of systemic radiation exposure.

  17. In vivo Brain Delivery of v-myc Overproduced Human Neural Stem Cells via the Intranasal Pathway: Tumor Characteristics in the Lung of a Nude Mouse

    Directory of Open Access Journals (Sweden)

    Eun Seong Lee

    2015-01-01

    Full Text Available We aimed to monitor the successful brain delivery of stem cells via the intranasal route and to observe the long-term consequence of the immortalized human neural stem cells in the lungs of a nude mouse model. Stably immortalized HB1.F3 human neural stem cells with firefly luciferase gene (F3-effluc were intranasally delivered to BALB/c nude mice. Bioluminescence images were serially acquired until 41 days in vivo and at 4 hours and 41 days ex vivo after intranasal delivery. Lungs were evaluated by histopathology. After intranasal delivery of F3-effluc cells, the intense in vivo signals were detected in the nasal area, migrated toward the brain areas at 4 hours (4 of 13, 30.8%, and gradually decreased for 2 days. The brain signals were confirmed by ex vivo imaging (2 of 4, 50%. In the mice with initial lung signals (4 of 9, 44.4%, the lung signals disappeared for 5 days but reappeared 2 weeks later. The intense lung signals were confirmed to originate from the tumors in the lungs formed by F3-effluc cells by ex vivo imaging and histopathology. We propose that intranasal delivery of immortalized stem cells should be monitored for their successful delivery to the brain and their tumorigenicity longitudinally.

  18. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    International Nuclear Information System (INIS)

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash; Upadhyay, Daya S.; Sultana, Sarwat; Gupta, Krishna P.

    2014-01-01

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development

  19. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India); Upadhyay, Daya S. [Laboratory Animals Services, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow (India); Sultana, Sarwat [Dept. Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi (India); Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in [Carcinogenesis Laboratory, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow –226001 (India)

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  20. Expression of NR1I3 in mouse lung tumors induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone

    International Nuclear Information System (INIS)

    Fukumasu, H.; Cordeiro, Y.G.; Rochetti, A.L.; Barra, C.N.; Sámora, T.S.; Strefezzi, R.F.; Dagli, M.L.Z.

    2015-01-01

    Nuclear receptor subfamily 1, group I, member 3 (NR1I3) is reported to be a possible novel therapeutic target for some cancers, including lung, brain and hematopoietic tumors. Here, we characterized expression of NR1I3 in a mouse model of lung carcinogenesis induced by 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone (NNK), the most potent tobacco carcinogen. Lung tumors were collected from mice treated with NNK (400 mg/kg) and euthanized after 52 weeks. Benign and malignant lesions were formalin-fixed and paraffin-embedded for histology and immunohistochemistry, with samples snap-frozen for mRNA analysis. Immunohistochemically, we found that most macrophages and type I and II pneumocytes expressed NR1I3, whereas fibroblasts and endothelial cells were NR1I3 − . Compared with benign lesions, malignant lesions had less NR1I3 + tumor cells. Gene expression analysis also showed an inverse correlation between NR1I3 mRNA expression and tumor size (P=0.0061), suggesting that bigger tumors expressed less NR1I3 transcripts, in accordance with our immunohistochemical NR1I3 tests. Our results indicate that NR1I3 expression decreased during progression of malignant lung tumors induced by NNK in mice

  1. Expression of NR1I3 in mouse lung tumors induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasu, H.; Cordeiro, Y.G.; Rochetti, A.L.; Barra, C.N.; Sámora, T.S.; Strefezzi, R.F. [Laboratório de Oncologia Comparada e Translacional, Departmento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental e Comparada, Departmento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-02-13

    Nuclear receptor subfamily 1, group I, member 3 (NR1I3) is reported to be a possible novel therapeutic target for some cancers, including lung, brain and hematopoietic tumors. Here, we characterized expression of NR1I3 in a mouse model of lung carcinogenesis induced by 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone (NNK), the most potent tobacco carcinogen. Lung tumors were collected from mice treated with NNK (400 mg/kg) and euthanized after 52 weeks. Benign and malignant lesions were formalin-fixed and paraffin-embedded for histology and immunohistochemistry, with samples snap-frozen for mRNA analysis. Immunohistochemically, we found that most macrophages and type I and II pneumocytes expressed NR1I3, whereas fibroblasts and endothelial cells were NR1I3{sup −}. Compared with benign lesions, malignant lesions had less NR1I3{sup +} tumor cells. Gene expression analysis also showed an inverse correlation between NR1I3 mRNA expression and tumor size (P=0.0061), suggesting that bigger tumors expressed less NR1I3 transcripts, in accordance with our immunohistochemical NR1I3 tests. Our results indicate that NR1I3 expression decreased during progression of malignant lung tumors induced by NNK in mice.

  2. Deoxynivalenol (DON) is toxic to human colonic, lung and monocytic cell lines, but does not increase the IgE response in a mouse model for allergy

    International Nuclear Information System (INIS)

    Instanes, Christine; Hetland, Geir

    2004-01-01

    We examined whether the common crop mycotoxin deoxynivalenol (DON) from Fusarium species is toxic to human colonic (Caco-2), lung (A549) and monocytic (U937) cell lines. Moreover, since DON reportedly induces increased levels of Th2 cytokines and total IgE, and we have observed that mould extracts adjuvated allergy development in mice, possible adjuvant effect of DON on allergy was studied in a mouse model. For all the cells, exposure to DON for 24 h reduced cellular protein synthesis, proliferation and survival rate dose-dependently. In addition, production of IL-8 in the U937 cell line increased up to eight-fold at levels of DON just lower than the most toxic one, suggesting that IL-8 can be used as an additional index for cytotoxicity in mononuclear phagocytes. However, DON did not increase levels of allergen-specific IgE or IgG1 in the mouse model for allergy. These results suggest that DON, when inhaled or ingested, may have toxic effect on human alveolar macrophages and epithelial cells in lungs and colon, but does not increase the allergic response to allergens

  3. Congenital cystic lung malformations; Konnatale zystische Lungenfehlbildungen

    Energy Technology Data Exchange (ETDEWEB)

    Stoever, B.; Scheer, I.; Bassir, C. [Klinik fuer Strahlenheilkunde, Berlin (Germany). Abt. Paediatrische Radiologie, Charite; Mau, H. [Campus Virchow-Klinikum, Klinik fuer Kinderchirurgie, Berlin (Germany); Chaoui, R. [Campus Mitte, Klinik fuer Geburtsmedizin, Berlin (Germany); Henrich, W. [Campus Virchow-Klinikum, Klinik fuer Geburtsmedizin, Berlin (Germany); Schwabe, M. [Campus Mitte, Inst. fuer Pathologie, Berlin (Germany); Wauer, R. [Campus Mitte, Klinik fuer Neonatologie, Berlin (Germany)

    2006-04-15

    Purpose: The aim of the study concerning congenital cystic lung malformations was to evaluate prenatal diagnoses postnatally to determine prognostic factors as well as to define optimized perinatal management. Materials and Methods: The study is based on 45 prenatal ultrasound examinations depicting fetal cystic lung lesions. 32 of the mothers had follow-up examinations. 5 pregnancies were terminated due to CCAM and additional malformations. Complete regression of the lesions was seen prenatally in 8 cases and postnatally in 5 children. Results: Surgical intervention due to respiratory insufficiency was necessary in 4 neonates. According to the imaging results, CCAM was present in 4 cases and sequestration in 7 patients. No correlation between the imaging findings and the surgical results was found in 3 children: One child suffered from rhadomyoid dysplasia, and in the case of the second child, a left-sided hernia of the diaphragm and additional sequestration were detected. The third child showed AV malformation. The cystic lesions of the 14 children operated upon were proven histologically. The degree of accuracy in the present study was high. Conclusion: Precise perinatal management is warranted in order to determine according to the clinical relevance surgical intervention and to prevent complications after the first year of life. This is performed during the neonatal period for respiratory insufficient neonates and within the first year of life for clinically stable children. (orig.)

  4. The fetal/neonatal mouse liver exhibits transcriptional features of the adult pancreas.

    Science.gov (United States)

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics through the expression of xenobiotic metabolism enxymes (XME). The fetus and neonate have been hypothesized to exhibit increased sensitivity to xenobiotic toxicity. T...

  5. Neonatal Platelet Transfusions and Future Areas of Research.

    Science.gov (United States)

    Sola-Visner, Martha; Bercovitz, Rachel S

    2016-10-01

    thrombocytopenia is common. Their unique physiology and associated complications make the risks and benefits of platelet transfusions difficult to understand. The goal of this review was to highlight research areas that need to be addressed to better understand the risks and benefits of platelet transfusions in neonates. Specifically, it will be important to identify neonates at risk of bleeding who would benefit from a platelet transfusion and to determine whether platelet transfusions either abrogate or exacerbate common neonatal complications such as sepsis, chronic lung disease, necrotizing enterocolitis, and retinopathy of prematurity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An Official American Thoracic Society/European Respiratory Society Workshop Report: Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units

    NARCIS (Netherlands)

    Peterson-Carmichael, Stacey; Seddon, Paul C.; Cheifetz, Ira M.; Frerichs, Inéz; Hall, Graham L.; Hammer, Jürg; Hantos, Zoltán; van Kaam, Anton H.; McEvoy, Cindy T.; Newth, Christopher J. L.; Pillow, J. Jane; Rafferty, Gerrard F.; Rosenfeld, Margaret; Stocks, Janet; Ranganathan, Sarath C.

    2016-01-01

    Ready access to physiologic measures, including respiratory mechanics, lung volumes, and ventilation/perfusion inhomogeneity, could optimize the clinical management of the critically ill pediatric or neonatal patient and minimize lung injury. There are many techniques for measuring respiratory

  7. Development and proof-of-concept of three-dimensional lung histology volumes

    Science.gov (United States)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  8. Lung Surfactant and Its Use in Lung Diseases

    Directory of Open Access Journals (Sweden)

    O. A. Rosenberg

    2007-01-01

    Full Text Available The review considers the present views of lung surfactant (LS functions with emphasis on its protective and barrier properties and ability to maintain local and adaptive immunity. The composition of commercial LS formulations is analyzed. Data on qualitative and quantitative LS abnormalities are presented in various diseases in neonates and adults. The results of clinical trials of different LS formulations in the treatment of acute respiratory distress syndrome in adults are analyzed in detail. Recent data on the results of and prospects for surfactant therapy for bronchial asthma, chronic obstructive pulmonary disease and pulmonary tuberculosis are given. 

  9. A mouse strain less responsive to dioxin-induced prostaglandin E2 synthesis is resistant to the onset of neonatal hydronephrosis.

    Science.gov (United States)

    Aida-Yasuoka, Keiko; Yoshioka, Wataru; Kawaguchi, Tatsuya; Ohsako, Seiichiroh; Tohyama, Chiharu

    2014-10-01

    Dioxin is a ubiquitous environmental pollutant that induces toxicity when bound to the aryl hydrocarbon receptor (AhR). Significant differences in susceptibility of mouse strains to dioxin toxicity are largely accounted for by the dissociation constant of binding to dioxins of AhR subtypes encoded by different alleles. We showed that cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), components of a prostanoid synthesis pathway, play essential roles in the onset of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hydronephrosis of neonatal mice. Although C57BL/6J and BALB/cA mice harbor AhR receptors highly responsive to TCDD, they were found by chance to differ significantly in the incidence of TCDD-induced hydronephrosis. Therefore, the goal of the present study was to determine the molecular basis of this difference in susceptibility to TCDD toxicity. For this purpose, we administered C57BL/6J and BALB/cA dams' TCDD at an oral dose of 15 or 80 μg/kg on postnatal day (PND) 1 to expose pups to TCDD via lactation, and the pups' kidneys were collected on PND 7. The incidence of hydronephrosis in C57BL/6J pups (64%) was greater than in BALB/cA pups (0%, p hydronephrosis in these mouse strains paralleled the levels of renal mPGES-1 mRNA and early growth response 1 (Egr-1) that modulates mPGES-1 gene expression, as well as PGE2 concentrations in urine. Although these mouse strains possess AhR alleles tightly bound to TCDD, their difference in incidence and severity of hydronephrosis can be explained, in part, by differences in the expression of mPGES-1 and Egr-1. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Independent lung ventilation in a newborn with asymmetric acute lung injury due to respiratory syncytial virus: a case report

    Directory of Open Access Journals (Sweden)

    Di Nardo Matteo

    2008-06-01

    Full Text Available Abstract Introduction Independent lung ventilation is a form of protective ventilation strategy used in adult asymmetric acute lung injury, where the application of conventional mechanical ventilation can produce ventilator-induced lung injury and ventilation-perfusion mismatch. Only a few experiences have been published on the use of independent lung ventilation in newborn patients. Case presentation We present a case of independent lung ventilation in a 16-day-old infant of 3.5 kg body weight who had an asymmetric lung injury due to respiratory syncytial virus bronchiolitis. We used independent lung ventilation applying conventional protective pressure controlled ventilation to the less-compromised lung, with a respiratory frequency proportional to the age of the patient, and a pressure controlled high-frequency ventilation to the atelectatic lung. This was done because a single tube conventional ventilation protective strategy would have exposed the less-compromised lung to a high mean airways pressure. The target of independent lung ventilation is to provide adequate gas exchange at a safe mean airways pressure level and to expand the atelectatic lung. Independent lung ventilation was accomplished for 24 hours. Daily chest radiograph and gas exchange were used to evaluate the efficacy of independent lung ventilation. Extubation was performed after 48 hours of conventional single-tube mechanical ventilation following independent lung ventilation. Conclusion This case report demonstrates the feasibility of independent lung ventilation with two separate tubes in neonates as a treatment of an asymmetric acute lung injury.

  11. Neonatal mucosal immunology.

    Science.gov (United States)

    Torow, N; Marsland, B J; Hornef, M W; Gollwitzer, E S

    2017-01-01

    Although largely deprived from exogenous stimuli in utero, the mucosal barriers of the neonate after birth are bombarded by environmental, nutritional, and microbial exposures. The microbiome is established concurrently with the developing immune system. The nature and timing of discrete interactions between these two factors underpins the long-term immune characteristics of these organs, and can set an individual on a trajectory towards or away from disease. Microbial exposures in the gastrointestinal and respiratory tracts are some of the key determinants of the overall immune tone at these mucosal barriers and represent a leading target for future intervention strategies. In this review, we discuss immune maturation in the gut and lung and how microbes have a central role in this process.

  12. Increased neonatal morbidity despite pulmonary maturity for deliveries occurring before 39 weeks.

    Science.gov (United States)

    Fang, Yu Ming Victor; Guirguis, Peter; Borgida, Adam; Feldman, Deborah; Ingardia, Charles; Herson, Victor

    2013-01-01

    To compare neonatal outcomes following deliveries 39 weeks after confirmation of fetal lung maturity with scheduled deliveries ≥39 weeks. A retrospective cohort study examining neonatal outcomes of women who were delivered following documented fetal pulmonary maturity at 36, 37, and 38 weeks compared to women undergoing a scheduled delivery at 39, 40, and 41 weeks. The χ(2)-test and Student's t-test were used to compare categorical and continuous data, respectively. Delivery prior to 39 weeks following fetal pulmonary maturity was associated with a 8.4% composite neonatal morbidity rate as compared to 3.3% for deliveries at 39 weeks or greater (relative risk [RR] 2.9; confidence interval [CI] 2.4-3.6). Neonatal respiratory morbidity was significantly higher (5.4%) for those delivering at less than 39 weeks with documented fetal pulmonary maturity as compared to 2.1% for those delivering at 39 weeks or greater (RR 3.0; CI 2.3-3.9). Increased neonatal morbidity persisted for those delivered prior to 39 weeks even after excluding all diabetics (p 39 weeks regardless of the mode of delivery. Despite fetal pulmonary maturity, delivery before 39 weeks is associated with significantly increased neonatal morbidity when compared to scheduled deliveries at 39 weeks or greater.

  13. Special Considerations in Neonatal Mechanical Ventilation.

    Science.gov (United States)

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Kriška, Ján; Honsa, Pavel; Džamba, Dávid; Butenko, Olena; Koleničová, Denisa; Janečková, Lucie; Nahácka, Z.; Anděra, L.; Kozmík, V.; Taketo, M.M.; Kořínek, Vladimír; Anděrová, Miroslava

    2016-01-01

    Roč. 1641, nov. (2016), s. 73-87 ISSN 1872-6240 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : beta-catenin signaling * neonatal mouse * neurogenesis * gliogenesis Subject RIV: ED - Physiology

  15. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Sarah S., E-mail: spo@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen DK-2100 (Denmark); Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Saber, Anne T., E-mail: ats@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen DK-2100 (Denmark); Williams, Andrew, E-mail: Andrew.williams@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Andersen, Ole, E-mail: oa@ruc.dk [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Købler, Carsten, E-mail: carko@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Atluri, Rambabu, E-mail: rba@nrcwe.dk [Nanologica AB, SE-114 28 Stockholm (Sweden); Pozzebon, Maria E., E-mail: mariaelena.pozzebon@yahoo.it [Veneto Nanotech SCpA, ECSIN — European Centre for the Sustainable Impact of Nanotechnology, I-45100 Rovigo (Italy); Mucelli, Stefano P., E-mail: stefano.pozzimucelli@venetonanotech.it [Veneto Nanotech SCpA, ECSIN — European Centre for the Sustainable Impact of Nanotechnology, I-45100 Rovigo (Italy); Simion, Monica, E-mail: moni304ro@gmail.com [Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies, 077190 Bucharest (Romania); Rickerby, David, E-mail: david.rickerby@jrc.ec.europa.eu [European Commission Joint Research Centre Institute for Environment and Sustainability, I-21027 Ispra, VA (Italy); Mortensen, Alicja, E-mail: almo@food.dtu.dk [National Food Institute, Technical University of Denmark, Søborg (Denmark); Jackson, Petra, E-mail: pja@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen DK-2100 (Denmark); Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen DK-2100 (Denmark); and others

    2015-04-01

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT{sub Small}, 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT{sub Large}, 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT{sub Small} or CNT{sub Large} were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT{sub Large} elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT{sub Small}. The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT{sub Large}, which may eventually lead to the different responses observed at day 28. - Highlights: • We evaluate the toxicogenomic response in mice following MWCNT instillation. • Two MWCNTs of different properties were examined and thoroughly characterized. • MWCNT exposure leads to increased pulmonary

  16. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    International Nuclear Information System (INIS)

    Poulsen, Sarah S.; Saber, Anne T.; Williams, Andrew; Andersen, Ole; Købler, Carsten; Atluri, Rambabu; Pozzebon, Maria E.; Mucelli, Stefano P.; Simion, Monica; Rickerby, David; Mortensen, Alicja; Jackson, Petra; Kyjovska, Zdenka O.

    2015-01-01

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT Small , 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT Large , 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT Small or CNT Large were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT Large elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT Small . The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT Large , which may eventually lead to the different responses observed at day 28. - Highlights: • We evaluate the toxicogenomic response in mice following MWCNT instillation. • Two MWCNTs of different properties were examined and thoroughly characterized. • MWCNT exposure leads to increased pulmonary inflammation and acute phase

  17. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung.

    Science.gov (United States)

    Tateossian, Hilda; Morse, Susan; Simon, Michelle M; Dean, Charlotte H; Brown, Steve D M

    2015-12-01

    Otitis media with effusion (OME) is the most common cause of hearing loss in children, and tympanostomy (ear tube insertion) to alleviate the condition remains the commonest surgical intervention in children in the developed world. Chronic and recurrent forms of otitis media (OM) are known to have a very substantial genetic component; however, until recently, little was known of the underlying genes involved. The Jeff mouse mutant carries a mutation in the Fbxo11 gene, a member of the F-box family, and develops deafness due to a chronic proliferative OM. We previously reported that Fbxo11 is involved in the regulation of transforming growth factor beta (TGF-β) signalling by regulating the levels of phospho-Smad2 in the epithelial cells of palatal shelves, eyelids and airways of the lungs. It has been proposed that FBXO11 regulates the cell's response to TGF-β through the ubiquitination of CDT2. Additional substrates for FBXO11 have been identified, including p53. Here, we have studied both the genetic and biochemical interactions between FBXO11 and p53 in order to better understand the function of FBXO11 in epithelial development and its potential role in OM. In mice, we show that p53 (also known as Tp53) homozygous mutants and double heterozygous mutants (Jf/+ p53/+) exhibit similar epithelial developmental defects to Fbxo11 homozygotes. FBXO11 and p53 interact in the embryonic lung, and mutation in Fbxo11 prevents the interaction with p53. Both p53 and double mutants show raised levels of pSMAD2, recapitulating that seen in Fbxo11 homozygotes. Overall, our results support the conclusion that FBXO11 regulates the TGF-β pathway in the embryonic lung via cross-talk with p53. © 2015. Published by The Company of Biologists Ltd.

  18. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  19. Neonatal Respiratory Distress Syndrome: Early Diagnosis, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    S. A. Perepelitsa

    2012-01-01

    Full Text Available to improve treatment results in premature infants with neonatal respiratory distress syndrome (NRDS, by establishing developmental mechanisms and elaborating methods for its early diagnosis, treatment, and prevention. Material and methods. The paper analyzes the results of a clinical observation and laboratory, instrumental, immunological, morphological, and radiological studies of 320 premature neonates at 26—35 weeks gestational age. The following groups of neonates were identified: 1 40 premature neonatal infants without NRDS and with the physiological course of an early neonatal period (a comparison group; 2 190 premature neonates with severe NRDS in whom the efficiency of therapy with exogenous surfactants, such as surfactant BL versus curosurf, was evaluated; 3 90 premature newborn infants who had died from NRDS at its different stages. Results. The poor maternal somatic, obstetric, and gynecological histories in the early periods of the current pregnancy create prerequisites for its termination, favor the development of severe acute gestosis, and cause abnormal placental changes. Each gestational age is marked by certain placental changes that promote impaired uterineplacentalfetal blood flow and premature birth. Alveolar and bronchial epithelial damages, including those ante and intranatally, microcircula tory disorders play a leading role in the tanatogenesis of NRDS. Intranatal hypoxia and amniotic fluid aspiration are one of the important factors contributing to alveolar epithelial damage and NRDS in premature neonates. Exogenous surfactants prevent the development of hyaline membranes and are useful in the normalization of ventilation-perfusion relationships and lung biomechanical properties. Conclusion. This study could improve the diagnosis and treatment of NRDS, which assisted in reducing the duration of mechanical ventilation from 130±7.6 to 65±11.6 hours, the number of complications (the incidence of intragastric

  20. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  1. Effects of Neonatal Dexamethasone Treatment on the Cardiovascular Stress Response of Children at School Age

    NARCIS (Netherlands)

    Karemaker, Rosa; Karemaker, John M.; Kavelaars, Annemieke; Tersteeg-Kamperman, Marijke; Baerts, Wim; Veen, Sylvia; Samsom, Jannie F.; van Bel, Frank; Heijnen, Cobi J.

    2008-01-01

    OBJECTIVE. The goal was to investigate cardiovascular responses to a psychosocial stressor in school-aged, formerly premature boys and girls who had been treated neonatally with dexamethasone or hydrocortisone because of chronic lung disease. METHODS. We compared corticosteroid-treated, formerly

  2. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes

    International Nuclear Information System (INIS)

    Messerschmidt, Agnes; Sauer, Alexandra; Pollak, Arnold; Pataraia, Anna; Kasprian, Gregor; Weber, Michael; Prayer, Daniela; Helmer, Hanns; Brugger, Peter C.

    2011-01-01

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM. (orig.)

  3. Fetal MRI for prediction of neonatal mortality following preterm premature rupture of the fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Messerschmidt, Agnes; Sauer, Alexandra; Pollak, Arnold [Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna (Austria); Pataraia, Anna; Kasprian, Gregor; Weber, Michael; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Helmer, Hanns [Medical University of Vienna, Department of Obstetrics and Maternal-Fetal Medicine, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria)

    2011-11-15

    Lung MRI volumetrics may be valuable for fetal assessment following early preterm premature rupture of the foetal membranes (pPROM). To evaluate the predictive value of MRI lung volumetrics after pPROM. Retrospective cohort study of 40 fetuses after pPROM in a large, tertiary, perinatal referral center. Fetuses underwent MRI lung volumetrics. Estimated lung volume was expressed as percentage of expected lung volume (our own normal references). Primary outcome was neonatal mortality due to respiratory distress before discharge from hospital. Gestational age range was 16-27 weeks. Estimated-to-expected lung volume was 73% in non-survivors and 102% in survivors (P < 0.05). There were no survivors with a lung volume less than 60% of expected. By logistic regression, mortality could be predicted with a sensitivity of 80%, specificity of 86% and accuracy of 85%. Fetal MR lung volumetrics may be useful for predicting mortality due to respiratory distress in children with early gestational pPROM. (orig.)

  4. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  5. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus

    DEFF Research Database (Denmark)

    Colombo, Carlo; Porzio, Ottavia; Liu, Ming

    2008-01-01

    Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the ...

  6. Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture’s ability to predict virulence based on transcriptional response

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S L; Rodgers, M R; Lye, D J; Stelma, G N; McKinstry, Craig A.; Malard, Joel M.; Vesper, Sephen J.

    2007-10-01

    Aims: To assess the virulence of Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture. Methods and Results: After artificial infection with a variety of Aeromonas spp., mRNA extracts from the two models were processed and hydridized to murine microarrays to determine host gene response. Definition of virulence was determined based on host mRNA production in murine neonatal intestinal tissue and mortality of infected animals. Infections of mouse intestinal cell cultures were then performed to determine whether this simpler model system’s mRNA responses correlated to neonatal results and therefore be predictive of virulence of Aeromonas spp. Virulent aeromonads up-regulated transcripts in both models including multiple host defense gene products (chemokines, regulation of transcription and apoptosis and cell signalling). Avirulent species exhibited little or no host response in neonates. Mortality results correlated well with both bacterial dose and average fold change of up-regulated transcripts in the neonatal mice. Conclusions: Cell culture results were less discriminating but showed promise as potentially being able to be predictive of virulence. Jun oncogene up-regulation in murine cell culture is potentially predictive of Aeromonas virulence. Significance and Impact of the Study: Having the ability to determine virulence of waterborne pathogens quickly would potentially assist public health officials to rapidly assess exposure risks.

  7. Horizontal fissure on neonatal plain chest radiographs: clinical implications

    International Nuclear Information System (INIS)

    Konarzewska, J.; Zawadzka-Kepczynska, A.; Bianek-Bodzak, A.; Kawinska-Kilianczyk, A.; Domzalska-Popadiuk, I.

    2005-01-01

    Regardless of etiology, pleural fluid, even in small amounts, can be visualized on the neonatal chest x-ray picture within pulmonary fissures. It remains unclear whether a marked horizontal fissure unaccompanied by any other radiological symptoms is of diagnostic value or not. Ninety-one consecutive neonatal chest radiographs with marked horizontal fissure were retrospectively analyzed. The images were made between 1999 and 2005 on 69 newborns admitted to the Neonatology Department, Institute of Obstetrics and Gynecology, Medical University of Gdansk. Analysis of the radiographs was conducted independently by three radiologists based on the following criteria: fissure thickness (marked or thickened), bronchovascular markings (increased or normal), size and shape of the heart (normal or abnormal), presence or absence of pulmonary infiltration, atelectasis, and changes related to wet lung syndrome. Due to divergent interpretations, the ultimate interpretation was established by consensus in 25 cases. The radiological findings were compared with clinical data. The compatibility of the three independent interpreters was statistically significant (p<0.0001). Marked transverse fissure was the only radiological finding on 66 x-rays. In 63 cases (69.2%) the children were asymptomatic as well. In 3 cases (3.3%) clinical symptoms of respiratory tract infection occurred. On the other 25 images, horizontal fissure was accompanied by other radiological symptoms. Chest x-ray results corresponded with clinical symptoms in 24 cases (26.4%). One child (1.1%) with radiological evidence of wet lung syndrome did not present any typical clinical symptoms of it. Horizontal fissure noted on a neonatal chest x-ray seems to be of minor diagnostic value if not accompanied by any other radiological symptoms. (author)

  8. Reduced generation of lung tissue–resident memory T cells during infancy

    Science.gov (United States)

    Zens, Kyra D.; Chen, Jun Kui; Wu, Felix L.; Cvetkovski, Filip

    2017-01-01

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant–T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet–regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. PMID:28855242

  9. Reduced generation of lung tissue-resident memory T cells during infancy.

    Science.gov (United States)

    Zens, Kyra D; Chen, Jun Kui; Guyer, Rebecca S; Wu, Felix L; Cvetkovski, Filip; Miron, Michelle; Farber, Donna L

    2017-10-02

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant-T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. © 2017 Zens et al.

  10. Assessment of lung development in isolated congenital diaphragmatic hernia using signal intensity ratios on fetal MR imaging

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Herold, Christian; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence

    2010-01-01

    To investigate developmental changes in the apparently unaffected contralateral lung by using signal intensity ratios (SIR) and lung volumes (LV), and to search for correlation with clinical outcome. Twenty-five fetuses (22-37 weeks' gestation) were examined. Lung/liver signal intensity ratios (LLSIR) were assessed on T1-weighted and T2-weighted sequences for both lungs, then together with LV compared with age-matched controls of 91 fetuses by using the U test. Differences in LLSIRs and lung volumes were correlated with neonatal outcomes. LLSIRs in fetuses with congenital diaphragmatic hernia (CDH) were significantly higher in both lungs on T1-weighted images and significantly lower on T2-weighted images, compared with normals (p < 0.05), increasing on T2-weighted imaging and decreasing on T1-weighted imaging during gestation. Total LV were significantly smaller in the CDH group than in controls (p < 0.05). No significant differences in LLSIR of the two lungs were found. Outcomes correlated significantly with total LV, but not with LLSIR. Changes in LLSIR seem to reflect developmental impairment in CDH; however, they provide no additional information in predicting outcome. LV remains the best indicator on fetal MR imaging of neonatal survival in isolated, left-sided CDH. (orig.)

  11. Assessment of lung development in isolated congenital diaphragmatic hernia using signal intensity ratios on fetal MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Herold, Christian; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Centre of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria)

    2010-04-15

    To investigate developmental changes in the apparently unaffected contralateral lung by using signal intensity ratios (SIR) and lung volumes (LV), and to search for correlation with clinical outcome. Twenty-five fetuses (22-37 weeks' gestation) were examined. Lung/liver signal intensity ratios (LLSIR) were assessed on T1-weighted and T2-weighted sequences for both lungs, then together with LV compared with age-matched controls of 91 fetuses by using the U test. Differences in LLSIRs and lung volumes were correlated with neonatal outcomes. LLSIRs in fetuses with congenital diaphragmatic hernia (CDH) were significantly higher in both lungs on T1-weighted images and significantly lower on T2-weighted images, compared with normals (p < 0.05), increasing on T2-weighted imaging and decreasing on T1-weighted imaging during gestation. Total LV were significantly smaller in the CDH group than in controls (p < 0.05). No significant differences in LLSIR of the two lungs were found. Outcomes correlated significantly with total LV, but not with LLSIR. Changes in LLSIR seem to reflect developmental impairment in CDH; however, they provide no additional information in predicting outcome. LV remains the best indicator on fetal MR imaging of neonatal survival in isolated, left-sided CDH. (orig.)

  12. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Son, Cheol-Hun [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Bae, Jae-Ho [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Shin, Dong-Yeok; Lee, Hong-Rae; Jo, Wol-Soon; Yang, Kwangmo [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Park, You-Soo, E-mail: biotek01@hanmail.net [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2015-06-01

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy.

  13. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-01-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5' flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined

  14. Pathogenic mechanism in lung fibrosis

    International Nuclear Information System (INIS)

    Witschi, H.; Haschek, W.M.; Meyer, K.R.; Ullrich, R.L.; Dalbey, W.E.

    1979-01-01

    The purpose of the study was to examine whether an interaction between two agents causing alveolar epithelial damage would produce lung fibrosis. In mouse lung, intraperitoneal injection of the antioxidant butylated hydroxytoluene causes diffuse alveolar type I cell necrosis, followed by proliferation of type II alveolar cells. In animals exposed to 70% O 2 or 100-200 rad x rays during the phase of type II cell proliferation following BHT, diffuse interstitial lung fibrosis developed within 2 weeks. Quantitative analysis of the lungs for hydroxyproline showed that the interaction between BHT and O 2 or x rays was synergistic. If exposure to O 2 or x rays was delayed until epithelial recovery was complete, no fibrosis was seen. Abnormally high levels of lung collagen persisted up to 6 months after one single treatment with BHT and 100 rad x rays. A commonly seen form of chronic lung damage may thus be caused by an acute interaction between a bloodborne agent which damages the alveolar cell and a toxic inhalant or x rays, provided a critically ordered sequence of exposure is observed

  15. Baby with neonatal systemic juvenile xanthogranuloma born within a cross-cousin marriage

    Directory of Open Access Journals (Sweden)

    Hikmet Tekin Nacaroglu

    2015-12-01

    Full Text Available Juvenile xanthogranuloma is a non-Langerhans cell histiocytosis seen most commonly in childhood and adolescence. Extracutaneous involvement is rare. We report an interesting and extremely rare case of systemic (skin, lung, spleen, and colon “juvenile xanthogranuloma” in the neonatal period. Our case was the first ever reported case born to a cross-cousin marriage.

  16. Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants.

    Science.gov (United States)

    Svanberg, Emilie Krite; Lundin, Patrik; Larsson, Marcus; Åkeson, Jonas; Svanberg, Katarina; Svanberg, Sune; Andersson-Engels, Stefan; Fellman, Vineta

    2016-04-01

    Newborn infants may have pulmonary disorders with abnormal gas distribution, e.g., respiratory distress syndrome. Pulmonary radiography is the clinical routine for diagnosis. Our aim was to investigate a novel noninvasive optical technique for rapid nonradiographic bedside detection of oxygen gas in the lungs of full-term newborn infants. Laser spectroscopy was used to measure contents of oxygen gas (at 760 nm) and of water vapor (at 937 nm) in the lungs of 29 healthy newborn full-term infants (birth weight 2,900-3,900 g). The skin above the lungs was illuminated using two low-power diode lasers and diffusely emerging light was detected with a photodiode. Of the total 390 lung measurements performed, clear detection of oxygen gas was recorded in 60%, defined by a signal-to-noise ratio of >3. In all the 29 infants, oxygen was detected. Probe and detector positions for optimal pulmonary gas detection were determined. There were no differences in signal quality with respect to gender, body side or body weight. The ability to measure pulmonary oxygen content in healthy full-term neonates with this technique suggests that with further development, the method might be implemented in clinical practice for lung monitoring in neonatal intensive care.

  17. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  18. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    Science.gov (United States)

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  19. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension.

    Science.gov (United States)

    Avouac, Jerome; Konstantinova, Irena; Guignabert, Christophe; Pezet, Sonia; Sadoine, Jeremy; Guilbert, Thomas; Cauvet, Anne; Tu, Ly; Luccarini, Jean-Michel; Junien, Jean-Louis; Broqua, Pierre; Allanore, Yannick

    2017-11-01

    To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH). IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. IVA337 demonstrated at a dose of 100 mg/kg a marked protection from the development of lung fibrosis in both mouse models compared with mice receiving 30 mg/kg of IVA337 or vehicle. Histological score was markedly reduced by 61% in the bleomycin model and by 50% in Fra-2 transgenic mice, and total lung hydroxyproline concentrations decreased by 28% and 48%, respectively, as compared with vehicle-treated mice. IVA337 at 100 mg/kg also significantly decreased levels of fibrogenic markers in lesional lungs of both mouse models. In addition, IVA337 substantially alleviated PH in Fra-2 transgenic mice by improving haemodynamic measurements and vascular remodelling. In primary human lung fibroblasts, IVA337 inhibited in a dose-dependent manner fibroblast to myofibroblasts transition induced by TGF-β and fibroblast proliferation mediated by PDGF. We demonstrate that treatment with 100 mg/kg IVA337 prevents lung fibrosis in two complementary animal models and substantially attenuates PH in the Fra-2 mouse model. These findings confirm that the pan-PPAR agonist IVA337 is an appealing therapeutic candidate for these cardiopulmonary involvements. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  1. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The radioprotective effects of methylprednisolone and Sho-Saikoto on mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Kure, Fumio [Kyoto Prefectural Univ. of Medicine (Japan)

    1992-01-01

    The radioprotective effects of methylprednisolone and Sho-Saikoto (a herbal medicine) on radiation damage to lung tissue were evaluated in four main groups of female Slc-ICR mice, one control group and three groups irradiated with single doses (6 Gy, 12 Gy, 18 Gy) of {sup 60}Co gamma rays. Subgroups were established with administration of methylprednisolone and Sho-Saikoto, alone and together. Direct quantitative measurements of collagen accumulation in lung (lung fibrosis) were made by analysis of digitally processed microscopic images of Azan-Mallory stained sections 24 weeks after irradiation. Administration of methylprednisolone supressed the expected development of fibrotic lung tissue in each of the irradiated groups. In a further study, peplomycin, a lung fibrosis enhancing agent, was administered to all four groups in addition to methylprednisolone and Sho-Saikoto, alone and together. Methylprednisolone was demonstrated to be effective only in 12 Gy group. Overall, Sho-Saikoto showed a lesser degree of effect in the prevention of the fibrosis than methylprednisolone, but the administration of both was demonstrated to be more effective than either alone. (author).

  3. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer.

    Science.gov (United States)

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-Pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections. The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery.

  4. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.

    Science.gov (United States)

    Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A

    2014-07-15

    Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.

  5. ZNF 197L is dispensable in mouse development

    African Journals Online (AJOL)

    Jane

    2011-07-27

    protein interactions (Kim et al., 1996; Friedman et .... A fragment of pU17 vector was used as a probe to detect the trapping ... RNA was isolated from adult mouse brain, heart, lung, .... Zinc finger peptides for the regulation of gene.

  6. Neonatal Death

    Science.gov (United States)

    ... Home > Complications & Loss > Loss & grief > Neonatal death Neonatal death E-mail to a friend Please fill in ... cope with your baby’s death. What is neonatal death? Neonatal death is when a baby dies in ...

  7. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    International Nuclear Information System (INIS)

    Lee, Se Ho; Lee, Seung Wook; Han, Su Chul; Park, Seung Woo

    2016-01-01

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study

  8. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Han, Su Chul; Park, Seung Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

  9. How to decrease bronchopulmonary dysplasia in your neonatal intensive care unit today and "tomorrow".

    Science.gov (United States)

    Nelin, Leif D; Bhandari, Vineet

    2017-01-01

    Bronchopulmonary dysplasia, or BPD, is the most common chronic lung disease in infants. Genetic predisposition and developmental vulnerability secondary to antenatal and postnatal infections, compounded with exposure to hyperoxia and invasive mechanical ventilation to an immature lung, result in persistent inflammation, culminating in the characteristic pulmonary phenotype of BPD of impaired alveolarization and dysregulated vascularization. In this article, we highlight specific areas in current management, and speculate on therapeutic strategies that are on the horizon, that we believe will make an impact in decreasing the incidence of BPD in your neonatal intensive care units.

  10. Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Otsubo

    Full Text Available Intrauterine inflammation has been associated with preterm birth and neonatal complications. Few reports have comprehensively investigated multiple cytokine profiles in cord blood and precisely identified surrogate markers for intrauterine inflammation.To identify the cytokines and surrogate markers associated with intrauterine inflammation and subsequent neonatal complications.We analyzed cord blood samples from 135 patients admitted to the neonatal intensive care unit at Sasebo City General Hospital. We retrospectively determined the associations between the presence of neonatal complications and cord blood cytokines, prenatal factors, and laboratory data at birth. A total of 27 cytokines in the cord blood were measured using a bead-based array sandwich immunoassay.Both Th1 and Th2 cytokine levels were low, whereas the levels of growth factors and chemokines were high. In particular, chemokines IL-8, MCP-1, and MIP-1α were significantly higher in very premature neonates when compared with more mature neonates. In addition, some have been shown to be associated with multiple neonatal complications, including patent ductus arteriosus (PDA, respiratory distress syndrome (RDS, and chronic lung disease (CLD. Similarly, the levels of N-terminal pro-brain natriuretic peptide, nucleated RBC, and urinary β2-microglobulin were associated with these complications and chemokine levels.Our results suggest the association of inflammatory chemokines IL-8, MCP-1, and MIP-1α with intrauterine inflammation, premature birth, and neonatal complications in these perinatal subjects. Furthermore, the association of the aforementioned biomarkers with PDA, RDS, and CLD may help establish early diagnostic measures to predict such neonatal complications following intrauterine inflammation.

  11. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    OpenAIRE

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2016-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and record...

  12. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn

    2014-01-01

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiat...

  13. Anti-Podocalyxin Monoclonal Antibody 47-mG2a Detects Lung Cancers by Immunohistochemistry.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Lung cancer is one of the leading causes of cancer-related deaths in the world. Regardless of the advances in lung cancer treatments, the prognosis is still poor. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is expressed in normal tissues, including the heart, pancreas, and breast. It is also found and used as a diagnostic marker in many cancers, such as renal, brain, breast, oral, and lung cancers. We previously developed specific and sensitive anti-PODXL monoclonal antibodies, PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ), both of which were suitable for immunohistochemical analyses of oral cancers. In this study, we investigated the utility of PcMab-47 and 47-mG 2a for the immunohistochemical analyses of lung cancers. PcMab-47 stained 51/70 (72.9%) cases of lung cancer, whereas 47-mG 2a stained 59/70 (84.3%) cases, indicating that the latter antibody is more sensitive and is useful for detecting PODXL in lung cancers.

  14. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer.

    Directory of Open Access Journals (Sweden)

    Marzieh Ebrahimie

    Full Text Available An attractive approach to replace the destroyed insulin-producing cells (IPCs is the generation of functional β cells from stem cells. Embryonal carcinoma (EC stem cells are pluripotent cells which can differentiate into all cell types. The present study was carried out to establish a simple nonselective inductive culture system for generation of IPCs from P19 EC cells by 1-2 weeks old mouse pancreas extract (MPE. Since, mouse pancreatic islets undergo further remodeling and maturation for 2-3 weeks after birth, we hypothesized that the mouse neonatal MPE contains essential factors to induce in vitro differentiation of pancreatic lineages. Pluripotency of P19 cells were first confirmed by expression analysis of stem cell markers, Oct3/4, Sox-2 and Nanog. In order to induce differentiation, the cells were cultured in a medium supplemented by different concentrations of MPE (50, 100, 200 and 300 µg/ml. The results showed that P19 cells could differentiate into IPCs and form dithizone-positive cell clusters. The generated P19-derived IPCs were immunoreactive to proinsulin, insulin and insulin receptor beta. The expression of pancreatic β cell genes including, PDX-1, INS1 and INS2 were also confirmed. The peak response at the 100 µg/ml MPE used for investigation of EP300 and CREB1 gene expression. When stimulated with glucose, these cells synthesized and secreted insulin. Network analysis of the key transcription factors (PDX-1, EP300, CREB1 during the generation of IPCs resulted in introduction of novel regulatory candidates such as MIR17, and VEZF1 transcription factors, as well as MORN1, DKFZp761P0212, and WAC proteins. Altogether, we demonstrated the possibility of generating IPCs from undifferentiated EC cells, with the characteristics of pancreatic β cells. The derivation of pancreatic cells from EC cells which are ES cell siblings would provide a valuable experimental tool in study of pancreatic development and function as well as rapid

  15. Neonatal Hyperglycemia due to Transient Neonatal Diabetes Mellitus in Puerto Rico

    OpenAIRE

    Fargas-Berríos, N.; García-Fragoso, L.; García-García, I.; Valcárcel, M.

    2015-01-01

    Neonatal hyperglycemia is a metabolic disorder found in the neonatal intensive care units. Neonatal diabetes mellitus (NDM) is a very uncommon cause of hyperglycemia in the newborn, occurring in 1 in every 400,000 births. There are two subtypes of neonatal diabetes mellitus: permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). We describe a term, small for gestational age, female neonate with transient neonatal diabetes mellitus who presented with poor ...

  16. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung.

    Science.gov (United States)

    Donovan, Chantal; Seow, Huei Jiunn; Bourke, Jane E; Vlahos, Ross

    2016-05-01

    β2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of β2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the β2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased β2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although β2-adrenoceptor and TNFα and IL-1β expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators. © 2016 The Author(s).

  17. CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D

    DEFF Research Database (Denmark)

    Madsen, Jens; Tornøe, Ida; Nielsen, Ole

    2003-01-01

    CRP-ductin is a protein expressed mainly by mucosal epithelial cells in the mouse. Sequence homologies indicate that CRP-ductin is the mouse homologue of human gp-340, a glycoprotein that agglutinates microorganisms and binds the lung mucosal collectin surfactant protein-D (SP-D). Here we report...... that purified CRP-ductin binds human SP-D in a calcium-dependent manner and that the binding is not inhibited by maltose. The same properties have previously been observed for gp-340 binding of SP-D. CRP-ductin also showed calcium-dependent binding to both gram-positive and -negative bacteria. A polyclonal...... antibody raised against gp-340 reacted specifically with CRP-ductin in Western blots. Immunoreactivity to CRP-ductin was found in the exocrine pancreas, in epithelial cells throughout the gastrointestinal tract and in the parotid ducts. A panel of RNA preparations from mouse tissues was screened for CRP...

  18. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  19. Selected Abstracts of the 2nd Congress of joint European Neonatal Societies (jENS 2017; Venice (Italy; October 31-November 4, 2017; Session "Neonatal Pulmonology, Neonatal Respiratory Support, Resuscitation"

    Directory of Open Access Journals (Sweden)

    --- Various Authors

    2017-10-01

    FACTANTS ON MORTALITY AND RESPIRA­TORY OUTCOMES IN PRETERM NEONATES WITH RDS: SYSTEMATIC REVIEWS AND META-ANALYSIS • L. De Martino, D. De LucaABS 18. A CLINICAL CASE OF A CHILD WITH CON­GENITAL CENTRAL HYPOVENTILATION SYN­DROME (CCHS IN THE EARLY NEONATAL PERIOD • R. Maslarska, M. Kalaydzhieva, S. Deneva, V. Konstantinova, S. Kontilska, I. Ilieva, J. Ivanova, V. Ivanova, E. Kerinova, R. Georgieva, T. TodorovABS 19. HEALTHCARE BURDEN OF BRONCHO­PUL­MO­NARY DYSPLASIA AMONG EXTREMELY PRETERM INFANTS IN THE UNITED STATES • M. Mowitz, S. Sarda, A. Mangili, R. Ayyagari, W. Gao, J. ZhaoABS 20. NCPAP PRESSURE AT INITIATION: IS HIGHER PRESSURE BETTER? • S. Bhisikar, S. Goel, S. Manerkar, J. MondkarABS 21. TRANSPORT OF HIGH-RISK NEONATES WITH RESPIRATORY FAILURE: A SINGLE CENTER COHORT ANALYSIS BASED ON THE TRANSPORT RISK INDEX OF PHYSIOLOGIC STABILITY VERSION II (TRIPS-II • M. Klemme, A. Staffler, K.M. Förster, A. Schulze, S. Herber-Jonat, J. Kappeler, A.W. FlemmerABS 22. RETROSPECTIVE AUDIT OF POSTNATAL OUTCOME OF ANTENATALLY DIAGNOSED RENAL PELVIS DILATATION • S. Vora, N. Kavalloor, T.L. Yap, P.C. Khoo, V. RajaduraiABS 23. CONTINUOUS POSITIVE AIRWAY PRESSURE IS NOT WELL TRANSMITTED DURING LESS INVASIVE SURFACTANT ADMINISTRATION: A PHYSIOLOGIC STUDY • G. Jourdain, M. De Tersant, V. Dell’Orto, G. Conti, D. De LucaABS 24. TGFβ SIGNALING IS CRITICAL FOR REGULATING A PROXIMAL DIFFERENTIATION PROGRAM AND LUNG BRANCHING MORPHOGENESIS THROUGH ACTIVATING NOTCH SIGNALING • P.N. Tsao, H.K. Chen, T.Y. Ling, W.V. CardosoABS 25. CHANGES IN EXPRESSION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF IN NEW­BORN RAT LUNGS AFTER VENTILATION • A. Remesal, E. Gutierrez, L. San Feliciano, M. Mateos, A. García-Sánchez, M. Isidoro-García, D. LudeñaABS 26. ANTENATAL GLUCOCORTICOIDS ATTENUATE CHANGES BY VENTILATION IN EXPRESSION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF IN NEWBORN RAT LUNG • M. Mateos, E. Gutierrez, L. San Feliciano, A. Remesal, M. Isidoro-García, A. Garc

  20. SOD2 Activity Is not Impacted by Hyperoxia in Murine Neonatal Pulmonary Artery Smooth Muscle Cells and Mice

    Directory of Open Access Journals (Sweden)

    Anita Gupta

    2015-03-01

    Full Text Available Pulmonary hypertension (PH complicates bronchopulmonary dysplasia (BPD in 25% of infants. Superoxide dismutase 2 (SOD2 is an endogenous mitochondrial antioxidant, and overexpression protects against acute lung injury in adult mice. Little is known about SOD2 in neonatal lung disease and PH. C57Bl/6 mice and isogenic SOD2+/+ and SOD2−/+ mice were placed in room air (control or 75% O2 (chronic hyperoxia, CH for 14 days. Right ventricular hypertrophy (RVH was assessed by Fulton’s index. Medial wall thickness (MWT and alveolar area were assessed on formalin fixed lung sections. Pulmonary artery smooth muscle cells (PASMC were placed in 21% or 95% O2 for 24 h. Lung and PASMC protein were analyzed for SOD2 expression and activity. Oxidative stress was measured with a mitochondrially-targeted sensor, mitoRoGFP. CH lungs have increased SOD2 expression, but unchanged activity. SOD2−/+ PASMC have decreased expression and activity at baseline, but increased SOD2 expression in hyperoxia. Hyperoxia increased mitochondrial ROS in SOD2+/+ and SOD2−/+ PASMC. SOD2+/+ and SOD2−/+ CH pups induced SOD2 expression, but not activity, and developed equivalent increases in RVH, MWT, and alveolar area. Since SOD2−/+ mice develop equivalent disease, this suggests other antioxidant systems may compensate for partial SOD2 expression and activity in the neonatal period during hyperoxia-induced oxidative stress.

  1. Correlation between US and MRI for prenatal lung volumetry in diaphragmatic hernia, and use of Doppler to identify the ipsilateral lung cap

    Energy Technology Data Exchange (ETDEWEB)

    Castellote, Amparo; Mencho, Sandra; Cadavid, Lina; Piqueras, Joaquim; Enriquez, Goya [University Children' s Hospital Vall d' Hebron, Department of Pediatric Radiology, Barcelona (Spain); Carreras, Elena; Higueras, Teresa [University Hospital Vall d' Hebron, Department of Obstetrics and Gynecology, Barcelona (Spain)

    2011-12-15

    Pulmonary hypoplasia is a common cause of neonatal death. To describe the correlation between relative fetal lung volume (RFLV) and lung-to-head ratio (LHR) in fetuses with unilateral diaphragmatic hernia. Additionally, to describe identification of the ipsilateral lung cap by power Doppler. Single-institution study of consecutive fetuses with diaphragmatic hernia. LHR (by US) and RFLV (by MRI) were correlated in fetuses with and without an ipsilateral lung cap seen at MRI. In four, color/power Doppler was used to follow the pulmonary artery of the ipsilateral lung to identify the compressed cap. The study included 48 fetuses of 20-38 weeks' gestational age (mean, 26 weeks). Mean LHR was 1.52 (range, 0.6-3) in fetuses with a lung cap and 1.15 (range, 0.6-2.58) in fetuses without (P = 0.043). Mean RFLV was 47.4% (range, 18-80%) in fetuses with and 32.9% (range, 14-57%) in fetuses without a lung cap (P = 0.005). RFLV and LHR correlated (r = 0.41, P = 0.01 in those with a cap; r = 0.50, P = 0.05 in those without). Power Doppler identified the ipsilateral lung cap and pulsed Doppler confirmed pulmonary vascularization in four of four fetuses. LHR underestimates lung volume in fetuses with an ipsilateral lung cap. Power Doppler may be useful for identifying the cap. (orig.)

  2. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model

    Science.gov (United States)

    Mazzilli, Sarah A.; Hershberger, Pamela A.; Reid, Mary E.; Bogner, Paul N.; Atwood, Kristopher; Trump, Donald L.; Johnson, Candace S.

    2015-01-01

    The chemopreventive actions of vitamin D were examined in the N-nitroso-tris-chloroethylurea (NTCU) mouse model, a progressive model of lung squamous cell carcinoma (SCC). SWR/J mice were fed a deficient diet (D) containing no vitamin D3, a sufficient diet (S) containing 2000 IU/kg vitamin D3, or the same diets in combination with the active metabolite of vitamin D, calcitriol (C) (80 μg/kg, weekly). The percentage (%) of the mucosal surface of large airways occupied by dysplastic lesions was determined in mice after treatment with a total dose of 15 or 25 μmol NTCU (N). After treatment with 15 μmol NTCU, the % of the surface of large airways containing high-grade dysplastic (HGD) lesions were vitamin D-deficient +NTCU (DN), 22.7 % (p<0.05 compared to vitamin D-sufficient +NTCU (SN)); DN + C, 12.3%; SN, 8.7%; and SN + C, 6.6%. The extent of HGD increased with NTCU dose in the DN group. Proliferation, assessed by Ki-67 labeling, increased upon NTCU treatment. The highest Ki-67 labeling index was seen in the DN group. As compared to SN mice, DN mice exhibited a 3-fold increase (p <0.005) in circulating white blood cells (WBC), a 20% (p <0.05) increase in IL-6 levels, and a 4 -fold (p <0.005) increase in WBC in bronchial lavages. Thus, vitamin D repletion reduces the progression of premalignant lesions, proliferation, and inflammation, and may thereby suppress development of lung SCC. Further investigations of the chemopreventive effects of vitamin D in lung SCC are warranted. PMID:26276745

  3. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-03-01

    Full Text Available Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer.

  4. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  5. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  6. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice.

    Directory of Open Access Journals (Sweden)

    Yogesh Saini

    Full Text Available Hypoxia is a state of decreased oxygen reaching the tissues of the body. During prenatal development, the fetus experiences localized occurrences of hypoxia that are essential for proper organogenesis and survival. The response to decreased oxygen availability is primarily regulated by hypoxia-inducible factors (HIFs, a family of transcription factors that modulate the expression of key genes involved in glycolysis, angiogenesis, and erythropoiesis. HIF-1α and HIF-2α, two key isoforms, are important in embryonic development, and likely are involved in lung morphogenesis. We have recently shown that the inducible loss of Hif-1α in lung epithelium starting at E4.5 leads to death within an hour of parturition, with symptoms similar to neonatal respiratory distress syndrome (RDS. In addition to Hif-1α, Hif-2α is also expressed in the developing lung, although the overlapping roles of Hif-1α and Hif-2α in this context are not fully understood. To further investigate the independent role of Hif-2α in lung epithelium and its ability to alter Hif-1α-mediated lung maturation, we generated two additional lung-specific inducible Hif-α knockout models (Hif-2α and Hif-1α+Hif-2α. The intrauterine loss of Hif-2α in the lungs does not lead to decreased viability or observable phenotypic changes in the lung. More interestingly, survivability observed after the loss of both Hif-1α and Hif-2α suggests that the loss of Hif-2α is capable of rescuing the neonatal RDS phenotype seen in Hif-1α-deficient pups. Microarray analyses of lung tissue from these three genotypes identified several factors, such as Scd1, Retlnγ, and Il-1r2, which are differentially regulated by the two HIF-α isoforms. Moreover, network analysis suggests that modulation of hormone-mediated, NF-κB, C/EBPα, and c-MYC signaling are central to HIF-mediated changes in lung development.

  7. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Kriska, J.; Honsa, P.; Dzamba, D.; Butenko, O.; Kolenicova, D.; Janečková, Lucie; Nahácka, Zuzana; Anděra, Ladislav; Kozmik, Zbyněk; Taketo, M.M.; Kořínek, Vladimír; Anderova, M.

    2016-01-01

    Roč. 1651, podzim (2016), s. 73-87 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378050 Keywords : beta-catenin signaling * neonatal mouse * neurogenesis * gliogenesis * patch-clamp technique * lon channel Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.746, year: 2016

  8. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    Science.gov (United States)

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models.

    Directory of Open Access Journals (Sweden)

    Irina Petrache

    Full Text Available Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. We now show that C24- and C16-ceramides are the most abundant lung ceramide species, paralleled by high expression of their synthetic enzymes, ceramide synthase 2 (CerS2 and CerS5, respectively. Furthermore, the ceramide species synthesis in the lung is homeostatically regulated, since mice lacking very long acyl chain C24-ceramides due to genetic deficiency of CerS2 displayed a ten-fold increase in C16-ceramides and C16-dihydroceramides along with elevation of acid sphingomyelinase and CerS5 activities. Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.

  10. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    Science.gov (United States)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  11. Nonintrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study.

    Science.gov (United States)

    Lewander, Märta; Bruzelius, Anders; Svanberg, Sune; Svanberg, Katarina; Fellman, Vineta

    2011-12-01

    A feasibility study on noninvasive, real-time monitoring of gases in lungs of preterm infants is reported, where a laser-spectroscopic technique using diode lasers tuned to oxygen and water vapor absorption lines was employed on realistic tissue phantoms. Our work suggests that the technique could provide a new possibility for surveillance of the lung function of preterm infants, in particular the oxygenation, which is of prime importance in this patient group.

  12. Neonatal Hyperglycemia due to Transient Neonatal Diabetes Mellitus in Puerto Rico.

    Science.gov (United States)

    Fargas-Berríos, N; García-Fragoso, L; García-García, I; Valcárcel, M

    2015-01-01

    Neonatal hyperglycemia is a metabolic disorder found in the neonatal intensive care units. Neonatal diabetes mellitus (NDM) is a very uncommon cause of hyperglycemia in the newborn, occurring in 1 in every 400,000 births. There are two subtypes of neonatal diabetes mellitus: permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). We describe a term, small for gestational age, female neonate with transient neonatal diabetes mellitus who presented with poor feeding tolerance and vomiting associated with hyperglycemia (385 mg/dL), glycosuria, and metabolic acidosis within the first 12 hours of life. The neonate was treated with intravenous insulin, obtaining a slight control of hyperglycemia. An adequate glycemia was achieved at 5 weeks of life. The molecular studies showed complete loss of maternal methylation at the TND differentially methylated region on chromosome 6q24. The etiology of this neonate's hyperglycemia was a hypomethylation of the maternal TND locus. A rare cause of neonatal diabetes mellitus must be considered if a neonate presents refractory hyperglycemia. To our knowledge, this is the first case reported in Puerto Rico of transient neonatal mellitus due to the uncommon mechanism of maternal hypomethylation of the TND locus. Its prevalence in Puerto Rico is unknown.

  13. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung.

    Science.gov (United States)

    Sager, Tina; Wolfarth, Michael; Keane, Michael; Porter, Dale; Castranova, Vincent; Holian, Andrij

    2016-01-01

    Nanotechnology is emerging as one of the world's most promising new technologies. From a toxicology perspective, nanoparticles possess two features that promote their bioactivity. The first involves physical-chemical characteristics of the nanoparticle, which include the surface area of the nanoparticle. The second feature is the ability of the nanoparticle to traverse cell membranes. These two important nanoparticle characteristics are greatly influenced by placing nanoparticles in liquid medium prior to animal exposure. Nanoparticles tend to agglomerate and clump in suspension, making it difficult to reproducibly deliver them for in vivo or in vitro experiments, possibly affecting experimental variability. Thus, we hypothesize that nanoparticle dispersion status will correlate with the in vivo bioactivity/toxicity of the particle. To test our hypothesis, nano-sized nickel oxide was suspended in four different dispersion media (phosphate-buffered saline (PBS), dispersion medium (DM), a combination of dipalmitoyl-phosphatidyl choline (DPPC) and albumin in concentrations that mimic diluted alveolar lining fluid), Survanta®, or pluronic (Pluronic F-68). Well-dispersed and poorly dispersed suspensions were generated in each media by varying sonication time on ice utilizing a Branson Sonifer 450 (25W continuous output, 20 min or 5 min, respectively). Mice (male, C57BL/6J, 7-weeks-old) were given 0-80 µg/mouse of nano-sized nickel oxide in the different states of dispersion via pharyngeal aspiration. At 1 and 7 d post-exposure, mice underwent whole lung lavage to assess pulmonary inflammation and injury as a function of dispersion status, dose and time. The results show that pre-exposure dispersion status correlates with pulmonary inflammation and injury. These results indicate that a greater degree of pre-exposure dispersion increases pulmonary inflammation and cytotoxicity, as well as decreases in the integrity of the blood-gas barrier in the lung.

  14. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis.

    Science.gov (United States)

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen

    2017-08-30

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  16. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions.

    Directory of Open Access Journals (Sweden)

    Vanessa Donega

    Full Text Available Intranasal treatment with C57BL/6 MSCs reduces lesion volume and improves motor and cognitive behavior in the neonatal hypoxic-ischemic (HI mouse model. In this study, we investigated the potential of human MSCs (hMSCs to treat HI brain injury in the neonatal mouse. Assessing the regenerative capacity of hMSCs is crucial for translation of our knowledge to the clinic. We determined the neuroregenerative potential of hMSCs in vitro and in vivo by intranasal administration 10 d post-HI in neonatal mice. HI was induced in P9 mouse pups. 1×10(6 or 2×10(6 hMSCs were administered intranasally 10 d post-HI. Motor behavior and lesion volume were measured 28 d post-HI. The in vitro capacity of hMSCs to induce differentiation of mouse neural stem cell (mNSC was determined using a transwell co-culture differentiation assay. To determine which chemotactic factors may play a role in mediating migration of MSCs to the lesion, we performed a PCR array on 84 chemotactic factors 10 days following sham-operation, and at 10 and 17 days post-HI. Our results show that 2×10(6 hMSCs decrease lesion volume, improve motor behavior, and reduce scar formation and microglia activity. Moreover, we demonstrate that the differentiation assay reflects the neuroregenerative potential of hMSCs in vivo, as hMSCs induce mNSCs to differentiate into neurons in vitro. We also provide evidence that the chemotactic factor CXCL10 may play an important role in hMSC migration to the lesion site. This is suggested by our finding that CXCL10 is significantly upregulated at 10 days following HI, but not at 17 days after HI, a time when MSCs no longer reach the lesion when given intranasally. The results described in this work also tempt us to contemplate hMSCs not only as a potential treatment option for neonatal encephalopathy, but also for a plethora of degenerative and traumatic injuries of the nervous system.

  17. Transient neonatal diabetes or neonatal hyperglycaemia: A case ...

    African Journals Online (AJOL)

    Transient neonatal diabetes and neonatal hyperglycaemia both present in the neonatal period with features of hyperglycaemia, dehydration and weight loss. Differentiating these conditions clinically is difficult. We describe the case of a 13 day old female whom we managed recently who could have had either condition.

  18. Neonatal Hyperglycemia due to Transient Neonatal Diabetes Mellitus in Puerto Rico

    Directory of Open Access Journals (Sweden)

    N. Fargas-Berríos

    2015-01-01

    Full Text Available Neonatal hyperglycemia is a metabolic disorder found in the neonatal intensive care units. Neonatal diabetes mellitus (NDM is a very uncommon cause of hyperglycemia in the newborn, occurring in 1 in every 400,000 births. There are two subtypes of neonatal diabetes mellitus: permanent neonatal diabetes mellitus (PNDM and transient neonatal diabetes mellitus (TNDM. We describe a term, small for gestational age, female neonate with transient neonatal diabetes mellitus who presented with poor feeding tolerance and vomiting associated with hyperglycemia (385 mg/dL, glycosuria, and metabolic acidosis within the first 12 hours of life. The neonate was treated with intravenous insulin, obtaining a slight control of hyperglycemia. An adequate glycemia was achieved at 5 weeks of life. The molecular studies showed complete loss of maternal methylation at the TND differentially methylated region on chromosome 6q24. The etiology of this neonate’s hyperglycemia was a hypomethylation of the maternal TND locus. A rare cause of neonatal diabetes mellitus must be considered if a neonate presents refractory hyperglycemia. To our knowledge, this is the first case reported in Puerto Rico of transient neonatal mellitus due to the uncommon mechanism of maternal hypomethylation of the TND locus. Its prevalence in Puerto Rico is unknown.

  19. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Thrombin contributes to bronchoalveolar lavage fluid mitogenicity in lung disease of the premature infant

    NARCIS (Netherlands)

    Dik, Willem A.; Zimmermann, Luc J. I.; Naber, Brigitta A.; Janssen, Daphne J.; van Kaam, Anton H. L. C.; Versnel, Marjan A.

    2003-01-01

    Chronic lung disease of prematurity (CLD) is a common consequence of neonatal respiratory distress syndrome (RDS) and is characterized by pulmonary fibrosis. Increased thrombin activity in the alveolar compartment is associated with pulmonary fibrosis in adults and animals, and contributes to

  1. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice

    Science.gov (United States)

    Tanaka, Emi; Ogawa, Yuko; Mukai, Takeo; Sato, Yoshiaki; Hamazaki, Takashi; Nagamura-Inoue, Tokiko; Harada-Shiba, Mariko; Shintaku, Haruo; Tsuji, Masahiro

    2018-01-01

    Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs) have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs) in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12), and low-dose (1 × 104) or high-dose (1 × 105) UC-MSCs were administered intravenously 48 h after the insult (P14). To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF) measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by modulating

  2. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice

    Directory of Open Access Journals (Sweden)

    Emi Tanaka

    2018-03-01

    Full Text Available Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12, and low-dose (1 × 104 or high-dose (1 × 105 UC-MSCs were administered intravenously 48 h after the insult (P14. To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by

  3. Frequency and Intensive Care Related Risk Factors of Pneumothorax in Ventilated Neonates

    Directory of Open Access Journals (Sweden)

    Ramesh Bhat Yellanthoor

    2014-01-01

    Full Text Available Objectives. Relationships of mechanical ventilation to pneumothorax in neonates and care procedures in particular are rarely studied. We aimed to evaluate the relationship of selected ventilator variables and risk events to pneumothorax. Methods. Pneumothorax was defined as accumulation of air in pleural cavity as confirmed by chest radiograph. Relationship of ventilator mode, selected settings, and risk procedures prior to detection of pneumothorax was studied using matched controls. Results. Of 540 neonates receiving mechanical ventilation, 10 (1.85% were found to have pneumothorax. Respiratory distress syndrome, meconium aspiration syndrome, and pneumonia were the underlying lung pathology. Pneumothorax mostly (80% occurred within 48 hours of life. Among ventilated neonates, significantly higher percentage with pneumothorax received mandatory ventilation than controls (70% versus 20%; P20 cm H2O and overventilation were not significantly associated with pneumothorax. More cases than controls underwent care procedures in the preceding 3 hours of pneumothorax event. Mean airway pressure change (P=0.052 and endotracheal suctioning (P=0.05 were not significantly associated with pneumothorax. Reintubation (P=0.003, and bagging (P=0.015 were significantly associated with pneumothorax. Conclusion. Pneumothorax among ventilated neonates occurred at low frequency. Mandatory ventilation and selected care procedures in the preceding 3 hours had significant association.

  4. Frequency and Intensive Care Related Risk Factors of Pneumothorax in Ventilated Neonates

    Science.gov (United States)

    Bhat Yellanthoor, Ramesh; Ramdas, Vidya

    2014-01-01

    Objectives. Relationships of mechanical ventilation to pneumothorax in neonates and care procedures in particular are rarely studied. We aimed to evaluate the relationship of selected ventilator variables and risk events to pneumothorax. Methods. Pneumothorax was defined as accumulation of air in pleural cavity as confirmed by chest radiograph. Relationship of ventilator mode, selected settings, and risk procedures prior to detection of pneumothorax was studied using matched controls. Results. Of 540 neonates receiving mechanical ventilation, 10 (1.85%) were found to have pneumothorax. Respiratory distress syndrome, meconium aspiration syndrome, and pneumonia were the underlying lung pathology. Pneumothorax mostly (80%) occurred within 48 hours of life. Among ventilated neonates, significantly higher percentage with pneumothorax received mandatory ventilation than controls (70% versus 20%; P 20 cm H2O and overventilation were not significantly associated with pneumothorax. More cases than controls underwent care procedures in the preceding 3 hours of pneumothorax event. Mean airway pressure change (P = 0.052) and endotracheal suctioning (P = 0.05) were not significantly associated with pneumothorax. Reintubation (P = 0.003), and bagging (P = 0.015) were significantly associated with pneumothorax. Conclusion. Pneumothorax among ventilated neonates occurred at low frequency. Mandatory ventilation and selected care procedures in the preceding 3 hours had significant association. PMID:24876958

  5. A novel method for embedding neonatal murine calvaria in methyl methacrylate suitable for visualizing mineralization, cellular and structural detail.

    Science.gov (United States)

    Horn, D A; Garrett, I R

    2004-01-01

    The study of undecalcified bone by histological methods is essential in the field of bone research. Culturing skeletal tissues such as neonatal murine calvaria provides a reliable bridge between assessment of bone formation in vitro and anabolic activity in vivo and contains most of the essential elements of bone for studying bone formation. Neonatal calvarial assay, supported by histological methods, is used to study the anabolic effects of a wide variety of factors and compounds on bone tissue. To optimize visualization and histomorphometric measurements using neonatal calvaria, we developed a method that provides high quality tissue sections suitable for routine and histochemical staining. Undecalcified neonatal mouse calvaria were processed and embedded using a low temperature methyl methacrylate procedure. Various staining methods were performed on deplastisized and floated sections to examine mineralization and to identify cells. The Von Kossa stain counterstained with a modified H & E yielded precise images of unmineralized bone including mineralization sites, and distinct osteoblasts and osteoclasts. Toluidine blue, Ladewig's trichrome, tartrate-resistant acid phosphatase, Goldner, H & E and Villanueva stains also were tested on the undecalcified neonatal calvaria sections.

  6. Clinical Pharmacology of Furosemide in Neonates: A Review

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2013-09-01

    Full Text Available Furosemide is the diuretic most used in newborn infants. It blocks the Na+-K+-2Cl− symporter in the thick ascending limb of the loop of Henle increasing urinary excretion of Na+ and Cl−. This article aimed to review the published data on the clinical pharmacology of furosemide in neonates to provide a critical, comprehensive, authoritative and, updated survey on the metabolism, pharmacokinetics, pharmacodynamics and side-effects of furosemide in neonates. The bibliographic search was performed using PubMed and EMBASE databases as search engines; January 2013 was the cutoff point. Furosemide half-life (t1/2 is 6 to 20-fold longer, clearance (Cl is 1.2 to 14-fold smaller and volume of distribution (Vd is 1.3 to 6-fold larger than the adult values. t1/2 shortens and Cl increases as the neonatal maturation proceeds. Continuous intravenous infusion of furosemide yields more controlled diuresis than the intermittent intravenous infusion. Furosemide may be administered by inhalation to infants with chronic lung disease to improve pulmonary mechanics. Furosemide stimulates prostaglandin E2 synthesis, a potent dilator of the patent ductus arteriosus, and the administration of furosemide to any preterm infants should be carefully weighed against the risk of precipitation of a symptomatic patent ductus arteriosus. Infants with low birthweight treated with chronic furosemide are at risk for the development of intra-renal calcifications.

  7. How to decrease bronchopulmonary dysplasia in your neonatal intensive care unit today and “tomorrow”

    Science.gov (United States)

    Nelin, Leif D.; Bhandari, Vineet

    2017-01-01

    Bronchopulmonary dysplasia, or BPD, is the most common chronic lung disease in infants. Genetic predisposition and developmental vulnerability secondary to antenatal and postnatal infections, compounded with exposure to hyperoxia and invasive mechanical ventilation to an immature lung, result in persistent inflammation, culminating in the characteristic pulmonary phenotype of BPD of impaired alveolarization and dysregulated vascularization. In this article, we highlight specific areas in current management, and speculate on therapeutic strategies that are on the horizon, that we believe will make an impact in decreasing the incidence of BPD in your neonatal intensive care units. PMID:28503300

  8. Chronic lung disease in very low birth weight infants: Persistence and improvement of a quality improvement process in a tertiary level neonatal intensive care unit.

    Science.gov (United States)

    Birenbaum, H J; Pfoh, E R; Helou, S; Pane, M A; Marinkovich, G A; Dentry, A; Yeh, Hsin-Chieh; Updegraff, L; Arnold, C; Liverman, S; Cawman, H

    2016-05-19

    We previously demonstrated a significant reduction in our incidence of chronic lung disease in our NICU using potentially better practices of avoiding delivery room endotracheal intubation and using early nasal CPAP. We sought to demonstrate whether these improvements were sustained and or improved over time. We conducted a retrospective, cross-sectional analysis of infants 501-1500 grams born at our hospital between 2005 and 2013. Infants born during the 2005-2007, 2008-2010 and 2011-2013 epochs were grouped together, respectively. Descriptive analysis was conducted to determine the number and percent of maternal and neonatal characteristics by year grouping. Chi-squared tests were used to determine whether there were any statistically significant changes in characteristics across year groupings.. Two outcome variables were assessed: a diagnosis of chronic lung disease based on the Vermont Oxford Network definition and being discharged home on supplemental oxygen. There was a statistically significant improvement in the incidence of chronic lung disease in infants below 27 weeks' gestation in the three year period in the 2011-2013 cohort compared with those in the 2005-2007 cohort. We also found a statistically significant improvement in the number of infants discharged on home oxygen with birth weights 751-1000 grams and infants with gestational age less than 27 weeks in the 2011-2013 cohort compared to the 2005-2007 cohort. We demonstrated sustained improvement in our incidence of CLD between 2005 and 2013. We speculate that a multifaceted strategy of avoiding intubation and excessive oxygen in the delivery room, the early use of CPAP, as well as the use of volume targeted ventilation, when needed, may help significantly reduce the incidence of CLD.

  9. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach.

    Science.gov (United States)

    Manilal-Reddy, P I; Al-Jumaily, A M

    2009-01-01

    A continuous oscillatory positive airway pressure with pressure oscillations incidental to the mean airway pressure (bubble CPAP) is defined as a modified form of traditional continuous positive airway pressure (CPAP) delivery where pressure oscillations in addition to CPAP are administered to neonates with lung diseases. The mechanical effect of the pressure oscillations on lung performance is investigated by formulating mathematical models of a typical bubble CPAP device and a simple representation of a neonatal respiratory system. Preliminary results of the respiratory system's mechanical response suggest that bubble CPAP may improve lung performance by minimizing the respiratory system impedance and that the resonant frequency of the respiratory system may be a controlling factor. Additional steps in terms of clinical trials and a more complex respiratory system model are required to gain a deeper insight into the mechanical receptiveness of the respiratory system to pressure oscillations. However, the current results are promising in that they offer a deeper insight into the trends of variations that can be expected in future extended models as well as the model philosophies that need to be adopted to produce results that are compatible with experimental verification.

  11. Neonatal androgenization of hypogonadal (hpg male mice does not abolish estradiol-induced FSH production and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kerr Jeffrey B

    2005-09-01

    Full Text Available Abstract Background Testicular development is arrested in the hypogonadal (hpg mouse due to a congenital deficiency in hypothalamic gonadotropin-releasing hormone (GnRH synthesis. Chronic treatment of male hpg mice with estradiol induces FSH synthesis and secretion, and causes testicular maturation and qualitatively normal spermatogenesis. As estradiol negative feedback normally inhibits FSH production in the male, this study tested whether this paradoxical response to estradiol in the male hpg mouse might be due to inadequate masculinisation or incomplete defeminization in the neonatal period. Previous studies have demonstrated that treatment of hpg mice with testosterone propionate in the immediate neonatal period is necessary to allow full reproductive behaviors to be expressed following suitable endocrine stimulation at adult ages. Methods Hpg mice were treated with 100 μg testosterone propionate or vehicle on postnatal day 2. At 35 days of age, subgroups of these mice were treated with silastic implants containing estradiol or cholesterol. Reproductive behavior was scored in tests with steroid-primed female mice, then testicular development was assessed histologically, and measures of pituitary FSH content made at 85 days of age. Results The neonatal testosterone propionate treatment successfully defeminized female litter mates, as revealed by impaired vaginal opening and deficiencies in lordosis behavior, and it allowed appropriate male reproductive behavior to be expressed in a proportion of the hpg males when tested at an adult age. However, neonatal androgen supplementation did not block or even reduce the subsequent actions of estradiol in increasing pituitary FSH content, nor did it affect the ability of estradiol to induce qualitatively normal spermatogenesis. Conclusion The ability of the hpg male to show a "female" neuroendocrine response to estradiol is not a result of inadequate androgenization during neonatal development, and

  12. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  13. CONGENITAL DIAPHRAGMATIC HERNIA IN A TWO-DAY-OLD NEONATE: ANAESTHETIC MANAGEMENT AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Tridip Jyoti

    2016-04-01

    Full Text Available INTRODUCTION Congenital diaphragmatic hernia in a neonate is a challenging task to any anaesthesiologist. CDH occurs due to an early developmental defect that results in the extrusion of intra-abdominal organs (i.e. stomach, small intestines, spleen, liver into the thoracic cavity. In 85% of the cases it is left sided. This leads to lung hypoplasia, pulmonary hypertension, and pulmonary arteriolar dysregulation/reactivity. Historically, CDH was considered to be a surgical emergency and aggressive hyperventilatory strategies with high peak inspiratory pressures were employed to improve survival. But recent multicentre studies have shown the beneficial effect of conservative low volume ventilation with low inflation pressures and permissive hypercapnia. We present to you the successful management of a two day old neonate with this ventilation strategy.

  14. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.

    Science.gov (United States)

    Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M

    2015-03-01

    High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.

  15. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

    Science.gov (United States)

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J

    2015-03-03

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.

    Science.gov (United States)

    Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming

    2012-05-01

    3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer.

  17. The neonatal brain

    International Nuclear Information System (INIS)

    Flodmark, O.

    1987-01-01

    The clinical examination of the CNS in the neonate is often difficult in cases of complex pathology. Diagnostic imaging of the neonatal brain has become extremely useful and in the last decade has developed in two main directions: CT and US. MR imaging has been used recently with varying success in the diagnosis of pathology in the neonatal brain. Despite technical difficulties, this imaging method is likely to become increasingly important in the neonate. The paper examines the normal neonatal brain anatomy as seen with the different modalities, followed by pathologic conditions. Attention is directed to the common pathology, in asphyxiated newborns, the patholphysiology of intraventicular hemorrhage and periventricular leukomalacia in the preterm neonate, and hypoxic-ischemic brain injury in the term neonate. Pitfalls, artifacts, and problems in image interpretation are illustrated. Finally, the subsequent appearance of neonatal pathology later in infancy and childhood is discussed

  18. Neonatal hypertension.

    Science.gov (United States)

    Sharma, Deepak; Farahbakhsh, Nazanin; Shastri, Sweta; Sharma, Pradeep

    2017-03-01

    Neonatal hypertension (HT) is a frequently under reported condition and is seen uncommonly in the intensive care unit. Neonatal HT has defined arbitrarily as blood pressure more than 2 standard deviations above the base as per the age or defined as systolic BP more than 95% for infants of similar size, gestational age and postnatal age. It has been diagnosed long back but still is the least studied field in neonatology. There is still lack of universally accepted normotensive data for neonates as per gestational age, weight and post-natal age. Neonatal HT is an important morbidity that needs timely detection and appropriate management, as it can lead to devastating short-term effect on various organs and also poor long-term adverse outcomes. There is no consensus yet about the treatment guidelines and majority of treatment protocols are based on the expert opinion. Neonate with HT should be evaluated in detail starting from antenatal, perinatal, post-natal history, and drug intake by neonate and mother. This review article covers multiple aspects of neonatal hypertension like definition, normotensive data, various etiologies and methods of BP measurement, clinical features, diagnosis and management.

  19. Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways.

    Science.gov (United States)

    Livraghi-Butrico, Alessandra; Wilkinson, Kristen J; Volmer, Allison S; Gilmore, Rodney C; Rogers, Troy D; Caldwell, Ray A; Burns, Kimberlie A; Esther, Charles R; Mall, Marcus A; Boucher, Richard C; O'Neal, Wanda K; Grubb, Barbara R

    2018-02-01

    The epithelial Na + channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na + hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na + hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na + transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na + absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na + transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na + transport and disease severity, suggesting dose dependency of these two variables.

  20. Astrogliosis in the neonatal and adult murine brain post-trauma

    DEFF Research Database (Denmark)

    Rostworowski, M; Balasingam, V; Chabot, S

    1997-01-01

    inflammatory cytokines in injury systems in which the presence or absence of astrogliosis could be produced selectively. A stab injury to the adult mouse brain using a piece of nitrocellulose (NC) membrane elicited a prompt and marked increase in levels of transcripts for interleukin (IL)-1alpha, IL-1beta......, and because its exogenous administration to rodents enhanced astrogliosis after adult or neonatal insults. A lack of requirement for endogenous IFN-gamma was demonstrated by three lines of evidence. First, no increase in IFN-gamma transcripts could be found at injury. Second, the administration...

  1. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  2. Etiologies of Prolonged Unconjugated Hyperbilirubinemia in Neonates Admitted to Neonatal Wards

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Sabzehei

    2015-12-01

    Full Text Available Background: Jaundice is a common condition among neonates. Prolonged unconjugated hyperbilirubinemia occurs when jaundice persists beyond two weeks in term neonates and three weeks in preterm neonates. This study aimed to determine the etiologies of prolonged unconjugated hyperbilirubinemia in infants admitted to the neonatal ward of Besat Hospital in Hamadan, Iran. Methods: This study was conducted on all infants diagnosed with prolonged unconjugated hyperbilirubinemia during 2007-2012 in the neonatal ward of Besat Hospital in Hamadan, Iran. Demographic characteristics of infants, physical examination and laboratory findings were collected and analyzed to determine the etiologies of neonatal hyperbilirubinemia. Results: In total, 100 infants diagnosed with neonatal hyperbilirubinemia were enrolled in this study, including 49 male and 51 female neonates with mean age of 20±1 days and mean bilirubin level of 17.5±4.0 mg/dL. Main causes of hyperbilirubinemia were urinary tract infection, ABO incompatibility, hypothyroidism and glucose-6-phosphate dehydrogenase deficiency in 14%, 5%, 6% and 5% of neonates, respectively. Moreover, unknown etiologies, such as breastfeeding, were detected in 70% of the studied infants. Conclusion: According to the results of this study, determining the main causes of prolonged unconjugated hyperbilirubinemia in neonates is of paramount importance. In the majority of cases, neonatal hyperbilirubinemia is associated with physiological factors, such as breastfeeding.

  3. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  4. Up-regulation of ALG-2 in hepatomas and lung cancer tissue

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Winding, Pernille

    2003-01-01

    , a result confirmed by immunohistochemical analysis. Staining of four different lung cancer tissue microarrays including specimens of 263 patients showed that ALG-2 is mainly localized to epithelial cells and significantly up-regulated in small-cell lung cancers and in non-small-cell lung cancers. Our...... using Western blot analysis and immunohistochemistry. Western blot analysis of 15 different adult mouse tissues demonstrated that ALG-2 is ubiquitously expressed. We found that ALG-2 was more than threefold overexpressed in rat liver hepatoma compared to normal rat liver using Western blot analysis...

  5. Synergism between 2,3,7,8-tetrachlorodibenzo-p-dioxin and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone on lung tumor incidence in mice

    International Nuclear Information System (INIS)

    Wang Yingjan; Chang Han; Kuo, Yu-Chun; Wang, Chien-Kai; Siao, Shih-He; Chang, Louis W.; Lin Pinpin

    2011-01-01

    Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen, TCDD only induced oxidative DNA damages. In our present study, we combined TCDD with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to investigate their tumorigenic effects on lung tumor formation in A/J mice. Application of NNK at a tumorigenic dose (2 mg/mouse) induced lung adenoma in both male and female A/J mice. Neither application of NNK at a non-tumorigenic dose (1 mg/mouse) nor repeated application of TCDD alone increased tumor incidence. Following the single injection of NNK at a non-tumorigenic dose (1 mg/mouse), repeated application of TCDD significantly increased the lung tumor incidence in female, but not in male, A/J mice 24 weeks later. Utilizing the real-time RT-PCR array, we found that P16 mRNA was significantly reduced in female lung, but not male lung, of NNK/TCDD co-treated A/J mice. With immunohistochemical staining, we confirmed that nuclear P16 protein was reduced in the lungs of NNK/TCDD co-treated female mice. These data suggest that P16 reduction at least partially contributed to synergistic effects of TCDD in lung tumorigenesis.

  6. Knowledge, attitudes and practices of neonatal staff concerning neonatal pain management

    Directory of Open Access Journals (Sweden)

    Sizakele L.T. Khoza

    2014-11-01

    Full Text Available Background: Neonatal pain management has received increasing attention over the past four decades. Research into the effects of neonatal pain emphasises the professional, ethical and moral obligations of staff to manage pain for positive patient outcomes. However, evaluation studies continuously report evidence of inadequate neonate pain management and a gap between theory and practice. Objective: This study reviewed current practice in neonatal pain management to describe the knowledge, attitudes and practices of nurses and doctors regarding pain management for neonates in two academic hospitals. Method: A non-experimental, prospective quantitative survey, the modified Infant Pain Questionnaire, was used to collect data from 150 nurses and doctors working in the neonatal wards of two academic hospitals in central Gauteng. Results: The response rate was 35.33% (n = 53, most respondents being professional nurses (88.68%; n = 47 working in neonatal intensive care units (80.77%; n = 42; 24 (45.28% had less than 5 years’ and 29 respondents 6 or more years’ working experience in neonatal care. A review of pain management in the study setting indicated a preference for pharmacological interventions to relieve moderate to severe pain. An association (p < 0.05 was found between pain ratings on 5 procedures and frequency of administration of pharmacological pain management. Two-thirds of respondents (64% reported that there were no pain management guidelines in the neonatal wards in which they worked. Conclusion: The interventions to manage moderate neonatal pain are in line with international guidelines. However, neonatal pain management may not occur systematically based on prior assessment of neonatal pain, choice of most appropriate intervention and evaluation. This study recommends implementation of a guideline to standardise practice and ensure consistent and adequate pain management in neonates.

  7. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  8. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    OpenAIRE

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A cli...

  9. The response of mouse skin and lung to fractionated x-rays

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1975-01-01

    The relationship between total dose and number of fractions has been investigated for damage to lung and skin in mice. Single doses and various numbers of fractions have been given and the results are analysed in two ways: (i) by comparing the fractionated treatment with a single dose. With this approach, and assuming that the observed damage to lung and skin is the result of cell killing, it is estimated that the ratio of initial to final slope of the cell survival curve is about 7:1; (ii) by measuring the additional dose required when the number of fractions is doubled. These results are roughly fitted by a single-hit times multitarget survival-curve model, with the ratio of slopes about 3:1. It is concluded from this discrepancy that the two-component model is an inadequate description of the survival curve for the cells of either skin or lung. (author)

  10. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors.

    OpenAIRE

    Shapiro, J; Jersky, J; Katzav, S; Feldman, M; Segal, S

    1981-01-01

    Experiments were made to investigate the effect of four anesthetic drugs that are commonly used in surgical practice on the postoperative growth of mouse tumors in syngeneic recipients. These experiments revealed that some of the anesthetics when applied for surgical excision of the local tumor, strongly accelerated postoperative progression of spontaneous lung metastases produced by the 3LL Lewis lung carcinoma and by the B16 melanoma. Some of the drugs caused the appearance of metastases in...

  11. Neonatal retinoblastoma

    Directory of Open Access Journals (Sweden)

    Tero T Kivelä

    2017-01-01

    Full Text Available From 7% to 10% of all retinoblastomas and from 44% to 71% of familial retinoblastomas in developed countries are diagnosed in the neonatal period, usually through pre- or post-natal screening prompted by a positive family history and sometimes serendipitously during screening for retinopathy of prematurity or other reasons. In developing countries, neonatal diagnosis of retinoblastoma has been less common. Neonatal retinoblastoma generally develops from a germline mutation of RB1, the retinoblastoma gene, even when the family history is negative and is thus usually hereditary. At least one-half of infants with neonatal retinoblastoma have unilateral tumors when the diagnosis is made, typically the International Intraocular Retinoblastoma Classification (Murphree Group B or higher, but most germline mutation carriers will progress to bilateral involvement, typically Group A in the fellow eye. Neonatal leukokoria usually leads to the diagnosis in children without a family history of retinoblastoma, and a Group C tumor or higher is typical in the more advanced involved eye. Almost all infants with neonatal retinoblastoma have at least one eye with a tumor in proximity to the foveola, but the macula of the fellow eye is frequently spared. Consequently, loss of reading vision from both eyes is exceptional. A primary ectopic intracranial neuroblastic tumor known as trilateral retinoblastoma is no more common after neonatal than other retinoblastoma. For many reasons, neonatal retinoblastoma may be a challenge to eradicate, and the early age at diagnosis and relatively small tumors do not guarantee the preservation of both eyes of every involved child. Oncology nurses can be instrumental in contributing to better outcomes by ensuring that hereditary retinoblastoma survivors receive genetic counseling, by referring families of survivors to early screening programs when they are planning for a baby, and by providing psychological and practical support

  12. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  13. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Walkup, Laura L. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States); Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States)

    2016-12-15

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  14. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    International Nuclear Information System (INIS)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J.; Walkup, Laura L.; Woods, Jason C.

    2016-01-01

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  15. Digital gene atlas of neonate common marmoset brain.

    Science.gov (United States)

    Shimogori, Tomomi; Abe, Ayumi; Go, Yasuhiro; Hashikawa, Tsutomu; Kishi, Noriyuki; Kikuchi, Satomi S; Kita, Yoshiaki; Niimi, Kimie; Nishibe, Hirozumi; Okuno, Misako; Saga, Kanako; Sakurai, Miyano; Sato, Masae; Serizawa, Tsuna; Suzuki, Sachie; Takahashi, Eiki; Tanaka, Mami; Tatsumoto, Shoji; Toki, Mitsuhiro; U, Mami; Wang, Yan; Windak, Karl J; Yamagishi, Haruhiko; Yamashita, Keiko; Yoda, Tomoko; Yoshida, Aya C; Yoshida, Chihiro; Yoshimoto, Takuro; Okano, Hideyuki

    2018-03-01

    Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples.

    Science.gov (United States)

    Donczo, Boglarka; Szarka, Mate; Tovari, Jozsef; Ostoros, Gyorgyi; Csanky, Eszter; Guttman, Andras

    2017-06-01

    Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Relative Efficacy of Uptake and Presentation of Mycobacterium bovis BCG Antigens by Type I Mouse Lung Epithelial Cells and Peritoneal Macrophages ▿

    Science.gov (United States)

    Kumari, Mandavi; Saxena, Rajiv K.

    2011-01-01

    Flow cytometric studies indicated that both peritoneal macrophages (PMs) and primary lung epithelial (PLE) cells isolated from mouse lungs could take up fluorescence-tagged Mycobacterium bovis BCG. BCG uptake in both cases was significantly inhibited by cytochalasin D, indicating active internalization of BCG by these cells. Confocal microscopy data further confirmed that BCG was internalized by PLE cells. BCG sonicate antigen (sBCG) had marked toxicity toward PMs but was relatively nontoxic to PLE cells. Accordingly, BCG sonicate antigen induced a significantly higher apoptotic and necrotic response in PMs compared to that in PLE cells. Both PMs and PLE cells exposed to BCG antigens and fixed thereafter could efficiently present antigens to purified BCG-sensitized T helper cells, as assessed by the release of interleukin-2 (IL-2) and gamma interferon (IFN-γ). If, however, PLE cells were fixed before exposure to BCG, antigen presentation was abrogated, indicating that the PLE cells may in some way process the BCG antigen. A comparison of efficacies of BCG-pulsed PLE cells and PMs to present antigen at various antigen-presenting cell (APC)/T cell ratios indicated that PMs had only marginally greater APC function than that of PLE cells. Staining with specific monoclonal antibodies indicated that the cultured PLE cells used for antigen presentation essentially comprised type I epithelial cells. Our results suggest that type I lung epithelial cells may present BCG antigens to sensitized T helper cells and that their performance as APCs is comparable with that of PMs. PMID:21646448

  18. Chronic interstitial lung disease in children

    Directory of Open Access Journals (Sweden)

    Matthias Griese

    2018-02-01

    Full Text Available Children's interstitial lung diseases (chILD are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks.

  19. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens

    Directory of Open Access Journals (Sweden)

    Rodríguez-Padilla Cristina

    2011-09-01

    Full Text Available Abstract Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. Conclusion In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18% of the lung carcinomas and 1 out of 7 (14% of acute inflamatory lung infiltrate specimens studied of a Mexican Population.

  20. A comparison of Wisconsin neonatal intensive care units with national data on outcomes and practices.

    Science.gov (United States)

    Hagen, Erika W; Sadek-Badawi, Mona; Albanese, Aggie; Palta, Mari

    2008-11-01

    Improvements in neonatal care over the past 3 decades have increased survival of infants at lower birthweights and gestational ages. However, outcomes and practices vary considerably between hospitals. To describe maternal and infant characteristics, neonatal intensive care units (NICU) practices, morbidity, and mortality in Wisconsin NICUs, and to compare outcomes in Wisconsin to the National Institute of Child Health and Human Development network of large academic medical center NICUs. The Newborn Lung Project Statewide Cohort is a prospective observational study of all very low birthweight (< or =1500 grams) infants admitted during 2003 and 2004 to the 16 level III NICUs in Wisconsin. Anonymous data were collected for all admitted infants (N=1463). Major neonatal morbidities, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and retinopathy of prematurity (ROP) were evaluated. The overall incidence of BPD was 24% (8%-56% between NICUs); IVH incidence was 23% (9%-41%); the incidence of NEC was 7% (0%-21%); and the incidence of grade III or higher ROP was 10% (0%-35%). The incidence rates of major neonatal morbidities in Wisconsin were similar to those of a national network of academic NICUs.

  1. Prospective longitudinal evaluation of lung function during the first year of life after extracorporeal membrane oxygenation.

    Science.gov (United States)

    Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M

    2011-03-01

    To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.

  2. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples.

    Science.gov (United States)

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  3. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat.

    Science.gov (United States)

    Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou

    2018-01-08

    The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.

  4. Cigarette Smoke Exposure during Pregnancy Alters Fetomaternal Cell Trafficking Leading to Retention of Microchimeric Cells in the Maternal Lung

    Science.gov (United States)

    Vogelgesang, Anja; Scapin, Cristina; Barone, Caroline; Tam, Elaine

    2014-01-01

    Cigarette smoke exposure causes chronic oxidative lung damage. During pregnancy, fetal microchimeric cells traffic to the mother. Their numbers are increased at the site of acute injury. We hypothesized that milder chronic diffuse smoke injury would attract fetal cells to maternal lungs. We used a green-fluorescent-protein (GFP) mouse model to study the effects of cigarette smoke exposure on fetomaternal cell trafficking. Wild-type female mice were exposed to cigarette smoke for about 4 weeks and bred with homozygote GFP males. Cigarette smoke exposure continued until lungs were harvested and analyzed. Exposure to cigarette smoke led to macrophage accumulation in the maternal lung and significantly lower fetal weights. Cigarette smoke exposure influenced fetomaternal cell trafficking. It was associated with retention of GFP-positive fetal cells in the maternal lung and a significant reduction of fetal cells in maternal livers at gestational day 18, when fetomaternal cell trafficking peaks in the mouse model. Cells quickly clear postpartum, leaving only a few, difficult to detect, persisting microchimeric cells behind. In our study, we confirmed the postpartum clearance of cells in the maternal lungs, with no significant difference in both groups. We conclude that in the mouse model, cigarette smoke exposure during pregnancy leads to a retention of fetal microchimeric cells in the maternal lung, the site of injury. Further studies will be needed to elucidate the effect of cigarette smoke exposure on the phenotypic characteristics and function of these fetal microchimeric cells, and confirm its course in cigarette smoke exposure in humans. PMID:24832066

  5. Electrical Impedance Tomography: a new study method for neonatal Respiratory Distress Syndrome?

    Science.gov (United States)

    Chatziioannidis, I; Samaras, T; Nikolaidis, N

    2011-01-01

    Treatment of cardiorespiratory system diseases is a procedure that usually demands data collection on terms of the anatomy and the operation of the organs that are under study. Electrical Impedance Tomography (EIT) is an alternative approach, in comparison to existing techniques. With EIT electrodes are placed in the perimeter of the human body and images of the estimated organ are reconstructed, using the measurement of its impendence (or resistance) distribution and determining its alteration through time, while at the same time the patient is not exposed to ionizing radiation. Its clinical use presupposes the correct placement of the electrodes over the perimeter of the human body, the rapid data collection and electrical safety. It is a low cost technique and it is implemented near the patient. It is able to determine the distribution of ventilation, blood supply, diffused or localized lung defects, but it can also estimate therapeutic interventions or alteration to assisted ventilation of the neonate. EIT was developed at the beginning of the 1980s, but it has only recently begun to be implemented on neonates, and especially in the study of their respiratory system function. The low rate of image analysis is considered to be a drawback, but it is offset by the potential offered for the estimation of lungs' function (both under normal and pathological conditions), since ventilation and resistance are two quite similar concepts. In this review the most important studies about EIT are mentioned as a method of estimating respiratory distress syndrome in neonates. In terms of the above mentioned development, it is supposed that this technique will offer a great amount of help to the doctor in his / her estimations of the cardiorespiratory system and to his / her selection of the best intervening strategies. PMID:22435017

  6. Redistribution of Extracellular Superoxide Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but Protects Against Experimental Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Laurie G. Sherlock

    2018-03-01

    Full Text Available Background: A naturally occurring single nucleotide polymorphism (SNP, (R213G, in extracellular superoxide dismutase (SOD3, decreases SOD3 matrix binding affinity. Humans and mature mice expressing the R213G SNP exhibit increased cardiovascular disease but decreased lung disease. The impact of this SNP on the neonatal lung at baseline or with injury is unknown. Methods: Wild type and homozygous R213G mice were injected with intraperitoneal bleomycin or phosphate buffered saline (PBS three times weekly for three weeks and tissue harvested at 22 days of life. Vascular and alveolar development were evaluated by morphometric analysis and immunostaining of lung sections. Pulmonary hypertension (PH was assessed by right ventricular hypertrophy (RVH. Lung protein expression for superoxide dismutase (SOD isoforms, catalase, vascular endothelial growth factor receptor 2 (VEGFR2, endothelial nitric oxide synthase (eNOS and guanosine triphosphate cyclohydrolase-1 (GTPCH-1 was evaluated by western blot. SOD activity and SOD3 expression were measured in serum. Results: In R213G mice, SOD3 lung protein expression decreased, serum SOD3 protein expression and SOD serum activity increased compared to wild type (WT mice. Under control conditions, R213G mice developed pulmonary vascular remodeling (decreased vessel density and increased medial wall thickness and PH; alveolar development was similar between strains. After bleomycin injury, in contrast to WT, R213G mice were protected from impaired alveolar development and their vascular abnormalities and PH did not worsen. Bleomycin decreased VEGFR2 and GTPCH-1 only in WT mice. Conclusion: R213G neonatal mice demonstrate impaired vascular development and PH at baseline without alveolar simplification, yet are protected from bleomycin induced lung injury and worsening of pulmonary vascular remodeling and PH. These results show that vessel bound SOD3 is essential in normal pulmonary vascular development, and

  7. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sanjo

    Full Text Available We previously reported the successful induction and completion of mouse spermatogenesis by culturing neonatal testis tissues. The culture medium consisted of α-minimum essential medium (α-MEM, supplemented with Knockout serum replacement (KSR or AlbuMAX, neither of which were defined chemically. In this study, we formulated a chemically defined medium (CDM that can induce mouse spermatogenesis under organ culture conditions. It was found that bovine serum albumin (BSA purified through three different procedures had different effects on spermatogenesis. We also confirmed that retinoic acid (RA played crucial roles in the onset of spermatogonial differentiation and meiotic initiation. The added lipids exhibited weak promoting effects on spermatogenesis. Lastly, luteinizing hormone (LH, follicle stimulating hormone (FSH, triiodothyronine (T3, and testosterone (T combined together promoted spermatogenesis until round spermatid production. The CDM, however, was not able to produce elongated spermatids. It was also unable to induce spermatogenesis from the very early neonatal period, before 2 days postpartum, leaving certain factors necessary for spermatogenic induction in mice unidentified. Nonetheless, the present study provided important basic information on testis organ culture and spermatogenesis in vitro.

  8. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury.

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Monteiro-Neto, Valério; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack; Lima-Neto, Lidio Gonçalves

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100-300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF- α and IL-1 β expression in comparison with vehicle controls ( p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100  μ g/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.

  9. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  10. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice

    DEFF Research Database (Denmark)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua

    2016-01-01

    , intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent...... within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180....... Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP...

  11. New generation neonatal high frequency ventilators: effect of oscillatory frequency and working principles on performance.

    Science.gov (United States)

    Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C

    2015-03-01

    Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.

  12. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Science.gov (United States)

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Circulating histones are mediators of trauma-associated lung injury.

    Science.gov (United States)

    Abrams, Simon T; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping; Wang, Guozheng; Toh, Cheng-Hock

    2013-01-15

    Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. To investigate the pathological roles of circulating histones in trauma-induced lung injury. Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause-effect relationship was studied using cells and mouse models. In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival outcomes in patients.

  14. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    Science.gov (United States)

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  15. The neonatal marmoset monkey ovary is very primitive exhibiting many oogonia

    Science.gov (United States)

    Fereydouni, B; Drummer, C; Aeckerle, N; Schlatt, S; Behr, R

    2014-01-01

    Oogonia are characterized by diploidy and mitotic proliferation. Human and mouse oogonia express several factors such as OCT4, which are characteristic of pluripotent cells. In human, almost all oogonia enter meiosis between weeks 9 and 22 of prenatal development or undergo mitotic arrest and subsequent elimination from the ovary. As a consequence, neonatal human ovaries generally lack oogonia. The same was found in neonatal ovaries of the rhesus monkey, a representative of the old world monkeys (Catarrhini). By contrast, proliferating oogonia were found in adult prosimians (now called Strepsirrhini), which is a group of ‘lower’ primates. The common marmoset monkey (Callithrix jacchus) belongs to the new world monkeys (Platyrrhini) and is increasingly used in reproductive biology and stem cell research. However, ovarian development in the marmoset monkey has not been widely investigated. Herein, we show that the neonatal marmoset ovary has an extremely immature histological appearance compared with the human ovary. It contains numerous oogonia expressing the pluripotency factors OCT4A, SALL4, and LIN28A (LIN28). The pluripotency factor-positive germ cells also express the proliferation marker MKI67 (Ki-67), which has previously been shown in the human ovary to be restricted to premeiotic germ cells. Together, the data demonstrate the primitiveness of the neonatal marmoset ovary compared with human. This study may introduce the marmoset monkey as a non-human primate model to experimentally study the aspects of primate primitive gonad development, follicle assembly, and germ cell biology in vivo. PMID:24840529

  16. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  17. Mouse Intermittent Hypoxia Mimicking Apnea of Prematurity: Effects on Myelinogenesis and Axonal Maturation

    Science.gov (United States)

    CAI, JUN; TUONG, CHI MINH; ZHANG, YIPING; SHIELDS, CHRISTOPHER B.; GUO, GANG; FU, HUI; GOZAL, DAVID

    2014-01-01

    Premature babies are at high risk for both infantile apnea and long-term neurobehavioral deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development and synapse formation mainly occur in the 3rd trimester of gestation and 1st postnatal year, infantile apnea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 to 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix and cerebellum, but not the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultra-structural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of Synapsin I, Synaptophysin and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioral sequelae. PMID:21953180

  18. Advancing Neurologic Care in the Neonatal Intensive Care Unit with a Neonatal Neurologist

    Science.gov (United States)

    Mulkey, Sarah B.; Swearingen, Christopher J.

    2014-01-01

    Neonatal neurology is a growing sub-specialty area. Given the considerable amount of neurologic problems present in the neonatal intensive care unit, a neurologist with expertise in neonates is becoming more important. We sought to evaluate the change in neurologic care in the neonatal intensive care unit at our tertiary care hospital by having a dedicated neonatal neurologist. The period post-neonatal neurologist showed a greater number of neurology consultations (Pneurology encounters per patient (Pneurology became part of the multi-disciplinary team providing focused neurologic care to newborns. PMID:23271754

  19. Role for Cela1 in Postnatal Lung Remodeling and AAT-deficient Emphysema

    DEFF Research Database (Denmark)

    Joshi, Rashika; Heinz, Andrea; Fan, Qiang

    2018-01-01

    RATIONALE: α1-antitrypsin (AAT) deficiency-related emphysema is the fourth leading indication for lung transplantation. Chymotrypsin-like elastase 1 (Cela1) is a digestive protease that is expressed during lung development in association with regions of elastin remodeling, exhibits stretch...... elastin similarly to pancreatic elastase. Cela1 promoter and protein sequences were phylogenetically distinct in the placental mammal lineage suggesting an adaptive role for lung-expressed Cela1 in this clade. A six-week antisense oligo mouse model of AAT deficiency resulted in emphysema with increased......-dependent expression during lung regeneration, and binds lung elastin in a stretch-dependent manner. AAT covalently neutralizes Cela1 in vitro. OBJECTIVES: We sought to determine the role of Cela1 in postnatal lung physiology, whether it interacted with AAT in vivo, and any effects it may have in the context of AAT...

  20. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific.

    Science.gov (United States)

    Meyer, Karolin F; Verkaik-Schakel, Rikst Nynke; Timens, Wim; Kobzik, Lester; Plösch, Torsten; Hylkema, Machteld N

    2017-01-01

    The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.

  1. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    Science.gov (United States)

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human lymphocytes.Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  2. Quantifying morphological parameters of the terminal branching units in a mouse lung by phase contrast synchrotron radiation computed tomography.

    Directory of Open Access Journals (Sweden)

    Jeongeun Hwang

    Full Text Available An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman's method was adopted for the whole-lung sample preparation, and Canny's edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method's feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies.

  3. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  4. Exposure of the mouse perinatal testis to radiation leads to hypospermia at sexual maturity

    International Nuclear Information System (INIS)

    Forand, A.; Messiaen, S.; Habert, R.; Bernardino-Sgherri, J.

    2009-01-01

    The first round of mouse spermatogenesis begins from 3 to 4 days after birth through differentiation of gonocytes into spermatogonial-stem cells and type A spermatogonia. Consequently, this step of differentiation may determine generation of the original population of stem cells and the fertility potential of the adult mouse. We aimed to determine the effect of perinatal exposure to ionizing radiation on the testis at the end of the first wave of spermatogenesis and at sexual maturity. Our results show that, radiation sensitivity of the testis substantially decreases from late foetal life to the end of the first week after birth. In addition, partial or full recovery from radiation induced testicular weight loss occurred between the first round of spermatogenesis and sexual maturity, and this was associated with the stimulation of spermatogonial proliferation. Exposure of mice at 17.5 days after conception or at 1 day after birth to γ-rays decreased the sperm counts at sexual maturity, while exposure of 8 day-old mice had no effect. This suggests that irradiation of late foetal or early neonatal testes has a direct impact on the generation of the neonatal spermatogonial-stem cell pool. (authors)

  5. Physiological effects of a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates.

    Science.gov (United States)

    Mehta, Y; Shetye, J; Nanavati, R; Mehta, A

    2016-01-01

    To assess the changes on various physiological cardio-respiratory parameters with a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates with respiratory distress syndrome. This is a prospective observational study in a neonatal intensive care unit setting. Sixty preterm neonates with respiratory distress syndrome, thirty mechanically ventilated and thirty extubated preterm neonates requiring chest physiotherapy were enrolled in the study. Parameters like heart rate (HR), respiratory rate (RR), Silverman Anderson score (SA score in extubated), oxygen saturation (SpO2) and auscultation findings were noted just before, immediately after chest physiotherapy but before suctioning, immediately after suctioning and after 5 minutes of the session. The mean age of neonates was 9.55±5.86 days and mean birth weight was 1550±511.5 g. As there was no significant difference in the change in parameters on intergroup comparison, further analysis was done considering two groups together (n = 60) except for SA score. As SA score was measured only in extubated neonates. HR did not change significantly during chest physiotherapy compared to the baseline but significantly decreased after 15 minutes (p = 0.01). RR and SA score significantly increased after suctioning (p = 0.014) but reduced after 15 minutes (p = physiotherapy (p = physiotherapy may help facilitate the overall well-being of a fragile preterm neonate. Lung auscultation finding suggests that after suctioning, there was a significant reduction in crepitation (p = 0.0000) but significant increase in crepitation after 15 minutes (p = physiotherapy. Chest physiotherapy is safe in preterm neonates. Suctioning causes significant cardio-respiratory parameter changes, but within normal physiological range. Thus, chest physiotherapy should be performed with continuous monitoring only when indicated and not as a routine procedure. More research is needed

  6. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome

    Science.gov (United States)

    Cheung, Evelyn Ning Man; George, Susan R.; Andrade, Danielle M.; Chow, Eva W. C.; Silversides, Candice K.; Bassett, Anne S.

    2015-01-01

    Purpose Hypocalcemia is a common endocrinological condition in 22q11.2 deletion syndrome. Neonatal hypocalcemia may affect neurodevelopment. We hypothesized that neonatal hypocalcemia would be associated with rare, more severe forms of intellectual disability in 22q11.2 deletion syndrome. Methods We used a logistic regression model to investigate potential predictors of intellectual disability severity, including neonatal hypocalcemia, neonatal seizures, and complex congenital heart disease, e.g., interrupted aortic arch, in 149 adults with 22q11.2 deletion syndrome. Ten subjects had moderate-to-severe intellectual disability. Results The model was highly significant (P < 0.0001), showing neonatal seizures (P = 0.0018) and neonatal hypocalcemia (P = 0.047) to be significant predictors of a more severe level of intellectual disability. Neonatal seizures were significantly associated with neonatal hypocalcemia in the entire sample (P < 0.0001), regardless of intellectual level. There was no evidence for the association of moderate- to-severe intellectual disability with other factors such as major structural brain malformations in this sample. Conclusion The results suggest that neonatal seizures may increase the risk for more severe intellectual deficits in 22q11.2 deletion syndrome, likely mediated by neonatal hypocalcemia. Neonatal hypocalcemia often remains unrecognized until the postseizure period, when damage to neurons may already have occurred. These findings support the importance of early recognition and treatment of neonatal hypocalcemia and potentially neonatal screening for 22q11.2 deletions. PMID:23765047

  7. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  8. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    Science.gov (United States)

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  9. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    Science.gov (United States)

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  10. Toxicity of benzyl alcohol in adult and neonatal mice

    International Nuclear Information System (INIS)

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD 50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14 C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  11. Effect of inborn versus outborn delivery on clinical outcomes in ventilated preterm neonates: secondary results from the NEOPAIN trial.

    Science.gov (United States)

    Palmer, Kristine G; Kronsberg, Shari S; Barton, Bruce A; Hobbs, Charlotte A; Hall, Richard W; Anand, K J S

    2005-04-01

    The objective of this study was to evaluate the effect of birth center (inborn versus outborn) on morbidity and mortality for preterm neonates (23 to 32 weeks) using data collected prospectively within a uniform protocol. Secondary analyses of data from the NEurologic Outcomes and Pre-emptive Analgesia In Neonates (NEOPAIN) trial (n=898) were performed to evaluate the effect of inborn versus outborn delivery on neonatal outcomes, including the occurrence of severe intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), chronic lung disease (CLD), and mortality. Outborn babies were more likely to have severe IVH (p=0.0005); this increased risk persisted after controlling for severity of illness. When adjustments for antenatal steroids were added, the effect of birth center was no longer significant. Neither the occurrences of PVL or CLD nor mortality were significantly different between the inborn and outborn infants. Outborn babies are more likely to have severe IVH than inborn babies, perhaps because their mothers are less likely to receive antenatal steroids. Improvements in antenatal steroid administration to high-risk women may substantially reduce neonatal morbidity.

  12. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis

    OpenAIRE

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I.; Creighton, Chad J.; Kheradmand, Farrah; DeMayo, Francesco J.

    2015-01-01

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 resul...

  13. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.

  14. The role of Sox2 on lung epithelial airway epithelial differentiation

    NARCIS (Netherlands)

    J.K. Ochieng (Joshua)

    2014-01-01

    markdownabstract__Abstract__ The foregut is crucial for development of respiratory organs including the lungs. Foregut morphogenesis starts around embryonic day 8.0 in mouse when the endoderm epithelial sheet folds ventrally during gastrulation [1,2]. At embryonic day 9.0, the ventral folding

  15. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    International Nuclear Information System (INIS)

    Lin, Zhoumeng; Fisher, Jeffrey W.; Wang, Ran; Ross, Matthew K.; Filipov, Nikolay M.

    2013-01-01

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data.

  16. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhoumeng [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wang, Ran [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Ross, Matthew K. [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Filipov, Nikolay M., E-mail: filipov@uga.edu [Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602 (United States)

    2013-11-15

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data

  17. Failure to thrive among neonates, associated factors and early neonatal outcome

    International Nuclear Information System (INIS)

    Thomas, Erica; Manji, Karim; Mpembeni Rose

    2005-01-01

    Failure to thrive or growth failure is an important feature of problems prevalent in the neonate. It remains one of the greatest challenges for the practicing pediatrician and it is a common pathway or outcome of several different underlaying infant and maternal conditions. To determine the prevalence, possible causes and early neonatal outcome of failure to thrive among young infants admitted to the Neonatal Unit in this hospital. A cross-sectional descriptive hospital based study, was carried for 10 months from April 2001 to January 2002 at the Neonatal Unit at Muhimbili National Hospital. (author)

  18. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  19. Detecting small lung tumors in mouse models by refractive-index microradiology

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chia-Chi; Hwu, Y. [Academia Sinica, Institute of Physics, Taipei (China); National Tsing Hua University, Department of Engineering and System Science, Hsinchu (China); Zhang, Guilin; Yue, Weisheng; Li, Yan; Xue, Hongjie [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Liu, Ping; Sun, Jianqi; Xu, Lisa X. [Shanghai Jiao Tong University, Shanghai (China); Wang, Chang Hai; Chen, Nanyow; Lu, Chien Hung; Lee, Ting-Kuo [Academia Sinica, Institute of Physics, Taipei (China); Yang, Yuh-Cheng; Lu, Yen-Ta [Mackay Memorial Hospital, Taipei City (China); Ching, Yu-Tai [National Chiao Tung University, Department of Computer Science, Hsinchu (China); Shih, T.F.; Yang, P.C. [National Taiwan University, College of Medicine, Taipei (China); Je, J.H. [Pohang University of Science and Technology Pohang, X-ray Imaging Center, Pohang CT, Kyungbuk (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2011-08-15

    Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm{sup 3} with accuracy better than 1 x 10{sup -3} mm{sup 3}. This level of performance is currently suitable for animal studies, while further developments are required for clinical application. (orig.)

  20. Detecting small lung tumors in mouse models by refractive-index microradiology

    International Nuclear Information System (INIS)

    Chien, Chia-Chi; Hwu, Y.; Zhang, Guilin; Yue, Weisheng; Li, Yan; Xue, Hongjie; Liu, Ping; Sun, Jianqi; Xu, Lisa X.; Wang, Chang Hai; Chen, Nanyow; Lu, Chien Hung; Lee, Ting-Kuo; Yang, Yuh-Cheng; Lu, Yen-Ta; Ching, Yu-Tai; Shih, T.F.; Yang, P.C.; Je, J.H.; Margaritondo, G.

    2011-01-01

    Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm 3 with accuracy better than 1 x 10 -3 mm 3 . This level of performance is currently suitable for animal studies, while further developments are required for clinical application. (orig.)

  1. Risk Factors for Neonatal Mortality Among Very Low Birth Weight Neonates

    Directory of Open Access Journals (Sweden)

    Fatemeh Nayeri

    2013-05-01

    Full Text Available The objective of this study is to determine risk factors causing increase in very low birth way (VLBW neonatal mortality. The medical files of all neonates weighing ≤1500 g, born in Vali-e-Asr hospital (2001-2004 were studied. Two groups of neonates (living and dead were compared up to the time of hospital discharge or death. A total of 317 neonates were enrolled. A meaningful relationship existed between occurrence of death and low gestational age (P=0.02, low birth weight, lower than 1000 g (P=0.001, Apgar score <6 at 5th minutes (P=0.001, resuscitation at birth (P=0.001, respiratory distress syndrome (P=0.001 need for mechanical ventilation (P=0.001, neurological complications (P=0.001 and intraventricular hemorrhage (P=0.001. Regression analysis indicated that each 250 g weight increase up to 1250 g had protective effect, and reduced mortality rate. The causes of death of those neonates weighting over 1250 g should be sought in factors other than weight. Survival rate was calculated to be 80.4% for neonates weighing more than 1000 g. The most important high risk factors affecting mortality of neonates are: low birth weight, need for resuscitation at birth, need for ventilator use and intraventricular hemorrhage.

  2. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Science.gov (United States)

    Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei

    2017-01-01

    Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816

  3. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  4. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    Science.gov (United States)

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  5. Effects of Gui Zhi Ma Huang Ge Ban Tang on the TLR7 Pathway in Influenza Virus Infected Mouse Lungs in a Cold Environment.

    Science.gov (United States)

    Qin, Hong-Qiong; Shi, Shan-Shan; Fu, Ying-Jie; Yan, Yu-Qi; Wu, Sha; Tang, Xiao-Long; Chen, Xiao-Yin; Hou, Guang-Hui; Jiang, Zhen-You

    2018-01-01

    We wished to investigate the effects of the traditional Chinese medicine Gui Zhi Ma Huang Ge Ban Tang on controlling influenza A virus (IAV) infection and improving inflammation in mouse lungs. Mice were maintained in normal and cold environments and infected with IAV by intranasal application, respectively. Real-time quantitative polymerase chain reaction was used to measure mRNA expression of TLR7, myeloid differentiation primary response 88 (MyD88), and nuclear factor-kappa B (NF- κ B)p65 in the TLR7 signaling pathway and virus replication in lungs. Western blotting was used to measure expression levels of TLR7, MyD88, and NF- κ B p65 proteins. Flow cytometry was used to detect the proportion of T-helper (Th)1/Th2 and Th17/T-regulatory (Treg) cells. Application of Gui Zhi Ma Huang Ge Ban Tang in influenza-infected mice in a cold environment showed (i) downregulation of TLR7, MyD88, and NF- κ Bp65; (ii) inhibition of transcriptional activities of promoters coding for TLR7, MyD88, and NF- κ Bp65; (iii) reduction in the proportion of Th1/Th2 and Th17/Treg cells. Gui Zhi Ma Huang Ge Ban Tang had a good therapeutic effect on mice infected with IAV, especially in the cold environment. It could reduce lung inflammation in mice significantly and elicit an anti-influenza effect by downregulating expression of the key factors in TLR7 signaling pathway.

  6. Migration Of Ancylostoma caninum Larvae Into Lungs Of Mice Fed ...

    African Journals Online (AJOL)

    Two randomly selected groups of Swiss Albino Wistar mice were therefore infected with 1000 infective larvae of Ancylostoma caninum/mouse. Test mice received 250mg Allium sativum/kg body weight daily ... KEY WORDS: Allium sativum, lungs, Ancylostoma caninum. Global Journal of Pure and Applied Sciences Vol.11(2) ...

  7. Hiperbilirrubinemia neonatal agravada Aggravated neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Ana Campo González

    2010-09-01

    Full Text Available INTRODUCCIÓN. La mayoría de las veces la ictericia en el recién nacido es un hecho fisiológico, causado por una hiperbilirrubinemia de predominio indirecto, secundario a inmadurez hepática e hiperproducción de bilirrubina. El objetivo de este estudio fue determinar el comportamiento de la hiperbilirrubinemia neonatal en el Hospital Docente Ginecoobstétrico de Guanabacoa en los años 2007 a 2009. MÉTODOS. Se realizó un estudio descriptivo y retrospectivo de 173 recién nacidos que ingresaron al Departamento de Neonatología con diagnóstico de hiperbilirrubinemia agravada. RESULTADOS. La incidencia de hiperbilirrubinemia neonatal agravada fue del 3,67 % y predominó en hermanos con antecedentes de ictericia (56,65 %. El tiempo de aparición fue de 48 a 72 h (76,87 % y entre los factores agravantes se hallaron el nacimiento pretérmino y el bajo peso al nacer. La mayoría de los pacientes fueron tratados con luminoterapia (90,17 %. CONCLUSIÓN. La hiperbilirrubinemia neonatal agravada constituye un problema de salud. Los factores agravantes son la prematuridad y el bajo peso al nacer. La luminoterapia es una medida terapéutica eficaz para su tratamiento.INTRODUCTION. Most of times jaundice in newborn is a physiological fact due to hyperbilirubinemia of indirect predominance, secondary to liver immaturity and to bilirubin hyperproduction. The aim of present of present study was to determine the behavior of neonatal hyperbilirubinemia in the Gynecology and Obstetrics Teaching Hospital of Guanabacoa municipality from 2007 to 2009. METHODS. A retrospective and descriptive study was conducted in 173 newborn patients admitted in the Neonatology Department diagnosed with severe hyperbilirubinemia. RESULTS. The incidence of severe neonatal hyperbilirubinemia was of 3,67% with predominance in brothers with a history of jaundice (56,65%. The time of appearance was of 48 to 72 hrs (76,87% and among the aggravating factors were the preterm birth and

  8. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    Science.gov (United States)

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  9. Phenobarbital Treatment at a Neonatal Age Results in Decreased Efficacy of Omeprazole in Adult Mice.

    Science.gov (United States)

    Tien, Yun-Chen; Piekos, Stephanie C; Pope, Chad; Zhong, Xiao-Bo

    2017-03-01

    Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters the activity of another drug taken concomitantly. This can lead to decreased drug efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice attempt to avoid potential interactions when multiple drugs are coadministrated; however, there is still a large knowledge gap in understanding how drugs taken in the past can contribute to DDIs in the future. The goal of this study was to investigate the consequence of neonatal drug exposure on efficacy of other drugs administered up through adult life. We selected a mouse model to test phenobarbital exposure at a neonatal age and its impact on efficacy of omeprazole in adult life. The results of our experiment show an observed decrease in omeprazole's ability to raise gastric pH in adult mice that received single or multiple doses of phenobarbital at a neonatal age. This effect may be associated with the permanent induction of cytochrome P450 enzymes in adult liver after neonatal phenobarbital treatment. Our data indicates that DDIs may result from drugs administered in the past in an animal model and should prompt re-evaluation of how DDIs are viewed and how to avoid long-term DDIs in clinical practice. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Persistent and progressive long-term lung disease in survivors of preterm birth.

    Science.gov (United States)

    Urs, Rhea; Kotecha, Sailesh; Hall, Graham L; Simpson, Shannon J

    2018-04-13

    Preterm birth accounts for approximately 11% of births globally, with rates increasing across many countries. Concurrent advances in neonatal care have led to increased survival of infants of lower gestational age (GA). However, infants born poor respiratory outcomes throughout childhood, into adolescence and adulthood. Indeed, survivors of preterm birth have shown increased respiratory symptoms, altered lung structure, persistent and even declining lung function throughout childhood. The mechanisms behind this persistent and sometimes progressive lung disease are unclear, and the implications place those born preterm at increased risk of respiratory morbidity into adulthood. This review aims to summarise what is known about the long-term pulmonary outcomes of contemporary preterm birth, examine the possible mechanisms of long-term respiratory morbidity in those born preterm and discuss addressing the unknowns and potentials for targeted treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function.

    Science.gov (United States)

    Caron, Emilie; Ciofi, Philippe; Prevot, Vincent; Bouret, Sebastien G

    2012-08-15

    It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.

  12. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  13. Management of neonatal abstinence syndrome in neonates born to opioid maintained women.

    Science.gov (United States)

    Ebner, Nina; Rohrmeister, Klaudia; Winklbaur, Bernadette; Baewert, Andjela; Jagsch, Reinhold; Peternell, Alexandra; Thau, Kenneth; Fischer, Gabriele

    2007-03-16

    Neonates born to opioid-maintained mothers are at risk of developing neonatal abstinence syndrome (NAS), which often requires pharmacological treatment. This study examined the effect of opioid maintenance treatment on the incidence and timing of NAS, and compared two different NAS treatments (phenobarbital versus morphine hydrochloride). Fifty-three neonates born to opioid-maintained mothers were included in this study. The mothers received methadone (n=22), slow-release oral morphine (n=17) or buprenorphine (n=14) throughout pregnancy. Irrespective of maintenance treatment, all neonates showed APGAR scores comparable to infants of non-opioid dependent mothers. No difference was found between the three maintenance groups regarding neonatal weight, length or head circumference. Sixty percent (n=32) of neonates required treatment for NAS [68% in the methadone-maintained group (n=15), 82% in the morphine-maintained group (n=14), and 21% in the buprenorphine-maintained group (n=3)]. The mean duration from birth to requirement of NAS treatment was 33 h for the morphine-maintained group, 34 h for the buprenorphine-maintained group and 58 h for the methadone-maintained group. In neonates requiring NAS treatment, those receiving morphine required a significantly shorter mean duration of treatment (9.9 days) versus those treated with phenobarbital (17.7 days). Results suggest that morphine hydrochloride is preferable for neonates suffering NAS due to opioid withdrawal.

  14. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?

    International Nuclear Information System (INIS)

    Asikainen, Tiina M.; White, Carl W.

    2005-01-01

    Pulmonary antioxidants and their therapeutic implications have been extensively studied during past decades. The purpose of this review is to briefly summarize the key findings of these studies as well as to elaborate on some novel approaches with respect to potential preventive treatments for neonatal chronic lung disease bronchopulmonary dysplasia (BPD). Such new ideas include, for example, modification of transcription factors governing the hypoxic response pathways, important in angiogenesis, cell survival, and glycolytic responses. The fundamental strategy behind that approach is that fetal lung normally develops under hypoxic conditions and that this hypoxic, growth-favoring environment is interrupted by a premature birth. Importantly, during fetal lung development, alveolar development appears to be dependent on vascular development. Therefore, enhancement of signaling factors that occur during hypoxic fetal life ('continued fetal life ex utero'), including angiogenic responses, could potentially lead to improved lung growth and thereby alleviate the alveolar and vascular hypoplasia characteristic of BPD

  15. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    João Paulo Portela Catani

    2016-12-01

    Full Text Available Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.

  16. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2018-04-01

    Full Text Available Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb+ currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation

  17. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein.

    Science.gov (United States)

    Cornejo, Isabel; Villanueva, Sandra; Burgos, Johanna; López-Cayuqueo, Karen I; Chambrey, Régine; Julio-Kalajzić, Francisca; Buelvas, Neudo; Niemeyer, María I; Figueiras-Fierro, Dulce; Brown, Peter D; Sepúlveda, Francisco V; Cid, L P

    2018-01-01

    Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K + channel present in epithelia where it shares membrane localization with the Na + /K + -pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb + currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It

  18. Transcriptome Analysis of the Preterm Rabbit Lung after Seven Days of Hyperoxic Exposure.

    Directory of Open Access Journals (Sweden)

    Thomas Salaets

    Full Text Available The neonatal management of preterm born infants often results in damage to the developing lung and subsequent morbidity, referred to as bronchopulmonary dysplasia (BPD. Animal models may help in understanding the molecular processes involved in this condition and define therapeutic targets. Our goal was to identify molecular pathways using the earlier described preterm rabbit model of hyperoxia induced lung-injury. Transcriptome analysis by mRNA-sequencing was performed on lungs from preterm rabbit pups born at day 28 of gestation (term: 31 days and kept in hyperoxia (95% O2 for 7 days. Controls were preterm pups kept in normoxia. Transcriptomic data were analyzed using Array Studio and Ingenuity Pathway Analysis (IPA, in order to identify the central molecules responsible for the observed transcriptional changes. We detected 2217 significantly dysregulated transcripts following hyperoxia, of which 90% could be identified. Major pathophysiological dysregulations were found in inflammation, lung development, vascular development and reactive oxygen species (ROS metabolism. To conclude, amongst the many dysregulated transcripts, major changes were found in the inflammatory, oxidative stress and lung developmental pathways. This information may be used for the generation of new treatment hypotheses for hyperoxia-induced lung injury and BPD.

  19. Neonatal pain

    Science.gov (United States)

    Walker, Suellen M

    2014-01-01

    Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback. PMID:24330444

  20. Maternal or neonatal infection: association with neonatal encephalopathy outcomes.

    Science.gov (United States)

    Jenster, Meike; Bonifacio, Sonia L; Ruel, Theodore; Rogers, Elizabeth E; Tam, Emily W; Partridge, John Colin; Barkovich, Anthony James; Ferriero, Donna M; Glass, Hannah C

    2014-07-01

    Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy. This study is a cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern, and severity of injury on neonatal magnetic resonance imaging, as well as neurodevelopment at 30 mo (neuromotor examination, or Bayley Scales of Infant Development, second edition mental development index encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns.

  1. Tuberculosis neonatal

    OpenAIRE

    Pastor Durán, Xavier

    1986-01-01

    PROTOCOLOS TERAPEUTICOS. TUBERCULOSIS NEONATAL 1. CONCEPTO La tuberculosis neonatal es la infección del recién nacido producida por el bacilo de Koch. Es una situación rara pero grave que requiere un diagnóstico precoz y un tratamiento enérgico..

  2. A dual role for the immune response in a mouse model of inflammation-associated lung cancer

    OpenAIRE

    Dougan, Michael; Li, Danan; Neuberg, Donna; Mihm, Martin; Googe, Paul; Wong, Kwok-Kin; Dranoff, Glenn

    2011-01-01

    Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary in...

  3. Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Kragh, Kasper Nørskov; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs...... of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs...... in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also...

  4. Effects of Vitamin E in Neonates and Young Infants

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2016-05-01

    Full Text Available Vitamin E (alpha-tocopherol is a potent and natural antioxidant. Vitamin E is concentrated from soybean oil. The Committee on Fetus and Newborn of the Academy of the American of Pediatrics endorsed 1 to 2 mg/dl as the normal range of serum tocopherol level. Human infants are born with low stores of vitamin E, thus they require an adequate intake of vitamin E soon after birth. The optimum intravenous dose of vitamin E is 2.8 mg/kg per day (maximum 7 mg/kg per day. Treating very-low-birth-weight infants with 100 mg/kg vitamin E for >1 week results in levels >3.5 mg/dl and significantly reduces the risks of severe retinopathy, intracranial hemorrhage, hemolytic anemia, chronic lung disease, retrolental fibroplasia and incidence and severity of intraventricular hemorrhage, but increases the risks of sepsis, necrotizing enterocolitis and can cause retinal hemorrhage in very-low-birth-weight infants. Vitamin E supplementation prevents the isolated vitamin E deficiency that causes spinocerebellar symptoms. The major benefits arising from elevated dosages of vitamin E have been the relief of symptoms of vitamin E deficiency in infants with abetalipoproteinamia and chronic cholestasis. Excessive doses of vitamin E may result in side effects and careful monitoring of vitamin E is thus essential. Neonates born to mothers treated with high doses of vitamin E have significantly lower birth weight compared to neonates born to untreated mothers. Vitamin E is not teratogenic. The aim of this study was to review the effects of vitamin E in neonates and young infants.

  5. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice.

    Science.gov (United States)

    Staal, Jerome A; Alexander, Samuel R; Liu, Yao; Dickson, Tracey D; Vickers, James C

    2011-01-01

    Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4-6), adolescent animals (P25-28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (pglial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.

  6. Neonatal doses from X ray examinations by birth weight in a neonatal intensive care unit

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Akahane, K.; Aota, T.; Hada, M.; Takano, Y.; Kai, M.; Kusama, T

    2003-07-01

    The aim of this study was to investigate the frequency and type of X ray examinations performed on neonates classified according to their birth weight in a neonatal intensive care unit (NICU). In this study, the radiology records of 2408 neonates who were admitted to the NICU of Oita Prefectural Hospital between January 1994 and September 1999 were investigated. This study revealed that the neonates with earlier gestational ages and lower birth weights required longer NICU stays and more frequent X ray examinations made using a mobile X ray unit. The average number of X ray examinations performed on neonates of less than 750 g birth weight was 26 films per neonate. In regard to computed tomography and fluoroscopy, no significant relationship was found between the birth weight and number of X rays. This study revealed that the entrance-surface dose per neonate was dependent upon the birth weight, while the maximum dose was not dependent upon the birth weight. The average neonatal dose in the NICU was predominantly from computed tomography and fluoroscopy. The individual dose varied widely among neonates. (author)

  7. Neonatal doses from X ray examinations by birth weight in a neonatal intensive care unit

    International Nuclear Information System (INIS)

    Ono, K.; Akahane, K.; Aota, T.; Hada, M.; Takano, Y.; Kai, M.; Kusama, T.

    2003-01-01

    The aim of this study was to investigate the frequency and type of X ray examinations performed on neonates classified according to their birth weight in a neonatal intensive care unit (NICU). In this study, the radiology records of 2408 neonates who were admitted to the NICU of Oita Prefectural Hospital between January 1994 and September 1999 were investigated. This study revealed that the neonates with earlier gestational ages and lower birth weights required longer NICU stays and more frequent X ray examinations made using a mobile X ray unit. The average number of X ray examinations performed on neonates of less than 750 g birth weight was 26 films per neonate. In regard to computed tomography and fluoroscopy, no significant relationship was found between the birth weight and number of X rays. This study revealed that the entrance-surface dose per neonate was dependent upon the birth weight, while the maximum dose was not dependent upon the birth weight. The average neonatal dose in the NICU was predominantly from computed tomography and fluoroscopy. The individual dose varied widely among neonates. (author)

  8. Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015; Session “Pulmonology”

    Directory of Open Access Journals (Sweden)

    Various Authors

    2015-09-01

    Full Text Available Selected Abstracts of the 1st Congress of joint European Neonatal Societies (jENS 2015; Budapest (Hungary; September 16-20, 2015ORGANIZING INSTITUTIONSEuropean Society for Neonatology (ESN, European Society for Paediatric Research (ESPR, Union of European Neonatal & Perinatal Societies (UENPS, European Foundation for the Care of Newborn Infants (EFCNI, with the local host of Hungarian Society of Perinatology and Obstetric Anesthesiology, Hungarian Society of Perinatology (MPT, supported by Council of International Neonatal Nurses (COINN, organizing secretariat MCA Scientific EventsPROGRAMME COMMITTEEArtúr Beke (Hungarian Society, Morten Breindahl (ESN, Giuseppe Buonocore (UENPS, Pierre Gressens (ESPR, Silke Mader (EFCNI, Manuel Sánchez Luna (UENPS, Miklós Szabó (Hungarian Society of Perinatology, Luc Zimmermann (ESPR Session “Pulmonology”ABS 1. URINE NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN AS A MARKER OF BRONCHOPULMONARY DYSPLASIA AND RETINOPATHY OF PREMATURITY IN PRETERM NEONATES • H. Ergin, T. Atilgan, M. Dogan, O.M.A. Ozdemir, C. YeniseyABS 2. LUNG COMPLIANCE AND LUNG ULTRASOUND DURING POSTNATAL ADAPTATION IN HEALTHY NEWBORN INFANTS • L. Süvari, L. Martelius, C. Janér, A. Kaskinen, O. Pitkänen, T. Kirjavainen, O. Helve, S. AnderssonABS 3. PRE-DISCHARGE RESPIRATORY OUTCOMES IN SMALL-FOR-GESTATIONAL-AGE AND APPROPRIATE-FOR-GESTATIONAL-AGE VERY PRETERM INFANTS • A. Matic, A. RistivojevicABS 4. THE EFFECT OF CHANGING OXYGEN SATURATION TARGET RANGE ON COMPLIANCE IN OXYGEN SATURATION TARGETING IN THE NEONATAL INTENSIVE CARE UNIT • H.A. van Zanten, S. Pauws, E.C.H. Beks, B.J. Stenson, E. Lopriore, A.B. te PasABS 5. BINASAL PRONG VERSUS NASAL MASK FOR APPLYING CPAP TO PRETERM INFANTS: RANDOMIZED CONTROLLED TRIAL • B. Say, G. Kanmaz, S.S. OguzABS 6. TRAINING AND RAISING AWARENESS IMPROVES COMPLIANCE IN OXYGEN SATURATION TARGETING IN THE NEONATAL INTENSIVE CARE UNIT • H.A. van Zanten, S. Pauws, E.C.H. Beks, B.J. Stenson, E

  9. Predominant Role of Cytosolic Phospholipase A2α in Dioxin-induced Neonatal Hydronephrosis in Mice

    Science.gov (United States)

    Yoshioka, Wataru; Kawaguchi, Tatsuya; Fujisawa, Nozomi; Aida-Yasuoka, Keiko; Shimizu, Takao; Matsumura, Fumio; Tohyama, Chiharu

    2014-01-01

    Hydronephrosis is a common disease characterized by dilation of the renal pelvis and calices, resulting in loss of kidney function in the most severe cases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces nonobstructive hydronephrosis in mouse neonates through upregulation of prostaglandin E2 (PGE2) synthesis pathway consisting of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) by a yet unknown mechanism. We here studied possible involvement of cytosolic phospholipase A2α (cPLA2α) in this mechanism. To this end, we used a cPLA2α-null mouse model and found that cPLA2α has a significant role in the upregulation of the PGE2 synthesis pathway through a noncanonical pathway of aryl hydrocarbon receptor. This study is the first to demonstrate the predominant role of cPLA2α in hydronephrosis. Elucidation of the pathway leading to the onset of hydronephrosis using the TCDD-exposed mouse model will deepen our understanding of the molecular basis of nonobstructive hydronephrosis in humans. PMID:24509627

  10. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model

    International Nuclear Information System (INIS)

    Lim, J.C.-W.; Goh, F.-Y.; Sagineedu, S.-R.; Yong, A.C.-H.; Sidik, S.M.; Lajis, N.H.; Wong, W.S.F.; Stanslas, J.

    2016-01-01

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27

  11. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.C.-W. [Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Goh, F.-Y. [Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System (Singapore); Sagineedu, S.-R. [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yong, A.C.-H. [Faculty of Pharmacy, Segi University, Jalan Teknologi, 47810 Petaling Jaya (Malaysia); Sidik, S.M. [Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Lajis, N.H. [Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Wong, W.S.F., E-mail: fred_wong@nuhs.edu.sg [Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System (Singapore); Immunology Program, Life Science Institute, National University of Singapore (Singapore); Stanslas, J., E-mail: rcxjs@upm.edu.my [Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2016-07-01

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27

  12. Analysis of a dielectric EAP as smart component for a neonatal respiratory simulator.

    Science.gov (United States)

    Tognarelli, S; Deri, L; Cecchi, F; Scaramuzzo, R; Cuttano, A; Laschi, C; Menciassi, A; Dario, P

    2013-01-01

    Nowadays, respiratory syndrome represents the most common neonatal pathology. Nevertheless, being respiratory assistance in newborns a great challenge for neonatologists and nurses, use of simulation-based training is quickly becoming a valid meaning of clinical education for an optimal therapy outcome. Commercially available simulators, are, however, not able to represent complex breathing patterns and to evaluate specific alterations. The purpose of this work has been to develop a smart, lightweight, compliant system with variable rigidity able to replicate the anatomical behavior of the neonatal lung, with the final aim to integrate such system into an innovative mechatronic simulator device. A smart material based-system has been proposed and validated: Dielectric Electro Active Polymers (DEAP), coupled to a purposely shaped silicone camera, has been investigated as active element for a compliance change simulator able to replicate both physiological and pathological lung properties. Two different tests have been performed by using a bi-components camera (silicone shape coupled to PolyPower film) both as an isolated system and connected to an infant ventilator. By means of a pressure sensor held on the silicon structure, pressure values have been collected and compared for active and passive PolyPower working configuration. The obtained results confirm a slight pressure decrease in active configuration, that is in agreement with the film stiffness reduction under activation and demonstrates the real potentiality of DEAP for active volume changing of the proposed system.

  13. Proliferation during early phases of bronchiolar repair in neonatal rabbits following lung injury by 4-ipomeanol

    International Nuclear Information System (INIS)

    Smiley-Jewell, Suzette M.; Plopper, Charles G.

    2003-01-01

    Nonciliated bronchiolar (Clara cells) are progenitor cells during development. During differentiation, they are more susceptible to injury by environmental toxicants metabolized by the cytochrome P450 monooxygenase system, and injury results in altered bronchiolar repair and development. Squamous cells and abnormal cuboidal epithelium persist into early adulthood. The hypothesis tested in this study was that the failure of bronchiolar epithelium to repair normally in neonates following injury is due to an inhibition of proliferation. A model of differential repair in rabbit kits was used. Proliferation was followed for 1 week post injury in rabbit kits treated with a single dose of the P450-mediated cytotoxicant 4-ipomeanol (IPO) at 7 days old (repair abnormal) and compared to rabbits treated with a single dose of IPO at 21 days old (repair normal). Proliferation was measured by the nuclear incorporation of 5-chloro-2'-deoxyuridine (CldU) within epithelium at the target site (terminal bronchiole). The repair pattern between the two age groups was histologically defined. There was no difference in the CdlU labeling index during the week of repair between the two age groups, even though the bronchiolar epithelium did not return to normal in the animals treated at 7 days old. In summary, proliferation (through S-phase) is not inhibited during repair in neonatal rabbits treated with IPO at 7 days old compared to animals treated at 21 days old, and we conclude that other factors may be responsible for the altered repair in the young neonates injured by a P450-mediated cytotoxicant

  14. Neonatal neurosonography

    Energy Technology Data Exchange (ETDEWEB)

    Riccabona, Michael, E-mail: michael.riccabona@klinikum-graz.at

    2014-09-15

    Paediatric and particularly neonatal neurosonography still remains a mainstay of imaging the neonatal brain. It can be performed at the bedside without any need for sedation or specific monitoring. There are a number of neurologic conditions that significantly influence morbidity and mortality in neonates and infants related to the brain and the spinal cord; most of them can be addressed by ultrasonography (US). However, with the introduction of first CT and then MRI, neonatal neurosonography is increasingly considered just a basic first line technique that offers only orienting information and does not deliver much relevant information. This is partially caused by inferior US performance – either by restricted availability of modern equipment or by lack of specialized expertise in performing and reading neurosonographic scans. This essay tries to highlight the value and potential of US in the neonatal brain and briefly touching also on the spinal cord imaging. The common pathologies and their US appearance as well as typical indication and applications of neurosonography are listed. The review aims at encouraging paediatric radiologists to reorient there imaging algorithms and skills towards the potential of modern neurosonography, particularly in the view of efficacy, considering growing economic pressure, and the low invasiveness as well as the good availability of US that can easily be repeated any time at the bedside.

  15. Socioeconomic factors and adolescent pregnancy outcomes: distinctions between neonatal and post-neonatal deaths?

    Directory of Open Access Journals (Sweden)

    Flick Louise H

    2005-07-01

    Full Text Available Abstract Background Young maternal age has long been associated with higher infant mortality rates, but the role of socioeconomic factors in this association has been controversial. We sought to investigate the relationships between infant mortality (distinguishing neonatal from post-neonatal deaths, socioeconomic status and maternal age in a large, retrospective cohort study. Methods We conducted a population-based cohort study using linked birth-death certificate data for Missouri residents during 1997–1999. Infant mortality rates for all singleton births to adolescent women (12–17 years, n = 10,131; 18–19 years, n = 18,954 were compared to those for older women (20–35 years, n = 28,899. Logistic regression was used to estimate adjusted odds ratios (OR and 95% confidence intervals (CI for all potential associations. Results The risk of infant (OR 1.95, CI 1.54–2.48, neonatal (1.69, 1.24–2.31 and post-neonatal mortality (2.47, 1.70–3.59 were significantly higher for younger adolescent (12–17 years than older (20–34 years mothers. After adjusting for race, marital status, age-appropriate education level, parity, smoking status, prenatal care utilization, and poverty status (indicated by participation in WIC, food stamps or Medicaid, the risk of post-neonatal mortality (1.73, 1.14–2.64 but not neonatal mortality (1.43, 0.98–2.08 remained significant for younger adolescent mothers. There were no differences in neonatal or post-neonatal mortality risks for older adolescent (18–19 years mothers. Conclusion Socioeconomic factors may largely explain the increased neonatal mortality risk among younger adolescent mothers but not the increase in post-neonatal mortality risk.

  16. Neonatal adrenal hemorrhage presenting as late onset neonatal jaundice

    OpenAIRE

    Qureshi, Umar Amin; Ahmad, Nisar; Rasool, Akhter; Choh, Suhail

    2009-01-01

    Clinical manifestations of adrenal hemorrhage vary depending on the degree and rate of hemorrhage, as well as the amount of adrenal cortex compromised by hemorrhage. We report here a case of neonatal adrenal hemorrhage that presented with late onset neonatal jaundice. The cause of adrenal hemorrhage was birth asphyxia.

  17. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  18. Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates

    Directory of Open Access Journals (Sweden)

    Eleonore Ostermann

    2015-05-01

    Full Text Available Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5 represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.

  19. Morphological correlates of fractionated radiation of the mouse lung: Early and late effects

    International Nuclear Information System (INIS)

    Penney, D.P.; Siemann, D.W.; Rubin, P.; Maltby, K.

    1994-01-01

    The definition and quantitation of radiation-induced morphologic alterations in murine lungs is presented. The extent of injury to the lung, which is the dose-limiting organ in the thorax, may be reduced by fractionating the total radiation exposure to permit partial repair of radiation-induced damage between fraction administration and also to permit a larger total exposure to be administered. The authors previously reported that, following fractionated radiation exposures, as the dose/fraction decreases, the total dose to reach an isoeffect increases, with an α/β ratio of 3.2 and 3.0 for breathing rates and lethality, respectively. In the present report, they provide comparative morphologic evaluation of the effects of weekly fractionated, daily fractionated, and hyperfractionated radiation exposures. The doses administered within each group were uniform. To determine morphologic alterations, LAF1 mice were irradiated with 3, 15, and 30 fractions delivered in 19 days overall treatment time. In the hyperfractionation schedule, the two fractions per day were separated by a 6-h time interval. Total doses were as follows: 15-21 Gy for weekly fractionation, 30-41.5 Gy for daily fractionation, and 30-49.5 Gy for hyperfractionated schedules. Lung tissue, recovered either 24 or 72 weeks following the final exposure, was evaluated by transmission and scanning electron microscopy and light microscopy. Morphological damage was not uniform throughout the exposed lung and tended to be concentrated in lobes or portions of lobes. In the three fractionation regimens studied, there is progressive sparing of the lung with increased fractionation during the pnuemonitic state (24 weeks postirradiation). Both daily and twice daily fractionations provide increased sparing over weekly fractionation during the fibrotic stages (72 weeks postirradiation), but were not markedly different from each other (i.e. weekly < daily = twice daily). 41 refs., 15 figs., 2 tabs

  20. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system.

    Science.gov (United States)

    Ren, Weiping; Wu, Bin; Mayton, Lois; Wooley, Paul H

    2002-09-01

    There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. This study examined the effect of inflammatory membranes stimulated with methyl methacrylate and polyethylene on bone resorption, using the murine air pouch model. The capacity of RAW 264.7 mouse macrophages exposed to polymer particles to produce factors affecting bone metabolism was also studied. Neonatal calvaria bones were co-cultured with either pouch membranes or conditioned media from activated macrophages. Bone resorption was measured by the release of calcium from cultured bones, and the activity of tartrate-resistant acid phosphatase in both bone sections and culture medium was also assayed. Results showed that inflammatory pouch membrane activated by methyl methacrylate and polyethylene enhanced osteoclastic bone resorption. Conditioned media from particles stimulated mouse macrophages also stimulated bone resorption, although this effect was weaker than resorption induced by inflammatory pouch membranes. The addition of the particles directly into the medium of cultured calvaria bones had little effect on bone resorption. Our observations indicate that both inflammatory tissue and macrophages provoked by particles can stimulate bone resorption in cultured mouse neonatal calvaria bones. This simple in vitro bone resorption system allows us to investigate the fundamental cellular and molecular mechanism of wear debris induced bone resorption and to screen potential therapeutic approaches for aseptic loosening.

  1. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I.

    Science.gov (United States)

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji; Serafini, Marta

    2015-03-05

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. © 2015 by The American Society of Hematology.

  2. Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse

    Czech Academy of Sciences Publication Activity Database

    Williams, A. M.; Probert, Ch. S. J.; Štěpánková, Renata; Tlaskalová, Helena; Philips, A.; Bland, P. W.

    2006-01-01

    Roč. 119, - (2006), s. 470-478 ISSN 0019-2805 Institutional research plan: CEZ:AV0Z50200510 Keywords : germfree * microflora * neonate Subject RIV: EE - Microbiology, Virology Impact factor: 3.674, year: 2006

  3. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  4. Exposure assessment of neonates in israel to x-ray radiation during hospitalization at neonatal intensive care unit

    International Nuclear Information System (INIS)

    Datz, H.

    2005-03-01

    Nowadays nearly 10% of all births in western countries are premature. In the last decade, there has been an increase of 45% in the number of neonates that were born in Israel. At the same time, the survival of neonates, especially those with very low birth weight, VLBW, (less than 1,500 gr), has increased dramatically. Diagnostic radiology plays an important role in the assessment and treatment of neonates requiring intensive care. During their prolonged and complex hospitalization, these infants are exposed to multiple radiographic examinations involving X-ray radiation. The extent of the examinations that the infant undergoes depends on its birth weight, gestational age and its medical problems, where most of the treatment effort is focused especially on VLBW neonates. Most of the diagnostic X-ray examinations taken during the hospitalization of neonates in the neonatal intensive care unit (NICU) consist of imaging of the respiratory and gastrointestinal systems, namely, the chest and abdomen. The imaging process is done using mobile X-ray units located at the NICUs. Due to their long hospitalization periods and complex medical condition, all neonates, and neonates with VLBW in particular, are exposed to a much higher level of diagnostic radiation, compared to normal newborns. The goal of this research was to assess the extent of the exposure of neonates in Israel to X-ray radiation during their hospitalization at the neonatal intensive care unit. Five NICUs, located at different geographical zones in Israel and treating 20% of all newborns in Israel every year, participated in this research. The research was conducted in three phases: Phase I: Collection of information on radiographic techniques and exposure parameters (e.g. kV, mAs, focus to skin distance (FSD), examination borders). 499 X-ray examinations (from 157 neonates) were evaluated for necessary and unnecessary exposure of the neonate's organs to X-ray radiation during these examinations. Phase II

  5. Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Bravo, Dawn T; Yang, Yi-Lin; Kuchenbecker, Kristopher; Hung, Ming-Szu; Xu, Zhidong; Jablons, David M; You, Liang

    2013-01-01

    Wnt-2 plays an oncogenic role in cancer, but which Frizzled receptor(s) mediates the Wnt-2 signaling pathway in lung cancer remains unclear. We sought to (1) identify and evaluate the activation of Wnt-2 signaling through Frizzled-8 in non-small cell lung cancer, and (2) test whether a novel expression construct dominant negative Wnt-2 (dnhWnt-2) reduces tumor growth in a colony formation assay and in a xenograft mouse model. Semi-quantitative RT-PCR was used to identify the expression of Wnt-2 and Frizzled-8 in 50 lung cancer tissues from patients. The TCF reporter assay (TOP/FOP) was used to detect the activation of the Wnt canonical pathway in vitro. A novel dnhWnt-2 construct was designed and used to inhibit activation of Wnt-2 signaling through Frizzled-8 in 293T, 293, A549 and A427 cells and in a xenograft mouse model. Statistical comparisons were made using Student’s t-test. Among the 50 lung cancer samples, we identified a 91% correlation between the transcriptional increase of Wnt-2 and Frizzled-8 (p<0.05). The Wnt canonical pathway was activated when both Wnt-2 and Frizzled-8 were co-expressed in 293T, 293, A549 and A427 cells. The dnhWnt-2 construct we used inhibited the activation of Wnt-2 signaling in 293T, 293, A549 and A427 cells, and reduced the colony formation of NSCLC cells when β-catenin was present (p<0.05). Inhibition of Wnt-2 activation by the dnhWnt-2 construct further reduced the size and mass of tumors in the xenograft mouse model (p<0.05). The inhibition also decreased the expression of target genes of Wnt signaling in these tumors. We demonstrated an activation of Wnt-2 signaling via the Frizzled-8 receptor in NSCLC cells. A novel dnhWnt-2 construct significantly inhibits Wnt-2 signaling, reduces colony formation of NSCLC cells in vitro and tumor growth in a xenograft mouse model. The dnhWnt-2 construct may provide a new therapeutic avenue for targeting the Wnt pathway in lung cancer

  6. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  7. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    Science.gov (United States)

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p20% (AUC=0.78; p20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  9. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    Science.gov (United States)

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  10. Rac1 modulates mammalian lung branching morphogenesis in part through canonical Wnt signaling.

    Science.gov (United States)

    Danopoulos, Soula; Krainock, Michael; Toubat, Omar; Thornton, Matthew; Grubbs, Brendan; Al Alam, Denise

    2016-12-01

    Lung branching morphogenesis relies on a number of factors, including proper epithelial cell proliferation and differentiation, cell polarity, and migration. Rac1, a small Rho GTPase, orchestrates a number of these cellular processes, including cell proliferation and differentiation, cellular alignment, and polarization. Furthermore, Rac1 modulates both noncanonical and canonical Wnt signaling, important pathways in lung branching morphogenesis. Culture of embryonic mouse lung explants in the presence of the Rac1 inhibitor (NSC23766) resulted in a dose-dependent decrease in branching. Increased cell death and BrdU uptake were notably seen in the mesenchyme, while no direct effect on the epithelium was observed. Moreover, vasculogenesis was impaired following Rac1 inhibition as shown by decreased Vegfa expression and impaired LacZ staining in Flk1-Lacz reporter mice. Rac1 inhibition decreased Fgf10 expression in conjunction with many of its associated factors. Moreover, using the reporter lines TOPGAL and Axin2-LacZ, there was an evident decrease in canonical Wnt signaling in the explants treated with the Rac1 inhibitor. Activation of canonical Wnt pathway using WNT3a or WNT7b only partially rescued the branching inhibition. Moreover, these results were validated on human explants, where Rac1 inhibition resulted in impaired branching and decreased AXIN2 and FGFR2b expression. We therefore conclude that Rac1 regulates lung branching morphogenesis, in part through canonical Wnt signaling. However, the exact mechanisms by which Rac1 interacts with canonical Wnt in human and mouse lung requires further investigation. Copyright © 2016 the American Physiological Society.

  11. The effect of pregnant rat swimming on hypoxia-inducible factor-1α levels of neonatal lung

    Directory of Open Access Journals (Sweden)

    Mirdar Shadmehr

    2012-03-01

    Conclusion: Our research suggests that HIF-1α level is an essential element for the development of the lungs of embryos. Moreover, further studies on the lung HIF-1α levels at post-natal period with different modes of exercise will provide more clear insight into the mechanisms of the findings resulting from this study.

  12. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    Science.gov (United States)

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  13. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse.

    Science.gov (United States)

    Lax, Siân; Rayes, Julie; Wichaiyo, Surasak; Haining, Elizabeth J; Lowe, Kate; Grygielska, Beata; Laloo, Ryan; Flodby, Per; Borok, Zea; Crandall, Edward D; Thickett, David R; Watson, Steve P

    2017-12-01

    There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS. Copyright © 2017 the American Physiological Society.

  14. ∆DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mark Z. Ma

    2015-10-01

    Full Text Available Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of DNMT3B termed DNMT3B/∆DNMT3B-del. In normal bronchial epithelial cells, DNMT3B/ΔDNMT3B and DNMT3B/∆DNMT3B-del displayed equal levels of expression. In contrast, in patients with non-small cell lung cancer NSCLC, 111 (93% of the 119 tumors predominantly expressed DNMT3B/ΔDNMT3B-del, including 47 (39% tumors with no detectable DNMT3B/∆DNMT3B. Using a transgenic mouse model, we further demonstrated the biological impact of ∆DNMT3B4-del, the ∆DNMT3B-del isoform most abundantly expressed in NSCLC, in global DNA methylation patterns and lung tumorigenesis. Expression of ∆DNMT3B4-del in the mouse lungs resulted in an increased global DNA hypomethylation, focal DNA hypermethylation, epithelial hyperplastia and tumor formation when challenged with a tobacco carcinogen. Our results demonstrate ∆DNMT3B4-del as a critical factor in developing aberrant DNA methylation patterns during lung tumorigenesis and suggest that ∆DNMT3B4-del may be a target for lung cancer prevention.

  15. Neonatal pain management

    Directory of Open Access Journals (Sweden)

    Tarun Bhalla

    2014-01-01

    Full Text Available The past 2-3 decades have seen dramatic changes in the approach to pain management in the neonate. These practices started with refuting previously held misconceptions regarding nociception in preterm infants. Although neonates were initially thought to have limited response to painful stimuli, it was demonstrated that the developmental immaturity of the central nervous system makes the neonate more likely to feel pain. It was further demonstrated that untreated pain can have long-lasting physiologic and neurodevelopmental consequences. These concerns have resulted in a significant emphasis on improving and optimizing the techniques of analgesia for neonates and infants. The following article will review techniques for pain assessment, prevention, and treatment in this population with a specific focus on acute pain related to medical and surgical conditions.

  16. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Longitudinal micro-CT as an outcome measure of interstitial lung disease in TNF-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Richard D Bell

    Full Text Available Rheumatoid arthritis associated interstitial lung disease (RA-ILD is a debilitating condition with poor survival prognosis. High resolution computed tomography (CT is a common clinical tool to diagnose RA-ILD, and is increasingly being adopted in pre-clinical studies. However, murine models recapitulating RA-ILD are lacking, and CT outcomes for inflammatory lung disease have yet to be formally validated. To address this, we validate μCT outcomes for ILD in the tumor necrosis factor transgenic (TNF-Tg mouse model of RA.Cross sectional μCT was performed on cohorts of male TNF-Tg mice and their WT littermates at 3, 4, 5.5 and 12 months of age (n = 4-6. Lung μCT outcomes measures were determined by segmentation of the μCT datasets to generate Aerated and Tissue volumes. After each scan, lungs were obtained for histopathology and 3 sections stained with hematoxylin and eosin. Automated histomorphometry was performed to quantify the tissue area (nuclei, cytoplasm, and extracellular matrix and aerated area (white space within the tissue sections. Spearman's correlation coefficients were used to evaluate the extent of association between μCT imaging and histopathology endpoints.TNF-Tg mice had significantly greater tissue volume, total lung volume and mean intensity at all timepoints compared to age matched WT littermates. Histomorphometry also demonstrated a significant increase in tissue area at 3, 4, and 5.5 months of age in TNF-Tg mice. Lung tissue volume was correlated with lung tissue area (ρ = 0.81, p<0.0001, and normalize lung aerated volume was correlated with normalized lung air area (ρ = 0.73, p<0.0001.We have validated in vivo μCT as a quantitative biomarker of ILD in mice. Further, development of longitudinal measures is critical for dissecting pathologic progression of ILD, and μCT is a useful non-invasive method to study lung inflammation in the TNF-Tg mouse model.

  18. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice.

    Science.gov (United States)

    Dylag, Andrew M; Mayer, Catherine A; Raffay, Thomas M; Martin, Richard J; Jafri, Anjum; MacFarlane, Peter M

    2017-04-01

    Premature infants are at increased risk for wheezing disorders. Clinically, these neonates experience recurrent episodes of apnea and desaturation often treated by increasing the fraction of inspired oxygen (FIO 2 ). We developed a novel paradigm of neonatal intermittent hypoxia with subsequent hyperoxia overshoots (CIH O/E ) and hypothesized that CIH O/E elicits long-term changes on pulmonary mechanics in mice. Neonatal C57BL/6 mice received CIH O/E , which consisted of 10% O2 (1 min) followed by a transient exposure to 50% FIO 2 , on 10-min repeating cycles 24 h/d from birth to P7. Baseline respiratory mechanics, methacholine challenge, RT-PCR for pro and antioxidants, radial alveolar counts, and airway smooth muscle actin were assessed at P21 after 2-wk room air recovery. Control groups were mice exposed to normoxia, chronic intermittent hyperoxia (CIH E ), and chronic intermittent hypoxia (CIH O ). CIH O/E and CIH E increased airway resistance at higher doses of methacholine and decreased baseline compliance compared with normoxia mice. Lung mRNA for NOX2 was increased by CIH O/E . Radial alveolar counts and airway smooth muscle actin was not different between groups. Neonatal intermittent hypoxia/hyperoxia exposure results in long-term changes in respiratory mechanics. We speculate that recurrent desaturation with hyperoxia overshoot may increase oxidative stress and contribute to wheezing in former preterm infants.

  19. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    Science.gov (United States)

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Causes of Neonatal Mortality in the Neonatal Intensive Care Unit of Taleghani Hospital

    Directory of Open Access Journals (Sweden)

    Ali Hossein Zeinalzadeh

    2017-09-01

    Full Text Available Background: Neonatal survival is one of the most important challenges today. Over 99% of neonatal mortalities occur in the developing countries, and epidemiologic studies emphasize on this issue in the developed countries, as well. In this study, we attempted to investigate the causes of neonatal mortality in Taleghani Hospital, Tabriz, Iran.Methods: In this cross-sectional study, we studied causes of neonatal mortality in neonatal intensive care unit (NICU of Taleghani Hospital, Tabriz, Iran, during 2013-2014. Data collection was performed by the head nurse and treating physician using a pre-designed questionnaire. Most of the data were extracted from the neonatal records. Information regarding maternal underlying diseases and health care during pregnancy was extracted from mothers' records.Results: A total of 891 neonates were admitted to NICU of Taleghani Hospital of Tabriz, Iran, during 2013-2014, 68 (7.5% of whom died. Among these cases, 37 (%54.4 were male, 29 (29.4% were extremely low birth weight, and 16 (23.5% weighed more than 2.5 kg. The main causes of mortality were congenital anomalies (35.3%, prematurity (26.5%, and sepsis (10.3%, respectively.Conclusion: Congenital anomaly is the most common cause of mortality, and the pattern of death is changing from preventable diseases to unavoidable mortalities

  1. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    Science.gov (United States)

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Prospective, randomized study using sealed envelopes. 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  2. Developments in neonatal care and nursing responses.

    Science.gov (United States)

    Healy, Patricia; Fallon, Anne

    This article reviews the origins and evolution of neonatology and considers the role of the neonatal nurse within this specialty. Neonatal nurses are a vital part of the neonatal team that provides care for sick babies. The nursing care required by sick babies and their families on a neonatal unit can be variable and complex. The past century has seen significant changes in the role of the neonatal nurse. This has come about through dramatic technological developments on neonatal units, an increased understanding of neonatal physiology and pathology, changes in the education of neonatal nurses, and active and ongoing clinical research within the specialty. The resulting significant advances in neonatal care, including that provided by neonatal nurses, have made a crucial and steadfast contribution to marked improvements in neonatal outcomes.

  3. Patterns of admission and factors associated with neonatal mortality among neonates admitted to the neonatal intensive care unit of University of Gondar Hospital, Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Demisse AG

    2017-05-01

    Full Text Available Abayneh Girma Demisse, Fentahun Alemu, Mahlet Abayneh Gizaw, Zemene Tigabu School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia Introduction: The neonatal period is a highly vulnerable time for an infant completing many of the physiologic adjustments required for life outside the uterus. As a result, there are high rates of morbidity and mortality. The three major causes of mortality in developing countries include prematurity, infection, and perinatal asphyxia. The aim of this study was to identify the patterns of neonatal admission and factors associated with mortality among neonates admitted at the Neonatal Intensive Care Unit (NICU of University of Gondar Hospital.Materials and methods: A retrospective cross-sectional study was conducted among all admitted neonates in the NICU of University of Gondar referral hospital from December 1, 2015 to August 31, 2016. Information was extracted retrospectively during admission from patient records and death certificates, using a pretested questionnaire. The data were entered and analyzed using SPSS version 20, and p-values <0.05 were considered statistically significant.Results: A total of 769 neonates was included in the study. There were 448 (58.3% male neonates, and 398 (51.8% neonates were rural residents. More than two-thirds of the 587 deliveries (76.3% were performed in tertiary hospitals. Neonatal morbidity included hypothermia 546 (71%, sepsis 522 (67.9%, prematurity 250 (34.9%, polycythemia 242 (31.5%, hypoglycemia 142 (18.5, meconium aspiration syndrome 113 (14.7%, and perinatal asphyxia 96 (12.5%. The overall mortality was 110 (14.3%; 95% confidence interval [CI]: 11.9–16.9 of which 69 (62.7% deaths occurred in the first 24 hours of age. In the multivariate analysis, mortality was associated with perinatal asphyxia (adjusted odds ratio [AOR]: 5.97; 95% CI: 3.06–11.64, instrumental delivery (AOR: 2.99; 95% CI: 1.08–8.31, and early onset

  4. Volume and leak measurements during neonatal CPAP in neonates

    OpenAIRE

    Fischer, Hendrik S.

    2011-01-01

    As yet, little is known about the effects of air leakages during CPAP in newborns. The present doctoral dissertation investigates tidal volume and leak measurements during nasal continuous positive airway pressure in neonates using a commercial ventilatory device. Investigations include in vitro studies, modelling and computer simulation as well as a clinical randomized cross-over trial in neonates.

  5. Pharmacokinetics of WR-1065 in mouse tissue following treatment with WR-2721

    International Nuclear Information System (INIS)

    Utley, J.F.; Seaver, N.; Newton, G.L.; Fahey, R.C.

    1984-01-01

    Levels of reduced glutathione (GSH) and N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065) were measured in tissues of Balb/c mouse bearing EMT 6 tumors at time intervals ranging from 5 min to 48 hr after i.v. injection of S-2-(3-aminopropylamino)ethyl phosphorothioate (WR-2721) at 500 mg per kg. In all tissues examined (liver, kidney, lung, heart, muscle, brain, tumor, spleen, and salivary gland), maximal WR-1065 levels occurred 5-15 min after injection, with levels in liver, kidney, lung, and salivary gland exceeding one μmole per gm. The post-maximum decline in WR-1065 varied markedly with tissue, lung exhibiting a 6-fold drop by 30 min and salivary gland falling only 15% after 3 hr. In a mouse treated with carbon-14 labeled WR-2721 it was found after 15 min that WR-1065 accounted for over half of the total drug in all tissues except tumor, where it accounted for a third of the total drug. There was no evidence that GSH levels were substantially altered by WR-2721 treatment. The results provide the first direct evidence supporting the widely held view that WR-2721 treatment results in intracellular WR-1065 and they demonstrate that high levels of WR-1065 occur very soon after i.v. injection

  6. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  7. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  8. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    Science.gov (United States)

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  9. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  10. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    Science.gov (United States)

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Stagni, Fiorenza; Raspanti, Alessandra; Giacomini, Andrea; Guidi, Sandra; Emili, Marco; Ciani, Elisabetta; Giuliani, Alessandro; Bighinati, Andrea; Calzà, Laura; Magistretti, Jacopo; Bartesaghi, Renata

    2017-07-01

    Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early

  12. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  13. Telemedicine in Neonatal Home Care

    DEFF Research Database (Denmark)

    Holm, Kristina Garne; Brødsgaard, Anne; Zachariassen, Gitte

    2016-01-01

    participatory design and qualitative methods. Data were collected from observational studies, individual interviews, and focus group interviews. Two neonatal units participated. One unit was experienced in providing neonatal home care with home visits, and the other planned to offer neonatal home care......BACKGROUND: For the majority of preterm infants, the last weeks of hospital admission mainly concerns tube feeding and establishment of breastfeeding. Neonatal home care (NH) was developed to allow infants to remain at home for tube feeding and establishment of breastfeeding with regular home...... visits from neonatal nurses. For hospitals covering large regions, home visits may be challenging, time consuming, and expensive and alternative approaches must be explored. OBJECTIVE: To identify parental needs when wanting to provide neonatal home care supported by telemedicine. METHODS: The study used...

  14. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  15. Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors

    International Nuclear Information System (INIS)

    Anderson, R.E.; Howarth, J.L.; Troup, G.M.

    1978-01-01

    The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased (a) the incidence of benign and malignant tumors and (b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased the incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response

  16. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    Science.gov (United States)

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  17. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    International Nuclear Information System (INIS)

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC) n , located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC) 2 alleles were observed; however, in western gorilla, (GGGGC) n alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC) n was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC) n alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC) 2 was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC) n short tandem repeats are inherited, and that the (GGGGC) 2 allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC) n , where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC) n microsatellite instability • AHR promoter activity of a construct with (GGGGC) 2 was lower than that of (GGGGC) 4 • The frequency of (GGGGC) 2 in lung cancer patients was 8-fold higher than in neonates • The

  18. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    Science.gov (United States)

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  19. Maternal haemoglobin and short-term neonatal outcome in preterm neonates.

    Directory of Open Access Journals (Sweden)

    Elodie Savajols

    Full Text Available To determine whether there is a significant association between maternal haemoglobin measured before delivery and short-term neonatal outcome in very preterm neonates.We included prospectively all live births occurring from 25 to 32+6 weeks of gestation in a tertiary care centre between January 1(st 2009 and December 31(st 2011. Outborn infants and infants presenting with lethal malformations were excluded. Three hundred and thirty-nine mothers and 409 infants met the inclusion criteria. For each mother-infant pair a prospective record of epidemiologic data was performed and maternal haemoglobin concentration recorded within 24 hours before delivery was retrospectively researched. Maternal haemoglobin was divided into quartiles with the second and the third one regarded as reference as they were composed of normal haemoglobin values. Short-term outcome was defined as poor in case of death during hospital stay and/or grades III/IV intraventricular haemorrhage and/or periventricular leukomalacia and/or necessity of ventriculoperitoneal shunt.The global rate of poor short-term neonatal outcome was 11.4% and was significantly associated with low maternal haemoglobin values. This association remained significant after adjustment for antenatal corticosteroids therapy, gestational age, parity, mechanism of preterm birth, mode of delivery and birth weight (aOR = 2.97 CI 95% [1.36-6.47]. There was no relation between short-term neonatal outcome and high maternal haemoglobin concentration values.We show that low maternal haemoglobin concentration at delivery is an independent risk factor for poor short-term neonatal outcome in very preterm neonates. This study is one of the first to show such an association within the preterm population.

  20. Antenatal corticosteroids for neonates born before 25 Weeks-A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mangesh Deshmukh

    Full Text Available Efficacy of antenatal corticosteroids before 25 weeks of gestation is unclear.To assess and compare neonatal outcomes following ANC exposure at 22, 23 and 24 weeks of gestation by conducting systematic review and meta- analysis.A systematic review of randomised controlled trials (RCT and non-RCTs reporting on neonatal outcomes after exposure to ANC up to 246 weeks of gestation using the Cochrane systematic review methodology. Databases Pubmed, CINAHL, Embase, Cochrane Central library, and online abstracts of conference proceedings including the Pediatric Academic Society (PAS were searched in Feb 2017. Primary outcome was in-hospital mortality defined as death before discharge during the first admission. Secondary outcomes included severe intraventricular hemorrhage (IVH> grade III and IV/or periventricular leukomalacia (PVL, necrotising enterocolitis (NEC >stage II and chronic lung disease (CLD. Meta-analysis was performed using a random-effects model. The level of evidence (LOE was summarised using the GRADE guidelines.There were no RCTs; 8 high quality non-RCTs were included in the review. Meta-analysis showed reduction in mortality [N = 10109; OR = 0.47(0.39-0.56, p<0.00001; LOE: Moderate] and severe IVH and PVL [N = 5084; OR = 0.71(0.61-0.82, p<0.00001; LOE: Low] after exposure to ANC in neonates born <25 weeks. There was no significant difference in CLD [N = 4649; OR = 1.19(0.85-1.65 p = 0.31; LOE: Low] and NEC [N = 5403; OR = 0.95 (0.76-1.19 p = 0.65; LOE: Low]. Mortality was comparable in neonates born at 22, 23 or 24 weeks.Moderate to low quality evidence indicates that exposure to ANC is associated with reduction in mortality and IVH/or PVL in neonates born before 25 weeks.

  1. Differential temporal and spatial progerin expression during closure of the ductus arteriosus in neonates.

    Directory of Open Access Journals (Sweden)

    Regina Bökenkamp

    Full Text Available Closure of the ductus arteriosus (DA at birth is essential for the transition from fetal to postnatal life. Before birth the DA bypasses the uninflated lungs by shunting blood from the pulmonary trunk into the systemic circulation. The molecular mechanism underlying DA closure and degeneration has not been fully elucidated, but is associated with apoptosis and cytolytic necrosis in the inner media and intima. We detected features of histology during DA degeneration that are comparable to Hutchinson Gilford Progeria syndrome and ageing. Immunohistochemistry on human fetal and neonatal DA, and aorta showed that lamin A/C was expressed in all layers of the vessel wall. As a novel finding we report that progerin, a splicing variant of lamin A/C was expressed almost selectively in the normal closing neonatal DA, from which we hypothesized that progerin is involved in DA closure. Progerin was detected in 16.2%±7.2 cells of the DA. Progerin-expressing cells were predominantly located in intima and inner media where cytolytic necrosis accompanied by apoptosis will develop. Concomitantly we found loss of α-smooth muscle actin as well as reduced lamin A/C expression compared to the fetal and non-closing DA. In cells of the adjacent aorta, that remains patent, progerin expression was only sporadically detected in 2.5%±1.5 of the cells. Data were substantiated by the detection of mRNA of progerin in the neonatal DA but not in the aorta, by PCR and sequencing analysis. The fetal DA and the non-closing persistent DA did not present with progerin expressing cells. Our analysis revealed that the spatiotemporal expression of lamin A/C and progerin in the neonatal DA was mutually exclusive. We suggest that activation of LMNA alternative splicing is involved in vascular remodeling in the circulatory system during normal neonatal DA closure.

  2. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  3. Neonates need tailored drug formulations.

    Science.gov (United States)

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  4. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    Full Text Available As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF, remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls. In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that

  5. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    Science.gov (United States)

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  6. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model.

    Directory of Open Access Journals (Sweden)

    Thorsten Frenzel

    Full Text Available Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities.The biological data gained during these experiments were fed into our previously developed computer model "Cancer and Treatment Simulation Tool" (CaTSiT to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model.According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels' geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor's therapeutic susceptibility and its metastatic spreading behavior.Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor.

  7. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin

    International Nuclear Information System (INIS)

    Kaji, Chiaki; Tsujimoto, Yuta; Kato Kaneko, Mika; Kato, Yukinari; Sawa, Yoshihiko

    2012-01-01

    This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG 2a ) and anti-human mAb NZ-1.2 (IgG 2a ) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections

  8. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    Science.gov (United States)

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  9. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1997-01-01

    This study was conducted on mouse lung adenocarcinoma tissues that were formalin-treated and paraffin-embedded 25 years ago to investigate the large gene deletions of mRb and p53 in B6CF 1 male mice. A total of 80 lung tissue samples from irradiated mice and 40 lung samples from nonirradiated controls were randomly selected and examined in the mRb portion of this study. The results showed a significant (P 0.05) from that for spontaneous lung adenocarcinomas or lung adenocarcinomas from mice exposed to single-dose γ irradiation at a similar total dose. mRb fragments 3 (71%) and 5 (67%), the parts of the gene that encoded the pocket binding region of Rb protein to adenovirus E1A and SV40 T-antigen, were the most frequently deleted fragments. p53 gene deletion analysis was carried out on normal lungs and lung adenocarcinomas that were initially found to bear mRb deletions. Exons 1,4,5,6, and 9 were chosen to be analyzed

  10. Neonatal Nursing

    OpenAIRE

    Crawford, Doreen; Morris, Maryke

    1994-01-01

    "Neonatal Nursing" offers a systematic approach to the nursing care of the sick newborn baby. Nursing actions and responsibilities are the focus of the text with relevant research findings, clinical applications, anatomy, physiology and pathology provided where necessary. This comprehensive text covers all areas of neonatal nursing including ethics, continuing care in the community, intranatal care, statistics and pharmokinetics so that holistic care of the infant is described. This book shou...

  11. A study on relation between nitroxyl radical reduction potency and X-ray irradiation on mouse lung using L-band electron spin resonance

    International Nuclear Information System (INIS)

    Taneike, Makoto; Sho, Keizen; Morita, Rikushi

    1999-01-01

    Changes in nitroxy radical reduction potency (''reduction potency''), caused by different doses and different number of fractions of X-ray irradiation were studied using a L-band electron spin resonance system on mouse lungs into which 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (hydroxy-TEMPO) was introduced through the trachea. The ''reduction potency'' lineally decreased as the irradiation dose increased from 1.0 to 5.0 Gy, but no further decrease was observed at higher doses of 7.5 and 10 Gy. The reduction potency'' dropped at 20 min after each irradiation, but it recovered to the control levels after 1 week in all 3 groups of single dose of 10 Gy, 3 fractions and 5 fractions in a similar manner. Although the levels of the ''reduction potency'' were kept high in the groups of fractionated irradiation through 1-4 weeks after irradiation, the levels dropped again in the single dose group at 1 week and the levels were kept significantly low until 4 weeks after irradiation. suggesting that the fractionation of X-ray irradiation would also be effective to prevent the deterioration of the ''reduction potency''. Pre-treatment with sufficient ascorbic acid inhibited the lowering effects of radiation on the ''reduction potency'' in a dose dependent manner. Furthermore the levels of the reduction potency'' ever elevated higher than those of controls with the large amount of ascorbic acid of 750 mg/kg or more, suggesting that the large amounts of ascorbic acid could prevent the adverse effects associated with radiation therapy for the lung malignancy. (author)

  12. Neonatal Outcomes of Rh-Negative Pregnancies in a Tertiary Level Neonatal Intensive Care Unit: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Chacham

    2016-07-01

    Full Text Available Background Rhesus incompatibility is a preventable cause for severe neonatal hyperbilirubinemia, hydrops fetalis and still births. The prevalence of the Rh-negative blood group among Indian woman varies from 2% - 10%. Despite declining the incidence of Rhesus incompatibility, due to availability of anti-D immunoglobulin, and improved antenatal care of the Rh-negative pregnant woman, it still accounts for a significant proportion of neonatal hyperbilirubinemia and neuro-morbidity. The prevalence of Rh-negative women having Rh-positive neonates is 60%. Objectives This study aimed to estimate the incidence of Rh iso-immunization and evaluate the outcomes of Rh iso-immunized neonates. Methods This prospective observational study was conducted in a tertiary level neonatal intensive care unit, Princess Esra hospital, Deccan college of medical sciences, Hyderabad, Telangana, India. Consecutive intramural and extramural neonates admitted to neonatal intensive care unit with the Rh-negative mother’s blood group and hyperbilirubinemia were enrolled. Neonates born to Rh+ve mothers were excluded. Neonatal gestational age, birth weight, age at admission, duration of phototherapy, duration of hospitalization, neonatal examination and investigations were recorded in a predesigned, pretested performa. Results A total of 90 neonates were born to Rh-negative mothers, of which 70% (63 had the Rh-positive blood group and 30% had the Rh-negative blood group. Of these 63 neonates, 48 (76.2% had hyperbilirubinemia and 43 neonates (68.3% had significant hyperbilirubinemia (total serum bilirubin > 15mg/dL. Among them, 2%, 75% and 23% were born to primi, multi and grandmutli, respectively. Also, 14.5% of the neonates were large for dates (LFD, 75% appropriate for dates (AFD and 10.5% were small for dates (SFD. Premature and SFD neonates had higher incidence of hyperbilirubinemia. Significantly higher incidence of jaundice occurred within 72 hours of life. The mean

  13. Ultrasound Imaging of Mouse Fetal Intracranial Hemorrhage Due to Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Kenichi Funamoto

    2017-05-01

    Full Text Available Despite vast improvement in perinatal care during the 30 years, the incidence rate of neonatal encephalopathy remains unchanged without any further Progress towards preventive strategies for the clinical impasse. Antenatal brain injury including fetal intracranial hemorrhage caused by ischemia/reperfusion is known as one of the primary triggers of neonatal injury. However, the mechanisms of antenatal brain injury are poorly understood unless better predictive models of the disease are developed. Here we show a mouse model for fetal intracranial hemorrhage in vivo developed to investigate the actual timing of hypoxia-ischemic events and their related mechanisms of injury. Intrauterine growth restriction mouse fetuses were exposed to ischemia/reperfusion cycles by occluding and opening the uterine and ovarian arteries in the mother. The presence and timing of fetal intracranial hemorrhage caused by the ischemia/reperfusion were measured with histological observation and ultrasound imaging. Protein-restricted diet increased the risk of fetal intracranial hemorrhage. The monitoring of fetal brains by ultrasound B-mode imaging clarified that cerebral hemorrhage in the fetal brain occurred after the second ischemic period. Three-dimensional ultrasound power Doppler imaging visualized the disappearance of main blood flows in the fetal brain. These indicate a breakdown of cerebrovascular autoregulation which causes the fetal intracranial hemorrhage. This study supports the fact that the ischemia/reperfusion triggers cerebral hemorrhage in the fetal brain. The present method enables us to noninvasively create the cerebral hemorrhage in a fetus without directly touching the body but with repeated occlusion and opening of the uterine and ovarian arteries in the mother.

  14. SERUM SODIUM CHANGES IN NEONATES RECEIVING PHOTOTHERAPY FOR NEONATAL HYPERBILIRUBINEMIA

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2015-07-01

    Full Text Available BACKGROUND : Neonates receiving phototherapy have side effects like hypocalcemia and electrolyte changes. Our study is hereby intended to study the serum sodium changes due to phototherapy. AIMS : To evaluate the serum sodium changes in neonates receiving phototherapy f or neonatal hyperbilirubinemia. SETTINGS AND DESIGN : A prospective hospital based comparative study conducted on neonates admitted in the Neonatal Intensive Care Unit receiving phototherapy. METHODS AND MATERIAL : A predesigned proforma has aided the enroll ment of 252 newborns into the study. Serum bilirubin and serum sodium were determined before and after termination of phototherapy. The first samples were considered as controls. A comparative study was made between before and after phototherapy groups to determine the incidence of serum sodium imbalances. STATISTICAL ANALYSIS USED : Proportions will be compared using chi - square test. All data of various groups will be tabulated and statistically analyzed using suitable statistical tests (Student's t test. RESULTS : Male to Female ratio was 1.45 : 1. Incidence of low birth weight babies was 23% and preterm was 20.2%. Mean birth weight and gestational age was 2.84±0.51 kg and 38.44±1.98 wks respectively. Mean duration of phototherapy was 37.65±11.06 hrs. The incidence of hyponatremia post phototherapy found to be 6% which was more in low birth weight (LBW babies (17.2% , p48 hrs (p<0.001. Even the decline in mean serum sodium values after phototherapy found to be statistically significant. CONCLUSION : Our study shows that neonates u nder phototherapy are at higher risk of hyponatremia. This risk is greater in premature and LBW babies and hence this group of babies should be closely monitored for changes in serum sodium and should be managed accordingly.

  15. Development of a metastatic fluorescent Lewis Lung carcinoma mouse model

    DEFF Research Database (Denmark)

    Rask, Lene; Fregil, Marianne; Høgdall, Estrid

    2013-01-01

    Cancer metastasis is the foremost cause of death in cancer patients. A series of observable pathological changes takes place during progression and metastasis of cancer, but the underlying genetic changes remain unclear. Therefore, new approaches are required, including insights from cancer mouse...... and the model is well suited for the identification of novel microRNAs and mRNAs involved in malignant progression. Our results suggest that increases in metalloproteinase expression and impairment of microRNA processing are involved in the acquirement of metastatic ability....

  16. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  17. Neonatal Vaccination: Challenges and Intervention Strategies.

    Science.gov (United States)

    Morris, Matthew C; Surendran, Naveen

    2016-01-01

    While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates. © 2016 S. Karger AG, Basel.

  18. Histological analysis of trachea and lung of newborn dogs

    Directory of Open Access Journals (Sweden)

    Andrezza Braga Soares da Silva

    2016-11-01

    Full Text Available The neonatology science is, in Veterinary Medicine, studying the post-birth to the development of certain characteristics of resistance, which for canines occurs until the second week of life. The newborn requires a precise approach given the particularities of their physiology and immunology extremely immature. The histological study elucidates problems morphological and functional abnormalities, as it provides a reliable and microscopic analysis. Aimed to analyze trachea and lung of newborn dogs through techniques of basic histology. We used five neonates that died postpartum. These were weighed, measured and dissected. Proceeded to the extraction of the trachea, bronchus and lung for submitting these samples to histological routine. The tracheal tissue presents a pseudostratified columnar ciliated epithelium with globet cells, a small amount of glands in the lamina propria and hyaline cartilage not fully developed. As regards the bronchial tissue may be observed well defined layers, pulmonary pseudostratified columnar ciliated epithelium with goblet cells in the lamina propria several bundles of smooth muscle and thick vascularized tissue. Likewise, the signs of bronchial cartilage present under development. The bronchioles also feature the common pulmonary epithelium and lamina propria also normal pens without smooth muscle. The bags alveolar lung cells showed typical. The lung tissues of newborn dogs present is still in development stage. It is possible to understand patterns of histogenesis and morphogenesis in newborn dogs.

  19. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate

    Science.gov (United States)

    Terrin, Gianluca; Berni Canani, Roberto; Di Chiara, Maria; Pietravalle, Andrea; Aleandri, Vincenzo; Conte, Francesca; De Curtis, Mario

    2015-01-01

    Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated. PMID:26690476

  20. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.